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Boundary-Layer Flows

Boundary layers/shear layers/vorticity layers:
Thin reglons in  high-Reynokis~number flows
mportant.

Governing Equations

-

; positlon.' t twme
;1(_;_. i] velocity vector

;(;, E] density

5(;.il pressure

Mass Conservation:

‘3‘.3 + Y. ({pu) =0
at
Assume incompressible - V.u=0

Assume o uniform

Navier-Stokes squation:

du o .o 1 e -2,
=+ iy Wy = - % «wly,
at P

where viscous

where v is the kinematic viscosity (assume constant).

Assume: typical velocity L
L

typical lengthscale

Reynolds number: R=
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forces

are

Nondimens ionalise:

x “a u -
xX=x, t= gE ' u= <, p= —E;
L L L U
then
8y 1
V.u=40Q, — (!,!]u = -0p + ﬁvz! ,
at
plus boundary conditions, e.g. no-slip at surface of rigid body.
Vorticity equation:
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High Reynolds number - Ro» 1.
Euler-timit
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largest derivative term missing

= boundary condittons must simplify

Example: Steady Irrotational flow past cylinder
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42. Ciccular cylinder st R=26. The downstiream dis-
tance to the cores of the eddiey also increases linearly with
Reynolds numbet. However, the lateral distance between
the cotes appears to grow more nearly a8 the square root.
Phocograph. by Sadatoshi Taneda

#7. Circular cylinder at R=2000. Ar this Reynolds
number one may propecly spesk of s boundary layer. It is
laminar ovet the front, separates, and hreaks up into & tur-
bulent wake. The separstion points, moving forward s

the Reynolds number is increased, have now attsined theic
upstream limir, ahead of maximum thicknes. Visualiza-
tion i by air bubbles in water. ONERA photograph, Werlé
& Gallon 1972

4. Circular eylinder at R=10,000. At five times the
*Peed of the photograph st the top of the page, the flow
PRltern is scarcely changed. The drag coefficient conse.
“ently remaing almest constant in the range of Reynolds

number spanned by these two photographs. )t drops later
when, as in hgure 57, the boundary layer becomes tur-
bulent at separation. Photograph bn Thomas Corke and
Hassan Nagih



d¢
u, = 241 asr s+t uniform stream at infinity
ax

’o = (r+ %)cos 2]
1 8‘0

- — = -2%in 8 : slip velocity at surface
r 2
a8 |r=1 ],

arisex fraom missing highest derivative

Solution locks nothing Hke experiment (dus to instabllity or something
else?). For a viscous flukd thin ‘boundary layers” exist close to the body,
where a transition is made from the slip velocity to zero velocity.

Prandtl-1imit

Introduce local coordinates where X axis is along boundary

Y axis s normal to boundary
Let h = 1+ K(X)Y, where K s curvature of boundary.
Let U, V be velocities in X, Y directions,

V.u=20 - U= &' ., V= -—%qbl : ¥ streamfunction
Vorticity:
Lm0 w envue 2[R 8.5 ()]
2D Vorticity equation:
R, -ee) - a0

By definltion, viscous forces are important in boundary layers,

Let lengthscale in the X-direction be 1
Y-direction be & < 1 {boundary layers are thin)

In boundary layer
h = 0(1)

u=yp, =0 =0n 4 =0l

- 2 = w | 3 1
w = 0(V2y) = (g, 2 o

1 = o™ = p(l

o = ol¥) < ady

o = 0% = ot

F{*Iu! 0(6_] Dla)

12 1 1w 1
192, =D[—u.-—]-0[—
R R R & s’

Viscous forces comparable with inertia forces if

% = 0[ Lﬂ . Le. se0(RM?)
R&
Then V= 0(g) = 0(R'?).
Prandtl scaling:
y = R V25
u=0 +RYE + ..,
o 1
vaRYEHT + RV 4 L)
[ 1
v RTVHE . a"’zwl + ...
W= R-“a(ﬁo + R-Uzﬁ‘ + ...
-1/2, = -1/25
p =R (P°+R P‘+...)
Substitute into Navier-Stokes equatiens
ox * Vor * 9
Uolax * Voloy = Pox Cse
0= Py
Boundary conditions
l_lo = Vﬂ =0 on ¥=0
U su (X, 0) am Yorwm o)
o °
+
Inviscid

slip velocity

(1) comes from ‘matching’ the ‘outer’ Euler solutlon to the 'inner’ Prandtl
solution wusing elther Van Dyke’s matching principle or  an  Intermediate

variable approach.

Note (a) that the Reynolds number does not occur in the equations or the
boundary conditions.



(b} from the continuity equatton

Vo + -um(‘x.Cl)Y + VD.(X) + ... ag Y +wm .,
Inviscid Viscous

Contributlon Contribution

Flow past a semi-infinite flat ptate (Blasius solution)

Boundary-layer solution. Drop ~ and

0 "

Usriin}, A, S

1
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Vs (nf’ -1

172

20 ¢ 1" = @

f{0) = f'(0) =m0, t'(n) 21 a3 79+ w .,
——
Blasius Boundary-Layer Solution.
1 'U

Flow past a circutar cylinder

Ux+vy-0. uul+vu'-—P,+u" {2}
Us V=g onY =0
U3su=2em X as Y 2w .

From (2) evaluated as Y 3 w, --F'x =uu o= 25 2X .

{2) s & parabolic equatlon: If y
solution known at xl then the
solution can be calculated at

30. Blasius boundsry-layer profile on a
flae plate. The cangential velocity profile in
the laminar boundary layer on a flar plate,
discovered by Prandtl and cakulated sccu-
rately by Blasius, is made visible by tel.
lurium. Water is flowing st 9 em/s. The
Reynolds number is 500 based on distance
from the leading edge, and the displacement
thickness is sbout 5 mm. A fine tellurium
wire perpendicular to the plate at the lefir is
subjected to sn electrical impulse of 3 few
milliseconds duration. A chemical reaction
produces a slender colloidal cloud, which
drifts with the stream and is photographed a
moment later to define the velocity profile.
Photograph Iy F. %, Woremann



X >X ifUus»0ovy,
2 1

At X = 0, solution is stagnation point solution,

U= XF(Y) + ...
Vo =f(Y¥Y) + ..,

LA L LA e LT

Numerical solution can be obtatied by standard finite-difference techniques

[e.g. Keller box, Crank-Nicholson, etc..)

Schemat ic results:

U'(YIO)

V =slim{V+u Y)
» x

¥

For X « X~ 104.5° a numerical solutlon can be found. For 0 < X - X < 1,
L ]

T % U (YD) - ¢ (X -X)1"2
1 s

Hence at X = X. fluid is being ejected from the boundary layer at » velocity.
Unrealistic. No  solutlon for X » X (Stewartson
£ ]

fof' =0ony¥Y=0,

f' 328 Y >0

i Usu

irrotational flow is Incorrect.

-1/2
' V. - czlx.—)(] .

104°

Hypothesised

Goldstein singularity (Goldstein 1948, Stewartson 1958)

Singularity seems to develop at point X. where u'(x.. 0) =0, le.

1 2
U'(X.. YY)~ ELI"(X.. 0)y" + ... for O 5 ¥ << 1.

Without loss of generality let

X =0
Ll

(a)
U"IO.DJ =1

(b) \

" i e e s s man

>

X, X

Hypothasise that boundary layer splits nto two reglons:
(a) an inviscid one
(b) a viscous one valid for Y <« 1.

In viscous rsgion
2
Y u
woeo[Z]. oy eof%].
X
Hence terms balance where Y = Qf |X|”‘ ).

Viscous Reglon Y = u(}x|"' }

Let £ = (~X}'’*, v = g

Substitute inte the boundary-layer equations, expand in powers of £,
find '
2

a
U= 5’[ %n' + §(2a m) + E2{2a2q N . ]
12

where a8, ts arbitrary, . is a function '1'

U, (v=0) - 2al£2 - 2;1(—)0”3 : & >0, singuler at X = 0.



Inviscid Reglon Y = 0(1)

2 ’
U-UO(Y) + 0+ 2 aluo L

a
V= + _on
2e?
alUD(w) aluolw)
" = singular at X = O
L] zez 2(-*)"2

Summary
(a) Boundary-layer solutions OX If U > 0.
(b) ‘Classical’ boundary-layer solutions terminate In a singularity If
U =0 for some Y.
{e) This s a true singularity, and Indicates that the assumed
irrotational flow is wrong. Reassuring since irrotatlonal solution
does not look lke experiment.

Unsteady boundary-tayer separatlon

Is the irrotational solution for flow past a cylinder ever valid?
Yes at small times for impulsively started flow:

u=0 for t <0

=

2 (1,0)] asr + @ fort > 0. .

Unsteady boundary-layer problem:

+ -
Ut uu:+vu'- P!+U". Ux+VY-D
+
new unsteady term

Us v =g for t < O

U=V =20 on Y=Q,
Uadu=25inX as Y s wforts>0,
PI=—251n2X

Fintte~-dif ference solutions, serles solutions, etc. can be found untll the

cylinder has moved about 3/4 diameter. Is breakdown due to singularity?

Lagrangian Coordinates. Shen {1978), van Dommelen & Shen {1980)
Introduce Lagrangian coordinates (£, w) to label fluid particles.

Let X =g, Y =7 at t = 0,
8x ay
U= 5t : Vg
t,n L)

DU au
gt = Y tW, ¢ w, - at

T,

Eulerian Lagrangian

derivat ivas der {vative

Conservation of Mass (e.g. see Lamb 1945)

atx, v} ; .
I SET K, KLY =

1

comma indicates a Lagranglan derivative

Transformat ion Formulae

Y, = 6 . Y =-p

Xe=y ' X, =€,

Momentum Equat lon

a g a 8
U,l. = 4’1““ * [“rﬁ * ivﬁ] ["vﬁ+ E?EE] v

Formulat jon

xt-u
8 a 3 &
U,L- Px(x} + [X'tﬁ-x"ﬁl [x'!a—n'x'.gg] U
U=o, X = £ on n =0,
U=g, X =g on £=0, xn
U=+ 2sin X, X'-rﬂ as n + w.
»

This part of formulation Is seif contained and does not include Y. Can solve
for X, and then obtain Y by solving



Jm®X ¥ -X Y =1 hyperbolic first order esquation.

LAY ' R §
This has a solution If X ¢ # 0 and X . w 0.
L] L]

Van Dommelen & Shen’s Hypothesis
Solution for X(§, m, t) Is regular, but a singularity develops at the

time, t.. at which

X =X =0Q

N o forlomeﬁﬂf.. "Ea

1.e. & singularity develops If at some point
grad X = 0

Numerical integration can accurately pinpoint L and t. because x(g,
remains regular, Calculation of Y for 0 < t. -t <1l i85 harder since

singular at t = t..

Numerical Results for Clrcular Cylinder Problem (van Dommelen & Shen

Cowley 1983)

At t = 3.0
.
E' = 1.57, n, = 0.5

x_ % 1.98 radians » 111°
Displacement thickness

a-[ (1-9]

found to go Wnfinite.

Physical Interpretation

At t = O mark out a small ‘cube’ round separation particle £ = E.. N = u-.

i-“

AL L=t , x.‘ = X_' =0stg=g, 0= n,

l.e. rate of change of position X with particles £, ¢ is zero

f.e. more than one fluld particle 1Is trying to occupy the same

position.
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1980,
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Lines of constant streamwise position in the Lagrangian

plene st time t » 3

fmion7
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Lagrsnglen x-profiles through the atstionary peint st time

t=3
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tvolution of the displacement thickneas of the
poundary layer sbout the impulaively started
circular cylinder into a singularity at time to.

Lines of constant vortieity (Suwmehc)

w= \bdnhls
Ty * Supaoden Povak .




Fluid particle has got squashed parallel to boundary. Since fncompressible
must expand away from boundary:

gt tat
-

[
[/
T

-

t=o0

At t = t-, particle has infinite extent, and has pushed flow above it out of
the boundary layer: UNSTEADY SEPARATION.

Structure of boundary layer:

/ upper region pushed oul of b. 1. by
squashed particle. Non-zero vorticity

wide middie region,
small vorticity

lower region, non-zero vorticity

velocity profitia vorticity

Boundary-layer theory based on R >» 1, Experiments performed at finite R. For
R = 9500, ofter 374 diameter movement the boundary laysr shows a rapid
thickening, which is in qualitative agreement with theory.

Singularity Structure

Without loss of generality assume x_ = E. =0 = t‘ = 0.

Journal of Fluid Mechanics, Vol. 101, part 3

Ficng dia). For legend see plute 8.
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Expand X as Taylor ssriss about separation time and position (0, 0, D). xot.

Since X Il(l:l.D.t)] = X n(0.0.Bl =0

>
[ ]
1\%‘_.

1.2
X‘“(D.0.0) + Eﬂx’u(0,0.ﬂ) + 50 X."lD.O.D}

+t [XJ(O.O.O! + EK'u[D.0.0l_ + 'n)('“(0.0.0) ]

..

Write X (0,0,0) = X
2t o

Then X =X =0 at
W K N

e’ etc., and rotate £,n coordinates so that Xo” = 0.

Tot YO o)
T s N~ S N
() —

£ tX
ote  oee

e txﬂtu/xuln

Interactive Effect

BUT.t-Onustbethefhttmthatxg-Xq-O, hence

As t 2t =0, the thickness of the boundary layer becomes nfinite,
]

Ko = 0 or LA This Is physically unrealistic. Clearly the asymptotic scaling must become
invalld when
Without loss of generality, Xw =0, So z = O(Ruz).
1.2 113 12 1 2 1.4 if not before, since the boundary layer iz then the same size as the cylinder.
X = 58 Xgee * 5" Xonan * 37 ExOnnt * 3 X ¢ ES Xow * "

(e} - .
’t[x + £X + 7% 4...]#... é_...._..O(R )'hnn.’!.v\m
ot ote oty
Can now show that t = 0 1s the first time that a singularity forms if
xo-ltxuvnw «<0.

To examine structure of singularity, note that the characteristics of

LA A (4) However, the classics] boundary-layer solutlon becomes Invalid before that,
are lines of constant X. To obtain full structurs of singularity at any fixed due to a pressure effect often known as a ‘triple-deck’ interaction. This
time require both £ and n to vary on Hnes of constant X. From (3) this interaction effectively allows ths pressure to vary In y, and W some
suggests respects acts lke a 'lid’.

X = (X = tx ) =0(6%) = 0(n’) = 0ltn)
le, n = o(ft]' 3, €= o()t]"Y X" = o(|t|*% .

Hence from (4)
Y=ot

Precise analytic structure can be deduced in terms of elliptic functions,
integrating (4). A schematic of the singularity is:

by






