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Stratified Flows

Some general reading: C.-S. Yih, Stratified Flows, Aceademic press, 1980,
Equatlons of motlon of an ideal fluid:

pod 1 -

ot -EVp - 8k (1) u = (u,v,w) = velocity

g-% + ph.u=0 (2) p = pressure, p = density
Do.c2le (3)

= o ==
Dt s Dt
(1} are Euler's equations of motlon, (2) !s the continuity equation and (3) Is

the thermodynamlc energy equation. (3) arlses because for In ideal fluild the
entropy, S is conserved moving with the flow, l.e. DS/Dt = 0 and so

Dp - 8p| De ap} DS . Dp -
e [3.6 sﬁ.t_ s 3'§] —— = c¢' = gince p = p(p,S).
a

= - a—p
e, speed of sound \/[ap]’

Dt s Dt
P

% "t ug-; + vg'ﬁ + “gi = rate of change moving with the flow.

Stratified flows are ones in which the density varies even in the absence of
any flow. Usually most of the variation takes place in the vertical direction.
There are two approaches to modelling: one approximates the full equatlions
above but retalns an assumption of contlhuous varlation of p with z. The other
approach assumes distinct layers with constant p withln layers.

Boussinesq Approximation

For continuously stratified flows abhalysis is made more tractable by using the
Boussinesq approximatlon. Amongst other things, this elimipates sound wave
solutlons from the equations. Assume n basic state wlth horlzontal flow:
u= (uo.vo.o). Vertical component of (1) im (subscript o denotes baslic state

ap ap

1 o ° .-
0= aoE pE and s0 7z P8 This 1s the hydrostatlc equation.

In the Boussinesq approximatlon we assume p = pg(z) +p',p= pn(zJ + p' and
that |p'| «p, and [p'| « p. Eq. {1) becomes
Du

- dp -
(p.+p'}ﬁf = -v(p°+p'} - (p:p')gl_c » -&.° - png]k -~ Up' - p'gk.

Bu 1 , e
Now let P, +p'® e, glving i - -EOVP - EugE
quZ)-g-(*')+(+'}Vu-0mdthus wdp"f-qg"b(o'Wu-U
: P pp P’ pore V-4 dz Dbt PP V.2 )
dp
Again neglecting p’ compared to e, we get “{-Eu + puv.! 20
1 dp° 1
We often write “pdz = i where Hp i{s the density scale height. Thus the
o P
contlnuity equation can be written as V.u - E = 0. If we assume horizontal
]



and vertical length scales L and H and horizontal and vertical velocity scales

U and UH/L, the non-dimensional verslon of this equation is

v - E % = 0. For many flows H « H, (e.g. bucket of sater has H_ ~ 100kn) and
P

g0 the continuity equation may be approximated by |V.u=20

Eg. (3) 1s gf(p.'rp'] = c:g—t(p:p'i which, after using the hydrostatic equation

’ L]
becomes P g + g—‘: = c.ua— + °2£: . Rather surprisingly, it is consistent
to neglect p‘ but not p’. This 1s ber,luse, rom the vertical equation of
motion, we expect p’/H ~ p'g and S0 p'/e'p Hg/c « 1 for mogt flows. Then
Dp’ dpo L
Bt t*YE " T Using the hydrostatic equation, this is wore usefully
cl

k59 - - - G
written as --[—— LA Rl

Dt o, pdz

e's de, g
b= -T is the buoyancy acceleration. N - -5 z -5 where N 18 the
[ ] c

L}
Brunt-viisil& frequency. This 1s a natural frequency of osclllation in a
stratified flow (more later). Thus our approximate equations are

Du
[T A Vp + bk (4)
T.y= 0 (5)
Db
[-ﬁ.- + N L ¢ {8)

As we saw above, there is more than one level of approximation possible. Some

appropriate references are:

1) E.A. Splegel & G, Veronis, On the Boussinesq approximation for a
compressible fluid, Astrophysical Journal, }31, 442-447 (1950). This
describes a quite baslc version of the Boussipesq approximation.

2) J.A. Dutton & G.H. Fichtl, Approximate equations of motlon for gases and
ligulds, Journal of the Atmospheric Sclences, 26, 241-254 (1969). This
describes several levels of approximation.

3) L. Mahrt, On the shallow water spproximatlons, Journal of the Atmospheric
Sclences, 43, 1036-1044 (1985). This continues the dlscussion begun by
Dutton & Fichtl.

We note in particular a set of equation derlved by Dutton & Flchtl which allow

H~ Hp. In this approximation {which Dutton & Fichtl call the deep convectlon

approximation) Eq. (4)-(6) are replaced by

it} o -
5= —v[;n] + bk m
dp
V.u+ %o—-;"w = Q (B}
’

. dp
oy Nw=o0 (9) uhereb--‘-’-!+gi--°
Dt pu Pn d

A quite different way of applylng a “"Boussinesq" type approximation 1is

2

described later under the headlng Taylor-Coldstein Equatlon.
Layer Models
Here wa have a number of discrete layers In which

the density {8 constant. No Boussinesq P LTRR
approximation is necessary since each layer ls z=0 ,"T v
homogeneous but boundary conditions must be P Ml
applied on each interface. There are 2 boundary - e}
conditions:

Kinematic Boundary Conditlon: u.n = u.n on zw It is often more useful to
express this as n1 - "z where Dn/Dt = W,

Dynamic Boundary Condlition: P, " P, on zey,
Du
Within each layer there is no buayancy and so we solve ﬁ' = -—%‘Ip'.

A good reference glving many differsnt variations of the stratifled layer

model 18 E.E. Gosward & W.H. Hooke, Maves In the Atmosphere, Elsevier, 1975.
The Teylor-Goldstein Equation

Suppose we take a baslc state u - luo(z),0.0I and linearise aboul this for

two dimensional disturbances, t.e, perturbations only in the x and 2
directions. Then equations (4), (5) and (6) become

. du N
g—‘t" + u"g—“ W 2 123 (10} The mim 15 to obtaln a sclutlon

x 2 P which 18 perlodic in x and t. It
ow’ + aw’ - 1 8p’ ‘b (11} turns out to be convenient to look
at Yol p 3z for solutions of the form
L 12) o = p Mei(zyet (KX70)

’ -

g% ’g_\z!'_o (13) o _puz.n( le { {kx-wt)

b' = p;uzi‘,(z)el(kx-ut) and p’ o= p:.la]g(z)ei(kx-ut)

vhere in fact the real part s lmplied. k 1s the horizontal wavenumber and w
18 the angular frequency (which may be complex). Then Eq. (10)-(13) become

du A 24
180 » GE" = -1kp (14) -idb + N =0 (16)
A dp - ” dp
-naa--gg-%sa;aw (18) 1kﬁ+c"l—:-é;a;“¢.-o (17)
-] ]

In these equatlons b=u- uk which 18 the angular frequency measured by an

observer moving with the mean flow. This is usually called the intrinsic
frequency. We reduce Eq. (14)-(17) to a single equatlion for $ as follows.
Substitute for { from (17) inte (14) and hence from (14) get an expresslon for

3 in terms of . Frol (16) obtaln an expression for b in terms of §. Hence
substitute for p and b in Eq. HS) giving
a%

¥ s az)i=0 {18)
dz‘
H
vhere A o ME2 2 kDY 2L k1%, {19)
re Y] A2 2p. 7 Apd dz
W w dz odz 4p w

Eq. (1B) 1s the Taylor-Goldstein equation. We will use this later, but It 1s
interesting to note how the result would differ if we were to use different

3



versions of the Boussinesq approximation. Eq. (18) came from the "shallow®
version which assumes H(Hp. If Instead we use Dutton & Fichtl's “deep"

version (Eq. 7-8), we get

2A
9 atzb =0 (20)
dz
2.2 a%u d:p p 42 dp du
Nk 2.k o 1 ° 3 ° k1l "o e
where now A = "“x"‘i‘r"i‘—:[:“z]‘xa'i—z (21)
( w dz Podz 4p° w e

Note that the 4th, Sth and 6th terms have changed. The, most Important
difference is the Eth term, since the 4th and Sth are O(I/Hp) wherees the Gth

18 D(I/Hp). We might expect that (21) 1s more accurate that (19), slnce the
deep verslon of the Boussinesq approximsation retalns terms of O lll-lpi In the

contlnulty equation whereas the shallow version does not. However, there 1s an
alternative method of obtalning the Taylor-Goldsteln equation, which is to
start from the full equations (1)-(3} and linearise about the basic state
density P, Thus we don't Initlally need to use the Boussinesq approximation

at all. Remarkably, we find that Eq.(18) stll]l holds but with & much more
complicated A. A form of Bousslnﬁfq a?proxinatlon ¢an be applled to A by
neglecting terms proportional to u/c' and higher powers of this quantity.

This merely says that we are concerned with disturbances travelllng much more
slowly than sound. After applying thig approximation we get
2
;-N_zkz-kz;!‘,_ -L2°+L[d_p°]z+!ig°[.;.ff"+?!] (22)
&2 A F] Zpdzz Gp: dz ) dz adz c:
This must be more accurate than (18) or (21) but strangely, 1t 18 closer to
(19) than (21). This suggests that there is some problem with the “deep
convection™ version of the Boussinesq approximation. Thls 1s an important
unresolved problem.

One may well ask why we ehould be concerned with the Bougginesq
ggprg:si-atlon of the full equations if we can obtaln Eq. (22) merely by using
w/c k'«l. The answer is of course that Eq. (18) with A given by Eq. (22) Is

valld only for linearlsed, perlodic disturbances. For large amplitude,

non-perlodlc flows we want a method for applying the Boussinesq approximation
to the full equations.

Internal Gravity Uaves

In order to simplify matters, take Eq.(18) and (18) neglecting all terms of
O(I/Hp) and also neglecting variatlong of u with z. Then

L}
2, 2.2
§_§+ Nk-kzla--o

(23}
dzt &2
Look for solutions of form w’ = p;m\le”k”-z—”” 5o that O = We!™, Then
2.2

-kl s = 0 85 that w-uk=3s_ K Disperslon relation

° F I3 for Internal gravity

Yk +a®)
waves.

Note that |3|!H so that the Brunt-vAisAlAs frequency 1s the maximum posslble
frequency for internal gravity waves.

u k
Phase Speeds: c =%ay g N c m¥a_9 4 Nk
Zatse vpeeds KT Y 7, 7 A e EJE]
V(k +n®) ' Yk +m®)
4

2
w  dw Nm Nl
Group Velocity: c¢ = [—-—, --] - [u % , ¥ ]
e —— . -8 dk' 8m o (k2+.3'3,2 (kg‘-z"}’z

The wave crests advance In the direction (k,m)} with speed c glven by

l—z - l—z + 1—2 {and speeds e and <, in the x and 2 directions). However, the
[ c c
1} 4

wave energy propagates with velocity <, (and go an

isolated “packet” of waves will move with this
velocity). Consider the special case u.-O. Then 1t

18 easily seen that E'.(k,n) = 0. In other words,

the wave energy moves in m direction perpendicular
to the wave crests.
Critical levels

Using the dispersion relation the group velocity can be written as

A A2 -
& - [E? - 8 . Lvod - 69| where & = ¢ - ui  1s the group
e " Nk o e

velocity relative to the mean flow. This has some special properties at levels

where =0, l.e. w = uok. This could happen if u_ were to vary slowly with z,
8o that changes In u, are allowed even though dzun/dzz has been neglected 1n
Eq. (23). &s &0, g'-;o and 9"/5“40. Thus the group velocity tends to zero

and becomes horlzontal, Energy approaching a lavel where £=0 from below will
travel ever more slowly and is absorbed -~

into the meen flow. The level W0 is
call a critical level: these were first
apalysed by J.R. Booker & F.P.

Bretherton, The critieal layer for
Internal gravity waves in a shear flow,
Journai of Fluld MNechanics, 27,
513-539, 1967.

Relative Phases. Let us return to Eq. {14)-(17) but now neglecting l/Hp and

mean shear. We also note that dds/dz = i1ad with a siatlar expression for S

180 - -1xf (24) ~idb + NG =0 (26)

-15% = -tmp ¢ b (26) ikl + 1ali = 0 (27

From {27) we see that (i = -ali/k and since u'-ﬂelae“kx“z'u”l. etc., it
follows that u’ and w' are either In phase or 180° out of phase. Simllarly,
24) shows that u’ and p' are either In phase or 180" out of phase (unless
0). Thus w and p’ are also either in phase or 180° out of phase.
Finally, from {26) we see that b’ (and hence p’) 1s $90° out of phase with the
other quantities,
Effect on Mean Flow

Consider a fluld element belng
carried along in the wavy flow. Its
horizontal momentum Is p.(u°+u‘l and

its vertical velocity 1a w'. Thus the
lnstantaneous upward flux of
horizontal momentum la p°(u°+u’ Ju’. Averaging over one wavelength we get a

mean upvard flux of horlzontal momentum of p u”w’ = %poﬂﬁ - _%po:laz - 0.
However, the corresponding mean upward flux of density ls p'w = O since w'




and p’ are $90° out of phase. Thus Internal gravity waves Lend to change the
mean Tlow but not the mean density. Note that from Eq. (10) and (13) we gel

8
at
with height.

= -g-;(u"—ur) uhich shows that the mean fiow 1s only changed If Ww’ changes

A Conservation Law For Wave Activity
Start from Eq. (10}-(13):

du
au’ du’ o 1 8p’ ab’ ab’ 2., o
T *\Iﬁ ’H.E---E"E% (10) 3t +uJX- + N’ Q (12)
bu’ o’ 1 8p’ . Su’ dw’
Rovua mea Y UM A (13)
Define Lagranglan particle displacements (€.Q) by

du

g | L8 _ . ag LK L
at + U& u o+ Ca (28) Bt + uwx w (29}

We now take g-gx(m) + %&x(u) and average over x. The detalls wlll be given in

the lectures. The result is

e ———————

du —
] a 1L olog _ 8¢ 8 [_,.98 a{_ .ec]
".[ﬂ * “.a;][ [“' * 8a ]a% ¥ 7 I Bx[ P ﬁ] * 82[ Pa) =0 09
This is a wave action equation. A number of consequences follow:

1. It can be shown using Eq.(10)-(13) that for internal gravity waves

-p'g% = pnu‘u‘ and 80, slhce mean quantitles cannot depend on Xx, Eq. (30} is

ad a7
of the form o= + 5‘{“’,“ w'}) = 0. Since we have neglected IIHP in (13) we

must do so here also, glving g{! + peg'i(“"") = 0. 4 il the wave actlon
density (actually the pseudo-momentum) and is & measure of the amount of
wave activity. The equation showe that Lf the waves are steady (l.e. the
amplitude 1ls not changing), then the momentum flux does not change with
height and therefore that there i8 no change to the mean flow. It follows
that waves can only change the mean flow If they are unsteady or if
disslpatlion acts.
Nean Flow Accelerstion = Translence + Disslpation

The result that 8(u'w')s8z = 0 for steady waves was first obtalned

using other methods by A. Ellassen L E. Palm, On the transfer of energy in
stationary mountaln waves, Geofysiske Publikas joner Geophysica Norvegica,
¥XI1, 1-23, 1861.

2. For the linearised internal gravity wave golution to (24)-(27) we can
evaluate each of the terms 1In Eq. (30), We need to BSSuMe

E=3le{€e”k”.z-””} and (-Re{ael(k”-z-w“) plso. The total wave energy
density & s given by

E=T+ V= %(u'zw'z) + %quz = % (L]
1t turns out that Eq. (30) becomes
3 [&k 8 £k
ﬁ[‘zj * E[‘:,,—,\ =0 (31}

This 1s the so-called Bretherton and Garrett equation, first derlved using
alternative methods by F.P. Bretherton & c.J.R. Garrett, Wavetralns ln

inhomogeneous moving medla, Proceedings of th Royal Soclety, A302, 529,
1969,

3. The method used nbove to derlve Eq. (30) is a small amplitude
simplificatlion of & very general and powerful method call the Generallsed
Lagranglan Mean theory. This was developed by Andrews & Mcintyre:

D.C. Andrews & M.E. Mclntyre, An exact theory of nonlinear waves on a
Lagranglan-mean flow, Journal of Fluld Nechanlcs, 89, 609-846, 1978.

D.C. Andrews & M.E. McIntyre, On wmve actlon and its relatives, Journal of
Fluid Mechanlcs, B9, B47-864, 1978.

Before trylng to read these difficult papers it 15 recommended that the

followlng should be consulted:

M.E. Mcintyre, An introduction to the Generalised Lagrangian-Mean
description of wave, mean-flow interaction, Pure & Applied Geophysics,
118, 152-178, 1980.

Using the Generalised Lagranglan-Mean theory, an equation equlvalent to
(30) can be derived for arbitrary amplitude waves without any
approximation.

Instebility of Stratified Flows

Xelvip-Helmholtz Instabllity
This is the simplest layer wodel in which each

of the two layers extends from z+0 to im. In £, —Y
each layer, Ne0 and so Eq. {23) becomes za0—
2
‘-’—e -k o {32) Pa !
dz
Thus Q‘- Ain-kz and Qz- .\zqkz since the disturbance must decay at te. The
total pressure i8 p = -pgz + ael(kx—wt} and from Eq. (24) and (27),
B, = -”“"“1"’1\‘."“ and B, = Ho-Uk)pok2 Thus the dynamic boundary
k k
condition p,=p, on 2=0 (valld for small amplitude) glves
Uk [w-U Kk
-p,gh - w,‘_";k'_’ﬁ, - -pgh + lpz_';'_'k_r__’az
where 1t 1s sssumed that the displacement of the interface is m x pe! (Kx-0t)
The kinematlc boundary condition glves
g—:_'— * l%% sy on z*n in each layer which reduces to
-i(u-U|k)h = A1 and —l(w-uzk]h = Az
Comblning the results froa the two boundary conditlons gives
H 2
(p‘ - pz) - p1(“"u1k) =p (""uzk} with solution
{p U p.U )k (p,+o ) p,-2,) w2
171 + P22 k Tkt Tt Sl I _u?
w - 5o, t "1"’:[ k g - PP,V uz)] (33)

(p,*p, ) p,P,) 2

—_—g 8 L3 p1pz(U‘-—U2) , w is resl and the flow is stable.
The disturbances are internal gravity waves trapped near the interface. For
{py*e,)(p,mp,) 2

S e < pipzlu‘-uz) , w ls complex and the root with positive

Thus for

Imaginary part corresponds Lo an exponent lally growing (1.e. unstable) mode.
The condition for instability can be written in terms of AU-U,—UZ,



a0 = p-p, and 2p = psp,. Then —B22_ < 1 for Instability. It follows that
2" F A | ﬁ(aUlzk

(1) If Ap 18 sufficlently large the flow 18 stable, (11) I1f AU 1s sufficiently
large the flow is unstable, {i11) For any Ap and AU, there I3 always
Instabillty for sufficiently large k (l.e. small wavelength)}. This latter
feature 18 not typlcal of other models and can in any case be removed by
consldering small viscoslty.

Flows with Directlon Changing With Helght L] can generalise the

Kelvin-Helmholtz problem so that the basic flow ln each layer is lU1.V',D) and

(u .vz,nl. We now have to consider In what direction the most unstable waves
2 o (ixsty-ut}

will propagate. We nssume disturbances of the form and deflne an

angle ¢ such that cosd = —k—z- and sind = 2! 3

(xee? (x?et?)
menn flow in the directlon of wave propagation 1s Ucos# + Vainé and the jump
in this component across the interface ls AU = (U1—U2)coso + (V1-V2)slno. It

turns out that for this model Eq. (33) is replaced by

2, ,2 2, ,2 -
W\/(k 4+t )E(p1U‘+szz)coso + {p,\“&pz\l’z)sinﬂ t\/(k +2°) [ 2pApg o 1a0)?
p_tp 2
piopz 172

. Thus the component of the

(k2et?)
It follows immediately that the most unstable waves propagate in the direction
of maximum AU. Thls corresponds, In the case of centinuous stratification, to
the directlon of maximum shear. Unfortunately, it does not seem pomsible to
prove thls general result for continuously stratified flows. [n the lectures,
a demonstratlon of the difficulty occurring for the contlnuously stratifled
case will be given,
Continuous Stratification With Unldirectional Flow. Neglecting I/Hp. Eq. (18)
2 2, 2 a%u
and (18) become d_ﬁ + [N k k¥ + E—-°]° = 3. From these, some slimple but
2 AR AR
dz w wdz
general results can bas proved. (The best reference is L. Howard, Note on a
paper of John W. Miles, Journal of Fluld Mechanics, 10, 509-§12, 1861). In
particular: )

u
1) The flow must be stable 1f Nz - ;-G—z-" > 0 everywhers. Thus large N (large

stratification) or smsall shear promote stablllity.
2) If v, and v, are the real and imaglnary parts of w, then
1 2 4 1 2
Iur/k E(u_'ru.'n)l + (t»'/k) s -z-lu_.-u.m] if w20 (u_“ and u
are the maximum and minimum values of uo.) This provides m bound on the

phase speed of unstable modes (the semi-circle theorem].
For flows in which the sean flow changes directlonﬁ with helght, many simllar
results follow from the corresponding equation for w:

2 2
2A 2,2, ,2 d"u dv
t—’—; + [u-’%z—)- [kzd‘) + é[k %42 ]a- 0 where 5 = w-u k-v L.
dz o &\ gz dz ° 0







