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Abstract
We plan to survey shock wave theory for hyperbolic conservation laws and viscor
conservation lawa. The theory is applicable to compressible Euler and Navier-Stokes equ:
tions. We also discusa models for elasticity models and multiphase flows which take t}
form of nonstrictly hyperbolic systems or conservation laws with relaxation. Basic ideas .
time-invariants, nonlinear superpositions, compressibility and expansion, energy metho

characteristic method, and time-asymptotic expansion are explained for simple models.



1. Hyperbolic Conservation Laws.

The simplest mathematical models which carry shock waves are hyperbolic conserva-

tion laws:
(1.1) u, + f(u)y, =0, t20, —oco<z<oo,

where u = u(t,z) € B and f(u) € B' represents density of physical quantities and the
flux. An important example is the compressible Euler equations
o+ (pv), =0 (conservation of mass)

(1.2) (pv); + (pv? + p), =0 (conservation of momentum)

(ple + l"—:)). + (ple + P-zf)v + pv), =0 (conservation of energy)
where p,v,p and e are density, velocity, pressure and internal energy of the gns. The gas
is described by the constitutive relation p = p(p,e). For polytropic gases p = (v — 1)pe,
4 > 1 the adiabatic constant, [1]. In being consistent with polytropic gases we assume
that (1.1} is strictly hyperbolic, that is, 3f/3u has real and distinct eigenvalues A(u) <
Ag{u) < ... < Ay (u):

(1.3) %‘lr.(u) = M(u)ri(u), i=12...,n
To gain basic understanding we study first the scalar equation, u € B. Formula (1.1} is
equivalent to

du d 0 7] —

E = 0, d_t = 51- + A(u)a, .\(u) = _f (u)

That is, « is constant along the characteristic curves 4 = A(u(z,t)). Since A() depends

on u only, each characteristic curve has constant speed and thereby is a line, Figure 1.1,

arefaction wave

r
&= Mu) \

Figure 1.1

If initial data u{z,0) is such that A{u(z,0)) is increasing in z then we obtain a rar-
efaction wave, otherwise a compression wave. Clearly a compression wave will produce a
multivalued solution in finite time. A single-valued solution is possible only if discontinu-
ities, shock waves, are admitted in the solution. To consider discontinuity waves for (1.1)

one can ejther resort to theory of distribution, or the integral version of (1.1),
d ]
7 u(x,t)dr = f(u(a,t)) — f(u(b,t)).

In either case across a discontinuity z = z(t) the following jump (Rankine-Hugoniot)

condition must be satisfied

(R- H) () vy ~u. )= flug) — fu_), ug =u(z(t) £0,¢).
Since shock waves arise out of compression we require that

(E) Auy) < 2°(8) < A(ul)

which is usually called entropy condition as an analogous condition for the gas dynamics
equations (1.2) comes from the second law of thermodynamics. If the flux function is

convex

fi(u)>0

then (E) is equivalent to u_ > uy. We now study the consequence of the nonlinearity and -
entropy condition. Two shock waves must combine by simple geometric reasoning, Figure

1.2,




A rarefaction wave and a shock wave cancel, Figure 1.3.
i

+—— shock

2]
Figure 1.3
In other words, the solution becomes more regular, except for the new shock waves

generated through compression. For instance consider periodic initial data u(z,0) = u(z +
L,0), ~00 < z < oo. It in clear that u(z,t) should be pericdic and with the same
mean. Moreover, both rarefaction waves and compression waves exist and are of the same
strength. Thus they will cancel and the solution decays. To see this we draw characteristic
lines backward in time. These lines do not meet shock waves because of (E). Thus they

reach ¢ = 0, Figure 1.4.

7
4
Consider two such lines C, = £ = A(w,), i = 1,2, and D(T) the distance betwce-n
them at time T. Then
ID(T) = D(0) + (Muz) — M(t1))T and so

Moz} = Mur) s 222,

Apply this to any intervals between z = 0 and z = [ at time T along which AMu)(z,T)
is nondecrensing; we have the increasing variation of u(z,T). [ ViT)over0 <z < Lis

bounded by L/T. Since Au)(z,T) ia periodic we have the total variation TV(T) over
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0 < z £ L is bounded by 2L/T. For convex f(u), f'(u) > 0, we conclude that the tots
variation of u(z,t) over each period decays at the rate O(1)Lt-1, Note that the rate i
always ¢~ and the constant O(1)L is independent of size of the data.

When the initial value u(z,0) has compact support, u(z,0) = 0 for |z| > M, the
u(z,t) decays at the rate t~ 12, The ssymptotic slope is an N —wave.

N(sz.t):{;/‘ for —/Zpl < 2 < /O

otherwise .
where p and ¢ are two time-invariants of the solutions

p=m.inf u(y.t) dy, q=m,axf u(y,t) dy.
o 2

For a simple proof see [5]. Notice that the nonlinearity f*(u) # 0 induces decay of th
solution at the same rate as the heat kernel for linear heat equations,

A shockwave (u_,u.) is stable because of ita compressibility, which causes all infor
mation traveling along characteristics to be absorbed into the shockwave. To make thi
precise consider initial value bounded and with wz,0) =u_ forz < =M, u(z,0) = u.
for z > M, u. > uy. Recall that from entropy condition (E) a characteristic line ma:
hit a shock wave in forward time. If so, we continue it with the shock wave and call i

generalized characteristic, Figure 1.5.

shock




Through {—M,0) and (M, 0) draw generalized characteristics x, and x,, Figure 1.6.

uw=- l.l_ u_ % y= U‘-
Y1
Xy ¥ X1
{«M, 0 (%, 0) —X
Figure 1.6

Outside of x, and x,, ¥ = 0. Across y,; and the x, there mey be shock waves. Let
{t) and uz(t) be the limiting values of u(z,t) to the right of x, and to the left of ¥,,
spectively. Let D(t) be the distance between x, and yx, at time ¢, From jump condition

Dy = £le) 2 fuat) _ fna(t)) - fu_)

b4 — ug(t} ui(t) ~u_

(R-H)

n the other hand, the alopes of x1 and x2 are f'(u1(t)) and f'(ua(t)), respectively, and

D) = (£ uatt)) ~ () £+ 0)

t some @ < O(1) < 2M. Since f"(u) > 0 and u(z,t) is bounded, there exists & = (1),
< a< @< f <1such that

D't} = 8(f (ua(t)) - £'(ua(t)) + (1 = 8)(F'(u4) — f(u_))
o)

[
= 2D(t) - =+ Q=0 (uy) - f(u))
oticing that f'(u4) - f/(u_) < 0, the above can be solved to yield D(T) = 0 for some
lte T. Thus we conclude that y, and y, coalesce and the solution u(z,t) becomes a

ngle shock wave after time T. This shows that a shock wave is stable even with large

rrturbation.

The above analysis is for scalar equations. We now turn to the system. For the linear
system, 3f(u)/Bu, & n % n constant matrix, it can be shown by elementary linear algebra
that

u(z,t) = : o (x, )

i=1
() + Milai)s =0, ao(z,) = ai{z — M¢,0).
Note that in the linear case )\, and r;, are constant. Thus a solution can be decomposed

into n modes, each taking values in the r; direction, and travels with characteristic speed
M. For nonlinear systems, A, and r; depend on u. Nevertheless a class of solutions, called
simple waves can be found easily as follows, Suppose that u(z,t) is a smooth solution of

(1.1) depending only on one parameter

(2,1} = ¢(4(=, ).

Then it foliows from (1.1) and (1.3) that

(& +&f(¢)¢ =0,

~ & /6 = Ai(9), ¢ = scalar ry(4) |
for some i, 1 € i < n. Conversely, suppose that initial value u(z,0) is on an integral
curve R, of the vector field »,(u) (in the u—space). Then an i—simple wave u(r,?) can
be constructed so as to be constant along the i—characteristic curves (lines in this case)
dz/dt = M (u), much as in the scalar case, cf. Figure 1.1. We have i—compression waves
sad i—rarefaction waves when the i—characteristic lines are converging or diverging. Thus
it becomes clear that the basic effect of nonlinearity is the behavior of A,(«) in the ri(u)
direction. Following the terminology of [6]) we say that an i—characteristic field is genuinely
nonlinear if A,(u) is strictly monotone, and finearly degenerate if it is constant in the ri{u}

direction.
(g-n.l) Vi (u) - r{u) #£0

(l.d.g) Vi(u) -ri{u)=0
For gas dynamics equations (1.2), A1 and A are g.n.l. and Az Ld.g. A g.n.l field produces

compression waves and rarefaction waves, a L.d.g. field possesses linear waves. Unlike the
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scalar equation, a compression wave does not form only shock waves of the same family.
The reason is that, although a shock waves (u_,u,) satyisfies the same jump condition
(R-H), unlike simple waves u. is not on the R; curve through u_. To study this consider

* the Hugoniot curves
S(ug) = {u|o(u — up) = f(u) = f(uo) for some scalar ¢ = o(uo, u)}
We claim that in & small neighborhood of ug,

(140 S(ug) is the union of n smooth curvesS,(up), ¢ =1,2,...,n, through ug,
(1.4)2 5i(u0) and Ri(uo) have second order contact at ug

(1.4)s o{uo, u) = %(A‘(uo) + X(1)) + O(1)|uo - ul? for u € S, (uq).
We now discuss this. Since
f(u) - f(uo) = jol df{uo + a(u — up))da
= fo " 0 a0+ a(u — uo))(u ~ uo)da

= G(u)(u - ug),

the jump condition (R-H) becomes
IG{u) —o){(u —ug) =90

It is clear that G{ug) = 8f/8u(up). Thus G(u) has real and distinct eigenvalues u;(u) <
(1) < .-+ < p,(u) for u close to ug, and g, {u) — A;(ug) 88 u — ug. Let Ly(u),...,L,(u)
be the left eigenvectors. The above equation has a solution u # up if and only if ¢ = y;(u)
for some i, and

Lifue ~ug)=0, j=1,2,...,n, j#1i
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This represents (n — 1) equations in n—unknowns u. Moreover, since G(u) is close to
8f [ Bu(ug), which has a complete set of left eigenvectors, the above system has rank n - 1.
Thus from the implicit function theorem it can be solved as a smooth curve S, (up) through
ug. This shows (1.4). Differentiate the jump condition (R-H)} o(u - ug) = f(u) — f(uq)
along Si(uo): '

o'(u—uo) = (1w - o),

0" (u — ug) = (" (u)u' ~ 20" )u'|(f'(u) ~ o)u”
Evaluate the first identity at u = ug; we have

u' = r{ug), o= XA(up) at u= up,

where we normalized r; by |r;| @ 1 and parametrize S;(ug) by the arc length, |u'| = 1. In

particular u” is perpendicular to «'. With these we have from the second identity
(£(up) riuo) — 20°) r,(uo) + —(f'(u0) — o), =0

On the other hand differentiate (1.3) in the direction of r;{ua) to get
I (to)ri(uo)ri(ua) + f'(uo)(Vri(uo) - ri(uo))
= (VA(ug) - ri(uo))ri(ue) + Ai(uo}Vri{uo) : ri{uo)

J"(vo)r;(uo)ri(uo) + f'(ua(ri(u) r.{ug) = A(u) + A(up) ri(u)

Sy L T LTy

From the above two identities we conclude
(f'(u0) = A(ug)u” + (Mi(uo) = f'(uo))ri(u) = (20" — Ai(4)') ri(uo) at u=wup.

The right hand side is a multiple of r,(ug). But (X (u0) — f'(uo))v is a combination of
r;(ta), j # 1, for any vector v and so the left hand side is a combination of r;(ug), 7 # ¢.
Thus both sides are zero. In particular o’ = i»\i(u)' at u = up which shows (1.4)3. Also,
from

(f(vo) — Mi(uo}){v” ~ri(u)) =0 at u=wuo

10



we see that u” — r;(u)' has only r;(ug) component. But since both «' and r;(1) are unit
vectors by our normalization, 4" — r,(u) is perpendicular to r;(u) and so u” — r,(uy =0,
which shows (1.4)2.

With (1.4)2 we see that R,(ug) and S,(ug) are close for u near ug. But in general
they are not identical. Thus a i—compression wave takes values along an R; curve, when
it forms a shock wave it takes values along an S; curve and since S, # R;, other waves are
also formed. This is so for the gas dynamics equation (1.2). Indeed a very complicated
wave pattern arises out of a compression wave. So far the qualitative theory of shock
wnve§ for (1.1) is based on the random choice method of {3). The method uses shack
waves and rarefaction waves for each g.n.l. field and linear waves for each L.d.g. field as
building blocks. A form of nonlinear superposition is introduced, (4], [7], to study the
wave behavior {8]. In these studies two main mechanisms of nonlinearity are identified and
investigated. The first is the compression and expansion of nonlinear waves pertaining to
the given characteristic field. This is already present for the scalar equation and is briefly
discussed above. The second is the coupling of waves of different characteristic felds. This
is measured in part by the bifurcation of 5, curves from R, curves. We now describe briefly

the ideas. The first step is to solve the Riemann problem for (1.1) with initial data

_Ju forz<0
(1.5) u(z,0) = { u, forz>0

for two constant states u, and u,. Since both (1.1) and (1.5) are invariant under the
transformation £ — cz, ¢t — o, ¢ > 0, the solution is a function of zft, and consists of

shock waves, rarefaction waves and linear wa\tr:es issued from {0.0), Figure 1.7, see [6]. To

3 X
Figure 1.7

construct a general solution to the initial value problems of {1.1) approximate the initial

11

data by a step function and resolve the discontinuities by solving the Riemann problem.
Before the waves issued from each discontinuity at ¢ = 0 interact approximate the solution
by a step function by random sampling, and s0 on, [3]. When each wave is partitioned
and traced, the sampling can be made to be any equidistributed sequence, [7]. The idea of
generalized characteristics for scalar equations can be generalized to the system through

the wave tracing method to study the behavior of solutions, [8].

12



2. Viscous Conservation Laws

Consider conservation laws with dissipative effects of rate type:
(2.1) u, + f(u), = (B(u)u,),

where B(u), the viscosity matriz is a n x n matrix. An important example is the com-
pressible Navier-Stokes equations
o+ (pv), =0

(2.2) (v} + (prd)e = (pvy)e

| (pe + 550 + (0 + Z0 a4 pudy = (KT, + povy),
where y is the viscosity and & the heat conductivity coefficient, and T the temperature of
the gas. The dissipative effects of the right hand side smooth shock waves, which becomes
smooth traveling waves, the viscous shock waves. Since most physical dissipations are
not uniform, for instance the continuity equation in (2.1) does not have dissipation, the
system is not parabolic but hyperbolic-parabolic. A consequence is that discontinuities in
the initial data propagate into the solution. Nevertheless the system remains essentially
parabolic in its local behavior. However, for intermediate and large time behaviors, the
nonlinear hyperbolic nature of the sysstem becomes important. This is because of the
nonlinearity of the flux function f(u) as described in the |ast section. To study nonlinear
waves for (2.1) one needs an approach which incorporates this dual nature of nonlinear
hyperbolic and parabolic of the system. We present below stability analysis for three
different types of nonlinear waves.

Consider initial data u(z,0) a perturbation of a constant state u = 0 for system (2.1),
For simplicity we assume B = I,

U + fu), = u,,
(2.3)
u(z,0) =0 as |z} - o0

The problem has been studied by comparing {2.3) with the linearized system
w, + f‘(ﬂ)w, =Wy,

13

whose solution decays like a heat kernel in L, (z) and L, (z). This is a linear result. Since
(2.3) ia the conservation laws,

(2.4) [ (e t)de = ]_ _ulz00dt, ¢20,

the Li(z) norm of the solution does not decay. In the study of Li(z) behavior of the
solution of (2.3) one finda certain nonlinear behavior of the solution. The first step is to
identify plausible large-time states for the solution by a certain asymptotic expansion. The
solution w(z,t) of the linear equations is decompased into scalar modes taking values in
the r{0),i = 1,2,...,n, directions:

w(z,t) = : a;(z,t) ri(0)
=l

(o) + () ei)y = (@ — i),

(2.5)

The nonlinear solution u(z,t) should eventually decay into n models, each taking values
along the r,(0) direction. This observation prompta us to seek an approximate solution
¥;(z,t) of (2.3) which takes values in the r,{0) direction:
t
2"’_1;_:31_). = a;(z,t) r;(0),
Mi(z,t) _ 7
22 = bz, ) ni(0).

for some scalar a;(z,t) and b,(z,t). There are two cases, either the i—characteristic field

is gnl. orl.d.g. Suppose it is g.n.l., we normalize r;(u) so that VX;(x)-r(u) = 1, and so

ax‘w;fr_")) = V(i )(airi()) = e, VA(0) - rif0) = a,

where we have used the fact that ¥, (z, ¢} should tend to zero as t becomes large. Similarly
/\is ;-.. bi
We want ¥,(2, ¢} to be an approximate solution of (2.3)

i o B B
-aT +f (#’()‘5? = 3?'!

(Aa(i ) + M(i A ) Ira(0) Z (Al ) 74(0))s
14



Thus we define ¥,(z,t) by first choosing a solution A(z,t) of the Burgers equation

Av+ AN = Ase
(26)
AMz,0) = 0asiz] = oo

and then set

Gil2,8) = Mz = N(0)¢, )ri(0).

For the .d.g. field, instead of Burgers’ equation we have the heat equation. For simplicty

we assume that the system is g.n.l. Solutions of Burgers’ equation with given
m =/ A(z,t) dz,

all converge to the self-similar solution with A(z,0) = mé(z):
{exp(mf2) ~ 1)t~ lfzexp(-—:zlﬂ)
(27 +exp(m/2) - 1) [ —z/2vt exp(—£2)dE
Thus, time-asymptotically, #,(z,t) depends only on one parameter. We decompose (2.4)
in the coordinate {V;(0)}:

(2.7) Mz, t) = 8(m;z,¢8) ==

™ wz0)ie = % mur)
- i=l
and set
$i(z,t) = 8(my 2 — N(O)(t + 1), ¢ + 1) r,(0) = 8,(z, t) r,(0)

where @ is evaluated at ¢ + 1 to avoid the singularity at t = 0. The above analysis is in
snticipation of the fact that

n

u(z, ¢} — z Yi(z,t) - 0ast - oo

i=1

in the L,(z) norm for oo 2 p > 1, under appropriate assumptions. Note that since Burgers’

equalion is nonlinear, such a result is nonlinear. We now indicate the proof and ident fy

the rates of convergence. First we assess the accuracy of ¥;:

('lbi)l + f("'i)s - 'lbts
= (au - A1(0)0.'1- + f'('bl )oi.l) "',-(0) - 8"( rl(o)
= (6 + (F'(8iri(0)) = F'(0))8..) 7i(0) — B4r, 1i(0).
15

From (1.3) and ¥V, - r, = 1 we have

5 (O)r0),r(0)) = TAr(O)ri(0) +(A(0) - F(O) 9, - r,(0)
= r,(0} + (A(0) - f'(0))¥r, - r.(0), and so0
K0 (0)) = F(O)r,(0) = F(0)(@irs(0),r,(0)) + O(16?
= 8,r,(0) + (A{0) = f£(0))8, 9, - r,(0) + O(1)8?
(el o+ S)e = bien = (B + By = 8,0)ri(0) + (FA0)8297, 1, (0) + O(1)63),

Write

u(z, t) =v(z,t) + Z.: Wiz, t) & v(z, ) + ¥(z,t)

i=1

By the choice of m; we have

[” szz =0, 120

Since u satisfies {2.3) and 1, satisfies the above equation we have
™ +[f('f’ +v) - fw’)]r =v,—-F
E =t + f('l’)n - 'pu
=30 (e + F()s = thine) + (X O(1)8:6,),

izl ey
=3 GO0 - FO8r - r(0) + T 0068 + T 0(1)06)),
i=1 =1 iy

Thus by Taylor expansion we have
v+ F0)vs = vey = (f*(O)v + £ (007 + O(1)¢0? + O(1)e?), - E.

Since (A,(0) ~ f'(0))a does not contain the r,(0) component for any vector a, the above

16



identity yields
v(z,t) = 22 Ai(x,t) (0),
i=l
/w Bi(z,)dz =0, t >0,

Biv + M{0)Biy = Biee +[2 6B+ 2 ‘1-'”9;2 + 2 aiubb,
ik in jra
+ 0(1)8% + 0(1)8").

Eﬁill +ﬂll i= 112!'-'vns

= i 82, o(1)8* = f: 0(1)8}

i=l i=1
for some scalar a;;, and bounded functions O(1). Siace the nonlinear waves 8, have been

put in, the rest of the analysis may follow the weakly nonlinear approach of viewing the

above equations as the perturbation of the linear heat equations:

ﬂhﬁ=fmGMMwMMmm@+waGwﬁmM%MQWﬂ

1 {2 —y ~ A(0)(¢ - 9))?
Vr=ren hadie i(t-a) )

The rate of decay of v(z,t), or equivalently of 8i(z,t), i = 1,2,...,n, depends on the

Gi(:ut;yi") =

largest contributions of the right hand side of the above equation. Since

| Btz dz =0,

the first term decays like the derivative of the heat kernel G, which is o(1)y-1+4% i
L,{z). Since # is presumed to decay faster than the solutions of the heat equation and

Burgers’ equation, among the terms in F; the one with least decay rate is the second term:
1 L]
L] Gty XS as82s, 00, dy do.
w -

Each term in this integra.l in of the form

(z-y= ANt~ )2 1 (v = A(0)s)?
O(l)j j \/41‘_“ (exp - 3t =) ).Z;exp(—-—T-)dyds

17

Direct calculations yieid that it decays in L,(z) at the rate t'T.'H-', which can be show
to be the rate of decay of v(z,t).

We next turn to the viscous shock waves of (2.1), which are smooth traveling wavi
u(2,t) = ¢(z = ct), c the speed of the wave.
=’ + f(8) = (H{¢)4'Y,
A-cd+ f(¢4) = B(¢)d',
A= cuy — flug),
ty ® ¢(too).

(2.8)

Thus the jump condition relating values at z = +o0 is the same as for the hyperbol

conservation laws (1.1),

(R-H) ot ~u_) = flug) - flu.).

Formula (2.8) ia a system of autonomous first-order ordinary differential equations and ¢
a solution connecting the critical points u_ and uy. This has been studied for any limitir
states for the Navier-Stokes equations (1.2) or when u_ and u4 are close for the gener
system (1.1). The assumptions are that the viscosity matrix be nonnegative definite ar
with positive diagonal elements when expressed in the coordinates {r1,...,ra} of rigl
eigenvectors of f'(u}):

L(u)B(u)R(u) 20, &(u)Blu)r(u)>0, i=1,2,...,n,

L(w)f'(u) = A(u)L(u), f'(u)R(u) = A(u)R(u),

{ A(u) _ o \

Mﬂ=l : J.
1) .
An(u)

and that u_,uy) satisfies the entropy condition

(R} A(ul) > e > Afuy)

18



for some i, 1 €1 < n. Since the jump condition is the same uy € S;(u_) the i~th Hugoniot
set. We have assumed here that the i—field is g.n.l. and so the viscous shock wave here
corresponds to the inviscid shock wave (in Section 1) formed out of compression. To study
the stability of viscous shock waves we need to identify first the plausible time-asymptotic

states. A perturbation of a shock wave

u(z,0) = ¢(z) + Uz, 0),
(2.9)

#(300,0) =0,

produces two effects. The first is that the viscous shock is translated by a certsin amount
zp 50 that we expect

u(z,t} — ¢{z + 29 — ct),
uniformly in z as t — co. We expect such a result because ¢ is compressive and thereby
should be stable, but only orbitally stable, that is, stable after a proper phase shift. The
second effect a perturbation produces is other families of waves. For j < i, &) < A ~ ¢
the j~waves move slower than ¢ and so they are waves diffused about the left state
¥. = ¢(—o0). Similarly j—waves, ; > i, move with A; speed and diffuse about Lhe state
4. There is no i—diffusion wave as it would be absorbed into the shock wave ¢. The

diffusion waves ¥;, j # i, conserved the integral
S iz -z = ayryu), § <,
| a0 - widz = oy (ug), G4,

13 we have studied easlier in this section. A translation of ¢ produces an integral parallel

o g
hza) = [ (6(z + 50 - t) = g(z - ct)) it = aofuy ~u. )
The above is proved by noticing that A(0) = 0 and
h'(tg) = f_: #'(z + to — ct)dz = $(00) — $(~00) = uy —u_.
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The above analysis is to lcoate the time-asymptotic state for u(z, ¢) of (2.1}, (2.9):
u(z, ) = §(z + 20— ct) = 20 (¥ (2,0) — w) - T (¥y(2,1) ~ u_)

> Jj<i

as t — o0o. The consideration of integrals above indicates that
jm (2,0)dzr = jw Gz, t)dr = Z oy} + Z ayvi{uy) + zo(uy ~ u_),
= e Iy I

The left hand integral is a given vector; the right hand is its unique decomposition iden-
tifying the diffusion waves v, j # i as well as the translation of viscous shock wave ¢
due to the perturbation. A stability analysis is introduced in {9], [10]. ‘The analysis makes
use of the compressibility of ¢, the dissipation of ¥y, J # 1, and that these waves decou-
ple as time increases. Consequently the analysis combines hyperbolic techniques such as
wave decomposition and characteristic integration and parabolic techniques such as the
energy method. We now give a brief account of the much simplified case of the scalar
equation, u € B. In this case there is no diffusion wave and a perturbation produces only

a transiation of the viscous shock wave

j“(u(z,t)—qﬁ(z-!-:o-d)) dt=0, t>0

for some uniquely chosen rg. Set
v(z,t) = u(z,t) — $(z + 0 — et),
w(z,t) = /_; v(y.t) dy
s0 that both v, w vanish at r = c0. They satisfy
v+ (f(v + ¢}~ f(8))s = v,y

W, +f(wl +¢)_f(¢)=wll
where we have assumed that B(u) = 1 for simplicity. We also assume that f"(u) > 0 so

that ¢(z ~ ct) exists provided u. > uy. ¢ is compressible, cf. condition (E),

M#). = F(4). <0.
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Multiply the above equations by v and w, respectively, and integrate
J7 Camde— [T 7w+ 6) - &)t
e 20 0 Jow

+]on dedt=[" ";(z,o)dz

- 2 T roo
[ Femas= [ [ wistw, + )~ sienasas

+f:j" wfd:d¢=j" -‘;—2(:,0)411
= -

or by the Taylor expansion and integration by parts, noting that v = w,,
f: 1’;(3,1')4: + 0(1)]: f_: vewodz dt
+/: j_: vfd: dt = j_: ”—;(:,0)&:,
_/_: E;(:,T)dt —for f_: ‘—u23f'(¢),d:r di

+for |~ wia+otwe at= |7 Liz 00,

From the second identity, since f'(¢), < 0 by compressibility, we have for small w,
lo(1)w] < §,
oo T o L]
S wrx e [ [T @A)+ vis dt < [” w00,
-0 0 "~ -0

By Cauchy-Schwartz inequality we have
o T tw o T sw
/ vz(z,T)dx +/ / vfdz dt = 01} [j vz(z,O)dr +j j w,zda: mdt] .
—co 0 -0 -t 0 -o0
Thus we have the estimate
o0 T oy L]
[7 w? + ), Tz + [ @? 4 otyz at = o) [~ (0 + o)z, 00,
-0 0 "-m -
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for any T > 0. For small perturbation the right hand side is small and therefore

w? o ( - = ) 152

T(z,t) = /_m w u,(y, t)dy < j.w w da:j_n widz
is small so that |O(1)uw| < i and the above estimates hold. Similarly to show that th
viscous shock wave ¢ is stable, »(x,t) — 0 as t — o0, suffices to show that

[m vzdt+/u vfd!—;O 83 ¢ — 00,

From the above estimate we have
T4+l s

/ / (v +v)dz dt + 0 as T — co.
T ~ o0

It remains to show that
[7 02 4 )z, 0z

is equicontinuous in t. This, however, follows easily from the above derivation of th
estimate, Thus a viscous shockwave for a scalar equation is stable because of its compres:
ibility. For the analysis for general systems see [9) and {10).

The rarefaction waves are alsc stable for quite a different reason. They are expansiv
but are stable without having to have proper translation. Another important differenc
is that rarefaction waves are stable in L, (z) and not the Ly(z) norm and therefore th
consideration of the conservation of integral and of diffusion waves is not necessary. Fo

the stability of rarefaction waves for the Navier-Stokes equations (2.2) see [13].
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}. Other Systems.

There are many other dissipative-hyperbolic systems. An important class is conser-
ration laws with relaxation. They occur in many physical situations such as gas dynamics
vith thermo-nonequilibrium and in kinetic theory. For a simple model see [11], for a kinetic
nodel see [1], and for an elastic model with fading memory see [12]. Another important
‘lass is related to hyperbolic conservation laws (1.1) which are not strictly hyperbolic.
Some of the noninear waves are believed to be unstable even with the presence of dissipa-
jve mechanisms. These are interesting topics for future research. One notices that even

with system (2.1) many questions remain to be settled.
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