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EDDIES IN TWO DIMENSIONAL TURBULENT FLOWS (*)

“by C. Folas ('), 0. MANLEY (%) and R. Temam (‘)

Resumé. — Notre obrt duns oot article osf de presemer qurlgues resulus comernant &y
madélnainm de Vimtenwciont dey peties et gramdes vecres o 'dconlements bidimensiomiels
surbuslests, Moy quee I fe ddes petiis wurhitlony décroit exponentiellement vers
wic vakeur petite et wous en sdédasomy une lor dmicederion simplifice des penty er gramds
toiaeinliony. Owire lewr iniérés concermant bt compréhension de ly phvsigque de la tarbulence, ces
resuliats conbussent d des whémms nUMERIGUES RUVORIY qui Seront énsdin duns . ravail
W,

Abstracs. — Our aimt in this article is 1 present wme resilis concerning the modeling of ihe
wtteravicn of small and lurge eddies in o dimensionad rbulem fows. We show that the
umplinde of small structhires decavs esponeniially 10 @ small vafue and we infer fromt this
sinplificd  tvcracmne luw o} small aml furge eddies. Beside their inirinsic imterest for the
winlerswunding of the phvwes of rbuiewcr. these resalts lead w new numcrical schemes which
will be studdied wr a separate wird,
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INTRODUCTION

The .conventional theory of turbulence in space dimension three asserts
the existence of a length f, which is small in comparison with the
macroscopical length !y determined by the geometry, and which is such that
the cddies of size less than !, are damped by the effect of viscosity and
become rapidly smal} in amplitude ; the length 14 is called the Kolmogorov
dissipation length (9]. In space dimension two the situation is similar but
1, is replaced by the larger length /, introduced by Kraichnan [10]. It is one
of our aims in this article to derive directly from the Navier-Stokes
equations and without any phenomenological consideration, a mathemati-
cally rigorous proof of this property : the exponential decay of the small
eddics toward a small limiting value. Note however that our estimate of the
eddy sizes below which viscous damping is effective is much smaller than
I, or even I, ; this is due in part to the high level of generality allowed here
which includes singular flows such as those generated by flows in nonsmooth
cavities, e.g. the flow in a rectangular cavity. A physical discussion of the
necessary cut-off length is presentcd hereafter.

Our approach is as follows : the Navier-Stokes equations of two dimen-
sional viscous incompressible flows are writlen as

(6.1) %—vt&u-p(u.?)ume-f in xR,

0.2) V.u=0 in OxR,

where u = u(x,1) = {1, 14,;} is the velocity vector, w = w(x,t) is the
pressure, f represents volume forces, v > 0 is the kinematic viscosity. As
usual (0.1), (0.2) are supplemented by boundary conditions which could be
for instance

(©.3q) u=0 on M
ar
(0.36) u.v=0 vxcurlu=0 on af,
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» the unit outward normal on 3}, or
0.30) N=(0L)x(0,L;)

and u, w are periodic of period L, in the direction x;, i = 1,2.

Here our emphasis will be on the space periodic case (0.3¢) but the other
boundary conditions will be considered as weli. In all cases (0.1)«0.3)
reduces to an abstract evolution equation for u in an appropriate Hilbert
space H : R

du
{0.4) E+vAu+8(n}=].
The operator A linear, self-adjoint unbounded positive in 1 with domain
D(A)c H, is the Stokes operator. Since A" is compact self-adjoint, A
possesses a complete family of eigenvectors w; which is orthonormal in

AW‘-LJW“, j=1'2,...
(0.5) D<Ak ..., Aj—oD as j—o0.

Of course in the space periodic case (0.3c) the w;’s are directly related to the
appropriate sine and cosine functions of the Fourier serics expansion (scc
[13]). The operator B is a quadratic operator ; B(u) = B(u.u), where
B(-,- } is a bilinear compact operator from D(A) into H.

For fixed m we denote by P = P, the projector in H onto the space
spanned by wy, ..., w,,, and we write @ = 0, = [ - P,. We set

u=p+q, p=Pu, qg=0Qu,

and we show that, after a transient period, and for various norms, p is
comparable to « and g is small in comparison with p and « (see Sec. 1).

We then project equation (0.4) on PH and QH ; this yiclds a coupled
system of equations for p and g :

0.6) %‘?+wlp+PB(p+q)=Pf
0.7) -§+mq+Qﬂ(p+4)-QI-

Since ¢ is small in comparison with p one can speculate that B(q, ) = Biq)
is small in comparison with 5(p, ¢} and B(q, p) and that in turn these
quantities are small in comparison with B(p, p) = B(p). Also the relaxation
time for the linear part of {0.7) of the order of (v, , ¢)" ! is much smaller
than that of (0.6) which is of order (vA,)~'. This suggests that an acceptable
approximation to (0.7) is given by

©8) vAq+ QB(p) = OF .
vol. 22, n" 1, 1988
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This leads us to introduce in H the finite dimensional manifold ,#, with
equation

9 g =%@p)=(vA)' (Qf - 0B(p))
(0.9) p=Pu, q=0u.
It is one of our aims to justify this approximation : for large times, i.e., after
a sufficiently long transient period. the ratio of ¢ to u is of the order of

~{m+1)y'for large m, while the distance of g to .# (compared to a

]
X,

m o]

quantity of the order of u), is of the order of (

m |
proof of this result appears in Section 2. Hence, for large time, an orbit
ufr) = p(t) + q(1) corresponding to any solution of (0.4) becomes closer to
~#y than to the linear space ¢ = 0. In a subsequent work we intend to
construct a whole family of explicitly defined manilolds .#, providing better
and better approximations to the orbits a5 j increases (¢f. [3]). The manifold
#y (as well as the future manifolds .# ) plays the role of approximate
inertial manifolds to the two dimensional Navier-Stokes equations, and
constitute a substitute for exact manifolds in situstions where we cannot
prove their existence.

In Section 3 we recall and improve significantly o result in [8] : this leads
us 1o introduce a Lipschitz manifold T of finite dimension similar to
-# ; it has the property that eventually all the orbits of (10.4) are not further
from it than exp(- ch, ,,/A;). Hence I provides a much better approxi-
mation than .4, but. unfortunately for now, the proof of existence is
nonconstructive and hence does not provide an explicit expression like
(0.9). Nevertheless it offers an interesting complementary aspect. Let us
mention also that another type of approximate manifold containing all the
stationary solutions has been exhibited by E. Titi |15}.

This article ends with an Appendix providing a technical but totally new
method of estimating certain norms of the solutions of an evolution
equation such as (0.4) : taking advantage of the analyticity of the solutions
with respect to time, we estimate the domain of analyticity in the complex
time plan and using Cauchy's formuta, we readily deducs estimates on the
derivatives d"u/di‘ from the estimates on ¥ in the domain of anaiyticity ;
these estimates on the time derivatives of ¥ are much sharper than those
obtained by real variable methods. The results presented here were
announced in [2].
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1. FAST DECAY OF SMALL EDDIES

In Sections 1.1 and 1.2 we briefly recall the functional setting of the
Navier-Stokes equations and some useful estimates. Then in Section 1.3 we
derive the estimates on the magnitude of the small eddies.

1.1. Preliminaries

As we recalled in the Introduction, the Navier-Stokes equations (0.1),
(0.2) associated to one of the boundary conditions (0.3) are equivalent to an
evolution equation .

.n gd-?-rvAu-l-B(u):-f
in an appropriate Hilbert space H. Here fe H,v>0, A is a lincar self-
adjoint positive operator with domain D{A)c H, and whose inverse
A-!is compact; we have B(u) = B(u.u) where B{-,-) is a bilinear
compact operator from D (A ) (endowed with the norm |A - |Yinto H ; His
a Hilbert subspace of L(£2)°. Its norm and scalar product are dencted
I 1. (-.-) as those of L(12) or L}(N); for the details see [12], [13).
We recall that for u, given in H the initial value problem (1.1), (1.2) :

(1.2) u(0) =g,
possesses a unique solution & defined for all ¢ » 0 and such that
1.3 ue CR, :H)NLYO,T;V), ¥T=0;

here V = D(A'?) and the norm JA'. | = ||. || on V is equivalent 10 the
L? norm of grad u. If ug € V then

(1.4) HeC(R, ;VINLYO, T;D(A)), ¥YT=0.

In both cases {(upe H or V), u(-) is analytic in ¢ with values in
D(A); the domain of analyticity of u in the complex plane C, comprises a
band around R, and is described in more detail in the Appendix,

It is useful here to reproduce some a priori estimates satisfied by the
solutions u of (1.1), (1.2). But first we recall some inequalities {continuity
properties) concerning B (see [8]): for every u, v, we D(A):

[l Jlu )™ o' |Av|
(1.5) |B(u,v)| =¢
- Liul ' aup gy

vol. 22, 0 1, 1988
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(1.6} [(Bu,0), w)| =cy|u)'® Jul|'? o] {w|2w)'?,
where ¢, ¢; like the quantities ¢;, ¢/, which will appear subsequently are

dimensionless constants (‘). Also we recall from [1], {4] the inequality

F i 74
AN (#leap<ciliol (1 +log {ﬁ%) . YéeD(A),
from which we deduce that
|“].~,"¢mlv"[

{Bu,v)|  |{u.V)v| = 4] 192] eq,

and using (1.7)

2 in
Jal o (1 tog 144 )
WP

32,12\ 12
lu| |4v| (I +loglA 2L ) .

n|Av)?

(1.8) |Bu,v)| sc,

1.2. Behavior of small eddies

As mentioned in the Introduction we fix an integer m € N and denote by
P = P, the projector in H onto the spacc spanncd by the first m

cigenvectors of A, wy, ..., w, i wesctalso Q = Q,, =1 - P, and for the
sakc of simplicity

(1.9) A=\, A=RM+E'

We .wrilc p=~Pu qg-= gu i P Iepresents a supcrposition of « large eddics »
of size I|argcr than A,,'’, and ¢ represents « smajl eddics » of size smaller
I

than A_ "7\, By projecting (1.1) on PH and QH we find since PA = AP and
QA = AQ:

(1.10) % 1 vAp + PB(p +q) = Pf
(.11) '—;if+vdq+QB(P+q)=Qf-

We take the scalar product of (1.10) with ¢ in H:

W) 12 g viel = (0F @) - (BG +0).9).

(') ‘These constants can be absolute constants or they may depend on the shape of €1 ; by this
wc mcan that they are invariam by teanslation or homothery of 1),
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Thanks to the orthogonality property
(1.13) (B(d,¥),¥)=0, Yo beV,
the right hand side of (1.11) reduces to
(Qf.9)~ (B@,p)q)-(B(4.P)q)-
Using (1.6) and Schwarz incquality we majorizc it by

AP X 112
101 14l + el (4] (1 +tog A'l“p'“z) rerlal g1 <

= (since Jpfi = lu«ll) -
p A -1 2
<10/11a) +edpt i (1 +ios L22L}" cepn par? gt
]
We denote now a bound of [u] {resp. [[u}j, |Au|), on the interval of time
{ = (&5, o) under considl:rati.on. by M, (resp. M), M;)
(1.14) M, = Sup |u{s}|, M, = Sup Nu(s)}. M, = Sup {Au(s)]
1€ 1&d sEL

we obscrve that
[Ap 1 « hallol’ = Mlpll?

and sct

kn”l
(1.15) L= (l+log . )

We obtain
116y & g1+ @v-c A 2 m)lel < 10f )19l + e MiL" [a]

Hence, assuming that ¢, A™"* M, = v, ic.,

20 M, )3

(1.17) Ap=A> ( v

(1.16) yiclds
4 191+ 22 102 < A12(1011 + 4 MIL")}a)

<2 lal? *;lx (QfIt+eiMiL)

] l 3 3
(19) 41917+ viall < 55 (1Q1 1 + eI MEL)

vol. 22. n" }, 1988
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d ! 2, 2pgd
(1.19) Elqlz-i-v/\lql’sﬁ(lel +ciMIL).
We infer easily from (1.19) that for ¢ =), ¢, 1€/
1
(120) |q())* = [q(,)" exp(= vA(1 — 7)) + T (1Qri +cimiL).

Before interpreting this inequality, we derive & similar incquality for the
{H') V norm. Taking the scalar product of (1.11) with Ag in H we find

3 51917 + v1Ag|? = Q. Ag) ~ (B + ). Aq).
We expand and use Schwarz inequality together with (1.6)-(1.8) to majorize
the right hand side of this equation by
1C/114q] +ellpll L'? [Aq] (ol + Tlgfl) +
+cufql'™ 14¢1 (ol + llgh)

= (with Young's inequality)
oML

:
<3 lAait e Ller1?+ 2SI e S mmi

Thus,

4 2 agt
d . 2 , 1 3 M|L MoMl
(1.2 el +viAql -m(,lel et
M} L MéM?)

d .o PR | 2
a2 Ehalteealal <ci{ Jlerie o 2

and we conclude that

(1.23) Ig(e)? = Jlate)] exp(— vA (s ~1,))
‘ M MIM!
£ 2 (%mrlu—,—'h——";,—') :

“1n {1.20) and (1.23) we can bound |q(:,)|1 and ||q(r,)||2 by M; and
M| réspectively. Then afier a time depending only on M, (or M,), v and
A = A, ), the term involving ¢ becomes negligible and we obtain

901" < =25 (101" + i Mi L),
M.%M:)

vl

(1.24)

23
ool < (IQII’+ MIL+
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for ¢ large. Alternatively, denoting by «, x;, x/, some quantitics which
depend only on the data v, f 5k and My, M|, M), we rewrite (1.24) as

(1.25) 1900317 = « L8 ||g(}|I? < LB for 1 large ,
AN A
Bx—=_—" | Laijlopomt!
A m 4] & 1

Using also the results in the Appendix we conclude the following

THEOREM 1.1 : We assume that m is sufficient
: v large so thar {1.17) holds.
Then for any o.r!?:.: of (1.1), afier a time 1+ which depends only on the daia v, f,
1 and the fnmal value w(0) = ug, the small eddies component of
4,9 = Quu, is small in the following sense

(] = L'8, Jlg()) wx, L1 g1
ig'(1)) <«jL's, [Agt} gL', sy, .
The first two incqualitics in (1.26) follow from (1.25) ; the third one follows

from (1.25) and the analog of {(A.15) ! i ity i
obtaines by i g of { ) for g (*). The fourth incquality is

vAQ = Qf -q' - QB (p +q)
1 |
gl =10s1+ 211 + 2 108G 4 g

and utilizing (L.5), (1.6), {1.8).

In Scction. 1.3 hereaficr we intend to providc a morc cxplicit form of the
constants « in the casc of space periodic flows,

1.). The space periodic case

We f|r§| review the well-known s priori estimates for the solutions of
(1.1). This will yield more explicit expressions for My, M|, M,

We take the scalar product of (.1) withu in 4 ; using the erthogonality
property (1.13) we obtain )

1d
53}']“|2+”"“ﬂz-(f»“)"lf”“l
« A 1S up
v 2 1 b]
‘2"“" +2——UA1 l.ﬂ

) , L
() Note that ¢ i analytic in the same region of the complex plan as . We write

q =dq/dr.
vol. 22, " 1, 198K
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d.. 1o Lo
(1.26) a‘-{u| +v [ull ivM Vi
127 D lul? +wn ) = - (11
(1.27) a i o,

{1.27) yiclds

(1.28) [u(r)]’ = |4(0)|* cxp(- vA 1)

L (1~ expl=wa, 1)), Vim0,
A

+

If we assume that [a(0)] = Ry, then after a time ig = £4(R,) depending only
on R, and the data v, f, A), wc have

{1.29) T 21 iz (Ry).

L) 3
¥ A

We can introduc as in [4) the nondimensional Grashof number (')

(1.30) ¢

. W A,
and rewrite (1.29) in the form

2|f|G
LY

(1.31) lug))’ = o Vimi(Ra)

{1.31) cxpresses the fact that the ball of # cenicred at 0 of radius
Q2 Lf] G/\ YT is absorbing in H (cf. [14]).

We now rostrict owrsclves to the case of the space periodic boundary
condition (D.3c). In this casc we have [13] the identity

(1.32) (B(d.$).Ad) =0, YheD(A)};

hence on taking the scalar product of (1.1) with Au in H we find

o | e
Bn

H ?_ v 2 _l_ 2
rHu|| +v]Au| -(I.Au)‘zmu} +2vif|

1'} Sumc authors prefer 10 imroduce 4 nondimeasional aumbcer proportional 10 v~ '

[
Re ==(;'”=Ji|T
vl:'

and call i the Reynokbs number of the flow, Howower, there is no evidence thin
171" twhich has the dimension of a velocity) is a characteristic vekocity of the flow under
consideration,
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L jur® + viaut <211

(1.33) dil Bl « o, Qi <5 471
Thus,
et )j? = Jlutn) i’ exp(= v (2 - 4))
(1.34) P SR el = 1)) Vi1, 20.
1

If ig€ M, |u,] = Ry, then at any time 1, =0, u{t)) e V, with a bound on
[t )|l depending only on ¢y, R, and the data (f, v, 11). Thus, aftcr a time
1y = 1,{R,) depending only on Ry, f, v, (1. the terms involving ¢ become
ncgligiblc and there remains

, b
(1.35) lult)p> & =— | fI°, Yizt,.
v
Since we are not interested in transient flows but rather in permanent

regimes, our emphasis will be on large time behaviors. Thus we can restrict
oursclves to { = (i,, a0 ) and take

(1.36) My~ (iglc)m. My =2 1f] G

The estimate of |u'(1)] for ¢ & 1, follows promptly from (1.34), (1.35) and is
cstablished in the Appendix by utilization of Cauchy's formula :
W3] = My Vi
(1.37) My=c|f| GllogG.

Now we can give a more explicit form of (1.17):

“-]8) ?'*;—-
A| 'If_ Ag !
A
2t oageiG?
A

Since A, ~m as m - o, (1.38) means that we nced to retain for p, at least

- G modes which is higher than what is predicted by Kelmogorov (¢G) and

Kraichnan (cGZ"‘) theories ; the incquality (1.38) below shows that for such a
N
valuc of m, m ~ ¢G?, |q} is small, of the order ol‘c( t—::‘— ) G~V Then we
1

vol. 22, a" I, 194Y
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rewrite (1.24) in the form
el <L 2 (or 4t 111 6Y
Al W k%

<l G46), 121y,
]

' A 2¢; 8
I3 -—!L'—--J-—( ] 4 2GZ 2 JGJ)
lg(r)" = - Y 1OfI*+4|f) +v2k, 171
<8Le¢ |fI(G+G*+GY.
We then take in (1.26)

(1.38) x.,=c( ITf,l“ )m (1+G"), wx;=c|f|M (1 +G*,

¢ an absolutc constant and as cxplaincd before, the time ¢. in Theorem 1.1
depends only on R, (|u(0)| = R,) and the data v, f, (L.

Remark 1.1: In the case of the boundary conditiens {0.3a, b), (1.32) fails ;
one can derive a time-uniform bound for the norm of u in V by using the uniform
Gronwall Lemma (scc [6], [14]), but M, and then m, =, K, arc unrealistically
high functions of G, exponcntials of G. It is an open problem whether
M, can be expressed as a polyromial function of G in this case.

2. THE APPROXIMATE MANIFOLD

In this section we show that the orbits of (1.1) converge, as { — 00, to the
vicinity of a very simply defined manifold .#,. In Section 2.1 we derive the
cquation of the manifold and in Section 2.2 we estimate the distance of the
orbits to this manifold.

1.1. Equations of the manifold

As indicated in the Introduction, the results of Section 1 show that qis
small so that B(p.q) and B(q,p) are small by comparison with
B(p,p) and B(q,q) is small in comparison with B(p,q) and B(q.p).
Therefore, one can expect to approximate reasonably {1.11) by replacing
QB(p + q) by @B(p}("). Also the relaxation time in (1.11) for the linear
part of the equation is of the order of (vA)™! = (wh,,,,) " and is therefore

() Performing the same approximations in (1.10) i.c., replacing PB{p + ¢ ) by PB(p) lcads
to totatly diffcrent difficultics which will not be contemplaicd in this article.
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much smaller than the rclaxation time in {1.10) for the linear part of this
cquation, {vA;)"*. Hence it is reasonable to consider that the evolution in

(1.11) is quasi-static and this leads us to replace {1.11) by the approximate
equation

2.1) vAq + QB(p) ='Qf .

For p given the resolution of (1.12) is straightforward ; we denote by
q = q, its solution

(2.2) Gm=Co(p) = (VAY ! [Qf - QB(p)].

The graph of the function &g : PH — QH defines in H a smooth {analytic)
manifold 4, of dimension »1. Qur task is now to show that all the solutions
of (L.1) (or (1.10), (1.11)) arc artracted by a thin ncighborhood of
Mg This will be proved in Section 2.1; for the moment we conclude
Scction 2.1 by cstablishing some a priori estimates on g,, similar to those on
q: we rccall that w = p + g is 2 solution of (1.1} {or (1.10), (1.11)) whereas
Gm is defincd in terms of p by (2.2).

We infer from (2.2), (1.8) that

[vAqu| < [Qf] + |@B(p)|

T2
= |Qf| +c4||p[f2(l +logJ-A£|—z)
Mlpl
= [Qf] +e, MIL',.

[
23) [Agnl <1 11 + 2 MiL2,

Hence

anl = Kom 8L
(2.4) lgnl =x,, 87 L7

Kom = K|y = ;lr (|Qf| + ¢y M}). These bounds are precisely of the same
1
order as the bounds (1.25) on 4.

1.2, Estimates on the distance of the orbits to &,

While the orbit u(r) = p(¢) + q(1) lies anywhere in H, the associated
orbit u,{r) = p(¢) + q,,(t) lies on .4, Thus, at each time r,
dist (u(r), Ag) < norm (u,(t) - u(r))
= norm (g, () - q(1))

vol, 22, n* 1, 1988



106 C. FOIAS, 0. MANLEY, R. TEMAM

and cvaluating the distance in H or V of u(t ) to .4, amounts to cvaluate the
norm in H or V of x,, = ., — §- Subsiracting (1.11) from (2.1) {wherc
q=q,) wc find

(2.5) vAxn = QB(p.q) + QB(q.p)+ QB(9) +q".

Hcnee, as we did for g, we write
1 .
[Axal << {1Bp. q) + 1B(q.P) + |B()| +|4°]} -

By wutilization of (1.5), (1.8), (1.27) this yiclds, for ¢ large :
@26)  |Axal <= 4ok L Mgl + 2 141" 141" Hph" j4p|
+Z (g1 g lAqI”’HéL"’B
<M, 187+ Ly gp)

+Su1 (ko2 ) i, LB+ x; L'22
w kLB + kL V1817 4 wlb + L V28
= xl8",
Since x., € QH and
AV AT Al

-2 1
lem s leam =

we can wrile

@7 Il = LB, |Xm| = xL8
and with the methods of the Appendix

(2.8) x| = =L82.

‘Al the bounds of the norms of x, are smaller than those on the
corresponding norms of g,, and ¢ by a factor (L8)". Hence for 1 large, an
orbit u(t} comes closer to A than to the flat space ¢ = 0, by this factor
(LB

We have proved the :

THEOREM 2.1 : For t sufficiently large, t = {., any orbit of (1.1) remains a1
a distance in H of P, H of the order of «L"*b and at a distance in H of

Mo of the order of «LE*?. In the norm of V, the corresponding distances are
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of order 8" L'? and «L8 ; the constamts x depend on the data v, \,,
tF|. and 1. depends on ihese quantities and on Ry, when |u(0)] = Ry,

3. A NONCONSTRUCTIVE RESULT

Our aim in this last section is to exhibit a manifold X which is Lipschitz,
has finite dimension and captures the solutions of (1.1) in a much narrower
neighborhood than .#, does. However, the existence of I is proved in a
nonconstructive - way, in contrast with the very simple and explicit
equation (2.2) available for ;. Sections 3.1 and 3.2 provide preliminary
results and Section 3.3 contains the main one.

3.1. Quotient of norms

We consider two solutions &, ¥ of (1.1) and st w =u -v:

G3.1) “-'ﬁ+ vAu+ B) = £, u(0) =y,
(.2) v+ B = £, v(0) =5,
3.3) %?+Mw+ﬂ(u.w)+8(w.v}=0.

Let @ denote the quotient of norms {jw(|?/|w|?; then

do _2(w.w)) 2|w|’ 2 o Awe
T T A A
- - 2|z(vAw-rB(u.w)+8(w.u),Aw—ow).
w

Sincc (Aw, Aw - aw ) = |Aw < ow|?, we conclude, using (1.5), that

der R
ot |w|,|Aw ow | =
= —T'%F(B(u.w)+8(w.v),flw—aw)
-E-l-g-l-i|Aw-uw|(|B(u,w)|+ |B(w, v)])
2 i

|z [Aw —aw ] (Ju]"? jaui'? fw + [w]" JAw]™ o))

2¢
II |Aw — ow|? +—-(|u||Au| + lvltAv] A ) o
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Hence

(3.4) %S:—%IT:F |Aw — ow|? & por
where

(3.5) : Pmp Py, Pu= 2,,,, o ll | Au] -

By intcgration of thc differential incquality o' = po, we find that for
h<l<tT<l;+ T

fwe? w0l (J' )
(3.6) ) |"‘(')|2exp 'p(s)ds.

Now we estimate the integral of p in terms of the data ; as in (1.16) we
assume that on the interval of time under consideration

(3.7) leede})) = My, i)l <M, .

With an appropriate value of M, (3.7) will be valid on some finite interval of
time [0, T], or on some interval of time (fy, 00 ), oncc the orbits have
cntered the absorbing set.

We have

' 2(’" 1
p.dsim lfuIHAu|d5
r

2 1 ! H 1
mM(-r-—t) (J‘ {Au| ds)

An estimate on Ay is oblained by taking the scalar product of (3.1) with Au
in H:
L hul? +2v |Aul? = ~2(BGw), Au) - 2(f, Au)
<2 |B(u)||An] +2 | f]|Aui
= (with (1.5))
<2c Ju|"? lul |Au|'? +2 | f] |Au]

cy 2
-:v|Au|z+;-;-|u|2||uﬁ‘+;!ftz
d 1 €
3. i ? 21 2, "8 gt
(3.8 g lult +vlAul’ <2 | f] +|PA,M"
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Thus
2
LA 2 ““(‘r)" T 2 "
J:I Mul?ds < b4 (11124 M)
14T 2 '
(.9) _[' T Auds & 2 T ST g
f v v v‘k,
and
J‘p,,dssl(-r—l)mx_\
, 3
! H LAWY
(3.10) kg (MY TS, TMAT
vAl? v v v

Since the cstimates on v and p, are the same, we have

(3.11) J'deG(T—:')mKJ

3.2. The squeezing property

The squeezing property is an important property of the solutions of the
Navicr-5tokes equations which has been introduced in [7]. A stronger form
of it, called the strong squeczing property or the cone property was proven
in 5] for some other, more srongly dissipative equations. For the two
dimensional Navier-Stokes ecquations, we derive here a form of the
squeczing property sharper than in [7].

We take the scalar product of (3.3) with w in M and thanks to (1.13),
(1.16) we find

2w 2vpul? = - 250m0,w)

<2c;iw|fwh o]
c! .
<vw[?+ 2 |wi? fo)?
cz
s viwl? + 2 mliwp?
2 2
G.12) 3 1wy (v%%-?hlf) Iw|?<0.
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We consider 1, f, 0 <t < £, = T and write, using (3.6), (3.11)

Iw )]’ wy )]’
1.13 = R to— 1 )
3.13) Yo )| = exp(xy(fo— 1)) POk
Thus,
4. . vy ST\
(3.14) R?IW[ + (wucxp(-u,tu )-—-;-M,)|w| =0

and by intcgration
2 E} 172 czz 2
(3.15)  |wir)| = |w(0))® x cxp(— Vg by CXp{— K3l ) + 5 M; ln) .

Now if |Qp wity)]| = | Pmwitp)]|, we wrilc

_1Paw @) + 1Qn wtsof
|Pnwite)|’ + |Qmwitp)]?
||Qm w("ﬂ)“: lm.,l

- 5 =
2|Qawit})’ 2

(1]

and
|w(ta)]* & |WO)1? expl= Vhny  Ks b + w4 ty)
(3.16) .
Ky = ;le‘. Ky = %cxp(— ®y 147y .

Of coursc the intcrval (0,1 can be replaced by any interval (1),
#; +13) on which the bound {3.7) is valid.

In conclusion (this is thc squeezing properiy), whenever (3.7) is valid on
some intcrval (1, £, + #5), then w = u — v satisfics onc of the following
conditions :

{3.]70) |Q‘ W(‘n""])l = IP" W(fﬂ"‘h)l
or
(GA76)  {wlte +1))| = |w(t)| exp(= vay., | Kgfg + Ka) -

Since x4, xy are independent of m, the expencntial term in (3.17b) can be
made arbitrarily small by choosing m sufficicatly large ; we will take
advantage of this remark in Section 3.3,

A slightly more explicit form of x,, k, can be derived by using the Grashof
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number G = |f}/¥* A, and the Reynolds type number R, = M /vA]%. We
find (v =1g):

(G18) xy = ¢ Ry (WA )2 (R + 1 vh, G + 1y vA, RS
ke = cIRIWA))
a %cxp((_ €3 R, (vh 1) (RY + 13 vh G + 1y vh) RD)') .

In the space periodic casc we have scen that, for large times, we can take
M, = (2| f| G)'*. Then R, = V2 G and the above quantitics become

(3.19) &y = }(A )" (G* + 1A, G* + 1y VA GH)?
ke = 2¢3(VA ) G?

Ky = %“P(—Ci(")\l 1) (G* + 1y ¥A, G* + 5o vr G*)'7).

3.3. The approximate manifold

We denote by S(i), t=0 1he operator in H: uy— u(t), where
u(+) is the unique solution of {1.1) satisfying 4(0) = u,. The operators
S(t). + =0, form a semigroup in H.

The squeezing property tells us that if u(. ), v (. ) are two solutions of (1.1)
lying in the ball (¢ ev, jé| « M}, for 0=i«< T, then at each time
t € |0, T] and for every m & N, we have either

| @m{S (1) 4y — S(1) )| = | Pm(S(2) 2y — S(1) )|
or

|5t — $0) 0] = Jat = 9o €XP 3 (= YA Ko + Ky lo)

Ky K¢ a5 above.
Now we choose fy € {0, T], m € N, and consider a subsct £ = Z(m) of

s(‘a){ﬂo' V. Juoll < My}
which is maximal undcr the property
(3.20) |Qulue - 0)| & |Palu—v)|.
By this we mean that if u € 2(m) then
{v € V, v satisfies (3.20) } c Z(m).
Showing the existence of such a maximal set is easy.
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112 C. FOIAS, 0. MANLEY, R. TEMAM

We then apply the squeezing property : whenever ||u(s)ff = M,, we see
that S(rg) u(s) = u(t, + 5) ¢cither belongs to Z(m) i.e.,

|Qn(S(te) u(s) — S(p) &) = | PulS(te) u(s) - S(ty) &} ,

for somc & € V such that [[&| =< M, and 5{1) & € Z(m)or, if not, then for
cvery such &

|SCto) us) ~ S(te) &]* = |u(s) — &2 exp(— vh,,, | xsfo + Ky fo)
4 M;

i
= expl{— vh, ., Ksly + 8, 0y).

In all cases the distance of S(t5) u(s) to Z{m) is bounded by

M t
‘ﬁﬁlexp( 50 (g —vhq "5)) '

We can choosc ¢y = (vA,} ! and the bound becomes

M, LT
FYChd W v
provided that

Am +1 2 K

(3.21) k' = K,_VRI'

By translation in time (f «r —r,), we conclude that once the orbit u has
cntered the absorbing set {||&|) = M,}, which happens for t =1, = £, (R,)
(for |1(0)] = Ry}, the distance of 5(t) uy to Z(m) is bounded by a given
quantity E,

(3.22) dist; (5{t)up, Z(m)) < E

provided £ = f. + (vA;)"', and

ic.,

(3.23)

By dcfinition the set Z(m) enjoys the property that
[@nlu~0)| & |P(u - v)], Yu,veI(m).
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Hence, Z(m) is the graph of a Lipschitz function
$:P,I(m)~Q H
|“’(P”H)-‘I’(Pml))| = [P,,.IJ—P,"IJI . V'Pmunpu”epmz(m)'

By the Kirszbaum extension Theorem [16) ¥ can be extended as a Lipschitz
function (with the same constant) from P, Himo @, H, that we still denote
by ¥. Now ¥ is defined from P,, H into Q. H, and its graph is a Lipschitz
manifeld above all of P, H.

In conclusion we have proved the following theorem

THEOREM 3.1: If m is sufficienily large so that (3.21) is Satisfied
(') then there exists a Lipschitz manifold Z{m) of dimension m, whick enjoys
the following property : for a solution uf) of (1.1), for 1 sufficienily large
(=1, (Ryv, £,Q), for |ug| = Ry}, the distance in H ofu(t) to L(m)is

majorized by
2‘"I ex “:S_knul
A2 P\"3 PV
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APPENDIX

ESTIMATES IN THE COMPLEX TIME PLANE

It was proved in [7] (sce also [13]) that the solutions to the Navier-Stokes
cquations are analytic in time ; we want to show how one can then use
Cauchy's formula to get a priori cstimates on the_time derivatives of the
solutions. The main point in the proof is to determine the width of the band

(') we. =y 45 above with 1, = (vA,)", and M, the radius of an sbsorbing sei in ¥ for (1.1),
vol. 22, 0" 1, 1988
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of analyticity of the solution around the real axis R, ; this will follow as in
[7.13] from a priori cstimaics on the solution in the complex plan.

The complex time is denoted { = s ¢'*; H, V, D(A) are the complexified
spaces of H, V, D{A); A, B are respectively extended as lincar and bilinear
operators from D(A} into H :

{A.1) ALy +iuy) = Ay + AMy,
(A2) B{uy + iuy, 0y +ity) = By, v)) = B(us, vy)
+ i [B{us, v)) + 81y, 0,3)]

Yu =t +iti,, # = v, +iv;€ D{A). Thec Navicr-Stokes cquation (1.1)
becomes (u = u(L)):

(A.3) j—';+mu+s(u)=f

(A4) w(0) = uy.

Assuming that g€ V (or V), then ujg, € L=(R, ; V) 85 in (1.14), we

denote by My, M), the supremum of [u(¢)] and [ju(t)|. ¢ € R, . We take
the scalar product in H of (A.3) with A ; we multiply the resulting equation
by e'* and takes its real part. This yields

(A.5) %-—Hu(;e")“ +vcosﬂlAu(5¢")| -

= - Re e™(B(u), Au) ~ Re e'*(f, Au)
« | (B(u), Au)| + {f||Au} .

We cxpand by bilincarity (using (A.2)) and bound the rtsulting cxpressions
with the help of (1.8):

2 2
{(B(u), Au)| sc||u|:3(1 + log f-ﬁ-h- )' lAu) .
1

Also

2
ucosOIA ul’ + 1]

2vcosh’

[£)]Au] =
Hence (with u = u(se™):
(A.6) ‘%"u“z +veosd |Au)’ =

2y 12
-:J-ﬂ-—-o-c,“u“’ |Au| (l +IogJ-@—L)

vcos @ Mu“"z
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We writc 2 = :!fTrlil-; 1 and consider the function
1' u

Ay vCos B

ENY)
2 >

2 b(z)=— 224 gl AP 2(2 + log 2

By clcmentary computations (')

clul’ h( 4clul’

(A7) ®(z) = 2vcosd

— , for z=1,
A v cos' &

and (A.6) yiclds

vcosa M“iz

2
<A/ pug{ 1o s|| wl|?
vcos @ 2vcosﬂ vicos’ @

d 2
(A.8) 7 flat|)® +

Setting y{s) = _Si__..f..’..). ([f) + ||sels c")|| } we infer from (A.8) that
v €O

d .
E‘%‘c' A veos8yliogy .

where ¢ is an appropriste nondimensional constant. As long as
y(s) =2y, = 2 y(0), we have )
¥ =cjh veos8ytlog (2y)
Yo
I—cik veosBlog {2x)s

yis) =

(") Looking for the maximum of — az7 + B + logz"), we find
B

2
B(i +log:‘)-an’z’+ﬂ’losﬁ.
o

Bl +hg:’)" = ar +|lz(lo g--)m

]
¢2n.‘+lp— ("-‘!B— ) .
o’
A veosd
We then choose & = ———— ., B =cs||u} M
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and this is indeed =2y, as longas s =T, :

3
- ZejnveosOyglog (2y,)

-

For Jup|l = M,, we replace T, by
(A9) T.(M)=

3

Ml M} '
2¢ihjveosd G; +—2'—2 log 2 G; + !
cos?® A, vicos’e cos’@ A vicosio

Thus .
{A.10) leets €)% = 201 £ + uoli®) = 2¢| f| + M)
for

Des< Jcos

M} M1
2einv{ G+ — | alog2 G0 L
Apv cos’ 8 A vicos’e

and in particular for

(A.1D) Oss= 3cos®

M} M}
24 M v[G+— | +logd| G
1 l"( +3\,vz) OF ( +)\|v3

Following thc method developed in [7) we conclude that the solution u of
{A.3) (or (1.1)) is analytic in the region

when cos? 0 = % )

(A.12) . Auy) = {se",s:sacosﬂ.cosﬂ;n —\gl

3

) M M?
2elh G+ — +log4
I 1v( x z) og (G“F—,.ﬂ

which compriscs the regions

[tm{| «Rey, 0<Rc;<§
and

(A.13) |Im(|s§. Rc;;g.

M’ AN Modélisation mathématique et Analysc numérique
Mathematical Modelling and Numcrical Analysis

MODELLING OF TURBULENT FLOWS 117

At any point re R,, 7 =a, we can opply Cauchy’s formula 1o the circle T
centcred at ¢ of radius a/4:

d*u(!)__’ij' u(l) dr.
(A-19 dit 2w Jp -t ¢
Thus,
[} 4&
(A.15) Sup ‘i.:'#! =Sk My
d*u 4t
(A.16) Sup ET(')‘I‘;T”M"

Explicit vatues of My and M, were derived in (1.36) for the twu'dimensional
spacc periodic case : M, = (2] f| G)" (¢ = £;). This yields (2ssuming G > 1):
. 2
T 260 v(G+2GY) log4(G +2GY)
5!

a2 ———
A vGllog G
and we deduce from (A.15), (A.16) that for ¢ sufficicntly large (')

(A17)

dutt) <clfl- ’ (I fI MNP (GPlog GYf
dr* D
(A.18) &
:(:) sc|f1" () f| M2 (GPlog G) .
1

In particular (k = 1}:
| d':’(:) <c|fI GllogG

did(:!—) ” se|f|\N2GllogG, t=T,.

(A.19)

This produces an interesting bound on |Au(r)| for ¢ large :
vAu = f-B(u)-u'

¢ 1 .
|Aul <2 171+ Juf"® pull Au)2 4+ 1w

1
2 €i 1,2
|A“|‘;|f|+§|“|||“|| +5

() This mcans as in Theorcm 1.1 and clsewhere 1 T,(Ry, v. 2y, || ). for Ju,| « Ry
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' ce(f1 M)2 (G + G +G*log G)
{A.20) |Au(t)] =cl|fI M) G* g G, for 1=T,.
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