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INTRODUCTION

Our aim in this article is to describe new numerical algorithms that are well suited
for the solution of the Navier-Stokes equations ovar large invervals of time. Although we
investigate here the case of incompressible fows, the methods can be extended to other
fllows such as thermohydraulics and reactive flows or, as well, compressible flows,

The understanding and the numerical solution of the Navier-Stokes equations are
major problems of fluid mechanics with important implications in engineering and in fun-
damental research : the study of compressible or incompressible flows with or without

reactive, electromagnetic or thermal phenomena necessitates among other things the un-
derstanding of the Navier-Stokes equations.

On the other hand the considerable increase of the computing power due to the ap-
pearance of supercomputers has made possible the solution of numerical problems that
were unthinkable a few years ago. In the case of the Navier-Stokes equations we can now
consider ranges of values of the physical parameters that are close to values physically
relevant (at least in two space dimensions) and we can consider the onset of turbulence. In
particular we can study turbulent fows that sre time dependent, the laminar stationary
solution being unstable ; and the computation of such fows necessitates clearly a large
(theoretically infinite) time integration of the Navier-Stokes equations.

One of the first difficulties encountered in the solution of these equations and which
appears even when the flow is laminar, is the treatment of the incompressibility condition

divu=0. {0.1)

There are now several methods that are available for the treatment of (0.1) and that are
well suited for computing stationary solutions and lJaminar flows. In particular, among the
tnany important contributions of N.N. Yanenks to numerical analysis and computational
fivid dynamics, the fractiona! step method (or splitting-up method) that he has introduced
and contributed to develop is one of the classical available methods (see [RY]IY1,Y2)).

;Fl:a.bcraloirc d’Analyse Numérique, Université Paris-Sud, Bitiment 425, 91405 Orsay
rance),

The fractional step method has also laid A.J. Chorin [C2] and R. Temam [T3] to introduce
the projection method. Also although this is far from the preoccupations of this article
we should like to mention a recent application of the fractional step method to liquid
crystal probleras (see R. Cohen et al. [CHKL], R. Cohen {C0]) connected to the extension
of the fractional step method to constrained optimization {see J.L. Lions and R. Temam
{LT1}{LT2]).

When we reach turbulent regimes new difficulties arise. In particular an essential
aspect of turbulent Aows is the relation/interaction between small and large edflies. All
the frequencies of the spectrum, up to the Koltnogorov dissipation frequen_cy kq u}teract H
large eddies break into small eddies and those, in turn, feed the large eddies. Besn-des the
usual difficuities (incompressibility, nonlinearity, large Reynolds nu.mber). a new difficulty
occuring in computing high Reynolds fluid fows is the interaction of s.ma.ll and_la:ge
eddies : small eddies are negligible at each given time but their cumulative effect is not
negligible on a large interval of time. Thus a proper and economical treatment of small
eddies is necessary for large time computations. The algorithms that we propose here,
called nonlinear Galerkin methods, stem from recent developments in dynamical systems
theory and are motivated by this preoccupation.

This article is organized as follows. In Section 1 we study the interactio.n of small arfd
large eddies in a turbulent flow. In Section 2 we present the simplest nonlinear Galfrkm
method while Section 3 contains another (more involved) version of the method. Secf.lon 4
gives some theoretical justifications of the methods related to recent developments in the
dynamical system approach to turbulence. Finally Section 5 presents the rgults o-l' some
speciral numerical computations based on the nonlinear Galerkin metht_:d in Section 2 ;
these results show fer a given accuracy, a significant gain in corputing time (of the order
ol 20% 040 % ).
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1. INTERACTION OF SMALL AND [ARGE EDDIES.

We consider in space dimension n = 2 or 3 the incompressible Navier-Stokes equations
with density 1 :

%‘—E—udu+(u.V)+Vp=f. (1.1)

V.ou=0. (1.2)



Here u is the velocity vector, p the pressure’; v > 0 is the kinematic viscosity and f
represents volume forces.

For the sake of simplicity we restrict ourselves to space periodic flows and assume
that the average flow vanishes. Assuming that the period is 2x in each direction we expand
u in Fourier series

u= Z ujetl =, (1.3)

jEZ™

where n = 2 or 3, j = {J1,J2}or {Ji,2,Ja}and v € C", u_; = &;. Of course u = u(z,t)
and u; = u;(t).

At each time ¢ the kinetic energy of the flow u(t) is

Lyt e} LS .
N iP=3 [ 1wtz paz= & LTI (14)
where {1 is the cube (0, 2x)". The enstrophy is
19ue) 1= [ Vead ulat) P dz=(2” 3 15 P uite) I (13)
a jezn

[iP=1aP+1aP o |af+|af+|haf.

We denote by A,, r € N, the eigenvalues of the Stokes operator, ie. |5 |%,5 € 2",
ordered in a sequential increasing order. We select a cut-off value m and decompose u into
a fnite part ’

Ym = Ppu = Z u,-(!)e"". (16)
H - Py
and a tail
Em = Qmu = Z ugy(t)e’*. (1.7)
FPPZ2hman

Of course ym, corresponding to the small cigenvalues represent the farge eddies of the flow,
while 2z, corresponding Lo the large cigenvalues of the flow represent the small structures.

By projection of (1.1) onte the space of divergence free functions, the pressure gradient
disappears and we obtain the functional form of the cquation, namely .

‘3—:1 —vAu+ Blu,u) = f (1.8)

where for two vector fields v, w,
B(v,w) = N{{v.V)w}, (1.9)

M corresponding to the divergence free component of  in the Helmotz decomposition of
a vector field p.

Now we write
4 = Ym b B
and project equation (1.8) (or (1.1)) onto the first m modes (small wavelengths) and onto

the other modes (large wavelengths). This yields a coupled system of equations for ym
and z, ¢

Aym
_;T ~ vAYm + PrB(Yon + 2o, Ym + Zm) = Peaf (1.10)
Oz,
S = VA + QmB(¥m + Zmi Ve + Zm) = Qmf. {1.1)

Here P,, and Q., are the Fourier series truncations correspending to the modes | j [2< A
and | § P2 Am4 (see (1.6),(1.7)).

Behawor of small eddies.

Some computations which will not be reproduced here show that if m is sufficiently
large, the small eddics component z,, carries only a small part of the kinetic energy (and
of the enstrophy). More precisely after a transient time of the order of x{vAmy ) ™!, we
have

K&LVY? in dimension 2
| zn(t) §t < (1.12)
K§%*3 in dimension 3,
where
A
b= 2L, L=1+|o.1 (1.13)
m+ s

and K is a nondimensional number depending only on the Reynolds number Re, and of
upper bounds Mg, M, of the kinctic energy and the enstrophy :

31O 1 < Mo, we,

(1.14)
| Cu(e) §* < My, Ve

-4-



The Reynolds number is that based on the norm of f,|| f ||, which has the dimension of
the square of the velocity, and the typical length 1 (or 2IT) :

Re= w (L.185)

In fact, in the space-periodic case considered here the norm of || 2(t) || decays much
faster than indicated in (1.12), namely at an exponential rate

| zm(t) 1< Ky exp (—Kam¥/"), n=20r3, (1.16)

This follows readily from the properties of Fourier series coefiiciant of an analytic function.
Explicit values of K and K; can be derived from [FT2|.

A simplified interaction law.

A simplified interaction law of small and large eddies is obtained by taking into account
the following facts :

(i) As recalled before z,, is small compared to y,, (which is of the same order as u itself) :
Hzm <<l ym =l ullm Jym+zmll-

{ii} The relaxation time for the small eddies of the order of (#Am41) 72, is much smaller

than that of the large eddies (of the order of {1:4,)~').

Taking intc account these observations, we can simplily (1.10),(1.11). Due to {ii)
it seems legitimate to neglect 3z, /8t in (1.11) and, due to (i), to approximate B(y., +
Zmi¥m + zm) by Blym,ym). Hence (1.1) yields

-z, + QMB(ymuym) = me‘ (1‘11)

Relation (1.17) appears as an adiabatic {or quasistatic) law of interaction between
small and large eddies.

Returning then to {1.10}, we observe that

Blym + 2, ¥m + zZm) = B(ymvym) + B(!hmzm) + B(!m.vm) + B(zm, 2m)s
and

[ B(ym + Zm,ym + 2m) |i=
= B{ym,¥m) 1>>l Blym,zm) | + i B(zm,ym)) 1>l B(zm,zm) || .
We could of course approximate again B(ym + Zm,¥m + Zm) bY B{Um,¥m). but this has

the undesirable cffect of destroying the interaction of small eddies on the large one. Hence
we can either leave (1.10) unchanged or replace it by

a m
% ~ ¥&Aym + Pm{B(ymi2zm) + B(2m,¥m)} + P B(ym,ym) = P /. (1.18)

More rigorous justifications of (1.17),(1.18) (or (1.18},(1.10}) were derived in [FMT];
the arguments will be sketched in Section 4. Also Section 5 contains some numerical
evidences supporling this model. For the moment we shall show how one can infer from
(1.17}, {1.18) a new type of Galerkin approximation of the Navier-Stokes equations.

2. THE NONLINEAR GALERKIN METHOD.

The eigenfunctions for the Stokes operator are just the exponential functions
ajcij’, JEZ™, a;€R™, |aj|=1.

In space dimension 2 we simply have

-

ay = r::_-il ;n {j!i_jl}' j = {jhj3}'

The corresponding eigenvalue is | I and, as indicated before, we number in sequential or-
der the eigenvalues and the eigenfynctions ; for r integer we denote by w, the eigenfunction
corresponding to the eigenvalue A,.

For m fixed the Galerkin method based on w,,...,wm, reduces to one of the spectral
methods advocated in {GOJ|CHQZ]. With the notations above the approximate functions
tim is of the form

Um(if) = 3 gum(t)ws(z) (2.1)
kml
and satisfies the approximate equation
?w;tﬂ — VBUm + PmBlum tm} = Puf. (2.2)

The nonlinear Galerkin method based on the simplified model (1.10),(1.12) proceeds
as follows : we consider 2m eigenfunctions wy and write (see (2.1)) :

Uz = Ym + Im (2.3)
m im
Ym({z, ) = Zg*"'(!)w"(z)‘ Zm(z,4) = z Fem(t)wa(2). (2.4)
k=1 k=m+1
The equations satisfied by ym, Zm are (compare to (1.10),(1.11}} :
%LI" ~ ¥8ym + Prm{B(ym) + B(ym,2m} + B(zmiym)} = Pmf (2.5)

6



—vizm + (sz - PM)B(UM| !hn) = (Ptm - Pm)f (2.6)

At this point we emphasize the [act that (2.3},{2.4) is by no mean a modeling of
turbulence : we are working with the [ull Navier-Stokes equations ; and the point of
view is that some terms have been indentified as (very) small and we just set them equal
to 0 instead of ordering the computer to handle very small quantities. The situation is
reminescent of the uncomplete Cholesky factorization in linear algebra.

With an estimate similar to (1.12) one can show that at each given time, after a
transient period, z,, is small compared to y.,. Hence u,,(t) and yp,(t) are very close at
each time ¢. However, on a large interval of time, the effects of the 2, add up and produce
significant changes ; this is one of the aspects of sensitive dependence to initial data which
is well known in nonlinear dynamics.

We call the algorithm {2.5),(2.6) a nonlinear Galerkin method : if we set 2, = 0 in
(2.5), then u;n = ym 2and (2.5) reduces to (2.2). Thus (2.5} appears as a modification of
{2.2) with some nonlinear correction terms zm = zm(ym) which are "explicitly” determined
in terms of y,, by resolution of the Stokes probiem (2.6). Hence the terminology.

The convergence of the nonlinear spectral-Galerkin method (2.5),(2.6) is proved in
[MT]. As far as compuling time is concerned, for a spectral method with m modes, it
is known that the computing time is proportienal to m? (in space dimension 2). Hence
the computing time for a usual Galerkin method with 2m modes is 4 times that of the
computing time for m modes. A significant part of this computing time (about 1/3) is
spent in the FFT computations related to the nonlinear terms. Since the nonlinear terms
in (2.5),(2.6) involve only m modes, it is about 3/4 of the computing time on the nonlincar
terms which is saved with the utilization of the nonlinear Galetkin method.

The results of numerical computations performed with this nonlinear Galerkin method
are reported in Section 5.

3. ANOTHER NONLINEAR GALERKIN METHOD.

The nonlinear Galerkin method (2.5),(2.6) is based on the simplified form (1.17),(1.18)
of the Navier-Stokes equations. This simplified form has been derived by observing that
Il zm{t} | is small compared to |} ym{t) || like a power of

A

§ =
'\m-l-l

(see (1.12)) and, a sort of small perturbation method has been used ; (2.5),(2.6) corre-
spond to the first order perturbation terms. Now, using asymptotic expansion technics we
can envisage higher order perturbation terms leading to higher order perturbations ; this
program has been carried out in [T5| and our aim now is to describe another simplified

interaction law between small and large eddics and the corresponding nonlinear Galerkin
method.

A second order perturbation equation consists in leaving (1.10) unchanged and re-
placing {1.11) by

ALy + QM{B(”mvym) + B(”m:’m} + B(’mn Fm)} = me- (3.1)
By comparison with (1.11), the term 3:,,/3t has been dropped and, as well,Qm B(2m, 2m).

For a nonlinear Galerkin (spectral) method, we change the notations and consider
Uzm = Y + Zm 28 in (2.3),(2.4). The function ym,zm satisfy

a
-g—;: = VAYm + PmB{ym + 2m,¥m + 2m) = Pm i, (3.2)

—vArm + (sz e M){B(Vlm ym) + B(Vlnlzm)"'
+B(zm,¥m)} = (Pam — P} f. (3.3)

Note that (3.3) is a linear equation for z,,, which gives z,, in terms of y,, by resolution
of 2 linearized steady Navier-Stokes equation. We then insert *m = zp,(ym) in (3.2) and
obtain a nonlinear perturbation of the m—modes spectral method.

The convergence of this method as m — oo, has been proved in [MT]. In theory this
method is more accurate than that of Section 3 (see [TS] and Section 4} ; it would be
interesting to test the method and see if computational efficiency confirms the theoretical
result.

Remark 8.1,

(i) Higher order methods corresponding to higher order perturbations can be also derived;
they necessitate a proper approximation of 9zm /3t (and B{zm, zm}) in (1.11).

(it} For {3.2),(3.3) as well as for (2.5),(2.6) we have chosen to approximate z,, with as
many modes (m} as y... However we could approximate z,, with (d — })mt modes, d > 2,
so that the approximation involves a total of dm modes. The choice d = 2 is convenient
in FFTs and seems also appropriate.

{. THEORETICAL JUSTIFICATION : ATTRACTORS AND INERTIAL MANIFOLDS.

Although the practical value of a numerical method is decided by the quality of the
actual computational tests, we would like here to give some indications on Lhe theoretical
aspects and motivations of the nonlinear Galerkin methods.

We are considering the Navier-Stokes equations {1.1),(1.2) with space periodic bound-
ary condition and a driving force f which maintains the motion ; the force f is time
independent. For simplicity we restrict ourselves to space dimension 2. If the Reynolds



number Re defined in Section 1, based on f, is small then there exists & unique stationary
(laminar) solution us to (L.1),{1.2) and each solution of these equations converges to the
steady state as £ — oo, [t is also believed that if the Reynolds number is larger than a
critical Reynolds number, then the stationary solution ugs loses its stability. In this case
the solutions of (1.1},{1.2} never converge to a steady state and the flow remains constantly
time-dependent (and turbulent}.

The natural phase space for the problem is an infinite dimensional Hilbert space H,
spanned by the eigenfunction wy. A stationary solution is a point in H, while a time
dependent soluton of (1.1),(1.2) is represented by a curve in H. In the laminar situation
the orbit u(t) converges to the unique stable staticnary solution ug. In the turbulent
regime the flow becornes time dependent : even if the data are time independent, the flow
never converges to a stationary state and remains time dependent. It was shown by Foias-
Temam [FT1| that there exists a compact attractor 4 to which all the orbits converge. The
attractor £ appears as a substitute of ug when ug loses its stability; it is tha mathematical
object that represents the turbulent permanent regime.

It was shown in [FT1) that A has finite dimension. An explicit bound on this dimension
was derived in [CFT1| for space dimension 3 and in [CFT2| for space dimension 2 ; in the
latter case it reads :

dim A < Re'’? log Re. {4.1)

Furthermore the estimate (4.1) is essentially optimal, since Babin-Vishik |BV] proved that
the dimension can be > Re/*. Hence the number of degrees of freedom of such a turbulent
flow can be as large as Re'/? and this agrees with Batchelor and Kraichnan results on
two-dimensional turbulence [B}{K|.

For the computation of a permanent turbulent regime we may need a number of
parameters of the same order as the number of degrees of [reedom, i.e. the dimension of
the corresponding attractor,

Since the attractor can be a complicated set (of fractal type), the idea in [FST] was to
irbed it in a smooth finite dimensional manifold called an inertial manifold. This manifold
which is positively invariant for the semigroup associated to the equation attracts all the
orbits at an exponential rate. Using s decomposition of the space If similar to that used
in the previous sections, namely H = P, H®QmH u =y + z, ¥y = Ppu, 2 = Qnu, the
inertial manifold M is a manifold of equation

z = &{y). (4.2)

When the manifold M exists, its equation (4.2) provides a quasistatic interaction law
between small and large eddies. And this law applies in the permanent regime i.e. as soon
as the orbits are close enough from the manifold M.

Unfortunately the existence of inertial manifolds for the Navier-Stokes equations is
not proved. A substitute and perhaps computationally more convenient concept is that

of approximate inertial manifolds (AIM) : these are manifolds that contains the attractor
and attract all the orbits in a thin neighborhod.

For example s restatement of {1.12) is that the linear space P..H is an approximate
inertial manifold for m sufficiently large. Less trivial AIMs were found in (FMT] and [Ts|.

The approximate inertial manifold Mg of |[FMT] is precisely that appearing in {1.13)
and of equation

—vAz+ QmB(y,v) = Qm/f. {4.3)

The approximate inertial manifold M, of {T| is that appearing in (3.1) and of equation

—vAz 4+ QM{B(yl yl + B(ylz} + B(zly)} = me ("‘)

The thickness of the neighborhod of Mg and M, attracting the orbits are determined in
|T5] and are respectively in space dimension 2

6L and 67L%%, L=1+ log %

""Q-II
Vd

CowC e
—/—
v
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o

-l ) \ \\\\ % | T Tew
) Vs

1
3

Fipure 4.1,

Localization of the attractor A in the
phase space : A lies in the dashed region

In conclusion, the attractor A is closer to M, than it is to Mg and it is closer to
Mg than it is to Py H. Projecting the Navier-Stokes equations onto P, /f we obtain the
usual Galerkin method. Projecting the equations onto Mg or M;, we obtain the nonlincar
Galerkin methods of Section 2 or 3.
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5. NUMERICAL COMPUTATIONS.

We describe here the results of computational tests performed with the nonlinear
Galerkin method (2.5),(2.6). Comparisons are also made with the usual Galerkin method
{i.e. (2.2)). In both cases the two-dimensional Navier-Stokes equations with space peri-
odicity boundary conditions are considered. The numerical results are due to C. Rosier
(R].

"The time discretization of the equations is performed in both cases with a predictor-
corrector scheme. The predictor step is done by solving :

~1
it =AM L ALY P - butT ) - Wil
§=0
VA§"+I = le(yn'yn) _ Inl _ vﬁ:+l
antl o gntl gy el
The corrector step is the following
gn-l-l = C-Ahlyn +Ata?P,.,|f"+l - b(au-l-l.ﬁn-'»l])

»—1
+ Q{Pifn-i-l-:' —é(u""""",u"“‘")l - VII:“
i=1

vAZ"H = Q[&(y""",y"*") - f“+ll —_ vn:{»l

t‘ll-'—l = yn-l-l + zl’l-l-l

where n is the Lime step, g is the order of the scheme, of = f; eAU=NLPI(£)df, and &F
is a polynomial of degree p — 1 such that &J{1 — k) = &4, sk =0,...,.p0—1,r =0C,1.

The nonlinear terms are treated as usual by collocation and FFT.
Implicit in (2.5),(2.6) {(and in the notation B} is the existence of a pressure like function

associated Lo y, and z,n; we denote by p,, and ¢m the two pressure liks functions, po, +qm
approximating the actual pressure function, Hence (2.5) and (2.6} are equivalent to

Ay
‘Eyz‘ = VBYm + Pou{(Ym * V) (¥m + 2m) + (Zm * P}y + P} = Prnf (5.1)
Veyn=0 (s:2)
~vheg, + (sz - m){(?m : V)ym + qu} = (Pﬂm - m}f (5°3]

1

Vizn=0 (5.4)

Two exsmples ligve been considered. In both cases the solution u is a priori chosen

.‘ind p =0, ind { i determined from {1.1). Hence the exact solution of the equation is

known and it is easy ‘w test safely the accuracy,

In the i'i'ﬁt.'acmigle (see Figures $.1a,5.1b,5.1c), m = 8 and u = {u;,u,},
: w1 (z1,52,t) = (cost) p{x1)
,, ua(z1,22,¢) = (cost) (1)

= 10~2 | 272 y _ E
“plg)=10"" | zj(z) — 41Tz, + 411%) s

Lo T Re= 4830

"Figure 5.1a shows thii the errors for both schemes are about the same as ¢ evolves. Figures

", 5.1b and 5.1c show the absolute and relative gain in computing time between the usual
' ... and the predent nonlitiear Galerkin method ; here the relative gain of computing time is
. approximately 18% ..

In the second example (see Figures 5.2a, 5.2b, 5.2c), m = 32, Re =?,704~ and u

= {u3,u3} is as in the first example with now ¢(z,)= 107 (z}{z} — 47z, + 4x7) - -'-l!!;.- .
Figure 5.2a shows that the errors are about the same for both schemes as t  evolves.

. Figures 5.2b and 5.2¢ show the absolute and relative gain in computing time between the

usual and the present nonlinear Galerkin method ; here the relative gain in computing

time is approximately 40% .
] Finally, Figures 5.3a,b,c, are numerical evidences supporting the small-large eddies
model described in Section 1. They give also a posteriori justifications of the nonlinear

Galerking method proposed here. The compulations were made for the first example
above. Figure 5.3a shows the evolution of the ratio

P BUy™ ™) oo /1 (2™ — 2740 |1a

along the iterations ; the ratio is of the order of 10%. Figure 5.3b shows the evolution of
the ratio.

[Bly™ v} 1es /| B(y" 3"} + B(z",y") + B(2",2") |p»
Finally Figure 5.3¢ shows the evolution along the iterations of the ratio

L™ — ") /At [| (2 = 2") /At |

The ratio is of order 10* {At = 1072 in the three figures).

-12-
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CONCLUSIONS.

In this article we have presented a new discretization algorithm called the nonlinear
Galerkin method. The algorithm seems robust and well suited for large time integration
of the Navier-Stokes equations. The preliminary numerical tests show a substantial gain
in computing time. Further numerical experiments and the extension of the method to
ather equations and to other forms of discretization (finite elements, finite differences...)
will be presented elsewhere,
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