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CASE STUDY: INDEPENDENT AND COMBINED CODING AND MODULATION
by

Reginaldo Palazzo Jr. (%)

In a previous lecture on error rates for M—ary systems no
coding analysis was done. We intended to leave to this one since a
better understanding and evolution of the techniques for efficient
modulation for band-limited channels could be seen properly.

We start by considering the case of independent coding and
modulation. Fig. 1, shows the model of a communiocetion system
where the channel is memoryless. When the channel has memory a
proper interleaver/deinterleaver pair is used betwesen the encoder-

modulator and the demoduletor-decoder, respectively.

[ Source r——{_Encoder }——-{ﬂbdulatoz}________
[ channel |

Fig. 1 - Model of a Communication System.

Without any lose of denerality, assume the channel is

memoryless. Fig. 2, shows this model.

['Sourcq__}w4 Encoder }~—~ Memoryless -;—{ Decoder }~{ Sink ]

Channel

Ply/x)

Fig. 2 - Discrete Memoryless Channel.
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A coded symbol sequence of length N is denoted by
x = (x1, x2, ...., x
with the corresponding channel output sequence
¥ = (yl, ¥2, ...., y¥

Assuming interleaving/deinterleaving for channels with
memory, which render them memoryless, it is possible to have the

channel probabilities to satisfy
N

Pex/xy = I Peyi/xid
(Y]

For any coded communication, the deccding process uses a
metric of the form mi{y,x}. When the metric is additive the
decoding process is the simplest one. By additive, it is meant
that

mi{yx, x) = g; m(yi,xi)
l'lt

As an example, the maximum likelibhod metric is given by
miy,x) = log Pl{x/x)

This is the most important metric used in the decoding process.
Now, let us derive the coded bit error rate bound. For that,

assume that there are only two possible coded sequences of length

N, that is
x = (x1, x2, ...., xN) and £ = (%, %2, ..., X
Whon the channel output sequence is ¥ = (¥1, ¥Z, ..., YN,

the degoder decides that £ was the transmitted sequence if



o N
m(x.ﬁ) = 2: m(yi,ii) 2 Z; miy,x) = m(x¥,x)
21} ie

otherwige it decides for x.
Assuming x is the sctual transmitted coded sequence, the

probability that the decoder incorrectly decides X is
Pix—+x)=Pr{myx2 2mnxx) /x}

This ig called the pairwise error probability. By wuse of the
Chernoff bound, we have
" LR
Plx» x) < :t E{ expicim(yi,%i) - m{yi,xi)1} /x }
{3
for any ¢ > 0. When $i = xi, the average valus ig 1. When Xi # xi

Dic) = E{ explclm(yi,®i) - m{yi,xi)]) /x }

Thus, the pairwise error probability is bounded by
. wtl,i\
P(x — X)) £ [ D(c) ]
where w(x.§) ig the number of places that %i # xi. Note that the
objective is to have the least upper bound. So, let D bs
D = min { D(c) }
[$7-3
Thus,
~ w(j,;)
Pix-»x) <D
The parameter D depends only on the coding channel and the
choice of the metric. When the metric is the maximum likelihood

one, D is given by

D= L (Plyso. eyt

¥

Therefore, the Bhatacharyya bound is given by
wif, X
Pix - %) < {2‘: (P{y/x).Pty/x)”;l g
The pairwise error probability is the basis of gdeneral bit
error bounds for coded communication systems. This is based on the
union bound where the bit error probability is upper bounded by
the sum of the probabilities of all ways a bit error can occur.
For any two coded sequences x and % let a(x,i) be the number
of bit errors cccuring when x is transmitted and %X is chosen by
the decoder. If p(x) is the probability of transmitting sequence x
then the coded bit error bound is given by

Pb ¢ L Lo atx,5).pix). Plx—
xxeC

- wix,?
£ I: Z; alx,x).pl{x).D )
x2el

where C is the set of all coded seguences.

Example: suppose BPSK is the modulation to be used in an AWGN
channel. Assume the additive component of the noise has zero-mean
and varianos No/2. Also, assume that there is no quantizer, then
the conventional ML metric is ml{y,x) = y.x, which is referred as .a

soft decision channel. If x is the transmitted symbol then

and

Dte) = Ef exploly. (% - x31) /x }

exp{-ZcEs + c*.Es.No}
or

D = min { exp{-2cEs + cb.Es.No} } = exp{-Es/No}
[t X. 1

B



Now suppose that we include a two level quantizer forcing =a
hard decigion to be made. This results in a BSC where the coded

symbol error probability is
p=Pri{n > Eg '} = a(N2.Es/Ho )

For the hard decision channel. the ML metric is

1, y = x
m(y,i) =
0, vy #x
Hence,
Dic) = E{ exp(c[m(y,ﬁ) - miy,x¥1} /x }
= p.expl(c) + (1-p).expl(-c)
and

D = min { p.exp{ec) + {1-p).exp(~c) }
e

J 4.pl(1-p)

Now, suppose we use a convolutional encoder with constraint
length K = 7 and rate r = 1/2 with BPSK or QPSK modulaticn. Using
the transfer function tecbnique the bit error probability of this

convolutional code is upper bounded by
o 1 “
Pb ¢ 18.D° + 105.D° % 702.D 4 ....

and so, we have the coded bit error probabilities for soft

decision given by

Pb ¢ 1B.exp(-5.Eb/No} + 105. exp(-6.Eb/No) + 702.exp( -7.Eb/No) + .

and for hard decision given by

Pb ¢ 18.(4.p(1-p)¥® + 105. (4.p(1-p1'" + 702. (4. pl1-pY & ...

where p = QiJ2.Es/No ) with Es = Eb/r.

The uncoded bit error probability for the BPSH or QPSK is
Pb ¢ (1/2).expl-(1/2}.Eb/No]

Comparison with the coded bit srror probability, we concluded that
by use of coding there is a reduction on the average bit energy-
to-noise ratio to achieve the same error rate. However, from the
asymptotic limit established by Shannon, C = W.log{ 1 + Eb/No 1,
we see that by fixing C, a reduction in Eb/No implies in an
increase in bandwidth. This is precisely the trade-off by using
coding. In general, the bandwidth expansion factor is 1/r.

From what we Jjust saw, it seems that codind has its
applications in communication systems were no constraint is
imposed on the bandwidth. However, this is not the case. Recently,
a proposed technique using combined coding and modulation allowed
the use of coding in band-limited channels without expanding
bandwidth and achieving good coding gains. This will be our next
topic.

In the combined coding and modulation both the encoder and
the modulator are not independent. They have tc be designed
togeather in order to achieve good coding gains. It is better to
take an example to explain this new procedure. Let us consider a
four-gtate trellis code for 8-PSK modulation. Here, 2 bits of
information is required for transmission. Thus, 4 signal points

would suffice. However, 8 signal points will be used. This is the



. binary tree. For instance, at level 1, we see that in each subset
expangion of the signal set needed not to produce bandwidth

. . there are 4 signal points. This means that the two bits coming
expansion. In Fig. 3, it is shown the signal sets and the trellis

into the encoder will not be encoded and just one bit will be
diagram for the example.
concatenated to decide which subset at level 1 the encoder will

«y »

- ‘\‘:"¢E‘ use. The resulting encoder will be like ths one shown in Fig. 6.
1

doz 2 3in Nlg

SEET lewel 3

Fig. 3 - a) uncoded 4-PSK; b) 4 state trellis coded 8-PSK

The model of the transmitter of the communication system is bMdL
as shown in Fig. 4.
Source }—4_ EncoderJ—w{::gapper J"“{ Signal Set I
levds
Fig. 4 - Transmitter Model. o’ e o oy —

. . . Fig. 5 - Mapping by set partitioning.
The mapper is just a mathematical function which maps the

encoder output to the signal points. How should one design the al by
matched encoder-modulator to achieve good coding gains? This is ay ba,
gtill an open guestion. However, the mapping by set partitioning ( 37 b

Floy 3

concept is the key to the solution of the question just posed.
The mapping by set partitioning of an 8-PSK modulation is Fig. 6 - Encoder for level 1

ghown in Fig. 5.

. ) At level 2, we see that in each subset there are two signal
The encoder is determined by choosing any level in this

points. This means that one of the two bits entering the encoder



will go directly through it and the other one will be used to feed

a convolutional encoder with rate r = 1/2. This is shown in Fig.

7.
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Fig. 7 - Encoder for level 2.

At level 3, we ses that in each subset there iz just one
signal point. This means that the bits coming in will all be
encoded. Some of the possible encoders configurations are shown in

Fig. 8.

Fig. 8 - Encoder for level 3.

Now a search for good codes must be done for each one of the
levels indicated sbove in order to find the encoder which gives
the highest Euclidean free distance. The encoder shown in Fig. 9
is the best for level 2.

The asymptotic coding gain (between the coded 8-PSK and the

uncoded 4-PSK) is defined as

e

CG = = 20.1og{ dme #do }

For the case being described, we have a 3 dB coding gain
since dh._= 2 and do =Y 2!

oy

+
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Fig. 8 - The best encoder for level 2.




