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DETECTION OF CODED SIGNAL - EQUALIZATION
by

Reginaldo Palagzo Jr. (%)

Up to now, we have been considering the transmission of
digital information over the AWGN channel with the assumptions
that the channel has unrestricted bandwidth, that it introduces an
attenuation factor as well as a phase shift.

Now, we are going to consider the case where the channel is
band limited while maintaing the other agsumptions. In this case
we expect that soms intersymbol interference will result since the
transmiesion rate is high. However, in practical digital
communications systems the frequency response of the channel is
both not known precisely and time varying such that to design a
proper demodulator for combatting interferences we have to employ
adaptive techniques for equalization.

On the other hand, if C{f) is the frequency response of a

band limited channel to W Hz, then within this band

CiLy = | Cif) . exp{ @(f) }

A channel is said to be nondimtorting if : C{fYy | is =na

constant and ©(f) is linear with f, otherwise it ig said to be a

distorting channel.

(¥) - FEE-UNICAMP, Dept Telematica, P.0.Box 8101, 13081 Campinas,

SP, Brazil.

There are several types of distortion that could be
described. However, we mention only the most usual ones which are:
1) amplitude distortion, which occurs when | C{f} | # constant; 2}
phase or delay distortion, which occurs when G(f) is not linear
with f; 3) nonlinear distortion, which occurs when any nonlinear
element is present in the system; 4) phase jitter, which occurs
when a low index frequency modulation of the transmitted signal
with the low fregquency of the power line; 5) impulse noise, which
occurs from switching equipment.

For the sake of mathematical tractebility, we are going to
consider the case when the channel behaves like a linear filter
and introduces ampljitude and delay distortion besides the AHGKN
noisge.

Before doing the performance analysis for the most general
cage of & periodically time varying channel, we are goind to
consider the problem of signal design for band limited channels.

It ©can be shown that different types of digital modulation
techniques can be represented by

o

z; un. p{t-nT)

Latl-]
where { un } is the set of discrete information symbols and pi{t)
is & pulse with P(f) = 0 for 'f! > W. Thizs signal is transmitted
over a band limited channal C{f), with C(f) = 0 for if! > H.

The output of the channel is

w0
rit) = z— un. h{t-nT) + n(t)
Mo

where

- -]
hit) = J pla).c{t-adda



and ni{t) is the AWGN noise.

It has been shown that from the point of view of signal
detection, the optimum receiver filter is the filter matched to
the received pulse h{b-t).

The output of the receiving filter is

o0
yit) = & un. x{t-nT) + wit)

when x(t) is the pulse representing the responss of the receiving

filter to hit) and wit) is the response of the receiving filter to

n{t).
Now, y{t) is sampled at times t = kT + t’, and sO
o/
yit+kT+t’') = z% un. x{t+kT+t’' -nT) + wit+kT+t’)
=)
yik) = 7 u(n).x(k-n) + wik)
neg
.a,
= utk).x(o) + 1: uln).x{k-n) + wik)
“eo
L]
where ; does not contain the term h = k . Lettind x(o) = 1, we
have

)
y(k} = ulk) + Zl uin).x{(k-nY + wik)
n

Therefore, at the k-th sampling instant u{k) is the deslired
information, g;' is the intersymbol interference and w(k) is the
AWGN noise random variables.

Now, in order to gimplify the signal design problem, we
consider that Ci{f) = 1 for !f! < W. Under this condition X{f)} =

2
iP(f)! and consequently
w

x{t} = J X(f). exp{.jwtidf
VY

2

He are interested in determining the spectral properties of

alt) and congseguent]ly the trensmitted pulse p(t) for no

intersymbol interference. Since
'

yik) = ulk) + Z:utn).x(k—n) + wik)
n

then for no intersymbol interference x(k) = 1 for k = 0 and O for
k# 0.
On the other hand, since x{t) is a band limitad signal it can

be represented by
x{t) = x{n/2w). { gin{2. W . W{t-n/2W¥) /2. W H(t-n/2HW) } (1)

where W

xin/ZWy = l X{?) exp{j.w.n/2H}ASf
-l

Now, =suppose that the transmission rate for { ulk) } is 2W

gsymbols/sec (Nyquist rate). Letting T = 1/2W in (1), we have
oD

x(£) = L x(nT).{ sin{®lt-nT)/T)/( W(t-nT)/T) }
Na-00

No intersymbol interference means that
x(t) = sin(WE/TY/(WE/T)

such that

T, f < 1727
Xt

it

0, Iifi » 1/27

This signal is not physically realizable, and so it has only

an academic interest. However, if we leszen the assumption that T



- 1/2W to T < 1/2W, then following the same reasoning we end up

with the condition for no intersymbol interference as

T, fi < 1/2T
Xoq{f) =

0, ifi > 1/27
]

where Xeq(f) = Eén Xt + n/T).

For practical purposes if W ¢ 1/T < 2H, then a variety of
pulses present no intersymbol interference and a good spectral
characteristic. One of these is the cne having the raised cosine
spectrum. Note that these pulses represent the impulse response of
the modulator-demodulator pair gince the channel was assumed an
ideal one.

Next, we are going to consider the case where the
transmission rate is 2W symbols/sec and that some controlled
intersymbol interference will be allowed. The pulses which gatisfy
these assumptions is called partisl response signals. Time
invariant as well as time varying partial response gignals will be
presented.

The easiest of all digital modulation to be considered is the
pulse amplitude modulation (PAM). For the sake of simplicity, let
us remove the AWGN noise of coneideration. Then, the output of the

receiving filter is

y{t) = i; u{n). x{t-n/2W)

nzo

When x(t) is the sinc type of pulse, we have

X{n/2W} =

0, otherwise

and { u(n) } is recovered by sampling the received signal at a
rate of 1/T.

Now, suppose that it is allowed to have at least two nonzero
values of x(n/2W). As & conseguence, we encounter intersymbol
jnterference at the samplind times. However, due to the fact that
it is known apriori it is deterministic, and so the receiver can
take it into consideration for further processing.

This controlled intersymbol interference technique have two
special cases: 1)} the duobinary sidngl; and 2) the modified
ducbinary signal.

he duobinary signal is represented by:

1, n=20
x(n/2W) =

0, otherwise

(L/WY. [ exp{-3 W£/2W} lcosiWf/2W), ifi < W
M =

0 , otherwise
The modified duobinary signal is represented by

1, n=-1
x(n/2W) ={ -1, n = +1

0, otherwise



(3/W).sin(Wf/H), If] < W
Xt =

0 , otherwise

The main difference between the partial response signals is
that the modified ducbinary signal can avoid error propadation by
pre-coding the data at the transmitter instead of weliminating
intersymbol interference (by subtraction) at the receiver.

To give some insight, let us consider the duobinary sidnal

with binary PAM. The received msignal at the sampling times i3
Aln) = uin) + uin-1), n=1, 2,

where { uf(n) } is the amplitude of the transmitted pulses and
uin) € { +1, -1 ). Thug, Afn) € { +2, 0, -2 } with A(n) = 2 for
fuin), ufpn-1)} = {(+1, +1}, A(n) = -2 for (-1, -1}, and Aln} = 0
for (-1, +1) or (+1, -1). Error propadation occurs if utn-1) is
decoded erroneocusly.

1t can be shown [1] that the probability of error for symbol-
by-symbol demodulation when wusing digitsl PAM signaling with
ducbinary and, modified duobinary pulses on a AWGN channel 1is

given by
. 1 Yo
Pm < (1 - 1/M).erfol {(3/M-1). (T74) .T.Pav/No)1 (2)

if one desires to compare (2) with the case of ideal sinc
type of pulse or the raised cosine one, it can be shown (1) that

the probability of error is given by

e
Pm < (1 - 1/M).erfcl{(3/M"-1).T.Pav/No}]

Therefore, the partial response signal case is 2.1 dB

than the ideal or raised cosine type of signals.

/

worse
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Performance Analysis of Periodically Time Varying Partial Response

Signalling with Maximum Likelihood and Integrate & Dump Receivers

1. Introduction

Although high spaed digital communication in band limited channels
has been smployed as an alternative solution to the placed demsnd, it pre=
sents intersymbol interference (ISI) as one of the major degrading facter
affecting the over all performance of the commnication system, In order to
diminish the degradation imposa upom the system by the ISI, band-limited
signals vwith controlled intersymbol interference (partisl response signals)
have been introduced, ‘This class of physically realizable signals have a
signalling rate of 2U syzbols per second with a known intersymbol inter-
ference at the sampling instants. Detection of partial respouse signals
become a simple metter of sequentially subtracting, at the n-th sampliog
instant, the (n-1)~th ISI value(s). Since this schems allows error propa-

gation, a "pre-coding® can ba utilized to mitigate this effect.

In general, time invariant controlled as well as uncontrolled ISI,
_which for the sake of brevity we call time invariant ISI, has besn the form
of interference assumed in the analysis [1]-[6]. 1n [7)=[11], & maxionm
likelihood (ML) receiver for digital signals with time invarisant IS1 was
associated with a finits state structure for uncoded as well as coded sys-
teme. Since finite state structure can be described by a trellis, transfer

function technique (TFT) is a real asset in the performance evaluation of

this type of communication systems,

Motivated by these previous vorks, we present performsnce snalysis

of a PAM communication system with pericdically time varying controlled ISI

2,

by use of the dynamic transfer function technique (DTFT) developed in [12].
Basically, this DTFT techniqus is & aystematic way of counting error events
that start in scme node at time k in the trellis as wall as all the previous
error svents prior to time k. This is the same as fixing an information
digit in the time interval [k, x+1] and comnt all those paths in the
trellis that have a decoded informstion digit disagreeing with the fixed

information digit,

We assoclats with the periodieally time varying trellis structure
a periodic sequence of channsl impulse responses, h_r’(:) with p an integer,
0¢<p&Ml. For each hs(t), we define the ISI coefficients by
_!_1_‘-’ - {hg. aeery hg_l}. and wva sssume that .Ils can take values on a set
Hw= {!1_5. 0 ¢ p & M1} vhere M {3 the number of channel impulse responses and
L-1 is defined as the memory length of ths intersymbol interference coef-

ficients,

It is readily noticed that if for each P the ISI coefficients are
wP = (hyo Byy aeeny by} then time invariant is the resulting form of
interference. (n the other hand, if we assuwe that for each Ps h" can be any

element of the set H then time varying ISI (dynamic 15I) is being considered,

Multi path radio channels and, in general, time dispersive channels are

examples vhere dynemic IS takes place, [13].

In this paper, we derive upper bounds on the total as well as on
the individual bit error probabilities by use of the DIFT for an uncoded PAM
communication system with an optioum and suboptioum receiver when the

channel varies periodically,

2, System Model

The channel considered in this snalysis is in the class of con-
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tinuous output discrete time channels with finite input alphabet u € U,

whers without loas of any generality, U = {0, 1, 2, coces W-1}. Each symbol

ia independent and identically distributed for uncoded communication sys-

tems or dependent according to some redundant coding rula,

Consider the [following commmication system as shown in Fig. L.
Let u_ = (“..l' Ug,20 teee “n,ﬂ) be the mth source l!ﬂol sequance of
hn_;r.h N, vhere each Ugj has block length b JdLmg Hb'N. N >> L=1 and
N >>b, Let b source symbols be imput to the M channel impulse responses,
h;(l:j. at 8 time end that cnly one of them is ngelected” during T' seconds
(T' equals the duratiom of b source sysbols), For each subsequent T' seconds
a new selection is made, Let us define ALy {30 ooens iy = (h{ﬂ(t),
h%.(t). cesey h!i{(t)l as the ensemble of all pos;ible periodic combinations of
the M channel impulse responses with 0« lj £ M-1, Without loss of gener—
ality, let us assume that the periodic sequence of the chsnnel impulse
responses identified by A0, 1, +evey 1) = [h°(v), hl(t). weens Wi
is selected, That is, the first ® block goas through h(t), the second b
block goes through hl(t) and the M-th b block goes through W 1lge), and that

subsequent blocks follow this pattern, We also assume perfect synchro-

nization between transmitter snd receiver.

Since the channel has the A(0, 1, 2, ...+, ¥-1) structure, we have

from Fig. 1 that w(t) is given by
vty = § u, &t =nT)
n

and x(t) by

x(t) = § un(t-n'r)ﬁhi(t) « [ bP(e-am) ¢}
n n

wvhere T is the symbol duration, n(= ;. p+r~-1) is the n-th source symbol

4

from a spacified ovigin, p is an integer, 1 £ £ & ;, ; = n wod (i,' M), and *

repressnts convolutional operator.

Lat hP(t) = 0, for |t| 2 LT and 0 ¢ p € ¥1. Since hE - h'-_’k for
1 €% & L1, ve define the mewory length of sach hs(t) as Ll-1, Therefore,
optimm receivers no longer can be based upon chaervation at single time
futerval independent of the previous ones, which implies that we have to use
recelvers with memory. Among nonlinear receivers, the maximm 1ikelihood
raceivar is the one vhich minimizes the probability of error for the entire
dats sequence [?]. Thus, it will be considered in the subsequent analysis,
The condition of equal umry‘ length for each hs(r.) comes from the fact that
the DTFT assumes that elements in the periodic combingtion have the same
cusber of states, Since we are consfdering ¥-ary source during each T
seconds, all iepulse responses must have the same memory length in order to
have the same nvmber of states, Clearly, this ieplies that the same number
of bits is being tzansmitted during sach T seconds. It is possible, by use
of the DTFT, to analyte cases where different number of bits are being
transmitted during each T seconds, However, we require that the resulting

nunber of states be the ssme during esch one of the T seconds.

let the noiss at the front end of the receiver be one of the
saxple functions of the vhite Caussian process with sero mean sund tvo sided

spectral density HN,/2. At the receiver, we have

y(z} = x(t) + n(t) (2

3, Maxioum Likelihood Receivers

From (1), we have that the corresponding channel signal !'(t) is

given by
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0 (0 = 1 ug WD | )
L |

where we have sssum for simplicity that tel.

Let us assuned that x.(l:) was transmitted. Hence, the ML procedurs

will choose :‘(t) if

ph /0] 2 ply () fxg (0] for all w'#n %)

Dus to the finite energy of the signals, and by sppropriated
choices of orthonormal basis (Gram-Schmidt procedure) we can represent y(t)
and :m(t) by its coefficients in this new basis, Let ¥ and x be the

coefficients. Since the noise is white Gaussian
. .
oy /x) = QMM enl-1g) 1z - xab} ()
Thus, X, is chosen Lif and only if

- - 2
’l:l(t) - p\:x 1 {1n P(llzu)] - ﬂix“ ¢ (l!. - _Snl }

- max ! {2 I xg(tyy(t)de - |x_(:)|2 de}

x -
o maxt (9) (8
x

with & being a metric, &, is explicitly given by

4 =2 -I. Lumhp(t-n'l')y(t)dt H L-umumjhi(t—n‘l')ha(l:- jTHdt (7a)
=2 E T E § Yen Ynj h::‘: {7b)

- - ;'a .
'{. {Zum Y % Yen Unj hn—j} (7e)

6.
- l[l {0-'9} : (1)
with
- _ . .
A L wP (e - uT)y(t)de (8)
snd
- - ’ -
L wP(c-emnt(e -kr)de = ool 63}
For p ™ g, ve have that
Ped a1 @eP o P . wbP
hn:k hk:n hn-k hl,;-a a0

Let us assume _llp is differant for every p € {0, 1, 2, «ouvy w1},
Hote :har.i specifiss each one of the M impulse response functions of the
commmication system under consideration. Substituting {10) in the second

tarm of (7b), we have

-1

I uL g hiz] (11)

i}unuj hi_j-g[u:hi-zi_l

o

From (8), we ses that for esach b mource symbol (T' seconds), the
optimun receiver will have o filter matched to the impulse responsa of the
channel, and (9) implies the knowledge of the characteristic of the chanuel
by the receiver. Substituring (11) iu {7c), we have that the metric @
depends on ¥y, %y, and L-1 pasc dats input. Substituting (7¢) in (6), one
reslizes that the resulting equation describas the Viterbi algorithm in a
trellis structure vith HL.l states, Note that branch values in this trellis
structure are charactsrized by the respsctiva channel impulas response p for

sach T' seconds.

Multiplying (2) by hI(t-kT), making use of (1} and integrating,
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wve have
%" Ey(:).ha(t-k'r).dl: - L.z_(t) L3 (t-kT).de + La(t).ha(t-kr).dt
- ‘lk + %
vhere -
" b J g WP CE -aT)h¥ (e~ kT)dt
L)
- oy -
- E Y L hP(e ~nTIh (e -kT)dE
a5 7
‘M - N
u " I_ ateyhi(t ~kT)de ay

Thus, the channel output y, cen be vritten as

1-1 - :

P
y, - u_ . . hi+ (14
LI im a k-1 Mt T

We also have that !{"k} = 0, snd E{n nj} - (N°I2)hE_j. Note that

. we can think of (14) as a finite state represantation of the continuous case
vhere n, are correlated gaussian randowm veriasbles, Figure 2, shows this
equivalence. As showm {n [10]. there is no need to use a whitenning filter
sinca the yk'l are sufficient statistics and that the metric Om is additive

and depends oht ¥, V.. and the L-1 past data input.

From the above conditions, we propose to analyze twvo cases: CASE
1 - the optimum receiver (matched filter); CASE II = the suboptimum receiver

(the integrate and dump filter),

8.

CASE I - OPTIMUM RECEIVER

Given that :'(t) was transmitted, an error will occur if during a
span of N branches, a path in the trellis structure has sccumulated metric
o, greater than the accumulated metric &  of the correct path, Hence, the

pairvise error probability is given by
?t[’. -+ yn.] = P!['ﬂ' > .I ! L‘]

From equation {7¢), one recognizes that Om., is & Caussian random

varisble, and so is {0_ - Om.}.

Let K be the mean of {On- 0-.]. Then

~ 2 2 ..p
K= E“u - om'} " E [z(“m'n - "mn)yn - ("m'n - um)hg -

L-1 -
- P
- 121 2(up, Yt nei ” Y um.n-i)hi] (15)
with the average value ;n of ¥, given by
L-1 -l;
o” 1.-2;1 Yoyn-i o

Let W' be the variance of (0m - Om.]. Then, a normalized variance

W is

2
W e (LaoDvar(e, = o} = (L/ADE] 2y = vd"y} an
° n

where 02 is the variance of the gsussian random variables., Clearly, the

pairwise error probability is

Pefo, -0, >0 ! %] = (K/20/W)
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gince we have matched filter, one can show after soms algebraic

manipulations that K =¥W. Thus,
refo, -4, >0 ! x) = a(Aif20) : (18)

Assums that & transformation from binary source symbols u, € {0, 1} inte
;n ¢ {-1, 1} is provided, Doing some manipulstions on squation (17), one can

easily show that

p 11/2
/W20 = [(2) H LN h:_j] _ a9
where tha signal error, a;, is given by
0 Upty * Um
“*" (ll!)(u-.n - u-‘) - (20)
1, U..h ¢ Yen
Upper bounding (18) by
Q) € expl-x212)
we finally have
G2 5
pr(e,, - 9,2 0/5] ¢ expl(-2/M ) (b5 o, + 2 1?-1 . e i} (2

Since (21) characterizes the conditional signal error probability

for a given sequence ¢, the unconditional signal error probability is

Pr{signal error] < [ Prsignal error/e] Prfe] 2
e

10.

It can be shown that the unconditional signal error probability is
upper bounded by

2 ‘ .
. - L-1 -
Prleignal error] ¢ § (N (2/2) » ltp[(-llﬂo)(h: C: +2 ] e e h'{’]] 2
. i=1
vhere z accounts for the cass Ul ¢ U The exprassion in branckets charac-

terizes paths in an error stata diagram vith (ZlH.}l'-l states, .’

We now introduce the dynamic and output equations to evaluate the
upper bound on the bit error probabilicy, P, for the periodically time
varying controlled ISI. Let Yl' !i. Si, and A be the state, input, cutput
and transition matrices of the i=th error state diagram, where the wmatrices
elements arse of the form 3.0, 8% with 3 a constant, D a pairwvise error

probability, ¢ a decoding error, and c¢; a distortion function for each bit

i
corresponding to the {i-th channel ippulse response for 0<£1is (M1), The
dynamic state equations and respectives transfer functions can be obtained

once the periodic structure of the channel {s koown.. Since we have assumed

the periodic structure A{D, 1, ..eey M1 = {v%r), hl(t). ceney h"-l(t)}

where during b source symbols ¢he channel impulse response is hP(r), the

dynamic state and output equations can be shown {see [12]) to be given by

Yo "B * 45 « Ty To ™ 5o Ty

Yl-El‘AI.YO Tl-sl.YO

.. . . . . . » (24)
. 1" Bl * Aenr Tz Tu1” 51e1” w2

and the total transfer function by
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12,
M1
(s} = (1M 1)-:0 T;(2) : (25) branch values given by
Since T(z) h.n short represeatation for T(z, ¢y, €3y =esse Tp D), taking - 'W{'h:n'o} a, " “P{‘(h: + 2“:)’“0} ) (292)
derivative of (25) with respect fo &, results in the bit error probabilicy ° o
a4 " exp{-(h - 2!11)1110} =1 (29b)
which we represent by
b, = exp{-h},l‘ﬂo} b, ~ ezp_{-(h}, + zh})lﬂo} | (29¢)
P reve 1/2) [d/dz]T 26
b(cl’ CZ' » CH) £ {1/2) [I !] (‘11,-1 e . s ) (26} 1 ) 1
s (€10 3 ' Oy by = expl=(hg ~ 20/ ) by = 1 (294)

Since we are sssuming binsry source symbols, the distortion function c - 0
The state and output equations for the optimum receiver are showm

if the transmitted bit is equal to the decoded bit, and c; = 1 if they are

in (35).
different, for each channel impulse response. The (individual) bit error
probability for the i-th chanael impulsa response, P, ., is obtained by
letting ¢; = 1 and ¢ = 0 for all ¥ # i. Finally, the total bit error probe- CASE 1T - SUBCPTIMUM RECETVER
bi{lity is the sum of all individual bit error probabilities.
Instead of a matched filter, let us assume that the "integrate and
To shov the procedurs so far, let us take an example vhere, dump" is being used, We have that the observables are
without loss of generslity, bel, Lm2, M=2, This is s typical exsmple of -
duobinary signals. The discrete equivalent model for Lw=2 is showm in Fig. Wwr- I y(t)ple -kT)dt . (30)
—i
2 . From {14), we have that
vhere
1 ; ' (1/'1')”2 ' 0gtsT
T * 1}_:_1 Yot Mty zn p(t) =
0 » otherwise
with -
. Let hP(t) = 0 for t € O and t 3 LT, Multiplying (2) by p(t=-kT)
0, for e < (JHDN-1, § even ) © uitiplying ve
P = (28) | and integrating, we have
1, for N € p € (J+1N=1, § odd I - -
v " [ xm(t)p(t =kT)dt = I U I WP (t =nT)p(t-kT)dt =
T -0 n il
The error state disgrams having (2u-1)“" = 3 gtates {-1, 0, +1}
- L-1 -
with 1, md =1 equally likely are shown in Fig.3 with the corresponding « J v W, = T v uP (& ]3)
. oomn n-k =0 m k-1 i
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With the sbova assumpticna the "integrate and dump™ filtar cutput

ie
. L-1 7
'h - I “l,k-i hi + nh . . (32)

i=0
Equation (32) is the discrate aquivalent representstion of the

continuous case, which is shown in Fig. 6.

Without loss of generality, assuma ;-l, L=2, M=2, Following the
same procedure as lo CASE 1, wve will end up with the signal error proba~
bility givem by

2
[ ] -1 -2
refaignal error) s I 1 (2/2) * ep[(-1/W,) (1§o 0y 1D 1} (33
e ® .

Note that (33) describes tha path's evolution in the arror stats
diagram for each P, which in this case are shown in Figure S with the cor-

responding branch values given by

2

5y " cw{-(h:)zmo} gy - cxp{-(h: + h'l’) mo} {4a)

2y = expl=(n2 - B} a, = expl-(27 ) (34b)

by - !w{-(h:)zlﬂu} by = exp{-(h: + h})zﬂlo} (34c)
2

by = expi-(nh = bY) M) b, = expl-(h))2 M.} (344)

From (24), the dynsmic state equations and transfer functions of

the reduced error state diagrams are given by

oy €1
Y, =8 fl+ Ty (ay ¢ |3)1'2 - 22,.7, (35a)

Cz [
Y, = by x24Ty 2 by ¢ BN T, = 2,1, (35b)

14,
and the total transfer function by

Ta) = (11D [1y(0) + Tp(0)] ’ _ (35¢)
Similarly to (26), the individual bit srror probabili‘r.iu are given by
P, " Rpleg =1y ey=0) € /D) [a/a]T¢s) =1, "1, e,=0 (35d)
Pz = Ppley=0s 321} ¢ /2y [a/as}T(2) el, =0, ¢;=1 (35¢)
and the total bit error probability by

Py = Pp1 * Pp2 (356)

Prom equations (353) and (35b), we have that Y, end Y, are vespec-

tively given by:

cl c1+c2 cli'Cz
11 - {.1 + (5112) - (.2 + .3}‘ }I{l - [(‘2 + la)(bz + ba)"]' }

e, ¢ c.+
T, = {b; 'cz + (8,/2) . (by + By)m 120 - [Cay + 1) (by + b3)1£]: 1 cz}

Substituting Y, and Y above in (35d) and (35e), the total bit
error probability, (35£}, can be shown after sowe algebraic manipulations

to be given by

P, = (1/4) . {Ca) b tag.by) +(174) . (l‘.b.l"ll.b‘) . (ay%a;) « (byby) +
2
+ ap.a,.(byebg) e byebg.(agtay)} Hi- [(lz+.3) « (bytby) o (/74)]) {36)
Evaluation of the bit error probsbilities for CASE I and CASE II

is cnly a matter of substituting the corresponding values of a;'s and bi'n

given by equations (29) and (34) respectively, We consider channel impulse
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responses given by

[Care) . (w'r)]”2 for 06t €T

]112

ny(e) = | [®/0) . (2/D) for TEt <21 an

0 . othervise

[te/e) . /)2 for OsteT

12

hy(t) = | [(afc) . 2/m) for TSt £2T (38)

0 othervise

vhere s, b, ¢, d are {ntegers such that a+b =c+d =G,

4. Results

1n the snalysis that follows, we have assumed the "channel impulse
responses™ are given by equations (37) and (38) with (a, b, ¢, d) being any

integer satinfying a+b = c+d = 18,

We have evaluated the performance of PAM communication system with
tipe invariant channel impulse responss by using the upper bound on Py as
_;i.ven by equstion (36) under: 1} no ISI with parameters (s, b, C, d) = (18,
0, 18, 0); 2) controlled ISI with optimm receiver and parameters (a, b, ¢,
d) = (9, 9, 9, 9); 3) controlled iSI with suboptimum receiver and parameters
(a, b'. c, d) = (9, 9, 9, 9}, This is shown in Fig. 7. Note that the energy

content of the channel impulse responses are equal to E.

By concentrating most of the total energy of h,(t) and/or h,(t) to

16,

"~ any ouns of the equally spaced time intervals, that is, by increasing the

values of the parameters 3 and ¢ or b and d, wve have that lass signal-to-
noise ratic is required to achieve a prescribed bit error rate as can be seen
in rig. 8 for the cases s, 3, 15, 3, (12, 6, 12, 6) wvhen compared with
(9, 9, 9, 9) vhich {» the ducbinsry signal case. Note that (18, O, 18, 0) is

the case with no ISI.

In table 1, we compare periodicelly time varying controlled ISI
with period two with time invariant controlled ISI as well as with the case
vith no 1SI. It is seen that periodically time varying attaine better per—
formance then the time invarisnt cass with coding gains up to 1,27 4B,
depending on the chosen periodic combination. 1t is alsoc seen that & small
degradation up to .44 dB, depending upon the periodic combination being
selected, when comparing no ISI with periodically time varying. On the other
hand, degradstion uvp to 1.28 dB  is seén when wve corpare nc ISI with time
{ovarisnt controlled 151. Therefore, 2 savings of .83 dB is achieved by
using periodically time varyilng instead of time invariant controlled ISI for

the vorst case,

1t is also noticed that most of the gein was already achieved by

. using periodic combination with period two. Hence, ouly a small fraction is

gained by inereasing the periodicity in the corbination of time invariant

channel impulse responses with controlled ISI.

In Table 2, it is showm the degradation of an uncoded PAM com-
munication system vhen there is & less of synchronization. It is clear that
the best periodic combination with perfect synchronizetion becomes the
voratest vhen the synchronization is lost. This is due to the fact that the
1ST coefficients assume the lowest possible values, therefore, incressing
the total bit error probability. Consequently, in oerder to have the lovest

upper bound on P, a8 given by (36) and to have the lowest possible degra-
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18,
dation when the tecelver is out of synchronization, the energy content of
the channel impulss rssponses iu each equally spaced time interval should be
spproximataly equsl. Thie fact is easily shown vhen we compare the pariodi-
cally time wsrying controlled ISI vith parameters (9, 9, 10, 8) with and
vithout synchronization from Table 3, with the time invarisnt controlled
IS1 with pacametars (9, 9, 9, 9) from Tables 1 end 2. As can bs seen, ve Table 1
have only a gsin of roughly .03 d8 vhen in synchronism vhereas in out of (Optimm Receiver)
synch s degradation of roughly .02 dB.
P, at 10?2 167 w0 10? 10?7 w0t
(a,b,c,d) SNR(dB) (a,b,c,d) SNR(dB)
5. Conclusions
9,9,9,9 | 7.2¢] ea.8 9.96] 9,9,17,1| 6.4 | 8.18 | 9.51
We have presentsd an analysis of an uncoded PAM commmication 10,8,10,8f 7,19] 8.75 | 9.%17 10,8,17,1] 6.4 | 8,17 |} 9.5
system vith periodically time varying controlled intersysbol interference by 11,7,11,7| 7.0 8.6 9.79] 11,7,17,1| 6.35| 8.16 9.48
use of the DTFT tachniqus. This analysis wes based upon the assumption of an ' 12,6,12,6] 6.8 8.45 9.65] 12,6,17,1] 6.3 .15 9.44
optimum and siboptimum receiver. It sas showm by examples that paricdically 13,5,13,5| 6.6 8.3 9.52] 13,5,17,1] 6.25| 8.1 9.4
time varying comntrolled ISI with period two requires less signal-to- noise 14,4,14,4] 6.4 8.15 9.43] 14,4,17,1] 6.2 8.05 9.6
ratio to achieve the same performance as that of Che time invariant with ISI 15,3,15,3| 6.25] 8.08 9.36| 15,3,17,1] 6.1 8.0 2,33
vhen most of tha energy content of the channel impulse response is confined 16,2,16,2| 6.1 8.0 9.32| 16,2,17,1| 6,05| 7.95 9.32
to any one of the squally spaced time interval, We have slsc shown that timm 17,1,12,1] 6.0 7.95 9.31] 17,1,17,1] 6.0 7.95 9.31
inveriant 1ISI is & particular cass of the periodically time varying ISI by No Is1 | 18,0,18,0) 5.96] 7.94 9.3 | 18,0,17,1] 5.97| 7.95 3,305

simply taking 17 bi for 1 &i &4, either for the optimum or suboptimm Time Invarisnt with Controllad Periodically Time Varying with
receiver, Therefore, the DIFT technique is & natural extension of the Is1 Controlled ISI

Viterbi's TFT technique used in the analysis of linear time invariant ISI.
GCeneralization for any ;. any npumber of finite state structurs, memory
length L=-1, and alphabet size W is straightforward. However, the computas~

tional aspect regarding this generalization becomes enormous for large M

values of L and W due to the exponential growth of the parameters involved,
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Table 2

(Integrated and Dump Recelver)

r, at 10?2 10?10
(ab,c,d) SNR(4B)

-2

10 -3

10 107

(a,b,c,d} SNR(dB)

9,9,%,9 8,95} 10.95 | 12.31

9,9,17,k] 11,5 13.82 1 15.33

10,8,10,8 | 8.98) 10,97 | 12.34

10,8,17,11 11.51] 13,82 | 15,33

1,7,11,7 | 9.06] 11.05 | 12,42

11,7,17,1 3l.51) 13.82 | 15.33

12,6,12,6 | 9.21| 11,2 | 12,57

12,6,17,t] 11.52| 13.82 | 15.33

13,5,13,5 | 9.43| 11.42 | 12,79

13,5,17,1| 11.54{ 13.82 | 15.3)

14,4,16,6 | 9.75) 11,74 | 13,11

14,4,17,1 11,57 13.83 | 15,33

15,3,15,3 {10.23{ 12.22 | 13.59

15,3,17,1| 11.64] 13.84 | 15.34

16,2,16,2 [10.97| 12,96 | 14.33

16,2,17,1) 11.81} 13.91 | 15.36

17,1,17,1 }12.34| 14.33 | 15,7

17,1,17,1] 12,34] 14,33 | 15,7

Mo ISI| 18,0,18,0 | 5.96 7.93 9.3

18,0,17,1] 5.97] 7,95 | 9.305

Time Invarisnt with Controllad
151

Periodically Time Varying with
Controlled ISI

Table 3

(Optimm Receiver)

v 1972 1073 1074

b

f (a,b,c,d) SNR(dB)

102 1003 w0t

(a,b,c,d) SNR(dB)

9,9,10,8 {7.21] 8,78 9.92

9,9,10,8| 8.97] 10,96 | 12,32

Perfect Synch,

Out of Synch.
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So far, we have considered the case where the channel was the
ideal one with and without controlled intersymbol interference.
The resulting pulse shapes characterized the modulator-demodulator
having time invariant and time varying impulse responses.

Next, we are goingd to comant on the case where an squalizer
will be used to compensate for the nonideal frequency response of
the channel.

The most often used linesr filter for equalization is the

transversal filter shown below

Il.'ﬂ'.}uqhgu—,[

tnru.f Uk iu l-.‘ 1., ﬂ

whare
L
vik) = Z: fin).u(k-n) + n{k)
noo

and

L3

alk) = 2. ol i).vik-3)
Jooe

The peak distortion criterion and the zero-forcing equalizer
can be described as follows: let { f(n) } and { c(n) } be the
impulse responses of a discrete time linear filter model and of an
equalizer, respectively. The cascade of them can be represented by

an equivalent filter with impulse response given by

o
qin) =Jz; e{ ). f{n-j)

Assume that the equalizer has infinite taps, then the equalizer

output is given by
L]
]
atkd = afo).utk) + X uln).alk-n) + & ef3).n(k-4
" y3-r

Let gqfe) = 1, and the second term in the right hand side be
denoted by D, it ie possible to select tap weights q(n) such that’
D = O with qin) =1 for n = © and q{n) = 0 for n # 0. Therefore,
intersymbol interference is eliminated Rut

q{n) = Z; cl{j).fin-3) = (3
ja-m

0, otherwise

Teking the Z transform in {3), we have Q(z) = C(z}, Fi{z) = 1
which implies that C{z) = 1/F(z}.

Therefore, to eliminate intersymbol interference the
equalizer has to be the inverze filter to F(z). Such a filter is
called zero-forcing filter. By cascading a noise whitening filter
with transfer function 1/F*(g) and the gero-forcing equalizer

results in an eguivalent zero-forcing equalizer given by
C'(z) = 1/F(2).F {gh = 1/X(2)

The mean squars-error {MSE) criterion aims at tinding the tap

weights { c(j) } to minimize the mean square value of the error
elk) = ulk) - a(k)

where ufk} is the symbol transmitted and 0{k) is the estimated
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value of u{k), that is, When the noise whitening filter is included, then
£ Y i " -t
J = E{ Jetk¥l 1} = E{ luik) - aik)l ) cC'{z) = IIEF(S).F {(z ")} + Né]: 1/(X{2z) + No)
where Therefore, when No tends to zero, the MSE and the Peak
° distortion criteria give the same solution.
atk) = 2 ol3). vik-3)

jo
By invoking the Orthogonality Principle e(k) is orthogenal to
{ v*tk~-3j} }, we have that
ol
E;;c(j)‘E{ vik-3).vk-i) } = E{ utk).v¥k-1) }, for all i

L
Since vik) = 2: fin).u(k-n} + ni{k), then
L 11

L.
E{ v(k—j).v.(k-i) Y = z; £%01). fin+i-j§) + No.d(i, i)

x{i-4) + No.d{i, ), li-jl < L

0 , otherwise
and
*
t(-i), -L £31 <0
E( utk).vHk-i) } =
0 , otherwisne
Taking the Z transform in the above equation, we have
Clz).[ P(a).F¥iz™) + No ) = Fhz™h)
or

ctz) = Fitz~ ) 2. Fhz~ + No



