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ENCRYPTION
by
Reginaldo Palazzo Jr. (%)

We are going to follow closely the material presented in
"Error Correcting Codes and Cryptography”, by N.J.Sloane which
appearad in Cryptologdy, up to the case codes which detect
deception. The last part is a proposed cryptosystem by the author.

In Fig.1, it 1is shown 5 different communications systems

which will be described in this lecture.

a} error correcting codes
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Fig. | - Communications Systens.

Case a), we have geen in previous lectures. So, we start with
case b).

The main objective in this cese is to send information to the
receiver as quickly and reliable as possible and simultaneously to
minimize what the wire-tap learns.

We are going to assuma that the savesdropper does not possess
a good equipment and that the channel he is listenning is noisy,
specifically it is a BSC with transition probability p from ¢ to
1, and from 1 to 0.

The simplest model assumes that the direct channel is

noiseless

lsender}——i'encryﬂ_]—-ﬂr—-1 decryg]————[;éceiver]

[ eavesdropper I




The solution to this problem is: encrypt O as a lond,
randomly chosen stringd of 0’s and 1's with an exen number of 1i's.
Encrypt 1 as a long, randomly chosen string of 0’s and 1°s with an
xid number of 1’s.

Although it is a very good stratedy its dieadvantage is that
the rate goes to zero. It is good in a sense that even though the
eavesdropper knows the encryption rule {but not which seguence,
sven or odd, has been choeen) he is unable to decrypt precisely.

In order to improve the encryption rule such that the rate
does not ¢go to zera, let us assume that F" is the set of all
binary vectors of length n. Divide F® in 2 subsets: the gubset En
containing all vectors with saven number of 1’s and the subset Dn
containing all vectors with odd number of 1’s. Nsta that Dn is a
translate of En and 80 both subsets are linear oodes. Thus, to
transmit a O randomly choose a codsword from En and to transmit a
1 randomly choose a codeword from Dn.

Therefors, the gensral solution to the wire-tap problem is:
Choose a good linear code C1 containing 2“-“ codewords of lendth

n. Now , partition F" into 2K'cosots of Ci, that is,
F™ = ci1uczuUcsy.... Ve

number the possible messages to be sent from 1 to ZK , then:
Encrypt the i-th message as & randomly chosen vector from Ci.

The receiver just has to compute the syndrome of the received
vector whereas the eavesdropper is still unable to decrypt. Now
the transmission rate is k/n.

Thus, [HWyner]l perfect secrecy is assured if p 1is the

A

probability of error on the wire-tap, then it 1is possible to

transmit at any rate below
- p.log p - (1-p).log (1-p)

while keeping the eavesdropper in ignorance from what is being

trangmitted.
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E
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Now, 1let us consider oase c). Here we assume that the
eavesdropper overhears what is being transmitted without
distorion. In conventional cryptography the encryption schemes
make use of a key which is known to both sender/receiver but not

to the eavesdropper.
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The solution to the perfect secrecy is the one-time pad

scheme. A Jlong string of randomly generated 0's and 1's aras
recorded on a taps. The length of this string is the same as the
message to be transmitted and it is added mod 2 to the message. At
the receiver, the string is added again to obtain the desired
transmitted message. Once used it is destroyed. When another
message is to be transmitted another string is generated and added

to it and the same procedure follows.



The perfect secrecy comes from the following argument: since
all the different strings K are possible and equally 1likely, so
are all the possible messages. Therefore, the eavesdropper bas
learned essentially nothing. The only disadvantage is that it
requires as much key as there is data to be transmitted. Even
though this ims a disadvantage, this mcheme is widely used.

The art of designning a good encryption scheme is to find a
way of expanding the key, that is, from a small amount of key used
as seed to produce a much longer key string. The ways this ocan be
achieved are by use of linear feedback shift-registers, and
nonlinear shift-registers.

The DES, Lucifer and many other encryption schemes make use
of the idea of a product cipher. This is basically a set of
permutations and nonlinear operations. However, if the channel is
noisy then one must use error correcting codes to clean up the
channel to the encryption scheme to work properly.

Now, we discuss case d), that is, codes which detect
deception. The idea here is that the esavasdropper can listen the
message and he is allowed to retansmit it. However, a strategy to
overcome possible message alteration is to mign or authenticats
the message in such a way that the eavesdropper is unable to
replace the true message by a falwe one without being detected.

As an example: suppose a casino is managed by a bad guy who
is cheating the ownsr by reporting the daily takings from the slot
machines t+to be less than they actually are and keeping the
difference for himself. To prevent this, the owner proposes to
install in each slot machine a secret key K and a device which

takes as its input the day’'s takindgs X and the key K and produces

as output a signature or authenticetor Z = @(X,K).

The device punches X and Z onto a paper tape. The bad guy
mails the tape to the owner which will read X, recalculate Z from
X and K and check this value of Z with that generated on the tape.

On the other hand, the bad guy knows X, Z and @ (he knows how
the device works) but not K and he wishes to replace X and Z by X’
and Z’' such that Z' = @(X',K).

If this is possible then he can take the difference X'-X. So,
a good way to design an authenticator system is to ensure that
there are a large number of possible keys corresponding to each
message-authenticator pair. FEven making use of this stratedy does
not guarantee that the probability of success will be very small.
Indeed Gilbert, MacWilliams and Sloanes have shown that this
probability is 1/I§1. where N is the number of keys.

Finally, the last communication system to be discussed is the
public key cryptosystem. We do this by usingd & proposed

oryptogystem smploying unit-memory convalutional codes.
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Cryptographic Systems Sazed on Trellis Codes

1 - Introduction

Since the introduction of the concept of public-key ecryptography
by Diffie and Hellman [1], many cryptosystems have been proposed and can be

found in the open literature in [2]-[5].

The procedure employed in asch one of thess eryptosystems follows
the same basic principle when messages are sucoded by use of block codes,
that is, each -uu;i is encrypted ju the former and emcoded in the llt‘ter
independently of thc- previous omes. Nevartheless, it {s well knowm that
encoding of messages by use of convolutional codes (limear trellis codes)
avails system's performance when compared to those using linesr block codes,
Hence we are led to the following question: 1s thers any advantage in terma
of having more secure cryptosystems by‘ introducing memory in the encryption

of wessages? Under the complexity criterion, the snever is clearly yes since

pow it has been added to the decryption process anothar degree of complexity
dus to the state description process and interdependency between the mes=

Cryptosystems based on b-rﬁr correcting Goppa codes is believed
to be difficult to bresk since its high efticiency of corracting errors is
destroyed if the bits that make up & codevord are scrambled prior to trans=
uission. We believe linear unit-memory convolutional codes (UM codes) and in
;ene;:ll trellis codes ars harder to bresk due to the following ressons: 1)
it is shown by sn example that by scrambling the bits that make up & code-

word the efficiency of goad UM codes in correcting errors is destroyed; 2)

the additionsl fact that good UM codes balong to the clase of knapsack
problems. Hence, under thess premises good cryptosystess can alse be found

by use of trellis codes [6].

Pollowing this line of using error correcting codes in cryptosys=
tems, ve propose in this paper to exploit the use of trellis codes as a

means of encrypting messages in cryptographic systems,

It has bean shown io [7] that finding good linear unit-memory
convolutional codes fs squivalent to solve a knapsack problem. It is well
known that knapsack problems are NP-complete, thus well sulted for crypto-
graphic systems 1f a tr-p-;!oor function can ba established, In general, one
encounters sasy and hard knapsack problems. This concept still holds true for
linesr UM codes, Tha threshold between these two extreme classifications
of imapssck problems (finding good UM codes) is directly related to the
number of digits that are fed intc tha shifr-registers since it is assumed

that the UM encoder has b parallel K shift-registers.

The dipensionless rate of linear UM codes is defined as t=b/n,
with b the number of digits to be encoded and n the nusber of encoded digits,

b and a integers such that thers is a multiplicity factor greater than or

equal to 2 between b and n. Since UM codes can be represented by finite

state machines, the number of states and the number of branches leaving any
ous of the states is exponsntially dependent upon b wore specifically 2"“—1)
and Zb respectively, Under the split state representation of UM codes of
rate r=b/n, to determine the branch Hamming weights leaving and going into
the zero state one is confronted with solving a knapsack problem (see [7]).
Thia knapsack problem is harder to sclve since it is not of the superia-
creui'ng type as devized by Diffia and Hellman, Therefore, well suited for

cryptographic purposes, Sclutions of this problem are also  exponentially

dependent on b where not all of them lead to implementable UM codes.




Iu the following sections, we introduca public-key and conven-
tional e¢ryptosystems based on UM codes, and in general trallis codes, for

use in cryptographic aystems. .

2 - One Level Knapsack Problem for Public-Key Cryptosystems

Since solving the linear UM code knapsack problem for large valuss
of b is rather difficult, thus with no use in eryptography, ons wonders to
solving an easy knapsack problem first. To this end, we sssume that the two
b. x n encoding submstrices G, sud Gy of & Wgood" UM code for relatively
small b have been determined. By “good", we ﬁnn a code that attains the
la:r;ut minimum Hamming distance among all codes, These submatrices and
their equivalent ones ars easily found for values of b ‘ 4, by hand calculs~

tion, vhes a network flow spproach is swployed [s1.

‘ As mentioned in the introduction, by applying proper transfor-
mat{ons to the gensrating functions of & UM code, G, and G, its efficiency
of correcting errors is destroyed. Hance, a trap-door function can be found
by choosing A and B, b xb and nx fovertible matrices respectively, and
apply them to the generating functions €, and cl. We call this procedurs a

direct trapdoor function, Thus, the direct trapdoor fimction gives

new generating functions G; and Gi as follows
L]
Gy =A.G.B i=0, 1 1)

Thesa generator matrices are put in a public file as

¢ = [ s q )

4,
The encoding process by use of a UM code is defined by
Y =%+ G0+ % .00 with €20 md x;=0 3
vith = ¢ GF({2). Prior to dacoding, va spply B-l' toy, to obtain
-1 .
Y3 -(xt.A).Go't(x‘_l-A).Gl (4)

the operation "+" {n (3) snd (4) ars wodulo 2, Finally, x is obtainad by
use ot‘ the Viterbi or sequential dacoding algorithws as in the usual vay.
Hote that in order to break t)d.l scheme, the cryptanalyst has to solve a
knapsack problen relatsd to the generating functions G, and G, and find the

transformations A snd B,

As a siople exmple of this cryptosystem, let us assume ths UM
cods has tats p=2/4, A good UM coda in the set of UM codes with rate
r =2/k can ba found by solving an easy knapsack problem corresponding to its

generating functions. From [7]. we have that this knapsack is given by

b
.lodl"lzo‘:‘n..o".stdn-noz (s)

vhere 8; are the number of braach having Hamming weights d; leaving the rero
stats and going inte {t sfrer 2 branches for i=-1,2, 3 with B being a
constant. For UM code of rate r=2/4, ve have fron equation (6) of [7] that
dy=5, dy~ 6, dy=7, and so0 om, and the right hand side of (5) equals 16.
Therefore, a possible sclution given a good UM code has a)= 2 and ay=1l.

This solution generates a UM code with generating functions € and G, given

010 1 . 011 %
G, = Gy =
® 1110 ! " Ho1o

by
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The minimum distance of this cods is easily shovn to be d-l'n{cn_ 01] -5,

Lat the trmfomtiom. A and B be given by

SIS

Applying A and B to G end G, as given by (1), ve have G'° and G'l given by

. 0111 . o010
Go = Gl
1111 0001

The minimm distence of this new UM code is dnin{c'o' G'I} = 3, Hence, the

G
-0 = O
- e e
o - o O

efficiency of correcting errors is destroyed, For in this case only one bit
in error can be corrected, whereas {n the former up to two bits in error can
be corrected, 1If & known error pattern with sny two digits taking value 1
{s sdded to the encoded sequence using a UM code with genereting functions
c'o and G'L only the sender is sble to decode con;ectly the information
sequence. Improved error corrections can be achieved by increasing the

multiplicity factor betveen b and n keeping b constant or increasing b.

3 - Two Levela Knapsack Problem for Public-Key cmto.ylim

In keeping up with the idea of increasing the complexity and
thetai'ort obtaining more secure cryptosystems, tha next schewe to be
presented has twe levels of knapsack involved, The first level, deals with
the knapsack problem of finding the generating functions of the UM code, or

equivalently, the one level knapsack problem of section 2. Once the

6.

gensrating functions have been determined, the second level makes use of
the {dea that each row of G, and G (or G'o and G'1) is a binary represen-
tation of an integer number, Like the *t1lock” knapsack propesed by Diffie
snd Hellmsn, ve have a set of integers nusbers, the knapsack, vhich will be
used in & convolutional way to encrypt messages to be trasnsmitted, We call

this a direct two level knapsack.

_ Let us assume the first level has been solved, that is, the
generating functions G and G, are kuown, The second level represesnts each
row of the generating functions hy 1its coxresponding integer number
followed by a proper transformation which will lead to members of another
knapsack. This transformation conslets of selecting two large nusbers p snd
v such that the greatest common diviser is one, gcd(p, wv) = 1. We apply the

transformation p wod v to G; and Gi as given by equation (1), to obtain
Ei - [(G;.p) mwod u] i=0,1 (6) -
Thess generator nlfrlcu are put in & public file as
¢« [c, 5] ("
The encoding of a UM code is defined by
yt-at.EooxH.El with t20 and x_,=0 (8

where x, € cr(2). Prior to decoding, we apply q wod w (q = p-l) to y, to

cbtain

(y, - @) md w=x. [(Eo. g mdwv] +x_,. [(‘!51 . q) rod v] )]
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1

and B°° to (9) to get

I PR U Y P - (0)

the "s" operations in (8)-(10) are the real addition operstion, TFimally, x,
is obtained by use of the Viterbi or sequential decoding algorithms as in
the usual vay. Note that without kmowing A, By Py ¥ and G'i the decryption
becomas very difficult due to the fack that it is sguivalant to solva a
sequence of knapsack problems. - .

As & simple exsmple to show the procedurss involved, let us take

the previcus UM code of rate r=2/4, The generator matrices G, ad G, are

0101 0111
Co = Gl =
1110 1 ¢ 10

Wou, va take the rows of G, and G = the binary representation of an

glven by

integer number, that is,

=l el

Let p = 3950 and w = 8443, then q = 2330, Applying p mod w to G
and Gl sbove, wva have

- 2864 - 2321
* Go = Gl =
4642 5728

The encoding is

't"t‘co"t-l'cl

Lat the input sequence ba 01, 10, 11, 01, .... This input sequence generates
a path through the trellis where the corresponding branch output sequance is
4642, 8592, 9627, 12691, ,... HNote that at this point tha cryptanalist is
confronted with a sequenca of interdependent knspsacks to solve. At the
dacoder, we apply Q wod v to each branch ocutput from the incoming sequence
to ocbtain 14, 15, 26, 31, .... By use of tha Viterbl algorithm we finally

bave ©1, 10, 11, 01, .... as the original data input sequence.

In the previous cryptosystem, the basic idea was to operate
directly in a coovolutional way on the “knapsack" provided by the rows of G,
md G, as integers, 7The varistion to be dolcrib-od follows the idea of
opersting not directly in a convolutional vay on the integers provided by G,
and G;, but oa the corresponding intagers from the mod 2 operation betueen

the rows of tha generating matrices. We call this undirect two level knapsack.

Since in the undirect two level hupiack one can not operate
directly on the sst of integer numbers (knapsack} anothar trapdoor function

has to be devisad, This new trapdoor function, which operates on the

integer mumbers that originate from the operstion modulo 2 on the rows of Go

and Gl, can be any cne of the public key schemes devised in [1], [3], and
[t]. The on that firs best is the RSA public-key cryptosystem. Under the
ASA cryptosystes, ons sslects two prime numbers p and § and define @i as
8P +3. Once the Euler's function #(R) = (p-1) . (q-.l) is known, one
selects an integer number E between 3 and 4(n) with no common factor with
#(8), Then, one can find an integer number D which is the "inverse” of E

wod (u). Next, E and b are displayed in & public file.

The encryption of & message M, represantsd by & corresponding

cyphertext C, which is an integer number between 0 and fi -1 follows
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Cot mod B

Ducmﬂan of the cyphertext C follows by uaing the secret decryption numbar

Mec wdia

¥ow we introduce the veriation as follows 1 let E, D, n, and
'{Eo,' El} the encyphering, decypharing, an integer, snd the generating func~
tions of the UM code with rate r=b/n be given. Let the displayed informe-

tion {n a public file consists of

E, 6, and {Eo, al}

iny one interested in commmicating with user A, tskes b input
digics at & time and encode them by ute of {ao’ EX}‘ The resulting string of
binary ousbers fs transformed to a corresponding integer number M. This
nusber is encyphered by use of the RSA cryptosyrtsn as

T Hllndi

Upon arriving at the destination, C; {s decrypted ans
- c'l’ mod n

Next, a binary representation of M, {e taken, Finally, this binary sequence
1is &cvcoded by use of the Vitarbi or any other sequential decoding algo-
rithms., Note that in order for a cryptanalist to brask this cryptosystem he
has to break first the RSA cryptosystem, to find the proper direct trapdoor

function, snd finally to solve the UM knapsack problem.

10,

4 - HNoulinear UM Codes for Hss in Conventional Cryptosystens

In cooventional cryptographic systems .kc;piug secret a selected
"Rey" from an snsemble of keys 1is a must operation, Conaistant with this
premise, one can make use of the wnknown "initial state”, the coutent of the
first b shift-registers of UM codes (linear or nonlinear) in the parallel
repressntation, as the secret kay to be exployed vith the cond{tiom that no

geros are appended to the data input sequence.

This observation comes from the fact that in conventionsl use of
convolutional codes with rate T=b/n and constraint length K the initial
state is sat up to sero (or to amy othsr known state) and that after m
input data sequsnca of lemgth L. b digits has been encoded b . (X~1) zeros

sre appended to it. This implies that iadependently {if srror(s) are

- {ntroduced or not by tha channel to the encoded output sequence there will

be & path in the trellis that divetges from the zero (or from a known

initial) state snd comas back to the zero state L+E=-1 branches later,

This {s not the case when b . (K-1) zeros are not appended to the
data input sequence even though the {nitial state is knowm. TFor now the
decoder has to look at all possible paths starting from a knosm initial
state and laading to all ending states after L braaches. On the other hand,
{f the initisl state {& not known, the decoder has to lock at all possible
paths starting in sny one of the inicial states and leading to all possible
ending states after L branches, However, in this case the last data input
digita do not hava the sams error protection as vhen b, (E-1) zeros are
sppended. To avoid this one can insert {nto the shift~registers the inicial
or h;t b bits of sach message stream of length (L+b) bits followed by the
(L+b) data input, Note that the :lnl‘thl and ending states are unknown every

time (L+b) data input is ready for transmission., In any case, at most
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zb(l'l) runs of the Viterdi or any of the Sequantial deccding elgorithms ars

ary to decods & particular dlu inpul:.uquclncc. It is clear that for
UM codes with ‘moderated values of b tha oumber of states and consequently
the uuaber of runs 1is extremely largs, In general, it takes about S
constraint langth to have a good estimate of the data input sequence from &

known initial state,

in the linsasr UM codes case ve have that the sncoding functions
operate om ths digits (message) to be sneoded togethar with the pravious
ocaes to sncrypt the next block of digits in- & linear fashion (mod 2
operation). For nonlinear UM codas this way not ba the case sinca now the
opsration(s) are arbitrary. 1u case that st lesst one of these operations is
a noulinear function the resulting codewords, in genezal, form a nonlinear

code,

The differsnca between sonlinesr and iinear UM codes, with =no
zeros sppended to the L. b data input with known or unknowm initial state,
is that the decoder for ponlinesr UM codes has to make pairvise path
comparisons of length L starting and ending in any ons of the possible
states in the trellis independently if the initial stats is known or unknown,

‘ Why these pairwise comparisons have to be wade is due to the fact that paths
or a sst of paths may or may not have different accumulated metrics. This
sizple fact sdds new difficulties to & cryptanalist since now he has to
compara all possible codewords that start and end in any one of the possible

states in the trellis.

This analysis is effectively done by use of the superstate
sppropch, Note that for moderately values of b the number of superstates and

path comparisons is the squarsd value of the original mumber of states in

the trellis.
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Oo the othar hand, it is known that this problem is solved in
polynomial time it all sccumulated metrica are lquui or all lengths are
squal even though the pumber of comparisons is large. Otherwise, this
problem is known to be RP-complets since it is equivalent to the "shortest

veight-constrained path® [9]. Consequently, we have that the security of

'this scheme ralies on the fact that if belonge te the class of "hard”

problapm, Thersfore, for conventional cryptosystems using linear or nonli-
pear UM codes for moderate valuss of b, the "initial state” chosen as the

key {90 securs.

3 - Conclusions

Wa have presented some cryptographic schesss for use in public-key
and in conventional cryptogtephy by wee of linear and nonlinear wunit.mamory
convelutional codes respectively, Dus to the "eguivalence” of convolutional
codes and UM codes thess schemas can sasily be sdspted to the former in the
encryption of messages, The security of these schemes lies on the premises
that they belong to the clase of NP~complete problems, Therefore, the com—

plaxity inherent to them is the pain factor to rely oa.
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