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SUMMAR Y

In this series of lectures, basic concepts in signals
and systems will be discussed. Starting with the definition of
linear systems, some elementary signals are introduced, which
is followéd by the notion of time-invariant systems. Signale
and‘Systems are then coupled through impulse response, convo-~
lution, and response to exponential signals. This naturally
leads to Fourier series representation of periodic signals and
consequently, signal representation in the frequency domain in
terms of amplitude and phase spectra, Linear system response
to periodic signals,discussed next, is then easy to understand.
To handle non-periodic signals, Fourier transform is introduced
by viewing a non-periodic function as the limiting case of a
periodic one, and its application to linear system analysis is
illustrated. The concepts of energy and power signals and the
corresponding spectral densities azs then introduced. The
discussion ends with the derivation of the transfer function

required for distortionless transmission,
* Text of a series of lectures to be delivered at Trieste,

Italy in the URSI/ICTP Basic Course on Telecommunication
Science, January 1989, .

1. Linear Systems: Definition

Tﬁe concept of linear systems plays an important role
in the analysis and synthesis of most practical systems, be it
communication, control or instrumentation. Consider a system
S which produces an ocutput y when an input x is applied to it
(both y and x are usually functions of time). We shall denote
this symbolically as

5
x - ¥

Then S5 is said to be linear if it obeys two principles, viz,
principle of superposition and principle of homogeneity, The
former implies that if X Y, {note that we have omitted § above
the ;rrow: this is implied) and Xy + Yo then Kythy = yl+y2.
The Erinciple of homogeneity implies that if x . y, then
aXx + oy where « is an arbitrary constant, Note, in passing,
that o could be zero i.e. zero input should lead to zero output
in a linear system, Combining the two principles, we can now

formally define a linear system as one in which

X1,2%Y, 2 ¥ ax v+ a¥ )t @y, {1)
where the notation =p is used to mean "implies",

As an example, consider the system described by the well-

known equation of a straight line

Yy = mx +cC (2)
It may seem surprising but (2} does not describe a linear

system unless c¢=0, simply because zero input does not lead



to zero outéut. Another way of demonstrating this is to apply

ex as input; then the output is

Y* = max+c # ay= MaX+Ca (3}

By the same token, the dynamic system described by

dy <
gt * Sy =5x+ 6 (4)
is not linear, because (x=0, y=0) does not satisfy the equation

Another, and a bit more subtle example is shown in Fig.l.
Is this system linear? Obviously x=0 leads to z=0 but then this
is only a necessary condition for a linear system. Is it suffi-
cient? To test this, apply X=X ¢ then z=z . Now apply
!

Re-x 3 the autput 4s wtill zoinsteadof

-z . The obvious conclusion is that the gystem i{s nonlinear.
-

Almost all practical systems are nonlinear, which are usually
much more difficult to handle than linear system&.Hence we make
ocur life comfortable by approximating (or idealizing?) a nonlinear
system by a linear one. Al®o, in many situations, a nonlinear
system is "incrementally" linear, i.e, the system is linear if
an increment X in x is considered as the input and the corregpond-
ing increment sy in y is considered as the gulput. Both {2)
and (4) are descriptioniof such incrementally linear systemf. A
tranasistor amplifier is a highly nonlinear system, but it behaves
as a linear one if the input is an ac signal superimposed on

a much larger dc bias.

x , y and 7 ar. cunstants
o "o -]

y = ,0(:/1012 _—%

172
z = zoly/yol

Fiz, 1 = Lamrar system 7




2. Elementary Signals
A signal, in the context of electrical engineering, is
a time-varying current or voltage. An arbitrary signal can be
decomposed into some elementary or "basic" signals, which, by
themselves also occur freguently in nature These are (i) the

t

exponential signal e” where a may be real or imaginary or

complex, (ii) the unit step function u(t) and (iii) the unit
impulse function, &(t). When o is purely imaginary in e°%, we
get a particularly important situatjon, because if a=jwand w

is real, then
jwt

e = cos wt + ] sinuwt (5)

Thus sinuscidal siqnéls, cosgt and sinet, which are so important

in the study of communcatjons, are special cases of the exponential

signal, The guantityw, as is well known, is the frequency 1in

radians/sec, while f=u/(2 x) is the frequency in cycles/sec or Hz.

The unit step function, shown in Fig.2.is defined by
0 t<Q

ult) = (6}
1 t>0,

Note that it is discontinuous at t=0, The unit impulse function

&{t} is related to u(t) through

ult)

it

t
roetr)y dr {7}

or

du (t)
&() —_— . (8}
ac

ult)

Fige: 2 = The unit step function

'y 6it)

/A
A =0

Fige 3 - » lamiting view of B(t)



Obviocusly, it exists only at t=0, and the value there is

infinitely large, but

- 0+
f Slrddr = r  &{1)dr =1 {9}
- 0"

i.e, the area under the plot of ¢&it) versus t is unity, This
is called the strength of the impulse; for example,“the strength
of the impulse Kg§(t}) is K, Obviously, there is some formal
difficulty with regard to the definition of %{t), but we shall
not enter into this debate here. ¢&(t) can be viewed a2s the limit
of the rectangular pulse shown in Fig 3 as #0; Fig,3 also
shows the representation of 4(t)., Two important properties of
ﬁ(t)'are that
p

x (t) é(t-to) = x(to) a(t-to) {10}
and

7 %) gle—r) ar = x{t) (11)
Equation (11) easily follows from {(9) and (10), and represents

the "Sifting" or “Sampling" property of the impulse function,

3, Time Invariance

At this point, we nheed to introduce another concept viz,

that cf timc-invariance of a system, A system S is time-invariant

if a time shift in the input signal causes the same time shift

in the output signal i.e. if x(t)+ y{t) implies x(t—to)+ ylt-t,).

Both (2) and (4) are descriptions of time-invariant system. On
the other hand, y({t)}=tx(t) represents a time-varying system, Most

of the practical systems we encounter are time-invariant systemd.

Systems which are linear and time-~-invariant (LTI) are
particularly simple to analyze in terms of their impulse response
or frequency response functicn, as will be demonstrated in what

follows,

4, Impulse response and convolution

Consider an LTI system whose response to a unit impulse

function is hit), i.e,

L]

&t) - hit) (12}

By time-invariance, therefore
&t - )= hit-1} (13)
By homogeneity, if we multiply the left hand side of (13) by

x{7)dt , the right hand pide should also get multiplied by
x(z})aT 1i.,e.

x (1) d{t-1)d1e x (1) hit-rldr (14)
By superposition, if we integrate the left hand side of (14)

we should do the same for the right hand side i.e.

£ x() &t- )dr = [ x(rlh{f-tidr (15)



Fig,

4 = RC network

But , by (11), the left hand side of (15) is simply x(t), so
the right hand side should be y(t). Thus if the unit impulse
reSpoﬁse h(t) of an LTI system 18 known, then one can find the

output of the system due to an arbitrary excitation x{t) as

yit) = F x{c) hit-1)ar (16)

= r x{t-r)hirld 1 {17)
where the second form follows simply, through a change of variable,
The integral (16) or (17) is called the convolution integral

and 'the operativbn of convolution is symbolically denoted as
p yi{t) = x(t} * h{t)

It 18 a simple matter to prove that convolution operation is commu-
tative (i.e, x{t) * hit) =h{t)*x(t}; infact, this is what
equivalence of (16) and (17) implies), associative (i.e.

x{t)* [hy(0)* hy(e¥]= [x(t)* hy(£)]* hy(t): this is useful in

the analysis of cascade connection of systems) and distributive
i.e. xtt) *[hy(t) + hy(t)] = x(t)*h) (E)+x{t})*hy(t); this is

useful in the analysis of parallel systems).

As an example of application of the convolution integral,
consider the RC network shown in Fig.4, where both x{t) and
Y{t) are voltages, and the capacitor is uncharged before

application of x(t) {an alternate way of expressing this is to



say that ¢ is initially relaxed), when x{t)= &(t), the current
in the circuit is i(t)= &(t)/R, This impulse of current charges

the capacitor to a vcltage

01’
1 § (v 1 '
L = e 18
T J_ R dr RC 183

at t=0+; For t >0+, §{t) = 0; hence the capacitor charge
decays exponentially; so does the voltage across it, according
to

e-t/(RC) (19)

.
yit) = T

Thus the impulse response of the RC network is

1 -t /T
», hit) = T e u(t) (20)

where T=RC is called the time constant of the network.
Now suppose the input is changed to a unit step voltage 1 e.
x (t)=ul{t), Then the response is, by (17),
1 -t/T
yle) = r x e ulrlut-1)dr (21)

, t -uT -t/T
= T J e dr =(1-e Ju (&) (22)
0

where the lower 1limit arises due to the factor u(y) and the

upper limit arises as a consequence of the factor ult-1} in

the integrand.

5. LTI System Response to Exponential Signals

st
Let x(t)=e be applied to a system with impulse response

h(t); then by (17), the reaponse is

ylt) = 5 hie) eSE-T) g, (23)
= e s he™ a- (24)
= His) 5% (25)
where
His) = [ hi1) e ae (26)

L]
is called the system function or transfer function of the system,
and is a function of s only. A signal for which the output
differs from the input only by a scaling factor (perhaps complex)
is called the eigenfunction of the system, and the scaling factor
is called the eigenvalue of the system, Cbviously, eSt is an

eigen function of an LTI gystem, and H{s) is its eigenvalue.

When s=ju, H represents the frequency response of the

Jut or its real part (cosut) or imaginary

system, i.e. if x{(t)=e
part (singt}, then the output will be H{ju)e ¥t or Re (i(julel¥*]
or Im Eﬂju)ej mt] respectively, For example, if H(jw) =|H(Ju)]
ejéﬁ(j“) and the input 1is co;ut; then t he output shall be

|H({jw) |cos (ut+/H(jul, H{jw) varies with frequency, and the plots

of |H(juw)| and fH{jw) versus w are known as'maqnitude and phase

responses respectively.
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Since the principle of superposition heolds in a linear

system, the response to a linear combination of exponential
5.t s, t
signals, I a, e}, will be of the form I a, H(s,)e ¥ , It
i i i i i
is precisely this fact which motivated Fourier to explore if an

arbitrary signal could be represented as a superposition

of exponential signals. As is-now well known, this can indeed
" be done - by a Fourier serjes for a periodic signal and by
the Fourier transform for a general, not necessarily periodic,

signal.

6. The Fourler Series

Consider a linear combination of the exponential signal

ejm°t with its harmonically related exponential siqnalé ejk”ot

k=0 T+ 1, +2,..... 3

x(e) = 1 a, elku t {27)
xe-o

In this, k=0 gives a constant term or d.c., in electrical

engineering language: .jmot is the smallest frequency term,

with a frequency o, and period Te2s/uw, . and is called the

j2uot —jZmot

-]
fundamental. The term e has a frequency 2m°, while e
-has a frequency ~2w_; the period of either term is T/2, and
both the terms represent what is known as the second harmonic,
A similar interpretation holds for the general term ejk”ot, -
which has a period T/|k|. Note that we take the frequency as
positive or negative, but the pericd is taken as positive,

Obviously, the summation (27) is periodic with a period equal

11

to T, in which there are |k| periods of the general term elku t

but only one period of the fundamental,

¥hat about a given periodic function x(t} with a period
T i.e, x{t+mT)=x(t), m=0,+1, +2,...7 Can it be decomposed into
the form (27)? It turns out that under certain conditions
which are satisfied by all but a few exggptional cases, one
can indeed do so, To determine ak's. multiply toth sides of

(27} by e'J""’ot and integrate over the interval 0 to T. Obviously
T

this results in an integqral ej(k'n)"'ot dt on the right
0 T
hand side, which is zereo if k#n, and T if k=n. Thus an=(1/T)]xlt)
0
emIDu t 4y or
' 1 T -Jke t
a3 = [ x(t) e dt {28)
k- T 0

”

a, represents the weight of the k-th ﬁarmonic and is called

the spectral coefficient.of x(t). ay is, in general, complex,

A plot of Iak] vergus k will consist of discrete lines at k=0

*l, +2,...,7 it resembles a spectrum as observed on a spectroscope,
and is called the amplitude spectrum, Similarly, one can draw

a phase spectrum,

It is obvious from {27) that x(t) could be written as

the summation of a eine and a cosine series, and that the

T
corresponding coefficients could be foand from f x(t) cos ket dt
T . a

and S x{t) sinket dt, It is,however, much more convenient to

handle the exponential form of the Fourier series as given in (27).
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As an example of application of the Fourier series,
consider the pulse stream shown in Fig. 5.

Note , at this point, that in (28), the lower and the
upper limit of integration are not important so long as their
difference ia T This is so because It°+T|;(k—n)mot ia indep-
endent of to. In the example under con:?deration. it is
obviously convenjent to choose the interval -'g Lt < T/2
which virtually becomes ~1/2 £ t < + 1/2, because x(t)=0 at
other values of t within the chosen interval, Hence
A /2
T IY/Z

a, e-ikugt dt .

23
o sin
o

sin

= tA

{29)

w T
kO

2

This is of the form 1A sin x/X, where x-kmot/2.

Note that a, is real, and can be positive, zero or
negative, Hence separate amplitude and phase spectrum plots
are not necessary; a single diagram suffices and is shown in
Fig.6, MNote that a, has a maximum value at d.c, 1.e. k=0,
the value being A (this checks with direct calculation from
Fig.5), The envelope of the spectrum is of the form sin x/x
and exhibits damped oscillations with zeros at x= x(i.e. kw°=

2n /1), 2nli.e. km°= *’t)ysees.. Further, the sketch is

x(t)
4

=T

=T/2

-1/2

b /2

Tr2 T

Fig. 5 = » roctanguler pulse stream

w3

L kwg

Fig.- ¢ -~ Spectrum of x(i) of Fig. 5
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symmetrical about x=0, because sinx/x is an even function,
The spectrum consists of discrete lines, two adjacent lines
2%

being separated by T teg radians/sec.

Some important points emerge from the sketch of Fig.6.
As T increases, the lines get closer and ultimately when T+=,
corresponding to a single pulse, the apectrum becomes continuous
and will be characterized by the function tA>2iE?;§£l , where
k wg has become the continous variable w, This, as we shall see,

is the Fourier transform of the single pulse,

Secondly, since the lines concentrated in the lower
frequeﬁcy range are of hiqher‘amplitude, most of the energy
of ﬁhg periodic wave of Fig.5 must be confined to lower
frequencies, Thirdly, as T decreases, the spectrﬁm spreads
-out i.e; there is an inverse relationship between pulse width

and frequency spread.

Since the energy of the periodic wave 1s mostly confined
to the lower fregfquency range, a corvenient measure of bandwidth
of the signal is from zero frequency to the frequency of the
first zero crossing i.e, the bandwidth in Hz, B, can be taken
as 1/;.

If x{t) of (27) is the voltage across or the current

ranistos,
through a one ohm.then the average power dissipated is

T
% 7 Ixit)12 at. If one writes |x(t] 2=x(tlx* (t] and substitutes
Q

for x{t) and x*{t) from (27), there results the following !

14
- - « Jik-nlu_t .
)= I a, a, e ° (30)
kze® n=amw
T J(k=nduw_t
As we have already seen, /[ e o  dt is zero if k#n and

equals T when k=n, Thus average power becomes

| [

T 2 . 2
élxml at = ¥ Jla,| {31)

This is known as Parseval'as theorem.

A periodic signal that 1s of great importance in digital

" communication is the periodic impulse train

x{t) = 1 s(t-kT) ' {32)

Kt =

as shown in Fig.7. If this 1s expanded in Fourier series

- jkwot
x(t) = 1 a, e (33)
Kwe.=
where mo=2n/T. then
T/2 -jku t
a, = ,:—. 5 sit) e ° ge =% (34)
-T/2

The spectrum is sketched in Fig.B8.



Fig., 8 = Spuctrum of the parincic impylue train

n(t}
'
'S
=37 =2T -7 D T 27 T
Fig., 7 = A pericaic impulse train
*y
/T
-2 un - |.|Iu a mo 2 uu

w

5

What is the bandwidth of this signal? The amplitude is a
constant at all frequencies, unlike the spectrum of Fig 6,.Hence
the bandwidth is 1nf1ni§e. This agrees with our 6bservation
about bandwidth and pulse duration, because Fig.7 is the

degenerate form of Fig.5 with v »0 and A + =,

7. Linear System Responae to Periodic Excitation
From the discussion of Section 5, it follows that
a linear system excited by the periodic signal of {27), will

which ise
produce an output signal, ,also periodic with the same period, snd is

given by
- jkmot
yit)= ¢ a, Hljkwu)e (3s)
- k=v w )
where
- =1yt
H{jw) = 5 hit}) e dat (36)

and h(t) {5 the unit impulse response,
As a simple example, consider the RC network of Fig.4;

we have already derived its impulse response as

1 -t/ (RC)
hit} =c ° ult) (37N
so that . e 1
- 1 -t (jm+ ﬁ'c)
H{ju) = e ® dte (38}
0 .

1 ' (39)



16

When excited by the pericdic impulse train of Fig.7,

the response y(t) can be found in two ways First, since

s{t) »nit),
it follows that

- -
I &(t=kT) = 1 Th(t-kT)
) < = -
so that

1 = - {t-kT)/(RC) :
ylt) = = T e u{t-kT} (40)

K==

Should you try to sketch this waveform, you would realize how
messy it looks; also not much 1n}armation about the effect of
the RC network will be obvious from this sketch., On the other
hand, the Fourier series method gives, from (35), (34} and
(39)

- . jku t
yitl = 1 LA e © . (a1)
kswa jkao RC+1
- jkﬂ t
Let this be written as I bk e © ; then the sketch of

k=w o

[p) | versus «=¥Xu, locks like that ahown in Fig.9. Comparing

this with Fig.8, we note that theé RC network attenuates higher

frequencies as compared to lower ones and hence acts as a low-
pass filter. The bandwidth of the filter By is defined as the
frequency at which thel|H(jw) | falls down by 3 dB as compared to

its d.c. value {i.e,
!

.
171 [ | 1y

Fig. % = Spectrum of output y{t) given oy (41)

w s ko
-]
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Hes2mn..) 1= n(j0l /Y2 ' 42)
Combining this with (39) gives B.=1/{2sRC).

¥hat would be the response of the RC filter to the
rectangular pulse stream of Fig,57? This wiTl of course depend

on the relative values of T,t and !f.

First let us confine ourselves to the time domain, If the

product RC 'is comparable to T, then the output will consist

of overlapping pulses, and will retain very little similarity
to the input, Let, therefore, RC<<T. then depending on 1, the
response during one period will be of the form shown in Fig.lo.‘
It is obvio&s that for fidelity, i.e. if the output is to

closely resemble the input, we require RC<< 1<T,

Now, turn to the frequency domaiﬁ. If the signal bandwidth
is taken asB = 1/tHBz, then obviously for fidelity, the RC
filter must pass all frequencies upto 1/t H2z with as little
attenvation as possible, Thus Bf must be at least equal to B=l/+
Since the attenuation is 3 db instead of zero at lf and the
input spectrum is not limited to B, the pulse shape will be
distorted. For reduced distortion, we need to increase Uf and

_we expect good results 1f B8 ,>>8 i.e, RCext,

B8, The Fourler Transform

How consider a honperiodic function x(t) which exists

in the range -T/2 < t < T/2, and 1is zero outside this range.

ylt) y(t)

LS 4

Fig. 1) = AL nctwork reupan-e in un periog of Fig. &



Congider a perjiodic extension xp(t) of x{t), as shown

Fig.l1 xp(t) can be expanded in Fourier series as

- Jke t
xp(t) = £ a, e °

kx-=

where m°=2t/T and

T/2 Cogke t
a =L F x () e ° ac
k- T -T/2 P
T/2 -jku_t
=2 7 xtthe ° at
~T/2

because for |t| ¢ T/2, xp(t)=x(t). Also, since x{t)=0 for |t| >T/2,

we can write
-

3 - -jkuot
a, = F {f&)e dt
If we define
- =jut
{jw) = f x(t) & dt

Then from (46), we get

1 1
a7 l(jkuo) = 57 _ln(._‘!_kuo)wo

Thus (43) c¢an be written as

18

in

(43)

(44)

(45)

(46}

(47}

(48}

wit)

Y

1
g

LY ]

= (t)
p

t
-~
[
mi= L
[~

Fig. 11 = « ncaceriogin tunctzon it} ana is seziscic extension -n(t)
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jkmot
x(jkub) uo a (49)

™8

= L
xplt} = 5 3
Now let T+e : then x5 (t)»xit), k..b-p W, & continuous
variable, w” dw and the summation becomes an integral. Thus
{49} becomes
Jut

J X({juw e du (50)

x{t) = -.%._.
L
Combining (47) and (48), we now formally define the Fourier

transform of x(t) as

" -Jwt
X(tu) =Fx(t}] = s x(t) e ac (51)

and the inverse Fourier transform as

-

-1 1 " 1wt
x(t) =} EKGw] =3 5 xUule'™ au (52)

Without entering into the question of existence, we simply
state below the conditions, named after Dirichlet, under which

x(t) 18 Fourier transformable, These are:

1) £ [xE) ] dt « »

2) finite number of maxima and minima within any
finite interval, and

3) finite number of finite discontinuities within any
finite interval,

20
Referring to (26) or (36), it should be obvious that the
impulse response h(t} and the frequency response H{ju) are
Fourier transform pairs, Explicitly,
RB(jw) = - F [hie)] . {53)

-

As an example of Fourier transformation, conajder the
rectangular pulse shown in Fig.12Z. Notice that this is the
limiting form of the periodic function of Fig,5 with Tsw .

Applying (51), we get

/2 ~jut ginfue/2)
\ x(j...): A ] dt = A
-'1'/2 {01/2}

(54)

”
This, as will be easily recognized, is the limiting form of
Fig.6, and is the envelope of the same figure, This verifies

the observation made earlier in %ection 6,

The Faurier tranaform has many important properties, the
most important in the context of analyais of linear systems
being that it converts a convolution in the time domain to a
multiplication in the frequency domain i.e. if

yit) = x(t)* hit)= s x{t)hit-r)dx (55)

then, assuming that y(t}, x(t) and h{(t) are Fourier transformable,

and 4 [ytt)]= Y(jul, we get

»
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y{ju) = X({ju) H{juw) {56)
The procf of (56) is simple and proceeds as follows:

Y(w) = g @) ~ s [ xtx) hit=rlar]e  at (57)

Interchange the order of integration and notice that (t) does

uit) not depend on t; the result is
A
’ - - -jut
Y(ju) = f x{t )[ I hit=¢y) e dt] dy {58)

Let t-;=¢ ; then the integral inasilde the bracket beccmes e-J“‘H(ju),
]

1 5 Y P g so that
2 2
4
- - 3 ‘Jlll‘l’ .
y(ju)= I H(ju) X(‘t). e de {59)
i.e.
Fig., 12 = A rectangular pulss
Y(jw) = H{juw 1X(Ju) (60)

In words, this amounts to saying that the spectrum of the output
of a linear system iz simply the product of the apectrum of

the input signal and the frequency response of the system, The
output in the time domain, y(t) can be simply found by taking

the inverse Fourier transform of ¥ (jw}. -
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To illustrate the applicition of (60}, consider a linear

system having the impulse response

~at
h(t}) = e uft) , a>0

which is excited by an input signal

- gt
x(t) = e ult), @0

By direct integration, it is easily shown that

COHUJw) = —dee and X(Je) =
atjw B+ juw

Thus'

1
{a+jw ) (B¥Juw }

Y{(fu)

To determine y(t), one may write

A + B

a+jw ftiu

Y(ju) =

" and find A and B as

1 -~

(61}

(62)

{63}

(64}

(65)

(66}

23

yiw=g™l [ e 1 1] (67)
fa atiu Hlu
S [e"’t -e st] u(t) {68)

B-e

Things are of course, different if o= g: then one goes back ta
{64) and uses the property that if F0c{t)] = xlju) then

Q[tx(t)] = | @x(ju)/dy. Accordingly if o=g , then
yit) =t e 9% yiey (69)

9. Spectral Density
In using Fourier transform to calculate the energy or
pover of a signal, the notion of spectral density is an Lmportant

”~
one. The total energy and average power of a signal x(t) are

defined as
lim 2 " 2
B _Z [xtt) [© at = _f.;x(t)l dt (70}
and
1tm 1 T 2
P= o 5 { |x(e) |© at . (71}

respectively. A signal x(t) is called an energy signal if

Oc<E<e and a power sighal if O<Pcw . A given signal x(t) can

be either an energy signal or a power signal but not both, A
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periodic signal {e.g. the one of Fig.5) is usually a power
signal, while a non-periodic signal (e.g. the one of Fig.12)

is usually an energy signal, Power and energy signals are
mutually exclusive because the former has infinite energy while
the latter has zero average power, Dapending on the nature of
the signal, the spectral density is also to be qualified as

power or energy.

Consider an energy signal x(t). Using the facts that
|x(t)|2 - x(t)x*(t) and ¢[x* (t] « X*(-Ju} and combining with

the inversion integral (52}, it is not difficult to show that

. E= g lxit) dt = =~
s ! 27

1 -

(s w)f du (72)

The £ight most expression in (72) shows that |[X(§u} | 2/(2 %)
has the dimension of energy per unit r;;ian frequency 1i,e.
[X{jm)lz has the dimension of snergy per unit Hz. For this
reason, [;(ju)]z ia referred to as the energy density spectrum
of the signal x{t}. Incid'entany. (72) i1s known as the Parseval’s
relation { efi. (31)),

For a periodic signal, which is a power signal, we have
already seen in (31) that the average power P is given by

L lakl2 where Ja,| 18 the amplitude of the k-th harmonic.

k=-w

oo 1f we define, in similarity with {72},

P=17 Sx(f) af {73)

-
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then S_(f) qualifies as the power per unit Hz and 18 called
the power spectral density. In terms of la, | it 1s easily

seen that

5 2
S, (f) = & Iak| 8(E-Xf ) (74)

K=ww

where fo="g/(21) is the fundamental freguency.

10. Distortionless Transmission
A transmission channel is said to be distortionless
if the output is a replica of the input, There may be a change
of level, that is, amplitude scaling is permissible. Also, any
phyéical channel will require some nonzero amount of time
distortionlces

for transmission, so that a delay is inevitable. Hence,, transmissior

s
occurs if the output y{t) is of the form
¥t} = K x(t-r) (75)

where K and { are constants, Taking the Fourier transform of
both sides, we get
-Jut
Y{J wl =K e X {jw) (76}

so that the frequency responss of the distortionless channel
becomnes

H{jw) = K e-jut S (77)
The important result we have arrived at is that amplitude character{
istic should be flat and the phase shift shpuld be linear. Such

ideal characteristicé‘cannot of course be realized, Deviation from

t



conatancy of |H(jw=)| results in amplitude distortion and

deviation from linear phase causes phase distortion.
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