-

! :
] ¥ IN¥NTERNATIONAL ATOMIC ENEROIOY AODENCY ”‘
Ny Sk UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ONGA NIZATION

R

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

34100 TRIESTE (ITALY} - P.0.B. 888 - MIRAMARK - STRADA COSTIERA 11 - TELEPHONE: 2240-1
CABLE: CENTRATOM » TELEX 480802 - [

SMR.379/31

COURSE ON BASIC TELECOMMUNICATIONS SCIENCE

9 January - 3 Februsry 1989

J.G. LUCAS

Dept. of Electrical Engineering, Unlversity of Sydney, Australla



CONTENTS .

Summary.

1.

2.

3.

The Fourier series.

1.1 The complex form of the Fourier series.

The Fourier Tranaform.

2.1  Relatfonship between Fourier series and Fourler Transform.
2.2 The Fourier tramsform of a periodic waveform,
Sampling.

3.1  The sampling process.

3.2 Practical sampling problems.

3.3  Interpolation.

The Discrete Fourler Trensform (DFT).

4.1 A simple DFT application.

4.2 The effect of windowing.

4,3 Complex sample input.

The develapement of the Fast Fourier Transform {FFT).

Two dimensional Transforms.

IFF“‘D‘: l :hl lI “"I ‘.F“]li Iﬂl ‘:. :iipﬂnil h, a nﬂt"ﬂ:l‘
Appondis—d... Thegpectrun-of 2 sinetiave
APPENDIX 3.  The gate function .

ARPENDI—~r——The—sempling—funationTT

APPENDIX 5. The concept of convolution.

.2 dimensional flelds of data is siscussed.

Summary

Discrete.tranaforma [}.g.. the Discrete Fourfer transform (DFT) and
the Fast Fourier Transfrom (FFT{] are applied to discrete data points
(which have typically been obtained by sampling a continuous waveform)
and give a discrete result. In other words an fmput of sanple values
at equal’ discrete intervals of time give rise to oumbers out at equal

iotervals of frequency,

To fully understand the relevance and usefulness of Discrete Tranaforms
it 1a useful to atart by considering the Fourier Series approach and then
develop its relationship to the Fourier integral. The sawpling of a
continuous wavefora to produce discrets data is then discussed and from
there it is a simple matter to relate the Fourier integral to the Discrete

Fourder Transform (DFT) and the Fast Fourier Transform (FFT).

In the final section the simple extension of these techniques to

. FOURIER SERIES

It is well known that the majority of practical waveforms can be
exérassed in Fourler Series form a8 a constant plus an infinite serteg
sum of sines and gosines. Sines and cosines are oot the only functions
which can be used for the summation (e.g., Walsh, Bessel and Legendre
Function are also used) but sinusoids have the widest application and

are probably the casiest to understand]

This is of course the Fourfer series,



Specifically the Fourler serics technique is applied to periodic
functiona which are defined by f(t} = f{t t KT)
where K=1,2,3 .....

i.e., the periodic function has period T.

The Fourier series approach aays that a perioadic function can be
represented by an infinite sum of sinusoidal terms plus a DC term as:

a -

f(t) = ulz + I lncon(nmot) + I bnﬂin(nmot) = f(t + KT} ===~ (1)
n=] o=l

2
vhere K is eny integer and w; is related to the period by w, ™ ?1 .
The priviso that this representation is correct is that the function
is well behaved (eatisfies the Dirichlet conditions).

i.e., (1)} that the integral of the function £(t) i.e.,
t'4+T

t'
.{11) that there are only a finite nunber 6f finite

|£(t)|dt 15 finite over the [inite interval T.

discontinuities in the function.

All of these sinusoidal terms fit exactly inte the basic
{or fundamental) period T. When o=l we have terms Binu,t and cosu,t

which are the fundamental {or first harmonic) terms.

The coefficients from eqn. (1) are obtained by multiplying
through by cosine and sine terms e.g., to find the coefficient L

multiply (1) through by cos(mmot):

. -
cos{mugt) £{t) = 52 cos{muyt) + lnfl lncos(nmot)| cns(nmut)
-
+] b ain nugt|cos me
n=1

ot ()

Integrate both sidea of this equation over the basic period T

and using the fact that

4T ) these are
[ coa(nuot) cos(my t)de = 0 t m¥n) called the
t
-1 : m=n ; "orthogonality"

) conditions.

4T
& ] sin(nmot) cos(nwut)dt =0
t
to obtain:
2 4T
“©"3 ] £(t) cus(nuot)dt {3)
t L] .

bn can be similarly found by multiplying through by the sine term
[sin(mmot)} and again Iintegrating,
Then:

' +T

2
b, =1 ft' £(t) sin{nugt)de - _ (4)

{Setting n=0 the DC term is eimply obtained:)

a, 1 t'+T
T I;' f(t)de (5)

The result of the Fourier saries summation im not exact when there
are discontinuities involved. Af a discontinuity the limit of the
Fourjer Series 1s equal to¢ the mean value of the function at the
di;continuity i.e., LS ; (t4 . The effect when any finite number

of terms is taken is an overahoat characteristic which is known a3 the

Gibbs phenomenon.

An example best 111ustr§te5 this effect:

Consider the Fourier Series analysis of a 50 Hz square wave.



N
The result is simply given by f(t) = & EE%T sin{2n(2n-1)fr)

n=1

where £ » 50Hz. Plotting thie result near the origin for two values

of N:

" FOURIER SERIES ANALYSIS OF A 53 Hx SQUARE NAVE.

S000 terme 508 terms.

Volte.

&5

&g’ . o
™ v o e i 4+ L e S P
o ’ e

. v
Increasing the number of terms brings Eie OVe;=£333ﬁfﬁﬁﬂg“1u

the discontinuity - the-peak value of the overshoot does not change

a8 shown in the example of & square wave discontinuity.
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Couplex Form of Fourler Series
ejx + e-jx -
We can express cos x = 7
ejx - e_j'

& 8in x =

So the Fourler series can be written as

" a - Jow,t =it -
0 e 0" 4+ @ 1]
e N e e TN )
or
a -

£(t) = -2-°-+ ';: Hla, - 1) IRt :: a, + b)) o dnugt

(this second term can be written as

K
( -0l
{ g e
(
g since a - an & bfp - -bn
(
S E(D) e Dhge - b ) el™t
or f{ty = £c eIt
where
t'+T
C, =4 -3p) = % [, fo P L
t

When a=0 the DC term is clearly aolz.

(6)



11, THE FOURIER TRANSFORM

1. The Relationship between Fourier Series and the Fourler Transform

It will be shown that the Fourier Transform is a limiting form of

the Fourier Series, This could equally have been done the other way

round by showing that the Fourier Series 1s & limieing form of the Fourfier

Transform. In this note the Fourier Series was taken as the gimplest
starting point so it is loglcel to shovw the Fouriew Transform as a limit
of that serfes form. The result will ba developed by considering a very

gimple example which is the repetitive pulse wavefiorm shown.

£

The period ds T and the pulse
T __= hze length P, {all in seconds}
) where P ¢ T,
4 p .
- e ",
} ¢
Lo LT

The pulee only contributes to the integral for p/T of the total perfod.
So the Fourier Series coefficients are (from (7)):

1 +/2

c =3 )  tee™0tac
-p/2
For n=0
P
T
forn =1, 2, ......
c - 1 | -anot‘ P/2
n -jnwu'l' Y7

-1-

- q&'—o—r (cos(mnPIZ) - jsin(mn?lz} - cos(moPIZ) -js:l.a(nmoPIZ)]
- ¢ =l sin(nwP/T) (8)
i n T nwP/T

This has the form i‘%(‘ﬂ)— which is often called sinc x.

The sinc x function has the following infinite form:

REGE l-__fc."{‘). Kome

To see what the frequency domain result looke like consider the following

numerical examplai
Let T = 1 mecond and P ~ 1/3 aecont!.

Then plotting the dc term, the fundamental and harmonics as a series
of impulses with appropriate amplitudes gives the following time/frequency

graphs:
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Now if the period T between pulees 1a taken bigger and bigger it can

be seen that the spectrum is made up of more and more linea contained

under the ai:x

envelope. The relative shape of the envelope does not

change. In fact the absolute magnitude of the envelope reduces as

the period increases since the signal energy is obviously decreasing.

However absolute spectrum magnitude is often not as important as the

relative magnitude and it can be normalised to unity each time., Clearly

a9 the limit of an infinite period is spproached the lines move closer

and closer together and Finally when thers ia only one pulse remaining

they become continuous.

When they do sc this is the Fourier Transform.

It is immediately clear that the Fourier Tranaform applies to waveforms

without a period 1.e., to non-perfodic or aperiodic waveforms.

Thess spectrum plots show the occurrence of both positive and negative

frequencies in perfect symmetry about tha zero frequency axis. The

“negative" frequencies do not exigt in practice but appear becauge the

einusoid is represented mathematically a# the sum of two exponentials

(ejut

and e

-jwt)l

.

Developing the Fourier Transform Erbm the Pourler Series..

be particularly perilodic.

Conaider a general time function f{t)} which 1s not assumed to

In faect it can be forced to be periedic

by considering any segment T long to be repetitive. ‘Then let T get

fu

T/

"~

£

¢

ts0

T

bigger and bigger i.e.,

wove towards an 'aperiodic'
signal, Before T goes to
infinity the Fourier Series

form can certainly be applied and
it 15 clear that & segment T
seconda long 1s being

considered.



-10-

i,e.,
-
f(e) = 1 c ™t (9)
T n
vhere
g BT ot
"7 I fit)e 0" dt where referring to the diagram
t'
t' <t < t'4T
-=(10)

So in fact the signal will be bullt up of component frequencies

nx %1 » T being the basic pertoed,

Since we are taking T to be very large indeed the {ntegral may be

made eymmetrical about the origin as that will not affect the result.
Then obtain: v

+T/2 Co
¢, =%/  f(e) ™t g — (an
~Tf2

Substituting Cn in the Fourier Series form of f£(t) shown in equation
(2) gives:
+T/2

£y = 1 (] £ee) eI gp) oIt (12)
n=-= -T/2

The w, here {ia %1 (i.e., the fundamental).
As T gets bigger and bigper then % becomes very small indeed and since

it has the dimensions of frequency {t can be called: % - Af

SO E(e) = I [I £(ry e 3200 dc] PRELL PP e (14)

-11-

now in equation 14 let:

- )
F(E) = [ £r) e 32788 4 )
- )
)
and then: ) (15)
)
- )
£(e) = [ ¥(e) 37 ar )
— )

Notice the notation which is used, capital letters for functions im
the Transform Domain and small case letters for functions in the
original domain. This 1s the simplest aymmetrical form of the Fourler

Transforas and will be used exclusively here.

In the mathematical development the 2w could have been recorganised
Ref. in a number of ways. However the simple symmetrical form presented
here is preferred since in the other arrangements premultipliers of
%; or L have to be (painfully) sccounted for.

/in
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The Fourier Transform of a Perfodic Waveform

Strictly speaking the Fourler Transform applies to aperiodic
aignals and considerable effort is now required to obtain the Fourier
transforma of useful gignalas like the impulse, the step or to a periodic
signal like a sinusoid. ﬁone of these wathematiceally satisfies the
existence conditions of the transform and to get around this problem
it is often necessary to premultiply the function to be transformed

by ‘-.I'l

as in the Figure, This always ensures a finite waveform and
the required transform is then obtained by setting a equal to zero in

the result.

—a i

1A

TG

[ x

The sinuscid logically has & line spectrum and has an impulaive form

(see Appendix 2) in the frequency domain.

With periodic waveforms an approach vhich generally allows the
development of the transform is to consider the Fourler series form of

the periodie function:

f(t) - |4 Cne+j2'nf0t here fﬂ - l ———-—__..-....._-.-_(]6)

n.—- T
where the Cn are the complex constants.

Then the Fourler Tranaform (FT) can be simply taken as:

CFT(E()) = FTL 1 ¢ ed2ot)

]

Fr{t()) = anr(e“"“fo‘) an

=
Now the Fourier Transform of a single exponential is simply a (shifted)

unit impulse (Appendix 2) so can be written as:

FT{f(t})} = Cnuotf - nf;) Where untx) is a unit

[T

impulse at x = 0, =———--=~eaea_(18)
This result is a series of impulses of strength the Fourier Series
Coefficients. So the trensform of a PERIODIC function is always &

series of impulses, This is a very important and quite general result,
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3. Sampling

To procesa analogﬁe signal information in a digital computer {it
is necessary to convert the analogue information into digital or
number forw. Por example, using an A-D convertor. This convertor
samples the analogue signal at equal intervals of time and it can be
shown that, provided the spacing becween samples satisfies certain
constraints, then the original signal can be exactly reconatructed

from these sample values. This-1s a remarkable result.

It ia necessary first to develop a mathematical expresalon for

sampling.

The product of a function by a unit impulse exactly samples
the junction at the unit impulse instant, Repeated sampling of an
analogue signal at equal intervals if time can be expressed as the
product of the analogue signal by an infinite series of unit impulses

of the form:

) - :EJ., (&-nT)

SSENER

Clearly this is & perlodic function of period T and can be expressed

L3

f(t) = [ uo(tunT)

n=-—-m

If £(t) is expressed as a Fourier Series

(19)

«]5=

i.e.,

f(t) = I cne-"z'“fo"

N
1
where £, = T (20)
To find cn the integral is taken over the basic fnterval T (i.e.,
from -T/2 to +T/2).
i.e.,
T/2
c, - %f £(t)e IM0t
~T/2
/2 } due to the impulse
-1 ! (cye'j““Ot de } this integral only
T /2 Yo } exists when
Yeso.
1 (21)
T (which 1s a constant)
80 .
-
F(t) = % L eJZ’EUt Again this 1s the sum of simple
= —o
exponentials, - (22)
So that the Fourier Transform can be directly written as
{see Appendix 2)
B =L T oy - ey £, « L (23)
T oo 0 ¢ 0T
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So we have a Fourier Transform pair:

?
r
- 3
-+~
R

55
_}—.*

Plotting this result it can be seen that tha functlon ie effectively

its own Fourler Transform. This particular function is very widely

uveed since it describes the process of sampling and is given the

special symbol TIT (x) (pronounced 'shah') with impulses occurring at
integral values of x. With the time samples which occur at interval T

(on page 15) che sampling function {e expressed as T (¢/T).

The transformed frequency samples which are shown above which occur

at & frequency interval of 1/T are exprossed as TN CtY).

Thue we can write the relationship between the saopling function

and ite transform in compact nocation as:

T (e/T) HkIMTE) - (24)

A'function of time f£(t) eampled at interval T is then compactly

expressed as:

Tﬂ'(%) £(x) » I E(TIu,(t-nT) 25

[ LIS )

-~17-

A pictorial example

f) , w (t4)-¢)

. IIH

It is important to note that in any practical sampling situation there

i
-{Th t

can only be a FINITE number of date polate. In other words the samples
are GATED. In the transform domain the effect of this finite gate has
to be carefully taken into account., The transform of the gate is developed

in Appendix 1.
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3.1 Sampling Rate Requirements Parts C, D and E of this diagram allow the deduction of the very

’ important sampling theorm which atates that an analogue signal can
In order to work out the minimum sampling rate which is required
be completely reconstructed from its sampled values provided:
8o that the original analogue signal can be completely reconstructed in

(1) that the signal being sampled is band limited {which

the computer this sampling process must be carr{ully considered in both
eiaply means that it contains no frequenciss sbove £ )
the time and frequency scale consider firet the gampling functioni max

and
Time Domain Frequency Domein
{11) that the siznal is sampled at w rdte vhich 4s at least twice the
£(e) =TTCe/T - '
) F(£) = TTI(TE) highest frequency component gontained {n this signal
- [ | l——il?-—-l l (1.e., fumple 2210
i . ¢ ' B ' —
T b
Now the continuous waveform and this has the trsneform F(f):
to be sampled is f(t)t: (which i{s bandiimited *l)l
*gee footnotae
f(t) F(f)
L] t
0 \_/ l'J “Emax t
In the time domain the sampled Now multiplication in the time domain
function ta TIT (t/T) x£(t) 18 equivalent to convolution? 1n the
frequency domain which in this case
means replication,
OVERSAMPLED
F(£}
/T
U il —
et 1 Pl N /N é
0 R e 0 fmax f
CRITICALLY SAMPLED F{E)
ol l | A, AVAVANVANV VAV
0 ML 0 fmax f
UNDERSAMPLED F(E)
e
ot L. 5.0.0.0.0:0'0 :
] { 0 £

1The frequency apectrum is illustrated here a8 a real sven function for
Eimplicity. In practice there would be an odd imaginary component alseo.
The concept of convolution ie dlacussed in Appendix 2.
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5.  PRACTICAL SAMPLING PHOBLEMS

It is worth mentioning some of the problems which are associated
with sampling. The first and most obvious is that the samples are

not perfect impulses of zero time duraticn but are finite in length.

j(p;:“r{f;rsi qﬁ'-ﬁb£flhs) .

\ Qhﬁglncrﬂfh.

i
-~

This has the effect in the frequency domain of:

I’I / ;
i /” OT. ”\U Al )

-

IF(3)

———
e —

t sinc(ft )

iVaey

It 18 clear that the sample width can be greater than 10¥ of the

o
sawpling period T without severe distortions to the useful central
spectrum.

The second effect is rather more subtle. What happena when

the sampling frequency o)\ sempling rate is not sufficlent? 1In

-21-

practice a signal 14 not contained within a definite band of frequencies
but rather tends to “tall off" in the frequency domain, These tails
&pproxinate an exponential decay which can continue a long way up the
frequency range. A decision on where the “cut-off" occure 18 then

wade on a cost bagis and sampling is carried out accordingly. In such

a case what resulta? The effects sre most easlly visualised by separating

the transform into ever and odd parts.

Pt}

9 '

T\ M |
"ﬁTFW et ———— ‘Zfs

TF“G)

—4 = 4‘r—‘4
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Consider the even part first:

For.85)

-~
S/
~

e

*

-~
I
|
l
I

high frequency components

"impersonating” as low frequency

components.
This even part of the spectrum is clearly reinforced by undersampling.

Thias effect is known as “alimsing”.

Congider the odd part.

Ita clear that the result in this case is diminished tails, i.e., with
nn&ersampling the odd part is reduced and the even part increased

and the overall result is more even than the original function was.

This aliasing is an inevitable result of undersampling because

the higher frequency components can never be retrieved from the resulting

spectrum and of course gives an error in the low frequency result.

-23-

4.  INTERPOLATION

If a function has been sufficiently sampled (the Hyquist criteriom)
a0 that all original information has been retained (i.e., at greater
than or equal to twice the highest frequency component) then it is
possible to mathewatically reproduce every point of the original
analogue siénal (between the samples). This process 1is knovm as

interpolation.

If thia set of signal samples is passed through an ideal low pass
filter (unity gain, linear phase) which has a cut off frequency of
exactly half the replication frequency then in the frequency domain
this is equivalent to multiplication by a gate of width 1/T i.e.,
a(Tf). With such a mathematically perfect low pass filter this

removes all the replications and retains only the original signal:

LFG{) . idaat LowBas fitter T{T)
o Yir et

AWAN

e Y —

This 18 exactly equivaleat in the time domain to convolving the

the input sample set with the inverse gate transform which is a ainc
function. This is done by erecting a sinc function on each sample

value whose central value is equal to that sample. Choosing a low pass

filter which cuts off precisely at a frequency of 1/2T ensures that

the zero values of the sinc function occur at 21l the other sample



e ————— e . —

—24=

points, i.e.,!

Thus the sample values are unaffected while the regions between

sample values are exactly recomstructed provided the sampling rate

18 greater than or equal to the Nyquist rate.

Direct analogue retrieval can also be carried out.
is not poasible to construct a ftiter with such steep edges and

linear phase shift, and a guard band allowance must be made.

F) lno s Si13,

Bew,

— Maciea

b2
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6. THE DISCRETE FOURIER TRANSFORM

The move towards the Discrete Fourier Transform (DFT) is really
very simple. Consider a series (which eghall be assumed to be infinite

for the moment) of discrete data values which are equally spaced.

&)

x, >3 o

%a AT ]tg |“¢ .
t

then

£(E) = oo+ xguo(8) + X g (E-8T) + xypg (€=28T) + .....2TH(e/8T) -£Cx)

-

. where AT i8 the sampling interval. (26)

The Fourier Transform can be directly written as:

-§2nfAT * xza-jZIEZAT + xse—jZlfJAT

F(f) = x, + xe +oete,  —emeem 27)

This expression is in fact a "discrete” Fourier Transform - but in this
simple form it 1s still a continuous function of frequency f. However
in a digical computer this function can ouly be stored as a set of
discrete values. Intuitively it iz clear that each sampling impulse
containg wideband information so whether or not the gampled signal

18 wideband there is no doubt that the resulting spectrum will be
wideband, {.e., the sampled signal will be more wideband than the

original signal was!
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Consider then a simple cosine wave and its Pourler Transform

1) Ff)

[~ - IL'

If this eimple signal is now sampled with interval T the sample set

and its spectrum become:

i.e., the basic Pourier Transform is endlessly replicated

Notfce that & particular sample represents the period in time of one

half the sample width to each gide of the sample.

The N samples extend then over total time T = N#AT and the continuous
Fourier Transform of this function would be défined as:
T/2

F(f) =
Lo

£(e) e d3EE 4, (28)

Since total T = NAAT : AT = T/N.

Particular sampling points occurs at t = kAT, where

k=0, 1, ....., N-1.

-].( ) F&$) The 'fundamental' frequency {of the Fourler series form) is:
(3
[ R
: H 8¢ = I " Rt : (29)
1 [}
I ]
ﬁTr-— t g l l ! ' 1 ! ' J: The frequency scale will be made up of 'harmonics’ of this 'fundamental’.
° ‘ ' - & 4 e '
H Lasd _'J - —— - . -
H “ y% f.e., £ = mif nnr form= 0, 1, «<sueus, N-L.

The Simple Discrete Fourier Transform (DFT) formulation

Consider the set of N equispaced samples of a signal:

Tha continuous Fourier integral Equation (28) can be approximated as

a aummation: .
L s (kam)
FmAf) = T f(kaT) e ~32MCRAT) *T/N
¥-1
3
5 nk

T ofQam) 3N (30)
N1
2

L
Z|=3

Obviously the approximation will be better ae AT gets pmaller,

Normally the exponential term e -32n (E_] ig called s "Fourier Weight"
‘ af
. W
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and given the symbol w“.

So in the final form:
Nl

2
Fluaf) = X 2 £(kaAT) (HN)"'lt

2

Unless specifically needed the term T/N is set to unity.

This {8 the form of the DISCRETE FOURIER TRANSFORM.

Consider & gimple numerical exaspla:

(31)

~29-

A eiople numerical example illustrates the mechanics of performing
& Discrete FourlerTransform (DFT) and quite incidentally some of
the difficulties involved with interpreting the result.

Consider & 100 Hz aine wave which mampled 9 times at 4.5
msec, intervals.

gb
aﬂiu -l—lﬂs l"M ~0-'7¢5 p.s° —-‘H 4.56 l-'u] -1-“1

e e

LT W v A R YL Fa o Ny
,\\ = \i \'{ 7P J\“l'z'o y }r VT (i)
NV hx/_ / _._\

0
T \U/
Q SorihdS A .5 aclitez Lpacioy

e KTt SATE iNoTH T 0. 5 mbeal.

is0,, input data:

f-,. = 0.978

£, = -0.995

t, = 0.9
£, = -0.743
fo = 0.3

. = ~0.028
£, = -0.105
f3 « 0.407

£, = -0.669

and T = 40.5 millisecs.
i.e., frequency resolution = -,:7 = 24.69 Hz.
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Now we can plot this result in magnitude and phase:

OT we can separate this rasult into real and imaginary parts as:
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This latter display is much mora revealing for sinusoidal components

because we can directly estimate the amount of cosine (even component)

and sine (0dd component) containad in the original.
not surprising that the DFT most efficiently picks out sinusoidal
components since they are the bssis of iesa formulation.

It is perhaps

The 9 samples constituts a narrow window of only 40.5 msecs.

80 that we expect the result in the frequency domain to ba comvelved
with & einc function snd this is very evident in the DFT result
shown here. The sinc broadening of the lines in the frequency
sprectrum is largely due to the sharp edges of the gate which has

been used in the time domain,
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In effect each frequency contained in the input waveform is

convolved with the sinc function showm in Fig.ﬁ;’?

F)
d8s)
Sapts Wb L4
F&)- 7(%)
T
A e

If only a single frequency is present in the time saaples (as iq

this pumerical example) the resulting frequency result is then &
sampled verafon of this sinc function. I che input signal frequency
happens to be an exact multiple of the discrete output frequency
(=1/T) a perfect result will seem to be obtained as the frequency
sanplea then occur at all the zeroes of the s¢inc funcction. For

all other cases and when more than one frequency is present thia
“leakage" effect of whichever window is used will be evident.

The possible frequency resolution of the transform 1s also limited
by the sinc function and {e simply given by the frequency apacing

between pointe where the sinc drops to Y of its maximum value.
0.6

The frequency resolution in this case g4 given be 2 x == « 1,2 x (1/T).

T

The effects of such spectrum spresding can be reduced by
applying carefully ghaped windows to the fnput data. The simplest

example of a window 1s the simple cosine function shown in Fig.f5“0~izj

(this 18 also called the HANNING windaw of zero order).

-3% -
Fi4)
Sk Lowhod
ftoys 02 (E)
~23
o Cima. . :
~% ° A ~% o

Its lmmediately obvious from this transform pair that the level of
the frequency domain aidelobes has been subgtantially reduced in
comparipon to the ginc frequency function in Fig.(ggtl Another
important change is chat the frequency width to % level (i.e.,

the resolution abilicy of the transform) has also been significantly
widened. The frequency resolution in this case is glven by

2x %824 166 x /.
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Unsymmetical data windows

.In out discussion so far the DFT has Leen expressed in the

form where the window of samples is perfectly symmetrical about

the origin. This ensures the purity of the phase of the resulting

transform i.e., the DFT operaticn does not (by itself)

any errors in the phase of the result,

introduce

The more common formulation of the DFT is expressed as ]

-N

-12Tkm

F(m) = I f(k) e

k=0

or

]
« T (1) w;"‘

k=0

1f we take, for example, the time domain gamples

where as usual we define

N

=-j2n

-GN

B, (32)

s

where N is the total no. of

pamples.

for the same 100 Hz

sine wave which we considered previously, but with the sampled now

starting from zero time:

H©

g oap o ..'-1 ~n87 oy

-n)‘ oﬂ -0.9
1

\
\s

\}-\ls

& it s dp S0kl
Aoy P

AEmIee P

V[ [/ee Cime(muttisesy

Drawing the windew about these aample set 1t ia clear thet the

centre of the window has a "offset from zero".

applies 8 linear phage to the transform result
i.e., comparing this transform result with that obtained previously:

This offset effectively

Eransform result with
ymmetrical window

Transform result
for this offset
window,

Phase modification
due to unsymmetrical
window.

F_, = 4.37/57°

F_, = 0.19/-155°

compared

- a
F, = 0.11/1%

with:

F, = 0.09/~124°

o = 0.08/0°

Fp = 0.09/174°

F, = 0.11/-13°

F, = 0.19/155°

F, ~ 4.374-510

F_, = 4.46/235° [ +4 x 134.5°
F, = 0.24/283° {+3 x 146°
F_, = 0.14/312° [ +2 x 149.5°
Fy= 0.11/336° |41 x 150°
F, = 0.11/0° e°

F, = 0.11/24% {-1 x 150°
F, = 0.14/48° |-2 x 149.5°
F, = 0.24/71° }-3x 146°

F = 4.46/1259 [-4 x 134,57

_ -35-

The component magnitudes in the two transform results are virtually
identical - sny difference being attributable to the small number of
samples being considered and that half the samples change their value
in the second case. If, however, the phase results in the cases are
compared it is clear that the result in the second case (with the
unsymuetrical window) has been considerably modified. 1In fact a phase
tnkeq which is close to linear has been applied to the result. Since
the window has been offset from zerxo by 18 milliseconds in this
example the exact phase modification for a continuous signal would have

been given by e I2nE

i.e., a phase taper of -6,48 £ degrees. In thie
example the discrete frequency step 1s 24.7 Hz. giving an exact phase
taper of -160 N degrees. The digital result is thus obviously of the

correct order. With more samples and larger gate widths the correlation

between discrete snd exact results would be very much more mccurate.

So long as one 1s aware of the artifact it is a simple matter

to make allowances for ita effect in the program derail.

For the remainder of this note we shall make use of the standard

formulation of Equ. 32 in our development.
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It is immediately cbvious from this tranaform pair that the level ¢ ont o o7 Y |

..314: OJI, -ca‘ﬂ

of the frequency domain sidelobes has been substantially reduced . “Tr‘*‘ /\\ - [\ ﬁ \

in comparison to the sinc frequency function in Fig. . Another II *'f ‘ t\\!s‘ ’} \k /

important change 1s rhat the frequency width to % level (l.e., the . f' { yﬁ \ flo V] {/ee it (tmatds et Y
resolution ability of the transform) has also been significantly \ , \ / ]

widened. The frequency resolution in this case ia given by
0.82
*1

Safty ! Gl Lk doSufel]
T piud 44 4 J

2 = 1,64 x (1/T) & 1.2 x 1/T for the sinc functionl} Confrs. E mized,

b sed in th
In the discussion se far the DFT has been expros n the Drawing the window about this sample set it is clear that the

the wind £ les 1s perfectly symmetrical about
form where the window of sample pe ¥ symm Y centre of the window has & "offget from zero™. This offset

the origin, Thie ensures the purity of the phase of the resuiting ) effectively applies & “Linaar" phase to the transform result.

N d
transform i.e., the DFT operation does not (by Ltself) Antroduce i.e., comparing this transform result with that ‘obtained previously:

any errors in the phaee of the result.

. [Tranaform result with Transform result for Phase modification .
The more com.lon fornulation of the DFT ia expreased ae: aymmetrical window this offgset window to ungymmetrical wi:
- -] . (=] [+]
) - -§2Thn ; ¥, = 4.37/57 F .= 4.46/235 +4 x 134.5
F)= I fe N ) F_, = 0.19/-155° F_, = 0.24/283° 43 x 146°
ko0 ) -3 —_— Compared ~3 —_—
) F_, ~ 0.11/13° with: F_, = 0.14/312° +2 x 149,5°
)
o o 0
or where as usupal we define; l?-1 - 0'09-/:-1—7-1 F—] - O.IIE_;"_Q + ox 150
Hi2n ), .BQN F, = 0.08/¢° Py = 0.11/0° 0°
R-1 ~mk Woeel yreem :
= I i)W N ) F, = 0.09/174° F, = 0.11/24° -1 x 150°
k=0 N ) ‘
- _11@ - o _ ]
where N 15 the total No.) Fp = 0.11/-13 F, = 0.14/48 2% 149.5
of samples. F, = 0.19/155° F, = 0.2&]_7_7_0 -3 x 146°
F, = 4.37/-57° F, = 4.46/125° -4 x 134.5°
1f we take, for example, the time domain sanples for the same

100 Hz sine wave which we considered previously, but with the

samples now starting from zero time:
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The component magnitudes in the two transform results are very
gimilar - any difference beiug attributable to the small number of
samples being considered and that half the samples change their
value in the second case. Comparing the phase results, however it
can be seen that the result in the second case {with the unsymmetrical
window) has been considerably modified, 1In fact a phase taper which
48 close to linear has been applied to the result. 5ince the window
has been offset from zero by 18 milliseconds in this example the
expected phase modification for & continuous signal would be
o127 (gate offset)t 1.e., & phase taper of -6.68f degrees. In this
example the discrete frequency step is 24.7 Hz. giving an exact phase
taper of -160m. degrees. The result for the 9 sanmple set is of the
correct order. With more ssmples end larger gata widtha the phase
taper in the discrete case would closely approach the theoretical
{continuous) resuit. t.

So long as ooe 18 aware of this artifact it is & saimple matter to

make allowances for its effect in the progrem detail.

COMPLEX SAMPLE INPUT

The DFT copes equally well with complex data. An illustrative
example is given by the components of a rotating unit vector: of

100 Hz. with & leading phase of 3’

{.,e., input cos (100 Hz. + 300) as the real part

and ein (100 Hz, + 30%)as the imaginary part

-40-

The input data set ist

The result is:

«0.2079 + §0.9781
-0.913% ~ 10,4067
0.9945 + §0.1045
-0.9781 + 10,2079
0.8660 + 10,5000
~0.9781 - §0.2079
0.9945 - §0.1045
-0,9135 + §0.4067

-0.3079 - 10,9781

2.6896 /169.3°
7.7085 /3.7°
2.4967 /11.6°

1.2117 [24.4°
0.9602 /148.6°
1.5383 /19°
1.4340 /159.6°
* 9.7653 f40.8°
0.8406 /143.5°
2.6896 /14.5°
7.7085 £3.7°

2.4967 f11.6°
1.2117 f24.4°

at 2.5 msec.
intervals.



THE DEVELOPMENT OF THE FAST FOURIER TRANSFORM (FFT)

Now consider the computing requirements for N input samples

to the Discrete Fourier Transform then the useful output is specified

by:
R-1 Tm
P(waf)| = £(k} W -
SR
z=0 to §§L both complex numbers

i.e., it requires approximately % 8 complex multiplications plus some

additions. Since multiplications are ordars of magnitude more time conauming
than additions in terms of computing effort it can be sald that the time

required to compute the DFT is proportional to N2 simple multiplications,

Now suppose that the N gample Bet ig divided Into two subseta

each of length N/2, Clearly each subset will require (%Jz nultiplications

2
and the total computing requirement is then 2 x (-'2!)2 - % which is half the

originall Purther subdivision must obviously continue to

reduce the number of multiplicationa Tequired. If the number of

samples N which 1s used is & pover of 2 then the mmber of multiplications

required by the subdivision method 1s W log, N. When N is large the
difference between N2 and N logz N implies a dramatic saving in

computing timel Thia then is thae basis of the FFT.

Really where the econony in multiplication comes from ig the
fact that the Fourier welghts are complex exponentials which are

cyclical and aimply repeat themselves,

42~

This whole process is best 1llustrated by considering a set

of 8 (=23) time samples fu veseareas fq,

. N
assume DFT form : F(m) = f(k)H:k where H:k -e

+Hok . 2g

m0,...N k=0

51¢ {143.41&;,,, St hntay ke d;a;d?b, UV o PU - PR

F(0)
F(1)
F(2)
F(3)
F{4)
F(5)
F(6)
F(
F(8)

wWhaa

- H"(E°+fl+f2+f3+fh+ls+fs+f7)

= WOEGHHLE W2E HUTE 1S, B E B E W TE

- H°£°+w2fl+w“f2+u°£3+H°fk+w‘°!5+wlzf6+ﬂy‘f,
= WOESHIIE IS E, WO 2 I SENIOE 2Ly,
- H"fuw"t'lwﬂzw‘zfzwlsfu+W2°f5+H2"fs+Hz'f7
- w°f°+u5fl+w1Ufz+u15fa+u2°fu+u25f5+u3°fa+u35f1
- H°ED+H5fl+w‘zf2+H"t,+ﬂz“£“+u3°£5+u35fs+w~2f,
- u°f°+w7f1+u1“f2+u2lf3+w2°f“+u’5fs+u*2fs+u*9f7

-yt B 16 24 32¢ G40 w8 56
W f°+w f1+w fz+w f3+N f“+N fs+ﬂ EG+N f7

20 2n L0
R

V- .—jx . 45°

x» 0 W =1 (always)

4450
xe1 W e 0L L

x=2 W - e-jBO - -]

- 3. 4135 1 .
x =1 W e 72 J 5
xnbh W
x=5 WS o= -yl
x~6 Wh - 2
x=7 W oyl
x =8 Wi o=y
x =9 Hg - "I ete.,

i.e., simply subtract miltiples
of N=B as often ay posslble,



$43¢F 19pao feandgu Uy

s381sme 3Tns22 Indino I IFYI IIPI0 PIFIFASI-ITQ T} A___.u - ouu sa7dues IndO} ay3 »8UEAI® A JT IPYI IN0 suInl 2T
"9 nofagsod **3°3 Q11 SAPWODWG ST

SuEsaaA81 3Tq - [10 @4 PMoa £ienrq Ul aydues pag Y3 wiep #1dues Jy¥je ow 103 *"e°f IIPIO , PUSIIAII-ITC,, UT ST EIELP
PRTJINY8 FTYT PG IN0 SUING IT CPIEN Iq UWD IF 10J3q PISTURSICIT BQ 03 EVY PUR PITFFNYS % Aeaze wawp ._andano
Y1 I3 o7 sBvusapweip AIBo £37 3nq ©OTIWIRdo IWU B FT PUF sucTieawdo sIwdITdnp SpToAR L1eayaus syl

3-89 e -0 Co-"0 0 (9= 757

43-53) (= Ca= 1) e (B3-F3) o= ('3-%3) Y,

]
Y
g ¢35 360 C3- 1) 1 C3-%3) e (3-00) 057 G T
T=gH
Lo E st 9, T LY
3= 3) gt (3= 5) e CI="R) gt (M3-13) a Mﬂ.nuu«?ﬁ:uuauu
I s, 1 (97, %y3o (M7, 0
Cre3) g O34 311 CF53)=C3473) ) Ahu%uvo:nnmutb
T
Ly By T (51,1 9, Zyy_ My, 0 .
G ) - Car D g G- 03+ D 7 Aou+~3na|n;u+a3
PR JRNIDL- TR SRV SUL SR TN \
CI+N-C3+ 30314 D+3+75) (N3 R m..wtoaimmtt
- [ S5, 1 9,.% w0 ou
C3+3 )+ (34 3+ 3451+ u+.‘3 003 Nmu._.ﬂn._::i._utb .wnstu
ROIIVYEd0 ILIEALInE HOIIVY3d0 A1343LLng NOIIVY3d0 AT1HNILINE FALLY
CEIHL ¥ILIV II0SFE TVRLL AK0DES YALIV AVIEV 1SY1d §ALIV AVEGY : vIin
IS® ERTTIINIING @63yl Buisn pIqracEIp #q ued suojiwnbas asoqe syl
™
o}
4
m % -V PUv EM + ¥
-V |4
Q. ejndano
] ,
z onl a3yl saATE xeydumoo osTe ®f Tvasuad oy yopym M IySianm Iz £q
o .
”un roTivasdo ayl por XeTdmon #q Lvm yoJys § pum y siaqunu andoy oyl s+ V ' v
W tuoTivawdo BurmoTToy oyl sayprdey £133933ng oTfurs v
~J *EuoTIvIsde | AL133923N0g,, PATIFY AN IPUA JO SRIF] UT USIITIA 94 OED 19y P78 puey IFI Il U0 wioy TEUTF YL
*{paUTTIFPUN IV BI0ITE] GONE INOJ) I0IIE) IJWWE Y3 O FUOTAITIILT IYI SIIRIISOITT L1aweTd weilelp STYI Jo SHY U
xaT1dmoD 91F
1 .
M_ > 9YTTIm ¢ ) jo ¢ ATuo (BiemTE)] = ot 9°US puw LTpaiwadai pIen IIw g POV o4 Som ‘oM s31yStam dTRRq INOF Y3 ©F

04 L3 ot 3gm %3 ot "3 e 3 o B3 o T o O3 om = (04

3-55) = Ci=TH) = G- 100 (-0 gn = L3 ProameSiome s -t m-Baon-Ta -3 pn - (02
ErEn) e (G343 o= Ca+ TN - (4800 = S3,m%30me 53 om0 " e S e T3 T3 0O 0 = (92

(L3-E3)en-(F3-T) e Sa=T1) (= (F-000 g = Lagmi®3pm-Si a3 on-Capm=-Taome 1300300 = ()2

(34530 o Cre23) it Cae 1) o= 3493008 = L3 pm=O3 53 on-"3 e S 3 om=T5 g T3 o0-"3 00 @ (12

G e O30 -0t (3-"Don = L3 n-Tr e San-"aon-fa g Tagn-lipm %3m0 (02

i 450 Crinp-Cr' D (5% = S5m3n-Spme "3 oS3 u-Tagn- U Y3 gn = (D2

O T R T e Ty T N e It TT Ol AL I L VA BT DY WG ST

CEN g ORi g CaID g (4% 0 = (434554534 34534 %34 1540 u = (002

: . 9182 YI7a Jupdnoid puUF —————— 8u33tanaz og



-G 6—
-~
~
L2
]
-
o)
ot
™
~ F
W -
¥ ¥
" Lot
- v
et L)
4 "
v .y
- ~
+, -&
- .
Tt L
+ o u
~ - L LI R ¥
."co 'N (]
+ -
o~ A d
w
< ?%
+
-~ L)
& 4
L 2] L
+ t
o o
(2] hal
r ~
L} ]
~ -~ — -~ ~ — ~ f
[=) - ~ " ~F wy ) ~
Yt b e e S e Nt el
[ ) b [ ] B B [’ | P

RESULTS OF
THIRD PASS

£o+E +E+E
RESULTS OF
SECOND PASS

£(0)+£(4)
RESULTS OF
FIRST PASS

ORDER

IKPUTS
IN BIT-REVERSED

The 'weights® are simply exponentials so that for example W2 = 43 gpd w0 = 1

~47-

Three passes (or recombinations) of the data are necessary
and it can be seen that only a single storage array is needed -
i.e., the calculations can be performed 'in place®. The number of
passes required 1o simply the power of 2 which gives the total number

of samples, i.e,, for 8 samples a total of 3 passes ara required.

During the firat (or Oth) pass the Butterfly spans adjacent
sanples (2%1). During the gecond (or 1th) pase the Butterfly epans

samples by 2 (21#2). 1.e., the 'span' 1s given by
2(number of the pasg-counting from zero)

How to arrange the weights which are used in each butterfly
wa simply have to remember that at cach pass we are effectively
combining different group lengths of data. e.g., in the lst pase

bl -k
N=2 and the single weight 1s given by e 2 -~ where k only takes
the valus zero. At the second pass we are combining groups of
ot P2 A

data of length 4 so tha two weights are given by e 4 - where
‘k takes the values 0 and 1. So that at each successive pass we
are effectively combining a further power of 2 sample length and
the weights follow straight forwardly. Depending on the organisation
of the particular computer being used considerable economies
in computing effort may be achieved by first evaluating a "look up"

table of Fourier weights (W', Wwl, W2 ..... ete,) which may then

be called as required during the FFT evaluation.

It is worth emphasiaing rhat the result of the FFT caluculation
is absolutely identical to that of the DFT. It does not introduce

any further aberrations,

.



Two Dimensional Transforms

An important modern application of Fourler Transforms is in
l:ﬁe area of picture processing by digital weans - by implication two
dimensional fields of real data are then implied. Modern Toplcs such
as feature enhancement, filtering etc,, have lucreamingly important
application and it is then necessary to carry oyt 2.D discrete

transforms and alsc to be able to interpret the results,

The extension of the Fourier Transform (i.e,. the DFT or FFT)
to more than one dimension is entirely straightforward. Consider
the two dimensional arrays of time gample valusa £{I,})shown.

Where I = 0 to M-l and J = 0 to N-1.

M SAMPLES e
£(0,0) £(1,0) £(2,0) £(M-1,0)
| f(D.l) f(lsl) f(zsl) f(].]) “““ -
N f(oiz) f(laz) f(zsz) f(3:2) --------
s £(0,3) £(1,3) £(2,3) £(3,3) '
w £, £LA) H2,8 £0,4) :
P . L] L] L] 1 1
L
g L L} [ ] 1 L]
s
L] 1 [ 1] 1]
L] 1] L] 1] 1]
| £(0,N-1) ' ' ' £(4-1,8-1)

49

The 2 dimensional Fourier Transform is then quite straightforwardly

given by:
N-1 M-l
{
J=0 I=0

=12¢IK
£(1,1) &

} e

~12rJK

Hotice there is no limitation whatever on the valucs of M and N so

that we are NOT restricted to consideration of g square Array.

To give an example of the result of using the 2 dimeneional tranaform:

Consider a 2 dimensional set of real ipput sunples which are similar to

the previoue one dimenpional examples.

1.e., sio(x 1081+ 50°) ¢ cos(y 1083+ 15%)

then the ¢ square set of real input data samples (normaliced to the

largest value) is:

DATA INPUT (reol numbers)

-B.212
-R. 245
2983
e léﬂ
-8.378
B 212
B. 245

- 383

-8, 520

0. 584

8. 852

-@. 967

~9. 954

1. 988

-8, 584

-@. 652

2. 987

0. 054

-B.137

~@. 158

0. 234

a.2i3

-8 243

137

2. 158

-0. 234

-B.B13

-B. 470

-8, 554

P. 22

0. 848

-B. 850

0. 476

2. 554

-B.822

-B. 846

0. 433

B Sed

-0, 742

-0 842

&, 768

~B. 433

-2, 589

2. 742

0. 842

@. 212

& 245

-0. 363

-0. 820

-8, 212

-B. 245

8. 363

2. 828

-B. 584

~8. 652

e, 887

6. BS54

-1. gea

B. B52

-@. 867

~0. 854

B.137

2. 158

-3.234

~B. 913

B. 243

-8.137

-8. 158

8.234

2.913

0. 478

@. 554

-0, 822

-@. 346

8. 858

~0. 479

-0, 554

@, 822

A 248



-5~

To eimplify the transform result in this case the time samples have There are 9 x 9 = 81 pumbers being input to the transform
been taken to be symmetrical about the origin in both dimensiona 80 just as with the one dimensional case there should be Bl useful
(1.e., the central point of this data set is effectively (0,0) in output oumbers in the result, With the sine wave result above
"eime" 1} the useful number of outputs 1s masked by the natural symmetries

The ocutput result in this case is: which occur.

Inputting 9 square real random numbers through the transform
20-DFT owtputs magnituds and phose
l.u' 28 815/ 170 8.97] 159 &.83] -35 B.83] 132 I.l -08 a.07] 195 &151 B8y P A4f-1e2 .
l?ﬁ"lﬁ Lu‘ 28 ‘47‘ P Q24 174 0.20] -10 @24 140 '..47‘ -48 1.@8] -65 .-25‘ o7
& 15)-115 l.ﬂl Erd I.Z'f‘ 19 R 14{-177 ﬂ.la‘ -g B 14] 158 3-271 ~38 B.SB] 58 115‘ 97

l.m‘ 78 &32‘-!37 B15[-157 %7 8 oo 178 e07] -17 B15) 140 8.32] 120 @.pe] -7

Lorj-1e am| ¢ w13] 2 ewrfier nes| 8 7] 107 e13] 27 w28l - w100

asg f'ollows:

DATA INPUT (real nuwbers)
8. 234 8. 887 B. oua 8. 488 B. PB4 B 578 B, 826 B, 552 B. 621

2. 010 0. 219 B.748 B. ges 9. 762 2. 548 A 254 8. 685 8. 633

soee| 70 £32[120 w5149 ew| 17 eselre aw| 8 ei1s]157 m3|i37 weel-70 ‘.
8.993 2.266 B.%7 2625 B.160 @836 BG4 0.039 D564
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The central point is a 2 dimensional DC term for this "frequency" 8 157 9. g52 9. 657 . pag 8. 929 2.298 2. 689 1. 298 0. azs

result and the interpretation in either the horizontal or vertical 8 572 2. 439 @, 427 @.334 2. 968 2. 128 2. 581 2. 165 2. 677
direction 18 just the same as in the one dimensional case, For

sinusoidal inputs the phase information can be retrieved in exactly

the same way &s in the one dimensional case. MHere for example

careful analysis of the transform result supgests that the waveform

was generated by sin(180I + Mo) x cos{108] + 190).
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Givea the following result:
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Clear symmetrics are again evident but careful consideration
again reveals 8] uwseful outputs in terms of bath magnitude and

phase.

For the straightforward DFT the computing effort is ~ (NM24+HNZ)
multiplications and intuitively one can plcture the repeated use
of exponential multipliers which allowed the development of the
FFT in the one dimensional case. The application of 'FAST" techniques
to the 2 dimensional case will again massively 1aduce the computing

effort particularly when large arrays are involved.

53~

The economiea of the FFT are just as relevant to the 2D Discrete
Fourier Traneform case and it is a etraightforward mattet of application
of the FFT to succeseive rows storing the complex resulta "in place" and

thean applying the FFT successively in column order.

The problem that more generally arises with the 2 dimensional
situation {s the immense quantity of data which can be involved.
For example to provide reasonable resolution with a digitised
satellite picture could require millions of data peints. The
problem then resolves to storing the groas quantity of data onto

disc and recalling the data into the computer in small lots.

Significant efficienciee of acale cean be achieved in such a
situation if when we recall individual rows to perform the
"row FFT" we can arrange encugh storage to cope with 2 of these rows
of data in the coﬁpu:er at one time. Then by simply choosing the
rows carefylly we can perform the first Butterfly stage of the
'column' FFT at the same time ¢ we are doing the 'row FFT".
For example suppose we had 8 immensely long rows such that we
can only fit there into the mctive computer area 2 rows at a time
we could then arrange to choose rows in the usual bit reversed order
i.e.,firat rows O and 4 performing the complete row FFT and also the
first butterfly combination of the column FFT. We would then deal
similarly with rows 2 and 6 and so on. Many similarly efficient

schemea have been reported Ret. .
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Appendix 5.

The Concept of Convolution

LY a
Convolution is widely used in the manipéiation of Fourier
Transforms and it is therefore esseatial that the process and the

reagons for its use must be clearly understood.

In & Fourier analysie the assuzmption 1s generally made that
systems are 'linear', This meansa that the sampled data being used
may have been measured at the output of » system vhose characteristics
can be represented by a linear differential equation. The most
important consequence of this is that superposition then applies
i.e., signals may be split into components which will be dealt with

in the same way by the system,

The Unit Impulse Response

One of the most fundqmental measuremetits which can be made

-

on a system ig to find its responae'tn stimulus by an impulsive

input,

~l7=

The ideal impulse is a spike of infinite height which lasts

for an infinitesimally short time. 1i.e., it {g obtained from the

b STOPIYO rectangular pulse shown when at + O.
L t The 'value' of the impulse is defined as
' 1 .
a b ite area - in this case At x,-=1 iva
11 1 - - unit impulse.
LI [y

" A good practical approximation to the {deal “unit’ impulse
can be readily developed. '
The result which is obtained when the unit impulse is applied
18 called the unit 1m;;lse response of t&e s;;teu and the measurement
in fact completely characterides tht system. Assuming that the
impulse response is known i.e.,:

Syt AtShonit B

13 Bahl Gmfpilde,

vhths

1 e

Then we can conceptually take any input sigual and divide it up into

a very large number of impulses i.e.,

T v
.o,

Then the output at & time t, can be obtained by simply adding up

’ kzl‘}'-f-u;.u.!&.



all the constituent impulse responses:
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This approach would eppear to be a difficulf and unwieldy task
however there is an extremely simple way of striving at the same
result. At the desiréa output time 13} erect }n fnverted unit impulge
regponse ag: - -;

wa . 1f the product of sach vertical
t . slice value of the two curves

is then plotted as a product curve

it can be veasoned that the

area under this curve then gives

the same result as adding up all

the individual impulse responses.

- This area 48 finally plotted as
Ug!a«uz . ot -
J Guut 1.~\\\\\ an output ordinate at the t,.
R& *
| -9 |
Ndesir o |
H
= { e

-

Sliding this inverted impulse response along the time axis simply

allows the output to be obtained. This

process of inverting one curve

and successively multiplying it by another is known es convolution,

It must always result in a smoother answer than either of the component

curves.

.

If the input curve is expressed as £(t) and the impulse response as

h{t) then the convolution is defined by the integral Ref..

- »
output It - [ ! f(t) hit -~ ) ar
2 -

Example: The convolution of the sampling function and a finite duration

is given by:

'lﬂ'(f) *E(t) = I f(t - oD

§t

nite

i.e., .

() £
. \\\ AZ{Z\\\ __J//T\\ . t
A\ pom Tl

Clearly from the right hand side of this dfagram overlapping

will occur 1f the sampling interval T is shorter than the durstion

of f(t).
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Appendix 3. The Gate Function

The last gpecial function which is needed before considering
sampling is the gate function which is given the special symbol

I(.%).

frye L) then

= . I(%) = {y,(t +1/2) - it - 1/2)}

where hl(i) is tha unit positive satep

Tz o 12 -+ Function commencing at x = 0.

FHa(e/DY = [ (u, (e +7/2) = (& ~ 17/2)) SIBE

T/2

- T/2

-7 sin (2nf - T/2)

(2sf » T/2}

l-e-jztft'dt

-t sin(rfT)

wfT

& T sinc(TE)

-N-

Then we have the transform pair in pictorial form:

Flif)se T suc {TF)
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or alte;nutively
$1ey e [ %)

= ime

e
\ e
° . TN_AT r

[+

LFQ4)=1-1rt1?f)
T
fret-

"./3_1‘ , ° '/I.'I'




