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6. Taraday cffcct

Macroscopic paramcters of a cloud of charqes

Let the cloud consist of particles of charge g and mass m, dis-
tributed with density n. One of the characteristics of the

cloud is the plasma frequency, given by

(6.1)

T
N]l--
=
s
oM
Q [S]

A few values for an electron cloud are

nicm

f
p

3) 108 1011 lo12 m14 l016

JOMHz 285GHz Gz 90GHz 900GH2

When the cloud is immersed in a D.C. magnetic field ED. the

.

- ] particles are
q Yoi
Il o) N—
e ~ N LTSN subjected to a
” \\ / \ circular motion of
o C) y { ()_ \ angular frequency
o i b, I b
\ / \ / o s Do (6.2)
N / p / ¢ m
\"- “/ \\ // —
ﬁ{)“"“dﬁ'vh; This is the cyclotror

frequency. It haa a
Fig. 6.1 sign, from which the

rotation sense may be deduced. For an electron g = -e.

A few values for an electron cloud are (10000 Gauss = 1 T}.

bolGauss) 142 57 1070 3570 12500
fC(GHZ) 0.4 1 3 10 35

Given these parameters, it is possible to show that a charged
cloud in a Bo behaves like an anisotropic medium in which

D = £.E, where

£ ie! 0
€ = -je £ o
0 [a] &
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{6.3)

If we neglect the collisions, and the associated losses, the

parameters ate
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For the electron w. = -

Plane wave propaqation

(6.4

The z-cxis is directed aleong Eo'

For a wave propagating in the z-direction Maxwell's equations

become
E
- 5?1 = -jun W,
HEx
g = mdumgi,
a

. g o= 4
i jweE, - we Ey jub,

x: - 5 = W
P mc'zx + _]wl:Ly = 3 Dy

To uncouple these 4 eguations with 4 unknowns we replace Ex' E

by the linear combinations

{Ex“JEy)

N

(Ex+jBY!

A=

g

(6.5)

Y

(6.6)
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crms of Lhesc components: ; sy . — ]
In term P in the positive direction of bo‘ For such case the rotation
sensc of the "A" wave is that of the ions. This "ionic"

= - - - L - = (6.7)
E = E u +E u =af{u_+ju_J+Blu_=-ju )
x\x x y * le wave has a propagation constant ki given hy

Yy
f-al .
2
2 2

w
2 ' 8
k-.-“'“o“f-“-ko[“mm;n]

The "B" wave is similarly an "electropic" wave, with constant

The electric field has clearly been split into two circularly (6.12)

polarized components. For the magnetic field, analogously,

=1 _a
=3 (I Jﬂy) 15.8) , , . , 2
1 | ke = w uo(c+c ) = ko [l - 6TG:$E—TT ] {6.113})
D=z (H_+ 3N e
2 X Y
H=Hu I 4, = Clu_+ju_}+D(u_=ju,)
X X y
Yy X Y x Y It is clear that the wave is propagated when kz > 0 (passband),
but that it is attenuated when k% < 0 (stop band).
when these components are inserted in (6.5} two systems of
{uncoupled) equations are obtained. For the (A,C) couple ;;/
ionic wave
dAr _ . . X
az = ~dung (30) stop
pass
{6.9) /
860 | et /
= jwle-e'}A uh
dz 3 } / / O
[o] 0 4
Elimination of C gives q W. 3 2 IUCI
(=) "4 - 5
— 2 [b] 2
Qiﬂ + mzp (c-e')A =0
dzz o (6.10) Fig. 6.2
electronic wave

7

fashion we obtain -
- pass stop pass
g_% . m2u°(:+c'}B -0 (6.11) ///
- /
__/.9

i
| h!ci P l

In a similar

w

Let us assume that b
oz

> 0, i.e. that the wave

propagates

rnr——— lw, |
: c. 7, .2 c
(5‘; +“p'* 5
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Faraday cffect

his effect arises because the two basic waves, A and B, have
differcnt propagation constants. Let us assume that both waves
propagate, and that E is linecarly polarized in the x-direction

at z = 0. Thus,

= T 1T = Yo _s0 {6.14)
E@) = u, = 2(ux+3uyl+ 7 Uy Juyl
\-___‘___, [NSSTRREE
A-wave B-wave
Farther down the z-axis this field has become
E(z) = 25 495 10 4%, Lo _oo o IKe?
Ef{z) = i(ux+)uy}e + I(ux-Juy)e {6.15)
v
» x!
¥ i
' ’
Voo
~ - N 0 x
S ¥ |
7=0 f':' ~ N /
\:
‘\-\ .
5:\\ kl \h.o
JOO;H“‘-;

Fig. 6.3
Such a field is again linearly polarized, but in a new direction
x' forming an angle 0 with x. This is shown by applying the
following coordinate transformation

u, =1

) COS 0 - U, sin o
x X Y

{6.16}

Ey = le sin g + G&, cos g

25
The clectric ficld is now
b s . .
B 1 — Jj0 jk,z 30 -jk = ]
P P [ 1 c
{2} 7 U c c te e {6.17)
. +i0  ~jk,z -30 =3k =z
+%”y' [e e 1 .. e C ]
It can be written as
k_+k,
[
- . - P
E(z) = G, e {6.18)
provided we set
k. -K
i e
0 = 3 z {6.19}

This is the angle which characterizes the Faraday rotation.

If we look at the reflected wave in Fig. (6.3) we see that it
propagates against the magnetic field, hence that bOz < 0.
As a result, the angle O is the negative of (6.19) with respect

to the direction of praopagation. It therefore has the same

direction in space, a property which has interesting technolegical

applications.
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7. Far field

Fig. 7.1 shows time harmonic currents
radiating in free space. The
complex vector potential ALY,
derived from (2.8), is of the form

- il

ik | e-r’l

}] T
A ,4_1?.”;9,(5_)_0_..____ &' (7.1}

PRI

At large distances, in a direction

of unit vector E,
it -r'l ¥yr - ur' (7.2)

Inscrting this value in (7.1) gives the far field expression

-k R - T
— - o M - jk_ u.r
limAh = 2 e iii(ry e 9 av' {7.3)
R»m R 4“ -
S, e

direction dependent vector Niu)

The E and 1l fields, obtained from {1.17} and (2.1}, are

i L e-jkOR
z{r) = Flu) =
—jkon (7.4)
I = 7 (U x F) S
co
where F is the transverse vector
F=uxtuxh {7.51

These very important formulas will be discussed further in the
lectures on Antenna Theory.
When the dimensions of the source are smail with respect to the

wavelength A, the exponential in N{u) may be usefully expanded as

Ik JiLE oy g — 3
- 4 ] 2 ) L]
[} =1 + jkou.r + 5 {)kol fu.r')%+...

(7.6)
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Inserting Lhis value in {7.3) qgives
=ik I
1i X Q]o JOIII"’ ' ] S T e 2
mA == J AVt + gk Tf(uac' )3t jav' + temms in ke (7.7

R

Suitable manipulation of" this equation lcads to the far fields
-jk R '

o
2
o

-jkon (7.8)
e 2. = = 2= oS 3
=~ koc u x Pe - ko ux {ux Pm} + terms in ko]
Y ‘
We recognize in thpse formulas the contributions of, first, an

=

L _ _coée 2 = - = — —
E= 25 [-*xcix (ix Py) - kiu x B+ terms in kg

=1

u
-
=

electric dipole maoment

5 1 - - -
pe=BEIIIJ dV:IIvardV‘,f‘fs psrds. (7.9)

and, sccond, a magnetic dipole moment

- 1 - = )
B s 3 IIIV r x Jdv {7.10)

The discussion can be carried further, and the terms in k3 shown
Q
to consist of contributions from e.q. quadrupole moments., The

flelds of the dipoles will be mentioned again in the lectures on

Antenna Theory,

-1 -
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8, Scatlering <cross-seclions
A typical scattering configuration is
shown in Fig. B8.%, which displays a
ariqgin target of arbitrary shape and con-
0
stitutive parameters (e,u,0), immer-
; large
s sphere  sed in an incident electromagnetic
incident /
wave wave of arbitrary time dependence,
u

The deotermination of the scattered
Fig . 8.1 fields is a most difficult task,

often made somewhat easier by assuming that the incident wave is
plane and time-harmonic. Such a restriction is reasonable because,
at large distances, the fields of an arbitrary source behave
locally as those of a plane wave {sce eq. 7.4). Further, Fourier
expansions with respect to time and space coordinates show that an
arbitrary incident wave may be considered as the superposition
of an infinite number of time-harmonic plane waves,

The power density in a progressive plane wave is obtained

from (4,12} and (5.5) as

Wo= Y Re ST (B x 17).0,dS = — |E.|2 W m~2 (8.1)
i 2 . i 2R i
unit co
area

Illuminated by this wave the "scatterer" or "target" becomes a

source of induced currents {volume or surface conduction currents,

polarization currents ...}, and acts as a secundary "antenna" i
producing a far field,
_ _ _ -jkR l
- T e -1
nsc = Psctu) R Vm
— _ -JkR (8.2) !
S e”)
Hee = Rco{u x Feel T Am '

Such a formula holds for every observation direction u. From (4.12}

]
1
the time averaged power radiated in an elementary solid angle df? ‘
centered on u is '

29

E -2 1 2
¥ H_ bou(ROde) = o—|F |© an W (8.3)
5C \-—'ET:""-—J

1 =
d‘;c -3 RQ(LS ZRCO 5C

c
The total scattered power [ollows by summing over all solid
angles (i.e. over 4n steradians). 'Thus,

1 =2
|

= 5= 1[I |F df W i6.4)
psc ZRCO 4 sC

A quantity indepcndent of the power level, the total scattering

cross-section, is obtained by dividing the power by the incident

power density, Thus,

o 10 IF I |
o {u.) = ~2F . A m (8.5}
sC i W, |2

|E;
This cross-section is a function of freguency, of the direction of
incidence Ei' and of the state of polarization of the incident
wave. To illustrate the concept ; a osc of 3 m2 x*ans that
the target, illuminated by t kW per mz, will scatter 3 kW.

The total scattering cross-section does not express how

much power is scattered in any given direction u. This directional

sensitivity is expresscd by the bistatic cross-section Ghis(ﬁlﬁi),

which can be most conveniently defined by way of a numerical

example, Let "i = 1 kW m_z, then Ubis r 2 m2 means that a power
. a2
af.. = 205 kn (8.6)

is scattered in an elementary solid angle dil centered on the
direction u. A very important particular case is that of the

monostatic or padar cross-section. It is the bistatic cross-

section relative to the backscatte-

ring direction I—Gi). Thus,

radar an _ S .
G—— "— Oradt¥il = Opjgl-ujlu;) (8.1
A
. _ -2 2
With Wi = 0.1Wm~-, a Orad = Im
rig, 8.2

means that
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af . = 0.3 w (8.8)

is scattered back in a solid angle d9 (towards the radar set,
sec TFig. 8.2).

The previous considerations are operational definitions. They

9. | do not solve the real problem,
-—!- 31 — e
Ta . which is to find F{u), Wwe
2 1 iqnore this difficult assignment,
14 and limit ourselves to a display
of a few typical results.
0 v - f‘_
1 2 3 Fig. 8.3 shows the total cross
ka section of an iron sphere
Fig. 8.3 as a function of the radius a.

The frequency is 7.1 10‘4

Hz (green light), and the curve is drawn
as a function of the dimensionless parameter ka = (2wafl). Fig. 8.4

shows %24 for a perfectly conducting spherc. Notice the successive

] E
9rad f ! @
2
na
3 - Ubl! U
na ka = 4,1
21 10
ka = 1,1
17 1
* v Y T— 0,1 - v
0 1 2 3 4 o* 90° 180*
ka : E}
Fig. 8.4 Fig. 8.5

"resonance" peaks., Fig. 8.5 shows, for the same sphere, the bistatic

cross-section as a function of the angle of observation 0,

N

7. Ray tracing
Ray tracing is a method usecd at very high frequencies, l.e. at
short wavelenyths. Wavelenglbths ) are said to be short when the
characteristics of the medium supporting the wave vary little
over a distance A. For such case the wave behaves locally as
a planc wave, and its direction of propagation is that of the
ray. A typical time-harmonic component is written as
_ ~jkS{T})

B, = &x(r,k)e {9.1)
The surfaces S(r} = const, are the phase fronts. At high frequencies
the amplitude Gx is expanded in a series in the small parameter

(t/k). Thus,
€ (E,k} = 6__(F) + - € 0T) + (9.2)
xhr X0 k “x1 e

Expansions of this kind are inserted in Maxwell's equations.
Taking into account that

-jks

curl E = e {curl B - jk grad § x -f_l {(9.3)
yields
curl € - jk grad s x € = —jk R__ urji
- — - {9.4)
curl & - 3k grad 5 xH = %5— crg + of
. co
Equating the dominant terms (the terms in k) leads to
grad § x Eo = Ur Rco 7‘0 )
éE. - (9.5
r
grad S5 xz L |
(o] R, ©

Equations {9.5) show that grad § is perpendicular to both 5; and
X, and that 50 is perpendicular to & . They also imply the

"eikonal equation"

lgrad 5% = € u_ = n (9.6)
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The index of refraction n is a function of x,y,2z. The rays are
the orthogonal trajectories of S(x,y,z); they are therefore
tangent to grad s. If L is the length of arc measured along the

ray, the equations of the latter take the form

kﬂ

1 (9.7)
n

s
%]
=2
w
w
44

Qs
x

=4
~
N

These equations are obtained by making use of the relationship
2 2 2
dx d dz,
‘al, + (a{] + [at) = 1 (9.8)

We now eliminate S by the following manipulation

2 2 2

d dx, _ 4d 95, _ 8°5 dx a5 d 475 dz
at ‘" ap) = at G - a2 ab * 2xay d¥ ' 9xdz af

1asals , 19s9s 195 9%

" n 3¥x ax? n Jy dx3y n Iz Ixdz (9.9)

—Lﬂﬁﬁﬁﬂ+(§ﬁ+tﬁf]

T 2n ¥x x oy dz

_ 1 3d?

T 2n ax
Combining with similar equations involving y and z yields

d dr.

ar tn EI) = qrad n [(9.10})
It is clear that gi is the unit vector Ut along the ray. Once
the rays are found, S(r) follows from

at-n
and a straightforward integration. Thus,
y
S()= 5(p) ¢ /1 n al (9.11)
1
o

In a homogeneous volume n is constant, hence grad n = 0. Eq. {9.10)

then implies that E is a constant, which in turn implies that the rays

radius o
curvature p

33

arce straight lines. 1In an inhomogeneous region, however, (9.10)

qivoes
ray

=3

du =
n E[l + up at - grad n ({9.12)

.
=g
=

The vector is perpendicular

&

to the ray, as

center of
curvature

o

ug

1 s
Fig. 9.1 at” *p “n 19.13)
It follows that
du
a‘zg = (2ad o, (9.14)

where the subscript L denotes projection on a plane perpendicular
to the ray. A possible graphical
construction of the ray follows
Py from (9.14). Assume, indeed,
- that the direction of the ray
is known in DO {unit vector ;o,‘

The unit vector in a neighbouring

point P1 may be obtained from
Fig, 9.2 )
{9.14) by the operation
- _ = grad n
u, = u, + P0P1 { A [L
(9.15}

This relationship allows a point by point construction of the ray

(Fig. 9.2}). Eqs. (9.12) and (9.13) also yield

un.gradtloqen) = (9.16)

=1

It is clear, from (%.16), that the rays are curved in the direction
of high indices n,

Ray tracing can go further, and geherate the laws governing
the amplitude and polarization of the fields along a ray. These

laws are obtained by equating terms of higher order in {(1/k) on



both sides of (9 .. The detailed calculations are beyond

the scope of the present notes.
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10, ~icments of Relativity . Doppler cffect

The Lorentz transformation

By the turn of the century a serfes of oxperiments
polnted 1o the need for an agonizing reappraisal of
the taws of Mechanlcs. In an effort to reconclle
theory and eiperiment, H.A. Lorentx proposed an
Important set of formulas, almed at cohnecting the
coordinates of an event mesasured In two different
inertlal frames of retfersnca, K and K’'. Inertial
frames are frames in which a free body moves with
uniform valoclty. All Insrtial frames are Inunlform
transiation with respect to each other and K', In
particular, moves with velocity w with respect

to K. Loreantz character|les a point-avent by four
numbers. 'hree space coordinates and ohe ime toor-
dinats. Thelr valuss In K and K* ars related by

z' +th
=

Fig. 10.1

At lowvalocitiea (1.e. for B
yloids z = 1’ + wt', which Is

formula.

2o~

<< 1) the third eguation
the classlical Newtonlan
The fourth equatlion, howsver, represenis
a signiflcant departure from Classlcal Machanics.
It shows thal two events which are simuttaneous In
XK', but occur at differant z°, ars not simultansous
in K. Simulianalty therefore Is a relatlve concept.

{10.1})

15
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36 Relativity also implics that the coordinates of an event (e.g.

: the reasurement of a field) in K and K' are related by the
Jransformation of flalds

Lorentz transformation

z = z' + vt'

' t = t' +» —
A - gl 2

Combining {10,1), (10.2) and (10.3) gives the transformed incident

(10.5)

e, ] _Wre
b' = b]l * 7 Z(F.l. CZ) fields

-8 | v e

! EAI) (10.2) el, = El1 - Zlcoslu't’ - & 32)
" 4-—(3- i (10.6)

(| LY |
].—ﬂz € hiywl—ig_. (1 -%)Cds{m't' ‘%‘2')
co

- '__ 1 -
h' =h, + ﬁfﬁl -wWxd) ere
O v w1 - Y rw- (W (10.7)

Doppler effect

This formula expresses the Doppler shift. More generally, for
Consider an incident plane wave

Y arbitrary velocities and a wave propagating in a direction making
: propagating along the z-axis in the
o an angle a with the z-axis
l "laboratory" frame, i.e. in g
h e - :
Y X the axes of a {static) observer. , w v
v W . {t - 2 cos a) (10.8)
e R e i, The incident fields are 1- ¥
uy : c2
w
€y ® E cos(wt - c z)
(10,3)
E @ Radar_echo
hiy = E:; coslut - c z) T
Fig.

The Doppler shift is the source of numerous technical applications,
This wave impinges at normal inci- ) ' )

® e.g, in the area of electronic navigation. This shift is also
dence on a perfectly conducting plane moving with velocity v.

! y of fundamental importance for the operation of moving target
Let K' denote the axes in which the conductor is at rest, According

i ivi indicator radars (MTI), burglar alarms etc... To clarify this
to special relativity the fields in k', at velocities ve<cc,

statement consider the simple model shown in Fig. 10.2. 1In the
are related to those in K by i

X' axes the reflected wave is

Ex = ex - Vuoh '
(10.4) e;x = ~E{1 - %lcos(m't' + %ﬂ z')
h; : hY b VEoex (10.9)
L]
E v ] W ]
h! = (1 - Z)cos(w't’ + -~z )
Iy RCo c
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The reflected fields in K are obtained from those in K' through

the "inverse" tramsformation formulas

e =e' + vp h!

X X oy
h, = h'! + ve e!
y Y o x (10.,10)
z' =z - vt
vz
t' =t - ]
c
This gives
v " wll
-2 = — z
e, = -E(1 -2 Z)eos(w"t + — }
(10,11}
E v . " llJ"
h = ==—{1 -2 <)cos(w"t + —2}
Iy Rco [~ o4
Here " is the angular fregquency of the radar echo, which is
twice Doppler shifted according to the formula
y . X
w" =z w S An(l - 2 Y (10.12)
= v c
LI
c

110

z9
11. Transmission lines
Basic equations
The potential difference between points x and x + dx may be
written as
av - _F a1 (11.1)
Vi{x+dx,t}-v(x,t) = 3% dx a -r dx 1 It dx + vgdx
In this equation r is the lincar resistance tnQim!, sum of
J the resistances
X
i I 1 . vgdx of conductors 1
— ! ' - +
-—0 and 2,{ is the
o £4d% ?
v &£ 2 linear inductance
t X -——-H' —‘: (in H m") and
[}
x=0 x=L vg the applied
Fig. 1.1 voltage (often ze

A similar budget may be written for the current in terms of the
linear capacitance € (in I m—1), the linear conductance g
(in s m '} and a possible current source 19 tin A m ). Taking

the limit dx = 0 yields the differential equations

%ﬁ = ~pf - £ %% + v

g (11.2)

1.
Uogu-cas, (s
We shall only consider the scurceless situation (vg =0, ig = 0),

and pay special attention to sinusoidal phenomena. For such
case (11.2) and (11.3) become
gg"rl-jwtl--(r+jm£11=nn (11.4)

dr (11.5)
dx " "9V - Juc Ve (g + Juc)y = —yy

e I
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Incident _and reflected waves

when the line is lossless the basic equations are

ot

(11.6)
al av
Tl T

2 2

2%y ﬂ av (11.7)
— " c — a0

ax at

The gcneral solution of this ofuation is obtained by way of the

change of variables

—V%—;t v=x+V‘%:;t (11.8)

which converts (11.7} into

u = x -

3%y
S (11.9)

The general solution of this cquation |s

v = f(u) + giw) = E(x - = ) + g(x + ——= t} (11.10)

The corresponding current has the form

. 1
i= E; [f(x - vopt! - gjx + vpht)] (R, =ff 2) (11.11)

Here R_ is the characteristic resistance of the line (in &), and

Voh is the phase velocity (1/)}/1c). The functions f and g are

arbitrary, and their actual form is determined by the boundary

-7
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conditions at x = 0 and x = L. The function f represents a
v vphot wave to increasing x, as shown

' clearly in Fig. 11.2. The function

g represents a wave to decreasing x.

\'_t+dt Normally a generator is connected
\
- - X in x = 0 and a load in x = L. The
Fig. 11.2 f wave then becomes an incident

wave and the g wave a reflected one. It is easy to check that
the incident wave is the only one to exist when the line is
infinite or, equivalently, when it is loaded by Rc‘ For such

a case there are no reflections, and the line is matched.

Time_ harmonic signals

Voltage and currcnt have the general form

vix,t) = v, cos (wt-kx+¢1) + v, cos(wt+kx+¢2| (11.12)

)
Lix,t) = ﬁ; [v,co8 {wt -~ kx + ¢1) - vzcos(mt + kx + ¢2)]

where

A

(11.13)

K=t WVE; -3

Vph

D
(=]

The gquantity Ag is the wavclength along the line. In phasor

form
V(x) = vl e_jkx + vz ejkx
(11.14)
1 -Jkx _ jkx
I({x) = " {Vl a v, e 1
[+
j¢1 j¢2.
where V1 sv, e and VZ =v, e . Writing (11.14} at x = 0 and

x = d leads to the value of the input impedance of the line

Q-
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3 .
9 '
i
| 1 z Zi + ) tg kd (11.15]
u L opeow b
d R, T "1 14772 tg kd
Zi -—r
I
X =0
Fig. 11.3 When the line is lossy the for-

muilas become

V=V, e R Lo v, o¥¥gibx
(11.18)

[ ]
[}
Nl-o

[ —aX_~jAx _ ax_jBx ]
- Vl e e Vz e a

Attenuation and propagation constant are given by

2 2
Y = la+ ip)" = ¥,7 = uz_ﬂz + 2j08 = (rg-wzfc) + j(wfg 4+ prey (1117
The characteristic impedance becomes

2
c

2 (11.18}

- iz" = (R_+3x )2 - rgﬂozgcﬂ' (mgq-mrc)
c c 22
g +wc

The input impedance is now

]
L
1+

+ thy a

2 T

By
e (11.19)
[] L

If the load is matched (z; = 1} the input impedance is Z,,

irrespective of the length of the line.

-~ q07
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Reflccltion cocfficient on a lossless line

From (11.14) the ratio between reclflected and incident voltages

14 - (the reflection coefficient)

et K B e
Z g/-l\' is
/—\ l VZ ejkx .

v
¢ Kw K u» 2 _23ikx (1.2
- - .8 -

[:JZL Y vle““ v

1

Fig. 11,4
At a distance d from the load,

therefore,

K= K, @23 kd (11.21

Raflection coefficient and impedance are connected by

Zitx) -1 14K (1.2
|- wdd
Kix) = 20+ 1 =i

This formula shows that a measurement of Z, may be obtained from

a maasurement of K (in amplitude and phase). The value of K may

be deduced from an obscervation of the interference between reflected
and incident waves down the line., The amplitude of the voltage

ls given by

| = Lv

Ll

2
;4 2v1v2 cos (2kx + 02--01)
{11.23

- VIVI + K2+ 2 K| cos (2kx + 44

-3
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The general appearance of Lhe curve IV[x)' is as shown in Fig. 11.4.
The maxima occur at points where the two waves are in phase,

i.o. for

- kx + ﬂ = kx + % + n2w (11.24)

These points are separated by (Agl2). The minima ([destructive

interference) correspond to

- kx + ¢ = kx4 ¢y + W AYnw
(11.25})

They are located (A /4) from the maxima. An observation of the

ratio of maximum to minimum (the standing wave ratio) gives lKI H

{11.286)

The location of the maxima and minima gives ldb—¢1l, i,e, the phase
angle of KL. One is then able to censtruct KL' and from there to
determine the unknown ZL by use of (11,22). The method is the

classical way of determining impedances at high frequencies.

Matching

In most applications it is desirable to match the load to the line.

The reasons are :

{1} The bower to the load. It is given by

2 2 2
Vi Va Vi

T TS = 55— (1 - |K
2R zuc 2nc |

- 5re vy - 12) (11.27)

Q is maximum when !KI = 0.

3L
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(2) Reflections creale peaks of voltage. TFor a given absorbed
powcro,:
1+ K
Vmax 2 Rc v1_ K (11.28)

The danger for breakdown increases with |K|.

(3) the input impedance is much more sensitive to small frequency
excursions when the load is unmatched. This "long line effect"
will be explained in the problem session, together with methods

to match an (originally unmatched} load, and the use of the

Smith chart.

These various considerations may be applied, in slightly
modified form, to the lossy line. There,
K=K e 2rd K, e~22d _-2j8d
(11.29}

2'~1
FAEST

K=

- 33
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12. Modes and eigenfunctions reprodvce their own form, but with a cocfficient A, termed the
We shall discuss the bgsic ideas of the eigenfunction method on the cigonvalue. It Is casy to solve (1 .3) explicitly. Thus,
very simple example of the flexible
 ein DX
string, a basic component of Yo = ST
several musical instruments (Fig. 12.1 A = _(51,2 {12.4}
n L
The string is under tension T, and
The frequency of the fy:c vibrations, obtaincd by equating
is acted upon by an external force 2
-1 (w“p/T) to (=A ), is
of density p{x) {(in Nm ). The
' NE
force on a small element of string Yo = DL b (12.5})
dx 1s therefore p(x)dx. The equation .
The eigenfunctions enjoy a crucial property, which is : they are
satisfied by the small displacement y{x,t} of the string is a
orthogonal. By this we mean that
wave equation, viz.
L
2%y _pady _ _ mix,t) Iy, ¥y dx = 0 (for m # n) 112.6)
ax? T a? T (12.1) o
y=0in x = 0 and x = L To solve a system such as {12.2) by the method of eigenfunctions,
The symbol p denotes the mass density of the string (in kg m—1). we expand Y{x) in a series
The velocity of propagation is ¢ =y (T/p). Under time-harmonic -
Yix) = I A Y, ix) {12.7)
conditions : n=1
2 2 .
9—% + QEF'Y . - E%&l The problem ig to determine the A . To do so, we write
dx
2
{12.2) 2 d°y
a7y L 2
Y=0at x=s0and x = L ax? LA, a2 Lodg Ay vy (1<.8)
A first question concerns the existence of free vibrations, i.e. Plx) = & B Y (X! (12.9)
of time-harmonic displacements which may be sustained in the The validity of the term by term differentiaticn involved in
absence of external forces. From (12,2} the problem reduces to : {12.8) is not automatically guaranteed, but in the present case
the determination of functions yn(xl satisfying it can be shown to hold, Making use of (12.6) allows determination
dzy of Bn. Multiplying, indeed, (12.9) with yn(x), and integrating
- .
dxi— n¥n from 0 to L, yields
(12.3)
y = 0 at x =0 and x » L L L 2 L
n I yn(x)P(x)dx = Bn i) Y dx = 3 Brl {12,10)
[} o

These functions are the eigenfunctions of the operator (dzldle.
or
Their main property is that, acted upon by the operator, they

N5 (" L a6
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B =

a y, P dx (12.11}

| i [N}
o=

Inserting (12,7),(12.8) and (12.9) in (12,2) gives, upon equating

coefficienlks of Y

1 (12,12)

The solution for Y(x)} is thercfore

L nnxt .
I Pix"')sin L dx'
Y(x) = - ; L2 55 sin “—;"5 (12.13)
L -
2n%p v un

This solution is cbtained in the form of an infinite sum, the
"building blocks" of which are the esigenfunctions. S$Such a sum

may easily be programmed on a digital computer. Notice the infinite
amplitudes which occur at the rescnant frequencies Ve These
infinities disappear when the frictional and radiative losses of

the string are taken into account, Notice that expansion (12.7)

can also be used to solve the general wave equation (12.t}.
Coefficient nn is now a function of time an[t), and steps similar

to the previous ones show that a, satisfies

2
d®a _(t) 2 L
1] T .nn 2 nnx
————-~—~dt2 t s (—L ) a (t) = ot i plx ,t )sin i dx (12.14})

This is the eguation of an (L,C} circuit.

-3
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13. Closed clectromagnetic wavegyuidoes

The modal expansion in a waveguide makes usc of tho cigenfunctions

of the Dirichlet problem

fm ~ grad Qm

o +u%_ =0 ins
m m'm

M {13.1)
. =0 on C

: | 7 (2
i S EI% as -

The index m really stands

for a double index {(m,n).

Fig. 13.%
ig In a rectangle, for

example (Fig, 13.3},

_ 2 o mMUX . nny
#mm-——w—sxn 3 sin | {13.2

2 2
P mb . nfa
a b

We also need the eigenfunctions of the Neumann problems

§]II - grad ¥
2
Vzwm + Vp'n © 0 in :
(13.3
?1! - 0 on
an
7% dg =1
ffs | ml qas
The field expansions are
B(x) = T Vv (z)gred ¢, + T vn(z)grad v, X {iz + L A'\m(z)wm u, .
m n .

B(F) = £ I (2, x grad o, + L I (z)grad v, + L B, (z)v, u,
m

The problem is to find the expansion coefficients. The method pro-‘
[ -
' “n*E. ceeds by requiring (13.4) to satisfy

Maxwell's equations. The source terms

e E are volume electric and magnetic

-

currents, Eand i?. and sidewall

- nn -A
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aperture fieclds. Detailed calculations give, for the & {or 'T™)

modes

av
HEE *Juwg I - A - -str ﬁ.(ﬁz X grad ¢ )ds

-g (ﬁn x E).(ﬁz x grad ¢ _)do

al
- =
Izt due, Vo = - fr F.grad ¢, 48
8
o Jue, -
I+ 5 Am - - ff (J‘uz)¢m ds
Hm B
Here, u, is a unit vector perpendicular to the waveguide wall. The
contour integrals containing (u, x E) represent the excitation through
the aperture.
Similar equations hold for the H (or TE) modes :
an
aZ * e, I,=-/fK.graa ¥, d8 - s (ﬁn x E).grad v do
8 0 n
dr
n - -
gz * Jwe v - B, = - JI d.(graa A uz)ds
E
v 4 3% B K
+ - - Jf (K.udw ds - %) By.u
n “ﬁ n ¥ z°'n i ( n X )'uz Yn do
For both modes two of the three unknowns may be eliminated,
- and an equation for the third obtained. For the TE modes,
for example, and for perfectly conducting walls,
2
d’y
n 2 2
N + (k© - inlvn = f(z) (13.7)

where £(z) is a source term which vanishes outsides the source
region. Far away from the sources, therefore, Vn is a linear
combination of exponentials. When k > Yor i.2. when the frequency

is above cut-off, Vn is of the form

(13.5)

(13.6)

51
-j kz-uﬁ z jvk2 - vﬁ 2z
Ac +DBe (13.8)
outside the sources. The mode is propagated, and transmission line

theory may be applied. The wavelength in the guide is

{13.9)

(13.10)

A propagated mode is therefore dispersive. When k < Vo i.e. below

cut-of f and outside the sources, Vn is of the form

- UZ - k"2 + uﬁ - kz iz
Ae " + B e {13.11)

The mode is attenuated. The same tonsiderations hold for the
T modes.

It is clear that the number of propagated modes is finite,
By suitable choice of the frequency it is possible to launch only
one mode (monomode operation}). This lowest mode always belongs

to the TE family. 1In a rectan-

gular guide the relevant data

are
Vg = cos X
Vie .g (13,12)

cut off freq = %;

Fig. 13.3
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The optical fiber is an open dielectric waveguide, of which the

Coeglns Clubligoerd Inic iy

Rebacine ndew n
‘ 140 i

[ , .
My A soumie

—-= = Rxbsgt

Fig. 14.1

dielectric 1
{core)

dielectric 2

circular form is particularly
important. A technical realization
is shown in Fig. 14.1.a. Rectan-
qular cross-sections may be encoun-
tered in other optical guiding
structures. We shall concentrate
our analysis on a cable consisting
of a central core with uniform
refraction index Nyo embedded in a
cladding medium of smaller 1ndex'N2.
The field components of the various

modes are of the general form

E, = ez(xy)e“Yz = ez(xy)eh“z e 182 4.1y

If we insert these components in Maxwell's equations we find that the

transverse components may be expressed in terms of the longitudinal

ones by the formulas

2

(x°n

; K -
+x2)Ht = -y grad h, - R.:’__uz x grad e

5 -
(k2N% ¢y e, = -Y grad e, + JkR u U, X grad h, {14.2)

[4

where k = “Yﬂolb- The longitudinal components satisfy

v e+ (k2% 1'{2)ez =0

Xy %

2h o+ k3% 4 yhn, =0

Xy 'z

{14.3)

Eqs. {14.2) and (14.3) must be satisfied in cach separate dielectric,

To solve these equations for the circular structure, separation of

variables may be applied, which leads to the following functional

L Nt
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dependence in the cone (r ¢ a)

e, = A Jm(u

Br

LSTh ned

. r sin m¢
h, =B 3 (u5 [_Cos M

In these expressions we have introduced the dimensionless {and possibl

complex) parameter

u o= afk?ul 4y? (14.5)

In the cladding (r > a)

I.'} {COS md

e, =C Klw3 sin m¢
h, =D K v 3 [fci:gsmgq;
The dimcnsionless paramoter is now
w= ja kzug»,yz (14.7)

The radial dependence is governed by the modofied Bessel function
T o mtl . nomel (1)
K (%) = %3 [Jm(jx)+ij(Jx)] =3 TH U (dx)

which has the interesting property

b =X
im X (x) = r 3% @ (14.9)

X+ew

To determine y we shall require e, hz, e, . hv to be continuous

at r = a. This yields four homogeneous equations with four

(14.4)

{14.6)

(14.8)
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unknowns. Scttlnq the deter-
minant equal to zero yields
the vy(w) law, a typical

i
J*“*“—PROPACATED example of which is shown

! MODILS
in Fig. 14.2. The crosses

LEAKY MODES
°°° on the imaginary axis, finite
| 9 o o - . in number, correspond to the
— J T'g

propagated modes., For these
damped modes

{continuous spectrum) modes

Fig. 14.2 k NZ <8 <kN1 (14.10)

and (u,w} are real. Cut-off

is obtained from the condition

8 g = sz. The B(w) variation
‘ (Fig. 14.3) shows that the
HE1T mode {m = 1) is always
propagated,and that this
monomode situation holds up

to v = 2.4048. 1t is there-

fore desirable to take N,

and N2 close to sach other

to extend the monomode region
to high frequencies. Intro-

ducing the relative contrast

Fig. 14.3 N -N
A =i 2 (14.11)

allows us to write v as

v = ka NI\IZA (14.12)

55
Example : N1 = 1.58.N2 =1.5%Z )} = 0.633upm (He-Ne laser), A = 1.8%.
Monomode transmission for a < 1.12ym. For such low contrasts, the
mode turns out to have transverse components which are much
larger than the longitudinal ones {quasi TEM transmission}.
The first practical fibres were used in the multimode type
of operation, with the typical dimensions shown in Fig. 14.4.

CQ?DDING The high number of modes make

CORE ‘@} 100 pom

SYNTHETIC INSULATION

a ray tracing analysis more
cefficient than the modal one.
Fig. 14.4 shows how the rays

bounce on the N2 medium,

N N, where they are totally reflec

u;’_ ; — N2 ted provided sin g >IN5:N,)
{see 5.15). This requires g

to be sufficiently small.

The "acceptance angle" g

must, in fact, be smaller

Fig, 14.4 than the "numerical aperture'

vﬂf - g. The various beams

cover different distances in

medium 1, i.e. the propagatic

times differ, which results

in ‘a distortion of the signal

A more uniform distribution
of times may be obtained by
using graded-index fibres

based on the index law

N = Nl [1 - x(g)u] {14.113)

-~ L3



56

The rays are bent, and their curvaturc is oriented towards high N's

Paraxial ray A covers a shorter distance than ray B,

(Fig. 14.5).

but at a lower velocity. This compensation results in an equalization

of propagation times.
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Typical notations and symbols

magnetic potential (T m)
magnetic induction (T)

propagation velocity {m)

electric induction {C m 2

1

}

electric fileld (Vm )

1

impresscd electric field (V m™ ')

incident fields

-1)

volume current density (A m™

maghetic field (A m

2

2y

applied volume current density (A m~
surface current density (A m'1l
w 2n

= = 3 = wave number in vacuo (m

-1'

2

electric polarization density (C m™“)

L)

magnetic polarization density (A m~
(Cu)o'5 = index of refraction

unit vector in direction a
radiation vector (V)

current (A}

electric dipole moment (C m)
magnetic dipole moment (A mzl

distance to the origin (m)

lu/c)o's = characteristic resistance-of a lossless

medium {Q)

flux density of electromagnetic power (W m

characteristic impedance of a medium {f})
energy (J)

power (W)

1 -9 -, -1
67w 10 rm

wavelength in vacuum {m}

L7 -

2
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4 107 nwm

frequency (liz)

h

conductivity (S m~
bistatic cross-section (mz)

radar cross-section (mzl

total scattering cross-section {m2)
volume charge density (C m™2)
electric potential (V)

magnetic flux (Wb)

solid angle (sr)
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