

INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS 34100 TRIESTE (ITALY) - P.O.B. 586 - MIRAMARE - STRADA COSTIERA 11 - TELEPHONE: 2240-1 CABLE: CENTRATOM - TELEX 460392-1

SMR.379/35

COURSE ON BASIC TELECOMMUNICATIONS SCIENCE

9 January - 3 February 1989

TANTENNAS

J. Van BLADEL Rijksuniversiteit Gent

These notes are intended for internal distribution only.

ANTENNAS

by J. Van Bladel Rijksuniversiteit Gent

Table of contents

In	troduction	p.	1
1.	Maxwell's equations and Poynting's vector	p.	2
2.	Time-harmonic sources. Directivity	p.	4
з.	Electric and magnetic dipoles. Multipole expansion	p.	11
4.	Linear antennas	p.	13
5.	Aperture antennas	p.	17
6.	Linear antenna in the receiving mode	p.	21
7.	General equivalent circuit. Microwave relay.	p.	23
	Reciprocity.		
8.	Antenna arrays	p.	27
9.	The Radar equation	p.	32
Bibliography			35
Li	st of symbols	D.	36

Introduction

"Guided wave" communication channel

"Free space" communication channel

Distribution of radiated power

Radiating currents

9. The radar equation

Noise output

Fig. 9.1.

(b)

The thermal noise at the terminals of an impedance Z is given by (Fig. 9.1a)

$$\frac{1}{dv^2} = 4kTR(\omega)df \qquad (9.1)$$

The quadratric values add up. Let Q be the quadratic gain of the system

(Fig. 9.1b)
$$Q(\omega) = \frac{|v_0|^2}{|v_g|^2}$$
(9.2)

If no additional noise were created the quadratic fluctuation would be

$$\frac{1}{dV_0^2} = 4 k T R_g (\omega) Q(\omega) df \qquad (9.3)$$

Because of additional noise sources, a noise factor F > 1 is introduced, hence

$$\frac{1}{dv_0^2} = 4 k T R_g(\omega)Q(\omega)F(\omega)df$$
 (9.4)

If the input system has n_g times as much noise as Z_g (where n_g , the noise source factor, is > 1):

$$dv_0^2 = 4 k T R_g(\omega)Q(\omega) \left[F(\omega) + n_g(\omega) - 1\right] df$$
(9.5)

This gives (Fig. 9.2)

$$(\overline{v_o^2})_{\text{noise}} = 4 \text{ k T} \int_{\omega_1}^{\omega_2} R_g Q F_{\text{eff}} df$$

$$= 4 \text{ k T} R_g Q_{\text{ref}} (F_{\text{eff}})_{\text{av}} B \qquad (9.6)$$

Fig. 9.2.

where

$$B = \int_{f_1}^{f_2} \frac{Q}{Q_{ref}} df$$

$$F_{av} = \frac{1}{B} \int_{f_1}^{f_2} F \frac{Q}{Q_{ref}} df$$
(9.7)

Minimum detectable signal

$$\frac{(\overline{v_o^2})}{(\overline{v_o^2})}_{\text{noise}} = \frac{Q(\overline{v_g^2})}{(\overline{v_o^2})}_{\text{noise}} \geqslant \min.(\frac{S}{N})_{\text{output}} = N$$
 (9.8)

The minimum signal to noise ratio at the output depends on the detection method, the equipment etc ...

Radar signal

Fig. 9.3

From (2.12) the power density incident on the target is

$$W_{i} = \frac{\left|\overline{E_{i}}\right|^{2}}{2R_{CO}} = \frac{\theta_{tr}}{4\pi D^{2}} G \qquad (9.9)$$

where G is the gain (D η) of the antenna. The power scattered in a solid angle d Ω is (Fig. 9.3)

$$\hat{V} = W_i \sigma_{rad} \frac{d\Omega}{4\pi}$$
 (9.10)

The solid angle of concern is, from (7.8),

$$d\Omega = \frac{S_{eff}}{D^2} = \frac{1}{4\pi D^2} G \lambda^2 M P$$
 (9.11)

Therefore

$$\mathbf{P}_{\text{rec}} = \frac{G^2 \lambda^2}{64\pi^3 D^4} \sigma_{\text{rad}} \text{ MP } \mathbf{P}_{\text{tr}}$$

$$= \frac{\left| \overline{v_g^2} \right|}{4R_g}$$
(9.12)

Radar equation

Averaged over all frequencies:

$$\mathcal{P}_{\text{rec}} = \frac{G^2 \lambda^2}{64\pi^3 D^4} \sigma_{\text{rad}} \text{ M P } \mathcal{P}_{\text{tr}} \rangle \text{ k T B F}_{\text{eff}} \text{ N}$$
(9.13)

Bibliography

The literature on antennas is extensive. On an elementary level:
1. D.J.W.Sjobbema, "Aerials", Philips paperbacks, 1963.

On a more professional level:

- 2. R.E. Collin and F.J. Zucker, "Antenna Theory", Mc Graw Hill, 1969.
- 3. R.E. Collin, "Antennas and Radiowave Propagation", Mc Graw Hill, 1985.
- 4. S. Drabovitch et C. Ancona, "Antennes: applications", Masson, 1978.
- 5. H. Jasik, "Antenna Engineering Handbook", Mc Graw Hill, 1961.
- 6. E.C. Jordan and K.G. Balmain, "Electromagnetic Waves and Radiating Systems", Prentice Hall, 1968.
- 7. J.D. Kraus, "Antennas", Mc Graw Hill, 1950.
- 8. E. Roubine et J.C. Bolomey, "Antennes: Introduction générale", Masson, 1978.
- 9. A.W. Rudge et. al., "The Handbook of Antenna Design", Peter Peregrinus, 1982.

List of symbols

```
= magnetic potential (T m)
   = magnetic induction (T)
   = (\epsilon_0 \mu_0)^{-0.5} = 3.10<sup>8</sup> = velocity of light in vacuum (m s<sup>-1</sup>)
\bar{d} = electric induction (C m<sup>-2</sup>)
\bar{e} = electric field (V m<sup>-1</sup>)
\overline{e}_a = \text{impressed electric field } (\text{V m}^{-1})
\vec{e}_i, \vec{h}_i = incident fields
\overline{h} = magnetic field (A m<sup>-1</sup>)
\bar{j} = volume current density (A m<sup>-2</sup>)
\bar{j}_{a} = applied volume current density (A m<sup>-2</sup>)
\overline{j}_s = surface current density (A m<sup>-1</sup>)
k_{C} = \frac{\omega}{c} = \frac{2\pi}{\lambda} = \text{wave number in vacuum } (m^{-1})
\overline{u}_a = unit vector in direction <u>a</u>
D = directivity (dimensionless)
\overline{F} = radiation vector (V)
G = gain of an antenna (dimensionless)
  = current (A)
   = mismatch factor (dimensionless)
P = polarization factor (dimensionless)
\vec{P}_{e} = electric dipole moment (C m)
\overline{P}_{m} = magnetic dipole moment (A m<sup>2</sup>)
R = distance to the origin (m)
R_{CO} = (\mu_{C}/\epsilon_{C})^{0.5} = 120\pi = \text{characteristic resistance of vacuum } (\Omega)
S_{eff} = effective cross-section of an antenna (m<sup>2</sup>)
W = electromagnetic energy density (j m<sup>-3</sup>)
Z_a = R_a + jX_a = antenna impedance (\Omega)
Z_T = a load impedance (\Omega)
\mathcal{E} = electromagnetic energy (J)
```

