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I. Introduction

In recent years a considerable amount of interest has been
devoted by the alectromagnetic couwmunity to the application of
the moment method [1] for sclutien of boundary value problems.
The principle reason for the attraction towards thie numerical
matrix approach is the tremendous versatility it offers in being
able to treat structureg of arbitrary configurations. Thus,
problems wkich were hitherts uncractable by classical approacheas,
such as the separation of variables method, are now routinely
handled, a# evidenced by the steady atream of papers uging Wmoment
methode which now appear regularly in the literature. Besides
its flexibility, the moment method hae cthe advantage that it ig
conceptually simple and frow apn spplications viewpoint 1is devoid
of complicated mathematica; thus, this approach is readily usable
by & large group of the elactricsl englneering community. It
18 thercfore not difficult to envision the moment method hecoming
even more popular and, inm the future, consticuting one of the most

important tools for apalysis of electromagnetic problems.

At its Inceptien, the woment method was developad primarily

for the researcher [1].' As a consequence, emphasis was placed
on formalisms based on concepts from the theory of linear vector
spaces, with the ressults that it is beyond the scope of most
undergraduate electrical enginaering curriculums, Because of
ite numerous advantages which have induced its rapid adoption
by applications engineers in the fiald, the need to incorporate
it in an undergraduate electromagnetics course ia gradually
becoming evident. In fact, one recent undergraduate electro-
magneticea textbook [2] devotes two chapters to the treatment of
oloctrasfltics problems by matrix methods. While the advanced
tesearchar finds the formal development of moment method through
linsar vector gpace theory straightforward, most undergraduate
and beginning graduate students at present educational levels
find the traneiclon swkward. Specifically, no pedagogical
Slgorithm exists to help the student to relate the procedures
of the mowent wuthod to sither his intuition or former training.
In this papar, a technique for presenting the mowent method
in elsmentary terma is developed. The vehicle employed is the
electrostatice problem of determining the charge distribution
on s thin wire held ar a constant potenctial. The only prerequi-
éltes necessary axe slsmencery physice and calculus concepts.
The formalisms of this development will be seen to evolve from
familiar basic integracfon and circuit ideas. The experiences
of the Electrical Enginearing Faculty atr the University of
Mississippi with this teaching experiment will be reported.

Finally, a number of other sasple problems Are also supplied,



1I1. The Static Charge Diatribution on a Constant Potential
Thin Wire

The ideas of the moment method will be introduced at an ele-
mentary level in thig section through the example statices problem
of determining the charge distributiop on a conetant potential
wire. Usually, a beginning undergraduate electromagnetics field
courgse starts by estsablishing electrostatics concepts. The notions
of charge distributions, p{r'), giving rise to potentials #(T) from

which fields may be determined should already be familiar. Thus,
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where €, is the parmitivity of free space, £' i distance measurad
along the line mource, T = (x,y,2) denotes the obzarvation coordi-

nates, and r' = (x',y',z'} denotes the sourcs coordinates with
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and the geometry is aa depicted in FPig. 1. Typical uses of this
relationship are, for C!Inpl;, determining potentials and then
fieldes from an infinitely long line charge or & circular loop,
on which the charge distribution is conastant. The inguisitive
student, however, may queation the usefulness of thess idealized
problems; specifically, how in practice does one establish a

constant charge distribution. 1f a battery is connectad to =&

wire does the resulting charge aasume a constant distribution?

The question may thua be posed of how does one actually determine
what the charge distribution ie in a practical problem. Hence,
the stage is sat for the introducticon of moment methods through
which a myriad of problems may be solved.

Consider a finite length, straight, conducting thin wire of
radiua, s, situated in free space to which a constant potential
of one volt is applied, [3], as 1llustrated in FPig. 2. Because
the wire 1s conducting, charges are free to move, eventually
redistributing themselveg in some final manner., If we know the
charge distribution, then Eq. 1 may be used to compute the poten~-
tial everywhera. However, it is precisely this charge distribu-
tion which is the unknown to be solved for in this problem. Let
ua therefors seek an alternative interpretation to Eq. 1 where
the right-hand side for this problems is unknown and the left-
hand side, ¢, 1is known. Since the potential everywhere 18 governed
by Eq. 1, lat the observation point now fall on the wire where
Eq. 1 remaing valid. Hers the applied potential, which Lis known,
constrains ¢ (r on wire) to be exactly one volt, hence Eq. 1

reduces to

L/2

for =L/2< y <L/2 where r+y, t'+y', dt'+dy', and R+{y-y'). To
reiterate, whatever the form of the unknown charge distribution

Pﬁy'). it must satisfy Bgq. 2, or, aquivalently, it needs to cause



the potential obse{vad anywhere on the wire to be exactly one
volt. Equation 2 thus constitutes an integralroquation which
needs to be solved in order to determine p(y') on the wire.
Let us next eeek & numerical solution to this problem.
Since Eq. 2 appliss for obmervetion points anywhere along the
wire, 1t can be specialized to a fixed point Y 4o shown 1in

Fig. 3 with the result

L/2
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Because ¥ i@ constant, the integrand becomes & function of y'
only. Our task ie now the detersination of this functional
dependence. Before proceeding furcher let us recall a familiar
concept from integral calculus., The integral of a function, f(y),
may be regarded as the sum of the aAreas under rectangular strips,
each height of which equals tha mean of f(y) ovar that s}rip. as

1llustrated in Pig. 4. (Tha mssence of numerical integration).

Specifically,

L/2
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+ f(yn)Ay' +. . . f(yu)ﬁy'
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Eéuutinn 4 applies, of course, when £f(y') is a known function
but just as importencly it applies even when f(y') 1s an unknown,
if we interpret integrals as merely giving the ares under &
curve. Hencs, from this fancerpretation of tha integral, Eq, 3

may be racast into the fora
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Therefore, the wire has baen divided up into N segments all of

length A& as illustrated iy Fig. 5. Over each small segaent, we

can now regacd the charge se constant, Po+ The idea 1s that once

thase unknown constants, pn'a, are determined then the charge
diltributipn over the wire will be apecified. Since the pn's
are fres to very, we have not comaitted the sin of assuming the
charge discribucion to be & constant over the entire length of
the wira. In addition, if we needed a more accurate representa-
tion of the uvakpown p(y'), then & finer divieion of segments,
or & larger N, can always be umsad.

Up to this point, we have obtained an equation in Earnn of
H upknown constants. This was accomplished by selaecting only
one obaervation point, Yyo (or match point) somewhere on the wire.
From backgrounds in circuite, f¢ is realized that 1if s solution
for theea N constante is to follow, then N linearly independent
equations sre required. Bven though a epecific ¥, wase used as
our match point, any other point on the wire can do just as well.
Towarda that end let us simply choose, for convenience, additional

observation points on the wire ag¢ depicted in Fig. 6. The match



points y, (unprimed coordinates) are now simply placed in the

center of the original A's into which the source hag been divided

(primed coordinates).

locations successively,one obtains

Applying then Eg.
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This result then constitutes the N linear egquations which need

to be golved for the N unknown constants pn.

The analogy of this system of equations to circuit concepts

is obvious and we may write it more succinctly in matrix notation as
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or in "moment method" notation [1] as
[t ) 18] = o) (8)
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It can now be concluded that once the matrix equation is solved

.by any of the several standard inversion or equation solution

schemes on a digital computar, the desired charge distribution
p(y') will be known in descrete form, pn'u (L.e., Eu'- of Eq. 8).
To recaplitulate, the solution of the integral equation in
Eq. 2 for the charge distribution on a wire at & constant potential
has been accomplished first by dividing the wire into constant
charge segments and then by succesaively enforcing Eq. 2 at the
canters of these segments. However, the fact that we chose for
convenience match pointes at the centers of the source segments

does present & problem. The aatute student will observe that
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vhen the match point index coincides with the source summacion
index in any ona equation of Eq. 5; l.e., match point aquals
source polnt or yk-y;. the denominator |yk~y;[¢0 renders a
singular matrix slement. (This happens for every diagopal
element in Eq. 7). That this anomoly necessarily cccurs due

to the approximations used will bs avident from a more detailed
examination. Im order for 2q. 5 to be an exact squality, N must
approach ®=. Furthermore, aven for N finite and large the form
of Eq. 5 strictly epeaking yields the potential from a collaction
of ¥ weighted point charges, as illuscrated in Fig. 7. It is
therefore not suprising that we encounter s eingularity when

the diagonal term is ecught beceauss we have really approximated
the continuous wire as a collection of point charges which is
related to wimply the potential due to a point charge observed
at the charge 1tself.

Evidently, a more elaborate cresatment is nesded for the
diagonal terms or cthe potential cpntribution due to a segment
of charge iteelf (the previous treatment has besn found to be
sufficiently accurate for mutual or non-diagonal terme in most
problems) [3].

The wire gaometry originally depicted in Pig. 2 shows a
finite radiva a. The fact thet the wire is highly conducting
will cause the pocential to be uniformly unity throughout the
wire, including on its sxis, and, furthermore, causs the resulting

charge distribution to he & uniform surface charge diatribution

p, over the wire surface., This ab-Ervation ¢can now be used to

compute the self or diagonal terms of the coefficient matrix.

With the aid of Fig. 8, the salf term may be interpreted as the
potential due to a uniform tube of surface charge Pgs 8t the

center of the tuba. Hence,

x Al2
1 L dedy’
% (Tube center) = ATE (%)
0 v 2 2
o -aj2 %t

]

293(2!:)

iy tn(b/a),

1f the surface charge on the tube 1s normalized to a line charge,

i.e,, Zuap.-p!. the desired diagonal term {when m=n) is

‘nn = 2 ta(Ala) . (10)
It one racalles from Eq. 7 that for mén, Lnn--———ﬁ—-— , the final
lyg-v.l

matrix -qua:ionl representing this problem becomea

1

lknch coefficient tan be interpreted as the normalized potential
at a match point due to a charge gource on the nth segment. Hence,
the basic sub-problem in this type numerical approach can be de-
fined in terms of the distance measured in reference to a coordi-

nate.systen localized on the n® source which greatly facilitates

the computation of matrix coefficients.

10
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The solution of Eq. 11 may be cbtained by standard matrix
solution methode. With some guidance, the program logic neesded
is well within the ability of the typical undergraduate having a
basic knowledge of computer programming.

In its eimplest form, this problem reduces to the computation
of the individual elements of the coefficeint matrix of Eq. 8, and,
therefore, Eq. 11. The numerical valus of thess elements can read-

1ly be determined as

2¢n{d/a) ; m=n

tn ” (12)
s 1 ; mén

{m-n]

if one recognizes from the geometry of the problem that

11

(11)

|y.-yn] « A|m-n]. The generation of & number array for the
related l.“ terms of the coefficient matrix facilitates the
computer solution of BEq. 11 using matrix inversion or other
sclution routines for systems of linear equations.

The matrix equation for this problem has been solved using
a matrix inversion program, and the results for a sample case
where the wire length is 1 meter and the radius is 1 millimeter .
ars presented Fig. 9 r twenty wire gpegmwents (i.e., a 20 x 20
natrixj. As can be seen, the charge distribution on the constant
potential wire i¢ hardly constant, and it exhibita the character-
istic singularity at the ends of the wire. Thie finding together
now with some qualitative explanations from the repelling charge
viewpoint can hopefully reward the student for his diligence in
undertaking tha study of this problem. A more accurate pregenta-
the line charge dansity for this problem ie presented in
T 40 unknowns (40 x 40 matrix) which through comparison
Pig. 9 depicts the convergence of this approximaete solution

method.

III. Resulcs
‘ Our formal experience with undergraduates solving the static
vire moment method problem has been over a period of 5 years:
three-times in the beginning undergraduate fields course, and
twice ina problems oriented laborsteory course. The student's
prepatation and background ia roughly that on static fields in
Hayt's electromagnetic filelds text [4], before the introduction
to time varying fields.

For the muost part, the studente are

second semegter juniors in a 4-yrar academic program in electrical

12




engineering. On the average, the response has been quite good,
with at leagt B0F of the class being successful in cbtaining

the correct solution. This wae true regardlesa of how the pro-
blem was assigned, i.e., required, optionsl, and for extra cred-
1t (wicth all methods having been tried). Perhaps this is another
instance of the "Hawthorme Uncertainty Principle” as applied to
engineering educetion {5), where 1f the students know they are
being given some new instruction material on an experimental
basla, that fact in itself provides motivation for them to coap-
erate,

Typical conments offered by srudente have been favorabls.
COnplainta_hlve mostly been associated with progracaing errors,
and the uaual complaints heard relate to the Computer Center's
migtreatment of one's program. Several students have algo
elected to continue on to more sophiaticated problems in & later
senior deaign courae, involving significantly more complex geou-

“etries., Some of these type problems are coverad in the following

examples.

Wire-Type Examplen

There are numerous alectrostatic problems of the wire-type
which can be solved with relative eass once the basic approach

has been mastered. Once such extension of the straight wire pro-

blem of the previouas section is che bent-wire prohlam shown ip
Fig. 11. The mathematical formulation of this problem 1a the

same as that of the straight wire problem az stated in Eq. 1;
however, the distance between source point and field point, R,

does not reduce to a simple length, y-y', in going from wire

13
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