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It has been seen that if one wants to transmit one of a set
aof M known signals { sil{t) } over the AWGN channel, it is
equivalent to represent the M signals as points { si } in an N-
dimensional space and that the relevant components of the noise
are also confined to this very same N-dimensional space. Thus, the

density function of the noise is given by
~ia,
Pa(u) = (1/F Nob.expi-ful® /No}

By use of the hypothesis testind. specifically the Bayes
criterion, the optimum receiver divides the signal space intoc a

set of M disjoint decision regions { Ii }. So a € Ik iff
v 2
la - skl - No.1ln P(mk) ¢ |a - Bi|] - No.1ln P(mi) for all izk {1}

and the receiver puts out f if mk € Ik. It is noticed that the
probability of error is independent of the orthonormal functions
and it is unaffected by translation and rotation of the
coordinates. In genseral, a constraint on the signal energy is

.placed upon. So the average energy of the signal points is

n-1 Ny .
Em = L. P(mi).Ei = L.P{mi).|sil
20 (Y-
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and the peak energy is

Ep = max { Ei }

Although the probability of error is not affected by
translation and rotation it is wise to place the coordinate system
on the centroid, or center of gravity, of the signal space
constellation such that the average or peak energy are minimum.

The geometric characterization of the signal space is very
interesting and worthwhile in determiningd the performance of
communication systems. Eventhough this characterizetion is
important only a few constellations do provide ways of finding
explicitly its solutions without using numerical methods.

We are going to take into consideration those signal sets
which allow us to derive exactly the probability of error (symbol
and or bit). These signal eets are essentially those with multi
amplitude and/or phase modulation and multi phase modulation.

Let us start by considering the rectangular signal sets.
Here, the easisest one is the binary case, that is, there are only
two signal pointe ip the constellation. The two possible

arrangements are shown below
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Fig. 1 - a) Antipodal signals; b} Orthogonal signals.



Assuming the signals are equally likely and the channel is
the AWGN one, from (1), we have that the optimum decision regions

are determined by
‘L
win { | g - §i | - No.1n Plmi) } (2)
[N
Since the signals are equally likely, then (2) becomes

. -
min { | & - s5i |}
L

For the case of Fig. 1 a), the locus of all points a equally
distant from so and sl is the exes 02. Thus an error occurs if sl
is transmitted and it is decided for so, that is, the noise

component nl exceeds d/2. Thus,
Ple/ml] = P[ & € Io/ml] = Pl nl > d/2)
where
[ -]
k) R
d = S {soflt} - sl{t)) dt
[}

but ni is a zero mean Gaussian random variable with variance No/2Z,

and so
o
Ple/ml] = ] J(1/7 NoY. exp{-ut /No}du
dfs.
Let b = aJ(Z/No). Thus

It

Ple/ml] = ] (1/27 ). exp{-b /2}db = Qrd A2 8o}

L >y

By symmetry, Ple/mo} = Ple/ml]l. So

Ple) = L. Ple/mi).PImil = Ple/ml) = @(d/{Z No) )
3

For the case of Fig. ! a}, we have that the length of the

vector g0 or sl is JEs , and thus, d = Z.JES.

Finally, the antipodal signals have Ple) given by
Plel = Qi(J2.Es/No )

Following the same steps as before, for the case of Fig. 1 b)
{orthodgonal - signals), the average probability of error is also
Ple) = @¢ dA(2.No} ). However, the distance d =+ 2.Es, and so the

orthogonal gignals have Ple] given by
Plel = Qi{JEs/No )

which is 3 dB worse than the antipodal case.

In this way, we have that the optimum decision boundaries for
rectangular signal sets is always rectangular (assuming equally
likely signals).

Now, suppose the signal space constellation is the 8-QAM,

eight signal points in quadrature amplitude modulation, as shown

below ‘¢z
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Fig. 2 - Siganl space for B-QAM

Note that we have two sets of four identical decision
redions, that is, et 1 consists of regions So, S3, S4, and 57,

and set 2 consists of regions S1, 82, S5, and S6.



For each region of the set 1, we have

dlz, die
PIC/mo] = 1 Pa(uddu. S paluddu = (1-p}
et -

where p = Q{ d&2.No) ).

For each region of the set Z, we have

s Az
P{C/ml] = L Ppluldu. S B, (uidu
“He 4o -= -de a2
= { ‘ p {u)du - g pliuidu }]pﬂ(u)du
] gy -

{{1-p) - p}.(1-p} = (1-2p). (1-p}
Therefore,
H
PIC) = (4/8).(1-p) + {4/8).(1-2p).{1-p}

For the case of 16-QAM shown below, we have that there are 3
sets of 4, 8, and 4 equal decision regions. Set 1 consists of So,
53, 5S12, and S15, set 2 consists of 51, 82, S4, 87, 58, S11, 513,

S14, and set 3 of 55, S6, S9, and 510.
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Fig. 3 - Sidnal points of the 16-QAM

Far set 1, we have

die Le
PIC/m12) = ] paluldu } paluddu = (1-p)
oo N
For set 2, we have
diz dlz
PI[C/m14] = ] Pwniulddu j pafuldu = (1-p).(1-2p}
- ~dje
For set 3, we have
dfs dfy
PIC/m10) = S ppfuldu I paluddu = (i-2p)
-y R
Therefore,

1 L
PIC] = (4/16).(1-p) + (8/16).(1-2p).(1-p) + (4/16). (1-2p)

The next case is the set of signals lying on the vertices of

a hypercube centered on the origin such that the number of signal
N

points ia M = 2
Let si be represented by

N
si = (sil, si2, ..... siNY, 0 < i £2 -1

where sij = +d/2 or -d/2 for all i,J. In order to evaluate the

probability of error, assume that
sa & ( -as2, -ds2, ..., -d/2)
is transmitted. Assume that no error is made if
nj < d/2 for all 4 =1, 2, ...., N (3)

where r = a is received, the j-th component of & - gi is



nj , if si3 = -d/2
(aj -~ sigj) =

nj - d, if sij = +d/2

Equation (3) implies that d - nj > nj for all j. As =a
consequence, we have that

% 2
la-s5il >1a-sol , for all si # so {4)

On the other hand, an error is made if for at least one j,

nj > d/2 (5)
From (4} and (5), we conclude that a correct decision is made

iff (3) is satisfied. Therefore, given that m¢c was transmitted,

then
PIC/mo]l = P{ all nj < d/2, i =1,2,....,N1
] @
=l Pl nj<dr2 )y = {1 - P (uddu }
Jat d".
= (l-pﬂ

where p = Qf d/(Z.Noﬂh). From symmetry,
H
PI[C] = PI[C/mo} = (1-p)

Teking into consideration the signal energy, we have that

a
lsi [ = t a*/4 = N.a*/4 = s

int
and so d :j(4.Es/No). Thus, p = Q(JZ.Es/N.No Y.
When N = 1 and 2, we obtain the same result as before, that
is, for the casea of antipodal and orthogonal signals,

respectively.
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The case where the signals in the signal sets have all the
same energdy and egually spaced in phase (PSK), all values of M but
M =2 and 4 lead to numerical integration. It can be shown that

for M - ary PS5K the symbol error probability is given by
iifry
Pg = 1 ~ ] pluldu
~Thhq

where

plu) = (1/2% Jexp(-vi{ 1 +J(4.?.v)cos(u).exp!v.coé‘(u)).atuﬂ

with Ly T ook W

Al =Jr1/2m). expl{ -y */2)1dy

and v = a® Es/No.
Below, it is shown some constellations with 2, 4, and 8

signal points,
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Fig. 4 - 2, 4, and B-ary PSK

The mapping from the k information bits to the signal points
in the constellation follows the Gray encoding. This encoding

procedure 1is interestind since it allows correcting one bit error



for high signal to noise ratio. Under this assumption, the noise
components will eventually take the transmitted gignal to its
neighboring decision regions.

Finally, to determine the error rate for the M-ary FAM case
it is only a matter of applying the same procedure as was done in
the rectangular signal sat case.

In the Case Study, we are going to take up this topic again
by considering the independent coding and modulation case as well
as the combined coding and modulation aspects of power and

bandwidth efficient techniques for digital communication systems.



