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CODING: BLOCK AND CONVOLUTIONAL CODES
by

Redinaldo Palazzo Jr. (%)

1 - Introduction

It is known that when using orthogonal signaling waveforms
one can make the probability of error arbitrarily small just by
allawing M to grow. This is equivalent to allow the number of
waveforms to grow. However, this implies that the bandwidth is
also increasing. Here, we have the gituation where coded waveform
takes place since in general the same performance is obtained as
in the orthogonal cases but with less bandwidth expenditure.

The model of a digital communications system where the

channel encodind and decoding is included is shown in Fig. 1.

[ Source f{ﬁEncodar f—u{Modulator}———_____

I ChaéEEI]
I Sink H DecodarH Demodulator J___

Fig. 1 - Model of a Digital Communications system

He are going to consider two types of encoding. The first one
is related to block encoding whereas the second one with

convolutional encoding.

{x) - FEE-UNICAMP, Dept Telematica, P.0.Box 6101, 13081 Campinas,
SP, Brazil.
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By a block encoding we mean that every block of k information
bits are encoded into correspondind blocks of n bits where n > k.
Since we are going to assume that the Galois field is of order
two, GF(2), then the number of codewords is M = 2 . The rate is
then given by r = k/n.

By a convolutional encoding we mean that the code is a
convolutional one whose encoder canh be viewed as a linear finite
state machine with an output sequence consisting of a selected set
of linear combinations of the input seguence. The number of output
bits from the shift-register for eech input bit gives the amount
of redundancy in the code. The rate is defined as r = k/n, where k
information bits are shifted at a time resulting in n encoded bits
as output.

The output of the encoder is fed into & modulator for proper
processing reagrding the ohannel characteristics. The binary
digits from the encoder output are mapped into elementary
gignaling waveforms. Usually binary PSK and FSK are the
modulations employed. The channel is essentially an additive one
whose noise is white Gaussian.

The output of the channel is then processed by a demodulator
which consists basically of matched filters to the signal waveform
correaponding to eachtransmitted bit. The demodulator output may
or may not be quantized. When quantized, it is sampled at a rate
1/T, where T 1is the duration of the signal waveform. It the
quantization levels are equal to 2, then one says that a hard-
decison is taking place. If the decocder uses the hard-decison bits

to recover the information bits then ons says that the decoding

process is a hard-decision decoding.



On the other bhand, if no quantization takes place at the
demodulator and the decoder opereate. on this analog output to
recover the informatich sequence them one says that the decoding
process is a soft-decision decoding. When the output of the
demodulator is quantized to K ievels, ths combination modulator-
channel-demodulator is a discrete-time, deiscrete-amplitude
ghannel with input {0,1} and output {0.1,2,....,K}. OUnder the
assumption that the channel.is the AWGN the resulting channel is a
discrete memoryless channel, DMC.

When K = 2, the channel results in a binary input binary
output channel with transition probabilities P(0/1) and P{1/0) and
probabilitiss of correct reception P(0/0} and P(1/1}. For the
binary PSK and FSK we have that P(0/i) = P{1/0) = p and P(0O/0) =
P{1/1) = 1-p. Then the channel is symmetric and it is called
binary symmetric channel, BSC.

When K > 2 and the modulator uses binary PSK and FSK the
resulting channel is termed binary input output symmetric channel.
In this case, the decodingd process is also termed soft-decision
decoding.

For g-ary input, we have that if K = q, then we have a g-ary
input and g-ary output channel and the decoding process is termed
a hard-decision decoding. If K > g, then the channel is a DMC and

the decoding process is termed soft-decision decoding.
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2 - LINEAR BLOCK CODES

A linear block code is characterized by having all codewords
with the same length, say n, and that the closure property holds
for the operation being used.

A codeword is represented as a vector whose elements are
selected from an alphabet with q elements. When q = 2, we say that
the code is a binary linear block code. When q > 2, we say that
the code is a nonbinary linear block code. Therafore, for a binary
linear block code to be uniquely decodable it has to have at least

2“

codewords for blocks of k information bits. This assures that
there is & one-to-one correspondence between the codewords and the
blocks of information bits. On the other hand, since the codeword
has block length n, then there are 2" possible codewords in the
code. Only 2% of them are going to be selected. How to select them
is of great concern to Coding Theory.

From the analogy to the signal design problem one can readily
conclude that the 2% codewords must be as farther apart as
possible from each other.

The measure employed in this selection procedure is the
Hamming distance. This distance is defined as the number of rlaces
where the two codewords differ. For instance, if u = (0,1,0,1) and
v = {1,0,1,1}, then the Hamming distance between u and v is equal
to 3, mince the first three elements of u and v are distinct.

The gsamllest Hamming distance among the 2 codewords is
called the minimum Hamming distence of the code and it is denoted

by d Ancother related measure is the Hamming weight. It is=

win -

defined as the number of elements not equal to zero of a



codeword.. Thus, the Hamming weight of u and v are 2, and 3
respectively.

Going e little bit deeper into linear block codes concepts,
we are going to deal with elementary concepts of Linear Algebra,
particularly with the concept of a Vector Space.

First of all, the codewords are going to be viewed as vectors
in an n-dimensional space. Therefore, the set of all n-tuples form
a vector space V. So, if we select k < n linearly independent
vectors, the resulting set form a subspace W of dimension k of the
vector space Y. All the vectors in V which are orthogonal to the
vectors of W form the null space of W, whioch is denoted by NW. The
dimension of NW is n-k.

Therefore, the (n,k) linear block code is a set of 2% n-
tuples called codewords which forms a subspace over the field of 2
elements. Its null space is another linear block code with 2™ "
codevwords of block length n.

Following the convention that a codeword is represented by a
row vector, we have that u = {uml, umd, ...., umk) is an
information vector and ¥ = (vml, wvm2, ...., vmn) is a codeword.
Then the set of k linear equations is representsed in matrix form

as
¥ = u.G

where G is the generator matrix of the code (subspacel,.

The generator matrix G is then given by

G = g1 = gll1 giz ...... gln
g2 821 g22 ...... €2n
fk gkl @gk2 ...... &kn

Thus, any codeword is a linear combination of the vectors
{gi} of G which form the besis for the (n,k) code.
A generator matrix which can be reduced by row operations and

column permutations to the "echelon” form

G=1L1I,: P = 1 0..... 0 pll pl2 ...... pln-k
o 1 ..... 0 p21 p22 ...... pZn-k
o 0 ..... 1 pkl pk2 ...... pkn-k

is said to be a generator matrix of a systematic code since the k
information bits are present in the encoded output. When a
generator matrix ocan not be reduced to the “echelon” form the code
is said to be a nonsystematic one. The (n-k) redundant bits are
called parity-check bits.

Sinve G is the generator matrix of the coda, the null space
of this code has alsc s generator maﬁrix which is denoted by H.

Then, we have that
G.H' =0

as it should be and where ’ means transpose. Note that G and H are
k x n and {n-k) x n matrices. If G is in the “echelon” form the

parity-check matrix H is given by

H=10 -P" : Iy )



where the negative sign may be dropped for binary codes.

Example: Consider the (7,4) code with generator matrix

G =11000101
0100111
00101190
0o00t1t01!

then the H' matrix is diven by
H = 101
111
110
o 11
100
01 0
001

There are many classes of linear block codes which suit
several interesting applications. Amond them, we mention a few

which are the relevant ones.

HAMMING CODES - These codes have the following property

ZH\
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k=2-m-1

d =3

where m > 2. For m = 2, we haven = 3, k = 1, d = 3, and the code
is the repetion code { 000, 111 }. The special property that these
codes present 1is that the parity check matrix H can be easily
described. Remember that H is an (n-k) x n matrix so that n = 2"-1
columns consist of all possible binary vectors with n-k = m
elements but the all zero vector.

For instance the (7,4) Hamming code has as its H matrix

H=10001111
0110011
1010101

Note that no two columns of H are linearly dependent. However, for
m greater than 1, it is possible to find 3 columns of H which add
to 2zero. Thus, the minimum distance is 3.

To obtain the generator matrix from H is a simple matter: 1)
first find H’; 2) the lest n-k rows have to be the identity
matrix; 3) the k first rows form the P matrix of G, 4) remains to

include the I identity matrix.

HADAMARD CODES - A Hadsmard code i8 obtained by selecting the
rows of a Hadamard matrix. A Hadamard matrix is an n x n matrix of
+1 and -1 with the property that any row differs from any other

row in exactly n/2 positions. Thus,

HZ = |1 1 H4 = |1
1 -1 1

and in general
H2n = Hn Hn

Hn -Hn

Letting +1 == 0 and -1-—+ 1, we obtain the Hj matrices with
slements zeros and ones.

Therefore, for Hadamard codes with block length n, the number
of codewords is 2n and minimum distance n/2. In general, a

Badamard code has the following property



n = 2'“

=
1]

log 2n = m + 1
n/2 = 2™

n

when m is a positive integer. When n # 2“‘. Hadamard codes do

exist but they are nonlinear.

GOLAY CODE - The Golay code is a binary linear (23, 12) code
with d = 7. The extended Golay code can be obtained by adding an
overall parity to the (23, 12) code resulting in the (24, 12) code
with d = B.

The Golay code (23, 12) can be genarated by the generator

polynomial gi(x) = x" + xq + x’ + x‘ + x‘ + x + 1.

HEW SHORT CONSTRAINT LENGTH CONVOLUTIONAL CODES DERIVED FROM

A NETWORK FLOW APPROACH

1 - Introduction

A great deal of research into finding good convolutional codes
suitable for source and channel coding problems hae been conducted, since
convolutional codes have better performance than linear block codes when
used with Viterbi decoding or eequential decoding techniques, Despite
Forney's effort [l], in establishing an algebraic structure to the encoding
ptoblem of convolutional codes, it seems that little i{s knoun sbout it. In
view of the difficulty iIn achieving this goal, many researchers have
proposed interesting algorithms [2]-[10]. based upon a selection criterion
sud a computer aided search which led to the determination of good sys-
tematic and nonsystematic convolutional codes with long constraint length

but limited to a small number of dimensionless rate values.

In this paper a new approach will be presented. It also uses a
selection criterion, lowest bit error probability, together with s search.
The class of codes gearched is reduced substantially by imposing the
properties of maximum flow and conservation of flow, The association of
maximum flow (branch codewords generated by submatrices with maximum Hlamming
weight) and conservation of flow {lovest maximum eigenvalue), for a given
constraint length K (number of shift-registers) and rate r =b/n with b and n
integers, are the properties that optimum nonsystematic time invariant
convolutional codes satisfy, These properties are based on the stability
property when transfer function equations of convolutional codes are

formulated as a comntrol type of problem,
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These properties allow determination of good convolutional codes
{most of them by hand calculation) for short constraint length and any rate

r =b/n, Thus, we are able to find good codes for a large range of rates,

2 - Review of Linear Dynamical Discrete Time Systems

The purpose of this section is to reviev gome basic concepts of
linear dynamical discrete time systems, [11]-[12], which characterize the

behavior and structure of linear trellis codes.

gince the transfer function egquations can be interpreted as a
linear discrete-time system, we consider a general linear discrete-time

system degcribed by linear state difference equations of the form,
E(i +1) = A(DE(D) + B'(i)uli) (1)

and output equations

T(i) = H{YE(LD) + D(i)v{i) (2)

where i=0,1, 2, 3, «..s, E(i) is & state matrix with its elements repre-
senting intermediate states, uw(i) is a control input, T(i} is the output,
A(i) represents the transition matrix, B'(i) i» a control matrix, H{i) is
the output condition matrix, v(i) is the measurement error sequence, snd D{i)
is a measurement error matrix at time t(i)={i with elementu in the real

field,

The solution of the state difference equationa is piven by

i-1
E(L) = $(1, 0Bl « 1 U, §+ 1B (u()) d
=i,

W

i,41 (3

3.

where

sA(i~l)A(i-2)....A(io) , i3ige1

o(i, ig) = l (&)

1 ., imig

and E(io} is the initial state condition, From (3), the gteady state solu-

tion is

E() = o(i, i )E() (s)

Since we are primarily interested in the tipe invariant case, it
follows that A(i) = A for iy s isi-L Diagonalization of the matrix A is

sometimes useful, With this objective in mind, one can show that

(i~i_) (i-i) _
#(i, ig) =A _ =V.p oyl (6)
vhere @ is the diagonal matrix having the distinct eigenvalues, pj, of A as
its clements and V is the eigenvector wmatrix with its j-th row being the

components of the eigenvector vy forl1<j<n, [11]. Let E(io) =Eg» then

the solution of the state difference equations im given by

B 3 ; (i-i)
" j=1 °3 vi¥iFo N

where vy is the j-th row of V-l. Once we know the eigenvalves of the transi-

tion matrix A we are able to test the stability condition.

Pefinition 1 {[11]} : Let the state difference equation be E(i +1) =E(E(i),

u(i), i) with the nominal rolution Eo(io), then the nominal eolution is

gtable in the sense of Lyapunov 1f for any t, = t.. and any € 2 0 there
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exists a 6(c, t,) 20 such that [E(ig) - E,(ig)| <6 implies |E(1) - B (i) <

for all i 2i,.

Stdllity in the Lyapunov's sense simply means that the nominal
solution Eg(i,) is m continuous, convergent, and consequently bounded func-
tion with respect to the parameter D, a pairwise error probsbility. More
apecifically, Eo(io) is the sum of all path values, whare each path value is
given by the product of branch values belonging to each path. By s path, it
is weant a chain of branches linking an initial stete, e,, to an ending

state ey, {see Figure 1),

From Definition 1, the following Theorem establishes the stability

conditions for the system im consideration.

Theorem 2 {[11]} 1 The time invariant linear discrete time system
E{i +1) = A, E(i)
1 - is stable in the Lyapunov sense if and only 1f all eigenvalues of A have
moduli not greater than 1.

2 - is asymptotically stable {f and only if all sigenvalues of A have moduli

strictly less tham 1,

3 ~ is exponentially stable if and only if it is asymptotically stable.

Proof : ses [11].

1f for all j, ij] < 1, then the linear discrete time asystem is
stable. The equivalent correspondence to convolutional codes with the same

set of eigenvalues would be a noncatastrophic code, On the other hand, if

for et least one j, lpjl 2 1, then the linear discrete time system is
unstable, correspondingly, the specific convolutional code would be clas-

sified as catastrophic.

3 - Eigenvalue Problem

It is well known that convelutional codes can be represented by

tree, trellis or state diagrams, [13].

Consider a eplit etate disgram of a tipe invariant convolutional

code. The svolution in time of fre state is described by
E(1+1) = A, E(i) + B (8)

where E(i) is a column vector representing the transfer function from the
inftial state to the intermediate states at time i, A is the transition
matrix, and B is the colum vector representing the initial condition (see
Figure 1}. The response of this system, or equivalently, its transfer func-

tion, is given by
T(i) « n(d) . B(L) ' (9)

where H(i) is the row output matrix (see Figure 1), The solution of (B) is

) =@-a1s- ] .8 (10)
k=0

substituting (9} in (10), we have

T(i) = mG) § A*B an
k=0



6,

since we have a time invariant system, (11) becomes
T 1
1= ] mBena-0"B (12)
k=0

which is the steady state output equation.

Let F(g. i, s) be a partition of the class of convolutional
encoders when represented by its qplit state diagram with constraint length
¥ and rate reb/n such that b is a set of (2b -1)-dimengional initial
condition vector, ; is a set of (Zb -1)-dimensional output ronditiom vector,
and A is a finite set of transition matrices corresponding to each possible
tap connection between shift registers and module 2 adders for each fixed
value of b and b with ;i and Ei the Hamming distances for 1 <i 2 -1,

Figure 2, shows a partition 5(2, ;, 2).

The Cayley - Hamilton Theorem states that & transition matrix A

satisfies a characteristic polynomial P(p)
P(p) = det . (p.I = A)

vhere det . (+) means determinant, whose solution is the set of eigenvalues.
From this, we can find the associated eigenvectors, Thus, for each tran-

gition matrix, there exists a characteristic polynomial of the form

e e

®1 n-1 o
4+ Lees lln 4] + .ﬂn n (13}

P(p) =" + 8, _,Dp

where 0 <D <1, aj =% 1, and e; are linear combinations of integer valued

constants {accumulated branch Hamming distances along a path) inherent to

the structure of the convolutional encoder with 1 £ i £ n,

From section 1, we saw that equation (7) depends upon the
eigenvalues and mssociated eigenvectors, but as will be shown a few steps
ahead, by weakenning the upper bound, the final bit error bound wi)l depend
upon the eigenvalues alone, Therefore, we can compare performance of convo-
lutional codes being generated by encoders belonging to each partition

;(E. K, h) and their sets of eigenvalues,

From equations (6) and (12), we have

Te ] H.V,p“ .V .B (14)

vhere @ is an n x n diagonal matrix which we represent by p=diag. (P,

DZ.----, Dn)t

Let p . = nax{p;s Py, P3s sacey pn} andp . a nxn diagonal

matrix with value p_ . Define p « Prax 088 the term by term inequality,

Let us define # and B asa new 1 x (M- 1) output and a new

(M~1) x 1 input matrices with M the number of states, such that

En.l = mox {B}

(15)
“l,n - max {H }, for all n.

when at least one element of the matrix B or H is zero, otherwise H and B

are unchanged.

Let us append to each transition in the split state diagram that

was originated by the information digit "I" by z. Equatioun (12) with the

above definitions becomes

T(z) = k{ H(z) . A%(z) . B(2) (16)
-0



The bit error probability is known to be given by

?, € (1/26) [9/4z]T(x)

z~]

Thus, taking derivative of (16) with respect to z

B, € (U @ - AN B ¢ B - AN @ ¢

+ ) . (1 -AG) TN ) (1= A2)) 1B ()} a”n
- -

where H'(z) = [d/dz]H(z). Since H'(x) = 0, (17) becomes

P, < (1/2b) {E HA¥E + T3 fakatadd )
b k=0 kZO j)-:o - as

Substituting (6) and P by Prax in (18) and ohserving that this
condition still holds for A' » [d/dz]A(x), then

P s(uzb){.{. fov.pt.vl B 5 Y 5.vek.vt S R TS B~
b [ B+ § H,¥p .V .¥p.V", .
Ko . jzo (2 i3 vp' .V . B}

h
Let Hy , = max{i) = D", or B_ ; « max(s) = P" for all 1 ¢ n € -1,
Substituting this condition in (19), we have

py € (1/20) [P0 - g 0% (20)

Before establishing some lemmas that are consequence of these

steps, ve need to define the optimality eriterion adopted.

-D [ 3 » . i - -,
cfinition 3 : In the claas P(b, A, h) of asymptotically stable (nomca-

tastrophic) convolutional encoders with constraint length K and rate r=b/n
L]

9.

an encoder is optimum if and only if it attains the lovest upper bound on

the bit error probability given by (20) for each fixed value of b and h.

With this definition, we have the following:

Lemma & ¢ Por each fixed value of b and b in the class F(b, A, W) of uymp;"
totically stable {noncatastrophic) convolutional encoders with constraist
length K and rate g=b/n, ged(b, n)=1, the ngtimum encoder is the one with
the lowest maxiwum eigenvalue p . among all maximm eigenvslues associated

with the set of transition matrices A

Leuma 5 @ In the class F(x, I. h) of asywptotically stable {noncatastrophic)
convolutional encoders with constraint length K and rate r = bfa, for
l-’('l;l, :\'1. El) and g(l-:z, Kz. ﬁz) such that ;1 ¢ ;2 and 51. ] ;2' if pl,m'
the associated eigenvalue of 4y, equals P2, max* the associated eigenvalue of
Ay, then the optigum enceder is the one such that ;i + ﬁi, iwl, 2, is g the

largest.
Proof : Substitution of the aspunptions in equation (20).

As an exsmple of lemma 5, consider the convolutional encoder
belonging to the class Pl4, A, 4) with the following octal representation

5775 with El = 4 and i;l = 4, Tts characteristic polynomial is given by

pip) =pt -02.pt =020

Now, consider another convolutional enceder belonging to the class P(2, A,

with the following octal representation 175 with 32 a2 sand ;12 = 3, Ite
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characteristic polynomial is

Ploy = p° - D o2 =D .p

Therefore, both convolutional encoders have tha same P . even though the
corresponding tramsition matrices are different, Since they have the same

p the optimum encoder between these two must have the greatest by + Ei'

max®
For the convolutional encoder 5775, ‘-’1 + El = 8, For the convolutional
encoder 175, ;2 + Ez = 5, Thus, the optimum convolutional encoder between

these two is the 5775,
B 3

From lemma & and lemma 5, we have that Py, at.tains the lowest upper
bound among sll1 asymptotically stable encoders vhen p {s the lowest
maximum eigenvalue and 51 + El is the largest, So, for a fixed b . ‘and rate
r=1/a, we have that P has the lowest bound when gl - El = n, This implies
that the Hamming weight of this (binary) vector component is n, For rates
r-bjn. since each one of the (2b-1) (binéry) vector cOmponents represents
the Hamming weight of an associated output sequence, the sum of these
Hamming weiphts can be shown to be n. 2b-l. Thu;, the optimum convolutional
code with rate r=b/n and constraint length K attains the lowest P, when the
(2"-1) (binary) vector components of ;1 and El are almost evenly die=

tributed with total Hamming weight n. Zb-la

As a consequence of these facts, the maximum £low property has
been shown. To link this property with the conservetion of flow (lowest
maximum eigenvalue), the mugmented transition matrix {inclusion of the

starting and ending states) is needed.

Let A' be the augmented transition matrix. For K=3, r=1/n and

partition l;'(a, ;, 1), the augmented matrix A' is as follows (see Figure

2):

11,
K 0 0 0 o’]
%9
p e 0 p' = 0 0 -
a 2
A =0 p 2 0 Do 0
a a
o Doy 0 P>z 0
Lo 0 ' 0 0

with z=1, In general, for ratea rwb/n and constreint length K, A' is a
(M+1) x (M+1) matrix with M = zb(K-l)' From the Cayley-Hamilton Theorem,

tha characteristic polynomial for A' ie
PF'(p) = det(p. I ~ A") = pz . det(A)

So, A' contains the same set of eigenvalues of A.

-
-

Let us defina Hi(A') and Hj (A') as the product of the nonzero
elements of the i-th row and the product of the nonzero elements of the j-th

column of the augmented transition matrix A', respectively, that is,

n . . n
M. (A") » T a,. and MiA'Y = 1
i je1 ij kel e j

. For rate r=b/n and constraint length K, if Hi(A') - Hj(A') - D’,
with & = n Zb-l, implies that the partition ;(;..A'.l-n} is such that the sum
of the (Zb -1) vector components of b and ™ equals &, respectively.
Congequently, b and b assume their maximal value, since this value of ¢ is
the maximum total weight of a block code with 2b codewords., So, from lemma
4, P, attains the lowest upper bound when P, is the lowest maximum

eigenvalue in the ensenble of transition matrices A. The existence of at
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least one transition matrix A having p_.. minimum is guaranteed by the fact

that the characteristic polynomial

B(p) =a P v a ol e a Pt

with half of the coefficients a5, being positive, half being negative snd
less than 1, has the swmallest positive real root vhen a, >0, [lﬁ]. But
a >0, implies that there exists a loop of iptermediate states containing
at least one branch vaiﬁe of the shortest path which is lese than the cor-
responding branch value of the shortest path of the optimum known code,
Hence, the condition s, £ O is a restriction to the characteristic poly-

nomial where p minimum is included. When &  « 0, the characteristic

max
polynomial has the lowest maximum positive resl eigenvalue.

This argument lend credency to the conjecture that the properties
of maximum flow and conservation of Flow nust be satisfied by the optimum
convolutional code. MHowever, we were not sble to prove that always exists
guch a code, although all the previous codes found and the new ones given in
this paper satisfy these properties. We resume this fact by establishing the

following:

Conjecture : If there exists a time invarisant nonsystemstic convolutional

? for all

encoder with parameters K and re=b/n such that Hi(A') - ”k(A') D
k#i; and M (A') = WAy = p? for a1 i¢j and vice-versa, with ¢ = n, 21
and Prax the cmallest eigenvalus among all eigenvalues of sugmented tran-

sition matrix A' (consequently A), then the code is ontimum.

ot
Only those convolutional encoders that saticfy the maximum flow
and the couservation of flow property are considered, consequently being

classified as “potential candidates™ to he the optimum,

13,

-
L]

In order to demonstrate the potential of the maximum flow and

conservation of flow property, let us take another example, Let K=3 and
rate r=1/4, Find the optimum convolutional encoder in the class 5(6, R, 4)

(see Figure 3). From the conjecturs we have that

1) 86 =0 8y =, magma, =2 -

2) ay = 1} Ay « ag = 3 a, = s, - 1

The characteristic polynomial for 1) is

P(p) = p” - p? % 2 -2 P

and the eigenvalues for D = 0,1 are

P = 0, py " 0.10%, fy = -0,095
The characteristic polynomial for 2) ia

?() =p? ~03 p2 -3 p-p? 4

for D = 0,1, the eigenvaluer are

Py~ 0,2124, £y ™ -0,1082 + j0.3706, Py = -0.1082- j0,3706

From lemga 4, the optimum encoder is such that Prax ™ 0,105, The
encoder that gatisfies a, =0, 2, =8, ™A, ~a " 2 is, in octal represen-
tation, given by ' 5775, whereas in the literature 5777 is ﬁentinned as the
optimum in the free distance gense, [5], [20]. Although the encoder 5777
achieves the least upper bound on  the minimum distance, it has poorer bit
error probability than the 5775, This statement is easily checked by using

the transfer function technique or by inspection of the split state diagrams
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as shown in Pigure 3. The bit error probabilities for A) and B) are respec-

tively:

2.2

10
Ppa € (1/2) D {1 ~ 20%)

2
P € (/220 + pt! - '3 - 2!t s pihs(1-0? - 2% + 0%

as expected l’bA < PbB'

The eigenvalue problem is & very interesting approach in finding
good systematic as well as nonsystematic convolutional codes for any rate
r = b/n and short constraint length. However, its importance liss on the

theoretical rather than on the practical paint of view,

4 - Conveluticonal Codes as a Network Flow Problem

Although the split state diagram is useful in determining a bit
error bound using & transfer function approach, it is also useful in

describing flow in networks as follows.

Let G be a directed graph G = fn, R], consista of a finite
collection N, We{l, 2, 3, «..., n} together with = set A of the non~
necessarily distinct ovdered pairs (i, j), that is, A {(i, §)¢i,denh

Elements of N and A will be called states and branches, respectively,

Let us associste with each branch (i, j) of a directed graph
(split state diagram) a non-negative number €550 the capacity of (i, j), te
* be thought of as representing the maximal branch Hamming distance of the

codevord between nodes i and j.

The source, node 1, is the entry of flow into the network, and the

sinkm node n, is the exist of flov from the network, Mathematically, the
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branch flows x5 (branch llamming distances), are defined as s set of non~

negative numbers satisfying the following conetraints:

- -4 if 1
E g, Exjk = {0 if jéi,n Q)
¢ if jen
0 £ LT & 44 (22)

Note that flow is conserved at every node except the gource -and

j* the branch

capacity, From the Max-Flow Min-Cut Theorem, [17], the maximal flow in a

the sink, and each branch flow xij is bounded from above by €

network equals the sum of the branch flowe of the minimum cut set, We
noticed in section 3 that if there exists a nonsystematic convolutional cade
satisfying the conjecture then conditions (21) end (22) are met, Hence,
under thia conjecture the problem of finding optimum nonsystematic convo~
lutional codes is characterized by a maximal flow in networks. The following
theorem establishes the maximum flow that optimum tiwe invariant convo=

lutional encoders satisfy.

Theorem & 1 For time invariant ponsystematic convolutional codes over cf(q)
with rate r =b/n and constraint length K, the uniform flew, and conse-
quently, the maximum flow is given by

¢=n.(q-1.q"!

Proof : For rate r = b/n and constraint length K, the number of states is

qb(K-l). The number of transitions from each state is qb. The total number

of branches is given by qu. on the other hand, the encoder output has

length n, and go, qn possible output sequences,
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Let c be the ratio between the number of branches and the number of output
sequences, If c is greater than 1, then ﬂ'.lil nunber specifies how many times
the output sequences will be repeated, If ¢ is less than 1, then it will
give the proportion of output sequences that are going to be used,

Let HT(C') be the total weight of the output sequances, that is,

n o
wp(c') = u.(q—l)-.(
m=0

)- (q-1) . [8/ec]{(1 + )™}
a=g-1

an.(g-1).q"}

then EHT(C') gives the total weight of the state disgran, Since there are

qh(K-l) states, the uniform flow is

b(K~1)

¢ = [cu(e]/q =n.(q-1q"" Q.E.D.

From Theorem 6, we have the following:

Corollary 7 : For time invariant nonsystematic convolutional codes with b=1
and q=2, the branch codewords going to and leaving from any state,

complement each other,

Proof : From Theorem 6, we¢ have that the flow at any state is O-nzb.l.

For rate r = 1/n, ¢ = o, Let d4,(j, 1) be the Hamming distance between bradch

codewords j and i, then
dutis i) mw(j + i) »n

which implies that w(j) + w(i) = n, thus w(j)} = n - w(i) Q.E.D,

Therefore, the search for the optimum convolutional code for sny K

and rate r = b/n reduces to the following problem:

17.

Civen a split state diagram vhere all branch weights are lower bounded
by zero and upper bounded by 50 (i, )'s maxitum branch Hamming distance,
Find the branch flows, branch distances, such that the minimum distance from

the zero state back to itself is maximized subject to the maximum flow 4.

A network with these characteristice is called & bounded network,
Hence, ve have transformed the problem of finding good convolutional codes
by wusing a heuristic technique, into a vell structured problem ot finding

flow in network.

Inherent to this traneformation, thers ars some combinatorial
problems that in the majority of the cases can be very easily solved, making

possible determination of convolutional codes by hand calculation,

In order to speed up the process, the minimum distance of the code
{s valusble in the exclusion of "potential candidates” from the class of

good codes,

The following Theorem astablishes an upper bound on the minimm
distance of any convolutional code (time invariant, periodically time
varying, time varying) as well as of bimary nonlinear trellis codes
recurrently generated, with parameters K and ¢ = b/n, ged(b, n) = 1, which
iz very good for short constraint length, It generalizes Heller's upper
bound [7], for convolutional codes with constraint length K and rate r= 1/n.

In particular we hava

Theorem 8 : For any convolutional code with constraint length K and rate

T = b/n, ged{b, n) = 1, the minimum distance iz upper bounded by

. -1
din € :;.; [[2°77427 - 1] . (n/od{p + b(K-1}}}
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Proof : It is known that a terminated binary convolutional code with M
information bits 1is a group code with an Mxn.(M+(K~-1)) dimensionsl
generator matrix for rate r = 1/n. For rate r = b/n, pcd(b, n) = 1, since we
have b parallel K shift regiaters, in order to terminate g code we need
to insert b{K-1) known digits. The total length of the information bits is
bM, and so, the generator matrix has now bM rows and (n/b) . oM - b(K = 1n]
columns.

For binary group codes, the Hamming distance between codewords is equivalent
to the weights of the non zero codewords, MWence, if all 2bH codawords are
arranged as rows of a matrix, then any colum, excluding the all zero, has
half ones and half zeros, [18]. Thus, the total weight of the ZbH codevords

is upper bounded by

Wy < 2P 1 (/) (bM + BEK = 1))

PLUIN

Since codewords are non zero and their minimum weight must be less

than or equal to their average weight, the winimum distance satisfies

ain €[22 - 1) (a/m) oM+ bOK- 1))

Since this bound holds for any bM, it alsc holds for p < bM. What we really
want is the least upper bound, Thia is achieved if we minimize the right

hand side with respect to p, thus

dnin € :;'1' [2P1/2P - 1] (a/b¥(p + BIK-1)) = 4

vhere [a], means the largest integer less than or equal to a. Q.E.D.

The improved upper bound developed by Odenwalder [2], when d 4
inm odd and tr = 1/n, is also applicable to rates r = bfn, It can be shown

that the upper bound is given by

douna € (2671726 - 1] {Ga/b) (e + bix-1)) + 21=¢ - 1} (23)
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If dy ind is 0dd and (23) is not satisfied, then d,_ . can be

decreased by 1.

The following examples demonstrate the approach so far, let X=13
and rate r = 1/7, Find the optimum convolutional encoder. By Theorem 6,
¢wn®lay, Among all possible noncatastrophic configurations, we have

the following split state diagrams, Figure 4.

By Theorem 8, d .. < 18, and by inspection, configuration C is the
optimum, Let us use the gpproach presented in section 3, The characteristic

polynomials and its maximum eigenvalues for D«0O.1 are

6 2_ .6 . p2, pl2

-)03-09 + D

r
=]
b=

i

} o =~ 0,215

) p? -3 o2 - 0% p-0%+ 0% p » 0.04646

aged-vtpl-pip-0bapd;p0.003

pdl-ptpl-plpenlt-p?; p-o0.0m638

ey p2 -0 p?-pp -2+ 0?5 p = 0,316666

f)p -0 0p p=D"+D ; p=0,1

Hence, by lemma 4, we choose ¢), which is the same answer as the
previous procedure, Note that when a, = 7 and a, = 0 we have a catastrophic
code, For the sake of simplicity, let us take K = 2 and rate r = 2/3, Find
the optimum binary convolutional encoder. By Theorem 6, & = 12/2 = 6, The

eplit diagram is shown in Figure 5.

So, a; + ay + 4y " 6 and a, + a5+ a, ~ 6, but a, are the Hamming
distances of the branch codewords, Thus, we have to find values for a; such
that: 1) the flow is 6 at the zero state, and conservation of flow holds
for all remaininpg states; 2) the minimum distance is maximum; 3) the state

diagram's weight is 24,
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The weight of a split state diagram generated by an encoder with
constraint length K and rate r© = b/n is given by the sum of all branch

weights. From Theorem 6, we have that the flow going in and out of

every state is ¢ =n . (g-1). q”" 1, aince there are qb(bn states,

Wywa ’.q'b(l(-l).

T Thus, we have proved:

Lemma 9 : The total weight of & state diagram generated by a convolutional

encoder with parameters K and r = b/n, ged(b, n) = 1, is piven by

qb (x-1) bK-1

H.r"O. =n.{q=1.q

Let u = {u), uy, ¥y, eeee) be che data input sequence that goes
into the enceder shift registers, with W having length b and G, are the

bxn submatrices of the generator matrix G of the convolutional code,

The output codevords are given by x = u, G, Hence, the combi-
natorial problem is to find the rows of G, i=0, 1,2, «oosp k=1, such
that conditions 1), 2), and 3) are satisfied. By Thecrem 8, dmin £ &, for
doin = & all possible 6 give catastrophic codes, then d . = 3 is the
optimum value for this class. Section 5, gives more details sbout this, One

. possible solution of the combinatorial problem is:

Therefore, maximum flow and conservation of flow are important
propertics with respect to finding good codes by limiting the search to a
set § whose codes have maximum flow #, The next step in this process is to

select those codes in § whose minimum distance (possibly) attains the least
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upper bound given in Theorem 8. Let us call this new set N, Thus, N contains
codes which are optimum under the free distance criterion. Now, in order to
gelect the optimum code under the bit error probability eriterion a search

procedure is necessary. Before leaving this section, we have the following:

Definition 10 : A convolutional code is said to be¢ optimm under the bit
error probability if and only if the coefficients of its transfer function
iz the lowest among all coefficients of the transfer functions in the ensem

ble of codes.

5 = Selection of Good Convelutional Encoders

It has been shown in sections 3 and 4 that for all partitions
;(;, I, #} there exists an optimum encoder, It is also shown that when the
parameters are K and r = l/n and b=h e n, partition F(n, I, n), the bit
error probability is upper bounded by the lowest value when Proax is selected
az the minimum in the set of all maximum eigenvalues, When this happens,
there is a conservation of flow st every single state but the "zero" state
in the split state diagram. Although wmaximum flow and conservation of flow
ave important properties, they only provide the search in a set vhose cardi-
nality is smaller than that of the original problem, For long constraint

length, this new get has a considerable number of elements.

The least upper bound on the free distance is another parsmeter
that must be used in the process, which will reduce the search many folds.
Therefore, maximum flow and consequently conservation of flow, and free disg-

tance are the only paramcters that have to be examined,

Consider a split stare diagram of a convolutional encoder with
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rate r=b/n and b2, The number of transitions from any but the zero state
is 2%, For the zero state this number is 2b =1, Let dp be the ordered set of
all 2"-1 accumul zted branch Namming distances (X branches long) that leave

and return the zero atate (see Figure 6), that is

dp - {dpl’ dpz. dpJ' creap dpz b_l} (2'4)

L3

with dpi -w, t ;i and wir ;i the Hamming weights of the codewords going from
state zero to state i and from state i to state zero respectively, It is
natural to expect that

At ree > min {dp} (25)

The optimality criterion to be adopted when comparing ordered sets

is of the lexicographical type, that is, given two ordered sete X and Y

X=X, Xy Xgs eeney X!

Y- [Yl. Yos Y0 aeses T}

X =Y _ for 1<igp (26)

LSRR
Note that this approach does not imply that the encoder is optimun
in the bit werror probability sense, since the sclected candidates belong to

S. So far, nothing was said about how to find the values dpi for & given

constraint lenzth K and rate r = b/n.
From Theorem 6, we know that the maximum flow with ‘q w2 is
b-1 .
® = n2 which equals the sum of all llamming distances going in or out of a

state. Since we have an encoder with K storage elements, K ¢ is an upper
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bound on the weighted sum of all dpi belonging to the K branch Iong paths.

But this is a linear programming problem stated as follows:

Problem I - Given

K, (27}

subject to

with dpl - dfree' clp2 - dfree + 1, and so on wvith B is a constant, Find the
lexographically minimum B-tuple element B = (a5 8590 cves a;p) satisfying
27}.

once the Ei'a are knowm, the next step is to solve a combina-
torial problem as follows: Find b x n submatrices G, im0, 1, 2, 4eee, K-1
with clements in GF(2) such that the linear combination of its rows satis-

fies the solution of Problem I. If thie is not possible we have to accommo—

date values for Ei up to the point where the combinatorial problem matches

the new solution of Problem I, When this happens, ve have found the eacoder
that will be lexicographically optirum. This procedure does not eliminate
the poasibility of finding catastrophic codes, For short constraint length,
it is easier to check if the proper values found for G; results in a catas-
trophic code by & simple rule of linear independence among the rovs of Gi'

but for long constraint length an exhgustive search should be used.

Let us demonstrate the procedure by an example. Conaider the case
where K=2 and r=2/5, We know from Theorem 6 with q«2 that @-n.zh-l w5,2=10,

From Theorem 8, dm.

in £ 6, then Problem 1 ig established as follows
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B

A) 121 s d; K. O By dpy ¥ oeeee ¥ g d €20
f b

B) a, =2~ 1 a, + L =3
o 4 S 3

with d‘.’1 -6, dpz -7, dp3 » 8, and so on. From A) and B} we have
a =1 =1 o 2) a; ~2 a =1

Thus, El = (1, 2) and 32 » {2, 1) corresponding to dp {6, 7} and dp i{6, 8}
respectively, Clearly, the solution ia 1), Por it is the lexographically

minimum 2-tuple. Therefore,
4 - {s, 7}

The combinatorial problem {s to find b x n matrices G, and G, such

that dp is achieved. But dpi‘ i=1, 2, 3 is the sus of the branch Hamming

weights leaving from and merging to the zero state (see Figure 7). Let v,

and ¥, with 1 € i € 3, be the Hamming weights of all combinations of the
rows of G and G respectively, Clearly,

.dPl v+ ;1, dg=vy ¢ 32. d

b -yt 53

P

One possible solution is

Hllﬁ "1-2

u2-3 ;2-4

.Hs'a ;3-&
therefore,
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Go - Gl -
1 o 1 o0 1 1 1 1 1 ©
On the other hand, if after a number of trials there is no

matching between solutions of the combinatorial problem and Problem I, the

next step is to decrease by ond the free distance's original value and start

again the search process up to the point that a matching occurs.

6 - Search Procedure

In order to select the optimum encoder in the set £ a search pre-
cedure is necessary. The search procedure used is as follows: the generating
function T(z) is & polynomisl in D (pairwise error probability) and 2z (a
decoding error), The exponent of D and z specify the accumulated Hamming
distance and the number of information bit errors respectively, In general,

T(z) is of the form

(2) = ¢ ptl g0l 5 p*? 22 4 ¢, M. L. " (28)

where c;, b;, 8, i=1, 2, 3, «s.s are integer valued constants,

For zb-ary trees the first branch from the root node has (Zb-l)
branches and from each cne of them follous Zb branches, Let us consider a

binary rooted tree with depth K (K branches long) as shown in Figure 8.

This tree characterizes error events when all zeros data path is
assumed correct, Thus, the first branch from the root node is due to &
decoded data error as 1", All subsequent branches are associated with cor-

rect decoded data “0", which moves up, and decoded data error "1 which
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L] 1“

moves down, Whenever a decoded data error occurs a variable z is

appended to it,

From this characterization and since Py is the derivative of T(x)
with respect to z, the key jidea behind the search procedure is to minimize
the coefficients of [dldz]'r(z) while maximizing the exponents of D, In
gencral, we have to place the value of a(k) =4, . for the shortest path
(the X branches long path) when K isg odd, and a(K} = dfree + 1 when K is
even. Note that a(K) represents the number of tap connections awong modulo 2
adders and shift repisters. By a judicious choice of the branch Hamming
distances along this path such that its sum equal 2(K) and the paximum flow
property, the taps connecting the modulo ? adders and shift registers are

set up.

The next step is to determine the branch flow value(s) for the
{K+j+1) branches long path, a(k+§+1), and so, we have the following

conditions: initially, set j=0

A) For K odd [K even], if a(K+j+1) is amaller than a(K+j) [go to C].
rearrange the tap connections up to the peint where its value(s) at

least equal alk+j)

BY If a{K+j +1) is equal or grester than a(k+j), find the flow value(s)

for the (K+ j+2) branches leng path

C) Compare af{K+ j+2) with a{(K+j+1), if smaller, rearrange the tap
connections such that the previous value(s) do not violate the key
idea behind the search procedure. If greater or equal, update j by
petting j = j+1 and go to C, Repeat this process uatil all tree

branches with depth X are all checked.
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This algorithm provides an easy way of finding convelutional
encoders by hand calculation for any rate r =1/n and constraint length K£7.
For K28, a computer-aided search has to be ermployed using the above
alporithm., These codes are shown in Tables 1 to 7. We have included new
codes in addition to the ones found in [15]. Extension to long constraint

length iz only a matter of computer faciliries.

For rates r=b/n, it is possible to solve for b{K=-1) < 6 by hand
calculation, For b(K=1) % 6 a computer-aided search is unavoidable, due to
the exponential growth of the number of states, These codes are ghovm in
Tables 8 to 11. For rates r=2/3 and 3/4, all codes shown in the respective

Tables are better, in the bit error probability sense, than those in [6].

7 - Unit=Memory Byte Oriented Binary Convolutional Codes

Lee {9], has shown that convolutional codes with unity-memory,
E=2, and rate reb/n, n & multiple of b, always achieve the largest free
distance among all codes with equivalent rate r=1/n and same number of
states Zb(xﬁl). In other words, multiplicity of primitive rates has free
distance given by

d xd

free © “bound

where dp .. is the least upper bound on dmin of convolutional codes with

constraint length K' and rate r=b"'/n', ged(b?, n*) =1,

Using the network flow approach to this problem, an upper bound on
the minimum, distance of convolutional codes with ped(b, n) > 2 is given. It

is summarized in the following lemma,
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Le 1: For (K ~1)-memory byte oriented convolutional codes with rate

————

r=b/n, n a multiple of b, the minimum distance is upper bounded by
b-1,,b Y
dyq € (@702 D] K= g

where [x]. means the largest integer less than or equal to x,

Proof ¢+ From Theorem 6 with =2, we know that & = n Zb"l. This is the
uniform, and consequently, the maximum flow sttainable, which is the same as
the total weipght or distance of a block code with 2" codewords each with
Hamming weight n/2.

Since there are 2% -1 nonzero codewords, the minimum distance of this bleck

code fs less than or equal to its average distance. Thus,
4 < [2P2%-1), (a/))
Since we have K memory elements, the minimum distance is

b1 b
dpin § (@772 -1 0] K Q.E.D.

Due to the transcedental form of the least upper bound on the
minimun distance of (K-1)-memory convolutional codes, and the equivalent
convolutional codes with gcd(b®, n') » 1, the only feasible way of showing
that the f_ree distance of convolutional codes is lower and upper bounded by
dyound (Theorem 8) end d'

bound {Lemma 11) is graphically, Therefore, the

free distauce is

[
dbound £ dfree €4 bound 29)

min [(2P1/2P-1) . (' ") . (pebt . (K =1] €4

b-1 b
e free S [(2 /2 -1, n] . K

where pged(b', n') = 1, and gecdib, n) 2 2,
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This simple upper bound on dfree is very good for short multi~
plicity of primitive rates. Using it, together with the selection criterion
of section 5, we were sble to find good unity-memory binary convolutional

codes that have better performance, both in bit and byte error probabilities,

then some of the codes presented in [9], [19].

These codes are shown in Table 12, with respectives rvates,
achievable minimmdistance (bits), d_ . » minimm distance of the equiva~

lent convolutional code, d__ , snd the encoder's octal representation.

eq

8 ~ Conclusion

The netvork flow approach enabled us to identify and to put in the
same context the problem of finding good nonsystematic convolutional codes
as & maximal flow problem, From this characterization, we were able to
extend the ar dinality of the get of known good codes with short constraint
length K and rate r=b/n with ged(b, u) > 1 where the unavoidable search was

reduced many times,
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Tsble 1 Table 2

Constraint length = K=3 Constraint Length = Kw4

17
17
17
1?

15

15

15

15

15

17
17
17

17

15

15

15

15

17
17

17

17

17

15

15

rate dfree octal representation
rate Yt ree octal representation ach, bound
2che baund 1) 1/2 6 & 15 17
1y 1/2 55 5 57 (L 1/3 10 10 13 15 17
m 113 88 8 577 (2) 14 13 13 13 15 15 17
)] i/& 10 10 55177 (3) 1/5 16 16 13 15 15 17 17
M 1/ 13 13 55777 (3 1/6 20 20 1313 15 15 17 17
(1 1/6 16 16 $57777 () /7 23 21 13 13 15 15 15 17 17
(3) /7 18 18 5557117 () 1/8 26 26 13 13 15 15 15 17 17
(3) 1/8 21 21 555717777 1/9 30 30 1313 13 15 15 15 17
1/9 24 24 555777777 /10 33 33 13 13 13 15 15 15 15
1/10 26 26 555571771777 1/11 36 36 i; 13 13 15 15 15 15
1’11 2 2 53537177717 1/12 40 40 13 1313 13 15 15 15
1/12 32 32 5555777717171 17 17
1/13 34 kT 5555577777717 1713 43 43 i; i? i; 13 15 15 15
M 7 3 S3ss877MIRIT7 1/14 46 46 131313 13 15 15 15
1/15 40 &0 5555577772117112 17 17 17 17
1/16 42 42 5555557177777777 1/15 50 50 i; }3 i; i; :3 15 15
1/16 53 53 131313131315 15
15 17 17 17 17 17
(1) - codes found by Odenwalder, [2]. (1) - codes found by Odenwalder, [2].

(2) ~ code found by Larsen [3] was 5777, {2) ~ code found by Larsen, [3].

{3) - codes found independently by Daut et al., [10}. (3) - codes found independently by baut et al., [10].



(1)
(1)
2)
(3)
3
(3
{3)

rate
e

1/2
1/3
1/4
1/5
1/6
1/7
1/8
1/9
1/10
/1
1/12

1/13

1/14

/15

1/16

sch,

12
16
20
24
28
2
3%
40
44
48

52

56

60

64

Table 3

Constraint Length - K= &

bound

12
16
20
24
28
k ¥
36
40
&b
48

52

56

60

64

octal

representation

23
25
25
25
25
23
25
25
25
25

25
37

25
7

25
3

25
kY

25
35

25
37

25
37

25
7

25
37

(1) - codes found by Odenwalder, [2].

{2) - code found by Larsen, [3].

25
37

25
37

25
»

kH
35
35
3
33
33
»
27

27

27

25
7

25
kY

»
35
35
31
33
N
1

33

27
iz

n
kL)
35
35
3
33
n

33

33

33

»
37
35
35
33
n

3

33

Kk ]

32

(3 - codes found independently by Daut et al,, [10].

3
37
37
35

5

33

33

33

n

37
37
37
35

35

35

33

Kk}

7
k¥
3

35

35

35

35

37

37

n

35

35

35
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1)
18))
{2)
(3)
(3}
3
(&)

rate

112
1/3
1/4
1/5
1/6
1/7
1/8
1/9
1/10
1/11
1/12
1/13

1114

1/15

1/16

ach,

13
18
22
27
a2
36
41
45
50
54

39

63

68

72

dfree

Table ﬁ

Constraint Lenpth — K= [

bound

13
18
22
27
32
36
41
45
50
54
59

63

68

72

octal representation

53
&7
53
51
47
47
&7
51
45
&7
51

47
7

47
75

47
15

47

73751575

51
77

51
75

53

(1) - codes found by Odenwalder, [2].

(2) - code found by Larsen, [3].

55 57
53 53

53 57

53 57
77

"

7375

€7 75 75

65 67 73 75

65 67 71 73 17

65 67 73 73 15 77

65 65 65 71 73 15 77
6565656771 7377 17
57 6565 67 67 7375 75

57 63 65 €5 65 67 73 75

57 63 65 65 65 67 13 75

57 57 63 65 65 65 67 67 71 71

(3) - codes found independently by Daut et al., [10].
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)
(1)
2)
(3)
(3)
(3)
(3)

rate

1/2
1/3
1/4
1/5
1/6
177
1/8
1/9
1/10

1/11

1/12

1/12

1/14

1/15

1/16

ach,
ach.

10
15
20
25
30
36
40
46
51
56

61

66

72

76

82

Constraint Lenpth = Xe?

Table 5

bound

10
15
20
25
30
36
40
46
51
56

61

&6

72

76

82

cctal represcntation

133

. 133

135
131
135
135
111
117
115

115
175

115
n

115
171

115
171

117
157

117
155

(1) = codes found by Odenwalder, [2].

(2) code found by Larsen, [3],

171
145
135
135
135
135
135
123
115
115
117
175

117
171

117
171

127
171

127
157

175
147
135
137
137
135
127
127

125
125
125

175

125
175

127
m
127
n

163
145
151
145
137
137
133
127

127

127

127

175

131
175

13t
171

175
163
147
147
152
137
137

133

133

133

131

175

131
175

(3) - codes found independently by Daut et al., [10].

173
165
153
155
145
151

135

135

135

135

135
175

173
165
165
157
157

153

153

153

135

135

173
171
165
163

157

155

155

153

137

Y.,

175
173 175

173 173

167 171

157 167

157 167

153 135

153 153

1
1
(2)
(3
(3
(3)
(3

rate

1/2
1/3
1/4
1/5
1/6
1/7
1/8
1/9
1/10
1/11

1/12

1/13

1/14

1/15

1/16

ach,

10
16
22
28
34
40
45
51
56
62

68

74

8O

85

91

Table 6

Constraint Length ~ K=B

bound

11
16
22
28
34
40
45
51
56
62

68

T4

80

85

91

octal representation

247
225
235
233
235
235
235
251
225

225
363

225
355

225
51

225
345

225
kk 1

231
327

(1) - codes found by Odenwalder, [2].

(2) - code foundbyLarsen, [3].

3
331
275
257
253
253
253
265
225
257
257
363

257
355

257
351

235
345

255
k)

367
k)&
2n
kb &)
275
275
267
2713

267

267

257

3ol

257
355

257
5

257
345

517
323
331
313
275
273
275

21

217

267

267

363

257
355

257
351

357
357
kk)
313
i
275

277

277

277

267

267

363

267
355

(3) ~ codes found independently by Daut et al,, [10].

375
as?
k)|
37
313
315

315

277

2717

267

267
363

375
357
337
317

327

kry)

315

277

277

275

n
337
357
m

331

327

315

217

277

345
363

351

345

33t

327

s

277

35,

365

355

351

345

i

a7

315
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Table 7

Constraint Lenpth - X =3

rate
rate Sfree octal representation
ach, bound &) 203
1y 1/2 12 12 561 753 ‘ (3 2/5
(2) 1/3 18 18 557 663 711
3 27
2y 1/4 24 24 : &63 535 733 745
1/5 n 31 ‘67 531 535 675 747 2/9
1/6 317 k¥ 475 545 553 677 711 127
2/11
/7 [ &4 457 463 525 673 737 751
755
(4) 3/4
1/8 50 50 513 553 567 625 647 671
717 775
(3 3/s
1/9 56 56 471 515 527 537 653 661
673 747 175
(3
1710 62 62 467 537 547 571 625 653
677 711 725 7173
{3) 3i/8
3/10
/11
(3) 45
3) &f7
4/9
(1) = code found by Odenwalder, [2]. 411

(2) ~ codes found by Larsen, [3].

Constraint Length - K=2

Table E

dires

ach. bound
3 4
6 [
9 9
12 12
14 14
4 4
5 5
8 8
8 [
1 11
12 12
3 &
6 6
8 8
11 11

pctal representation

36
25

31 26
25 33

147 131
066 171

733 547
714 473

3163 1755
1027 3760

03 05 16
11 12 14

23 25 32
30 06 15

170 036 063
125 071 162

360 074 227
146 073 303

1740 0374 0547
0770 0037 1313

3434 0770 2132
2525 2752 1361

16 22 02 13
03 06 14 30

170 036 115 055
140 070 056 041

740 146 264 453
170 147 716 444

3740 0374 0707 1625
1700 0370 0516 1225

37.



rate
——

(4) 23

(3 2/5

3 2/7

219

2/11

(4 3/4

s

i

3/8

3/10

a/m

Constraint Length = K=3

Table _9_

ach,

10

14

18

22

12

13

16

18

dfree

bound

10

14

18

22

12

13

16

18

octal representation

Gl
G2

131
G2

G2

Go
Gl
G2

Go
cl

Gl
G2

Gl
G2

Go
Gl
G2

Go ~

61
G2

cl
G2

Go
Gl
G2

36
27
65

16 23
27 1
25 13

147 171
066 115
155 172

731 547
714 47)
157 723

3163 1755
1077 3760
3617 3163

il 05 03
11 11 16
05 12 06

23 35 22
25 06 16
25 31 36

131 036 063
125 071 162
056 033 126

360 074 227
146 073 303
370 066 033

1740 0374 0547
0770 0037 1313
0525 0553 1650

3434 0770 2133
2525 2752 1361
3314 0476 2547

38,

rate

4) 2/3

(3) 2/5

3 217

219

/11

(4) 4

3/5

nr

Table 10

Congtraint Length - Ke4

12

18

23

28

10

14

ach,

12

18

23

28

11

15

octal representation

Go
Gl
G2
G3

Go
cl

G3

LI B I | [ I I I LI I I |

36
65
25
63

16 23
27 3
25 33
34 07

147 170
126 055
171 147
131 156

732 547
714 477
167 712
473 335

3163 1755
1137 1762
1656 3563
2746 1437

11 05 03
03 07 13
06 01 10
06 14 11

23 35 24
15 06 32
25 31 36
21 12 34

130 036 063
127 071 162
057 033 147
114 121 052

39,



40,
rate df:ee octal representation Iﬂk&f.ll
ach. . bound
Constraint Length = K=3
3/8 17 17 Co - 344 076 227
Gl - 146 073 303
gg - ;gg ggg 222 rate 9 e octal representation
) ach. bound
3/10 22 22 Ga - 1740 0370 1167
g1 - 0770 0037 1313
G3 - 1272 0317 0546 cl - 62
G2 - 37
24 24 GCo - 1524 0372 3113 G3 -~ 16
i ¢l - 2275 1646 3115 c4 - 52
G2 = 1742 0672 2457
Gl - 1343 233 1534 2,5 14 15 Co ~ 32 15
¢l - 13 37
G2 - 34 22
Gl - 15 31
C4 - 26 13
2N 21 - 21 Go - 113 076
Gl - 073 055
G2 = 136 145
G3 - 131 156
G4 - 174 073
2/9 27 27 Go -~ 536 647
Gl - 554 333
G2 - 374 672
G3 = 433 735
G4 - 762 175
/11 k) 34 Go = 3056 1771
Gl = 3227 1555
G2 = 0337 2742
G3 - 3456 1563
Gh ~ 3346 2437

(4) - codes found by Paaske, [6].

(1) - codes found imdependently by Daut et al., [10].



5
(5

(5}

(5)

(6)

rate

2/4

2/6

2/10

2/12

a/6

3/9

nz

478

Constraint Lenpth ~ K=2

Table 12

ach.

0

13

16

10

13

dfree

bound

10

13

16

10

13

42,

octal representation

Go
Gl

cl

Go
Gl

Go
Gl

(5) - octal representation were not shown in [9].

(6) - code found by Lea [9], and Lauer [19], has poorer bit error probability

than the one shown,

14 07
16 03

4 17
36 47

370 037
174 237

1760 0177
0774 1037

7760 0377
1774 3761

70 36 13
34 07 62

760 076 651
370 742 147

7740 7036 3147
4614 7660 0367

160 074 063 252
265 232 170 116

[2]

(2]

[4]

[5]

[6]

]

(8]

43.

REFERENCES

¢.D, Forney, "Convolutional Codes I: Algebraic Structure," IEEE Trans.

Inform. Theory, Vol. 1T-16, pp. 720~738, November 1970,

J.P. Odenwalder, "Optimal Decoding of Convolutional Codes,” Ph.D.
Dissertation, University of Califormia, Los Angeles, 1970,

K,J. Larsen, “Short Convolutional Codes with Maximum Free Digtance for
Rates 1/2, 1/3, 1/4," 1IEEE Trans, Inform. Theory, Vol., IT-19, pp.
371-372, May 1973,

R, Johannesson and E. Paaske, "Further Results on Binary Convolutienal

Codes with an Optimum Distance Profile," IEEE Trans, Inform. Theory,

Vol, IT-24, pp. 264-268, March 1978,

L.R. Bahl, and F, Jelinek, "Rate 1/2 Convolutional Codes with Com-
plementary Generators,” IEEE Trans. Inform, Theory, Vol. IT-17, pp.
718-727, November 1971,

E, Paaske, "Short Binary Convolutional Codes with Maximal Free Dis-
tance for Rates 2/3 and 3/4," IEEE Trans, Inform, Theory, Vol. IT-20,
pp. 683-689, September 1974,

J.B. Cain, G.C. Clark, Jr., and J,M. Geist, "Punctured Convolutional
Codes of Rate (n=1)/n and Simplified Maximum Likelihood Pecoding,"
JEEE Trans, Inform, Theory, Vol. IT-25, pp, 97-100, January 1979.

J.L, Massey, and D.J, Costelle, Jr., "Nonsystematic Convolutional
Codes for Sequential Decoding in Space Applications," IEEE Trans.
Comm, Technol., Vol. COM-19, pp. 806-813, October 1971,

L.N, Lee, "Short Unity-Mcmory Byte-Oriented Binary Convolutional Codes
having Maximal Free Distance," IEEE Trans, Inform. Theory, Vol, 1T-22,
pp. 349-352, HMay 1976.




[10]

(11]

[12]
[13]

(4}

[1s]

[16]

[17)
18]
f19]

{20]

44,

D.G. Daut, J.W. Modestino, and L.D. Wismer, "New Short Constraint
Length Convolutional Codes Constructions for Selected Rational Rates,"
IEEE Trans. Inform. Theory, Yol, 1T-28, pp. 794-800, September 1982,

H. Kuakernsak, and R, Sivan, Linear Optimal Control Systems, McGraw
RHill, 1972,

J.5, Meditch, Stechastic Optimal Linear Control, McGraw-Hill, 1969.

A.J. Viterbi, and J.X. Omura, Principles of Digital Communication and

Coding, McCraw-Hill, 1979,

E.I. Jury, Inners and Stability of Dynamic Systems, John Wiley & Sons,
1974, ‘

R. Palazro, Jr., "Analysis of Periodic Linear and Nonlinear Trellis
Codes," Ph.D. Dissertation, University of California, Los Angeles,
1984,

JoA. Heller, “Short Constraint Length Convolutiomal Codes," Jet
Propulsien Lab,, California inst, Technol., Space Proprams Summary 37-
54, Vol. 3, pp. 171-177, Oct./Nov, 1968,

L.R. Ford, and D,R, Fulkerson, Flow in Networks, Princeton University
Press (Princeton, N.J.), 1962,

W.,W. Peterson, and E,J. Weldon, Jr,, Error Correcting Codes, MIT Press,
Camhridge, Mass., 1972,

G.S. Lauer, "“Some Optimal Partial Unit-Memory Codes," IEEE Trans,
Inform, Theory, Vol. IT-15, pp. 240-243, March 1979,

§. Lin, and D.J. Costello, Jr., Exror Control Coding: Fundamentals and

Applications, Prentice Hall, 1983,

Figure 3 — Split state diagram for k = 3 and ¥ = 1/4.
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Figure 4 - Split state diagrams for k = 3 and v = 1/7.
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Figure 5 - Split state diagram for k = 2 and r = 2/3,

Figure 6 — Split state diapram for k = 2 and r = b/n.
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Figure 7 - Split state diagram for k = 2 and r = 2/5,
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J————— K bronches ~———n——————=1|

Figure 8 - Error event binary tree,
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9 - Distance Properties of Convolutional Codes

The performance of convolutional codes is related to the
decoding eldorithm and with the distance properties of the code.
In order to be able to evaluate the performance of such codes, we
are going to introduce the most frequently used distance measures.
They are the free distance, do, . the column distance function d; .
and the minimum distance du,-

Among these distances, the free distance is the most

important one. It is defined as
dg = min { d(v', v'"} @ u’ 2 y’'’ }

where v’ and v'’' are the coded sequences corresponding to the
information sequences u' and u’'’, respectively. Thus, the free
distance is the minimum distance between any v' and v'’. Since

convelutional codes are linear, we have that
de = min { wi v @ v'*) 1 u* £ u'’ }

min { w( v ) : u#Z 0}

min { w{ u.G ) : u#z 01}

It

From thig, it follows that deg ie the minimum weight coded
sequence of any length resulting from pairwise comparison between
any path in the trellic that leaves and comes back to the zero
state.

Regarding the column distance function, let v[o,i] be the

truncated coded sequence, that is,

vlo.i) = (vo, vl, vZ, ...., vi)



b

and ulo,i] the corresponding information sequence, that is,
ulo,i] = (uo, ul, u2, ...., ui)

The column distance function of order i, d; , is defined as

a.
"

min { d{v'[0,1i1, v’ '[0,il} : u'[0) ¥ uw' 'lo] }
= min { wiv[o,i]) : ulo) # 0}

Thus, d; is the minimum weight of the coded sequence of
length (i+1) with ulo) # 0. On the other hand, if we take into

consideration the generator matrix of the code, then

vlo,i]l = ule,il.Glo,1i]

Glo, il = Go Gl ...... Gi
Go ...... Gi-1
for 1| < m
Go Gi-2
Go
L o
or
Glo,i) = [Go Gl G2 ...... Gn W
Ga Gl Gm-1 Gm
Go Gl .......¢c..u Gm
Go
for 1 > m. Therefore, * -
d: = min { w{ ulo,11.Glp,i) ) : ulel 2 O} (9.1}

i

)
S

will depend only on the (n+i) columns of G. This is tha reason it
is called column distance function. It should be emphasized that d;
does not decrease with i.

The column distance function has two cases which deserve be
taken into consideration. They are respectively the case when i =
m and when 1-3035 to infinity. When i = m, d; is called the
minimum distance of the convolutional code and its usual
representation is dag . Looking at (9.1) one sees that d, is
the coded seguence with minimum weight over the first constraint
length.

On the other hand, when i goes to infinity, tir d; is the

minimum weight of the coded seqguence when the first block of the

information sequence is not zero. Therefore. we have

de, = limdg
[ X ]
this means that eventually d; will achieve de and will not

increase anymore.



L <neay Unit- Nemory Codes over §F (%) se.

AD.. INTRODUCTION

The prolilem of finding good specific time invariant couvolutional
codes Nas veceived a lot of attention Ly many researchers. Prom these in-—
vestigations- & mmber eof clever algﬁrithr were proposed., However, a

genersl method for solving thiwx profilem lLias not Geen presented yet.

In order to slied some light into it, the purposs of this paper

aims at showing from & combinatorial peint of visw the equivalence of tha '

problem of finding good linear unit-mewory codes (UM) and consequently good
specific nonsystematic convolutional codes over GF(q), with q a prime or
power of a prime, with the problem of solving & knapsack. It is known that
this problem is nondeterministic polynomial (NP) complete, [3]. and so is
presumed to be hard, st least in the worst case. Conmsequently, justifying

why a complete answer to the original problem has not been provided.

ﬂ- PRELIMINARIES

Let x  bea b-dimensional data input vector, let y  be an n-

dimensional encoded vector over GP{q) defined as follows

x - (xtl' Xi2s Xegs seees ‘tb)

and

Lo ® ey Year ey ooer Vi)

respectively.

Let G,(t) and 6,(t) he b x n time varying matrices with elements
in GP(g). A (b,n) unit memory code is defined by an encoding rule of the

form

§2,

Ye =X, o G (e +x _, . G(2) t2Q and x,~0Q

where g ia the all zeror row-matrix, and all operations are also in GF(g).
It Gj(t) - G.i for all t; and J, then the code is said to he time invariant.
1f Gj(’t) - Gj(t +T} for all j and some positive T, then the code is said
to be periodically time varying. To show the squivalence it is sufficient
that the code be time invariant, so this will Be the assumption from now

on.

We denote the encoder of a UM code with rate r = b/n and memory v
by & parallel (v+1)-stage shift registers. Llet d, be the free distance,
that is, the smallest Hamming weight between pairwise output sequences
resulting from distinct ipput wequences. Equivalently, the unrestricted

minimum distance,

It has been shown in [2] that in general optimum :pecifit; non-
systematic convolutional codes and optimum linear unit-memory codes satisfy
the paximum flow and conservation of ‘flow properties when we look upon con-
volutional codes as a comhfnatorial optimization problem. Here by optioum
it {» meant a code whose weight enumerator function has the least number of
codewords attaining d_. However, if such codes have the same number of
codeworde for the same d_, then the code whose next term of the weight
e;mmeutor function has the least number of codewords with distance d_+ 1
is considered the optimum. If there ie a tie with the coefficients of the
term d_ + 1, a comparison is made with ‘the coefficients of the term for
d, + 2, and s¢ on. By maximum flow, ¢, it {a meant the sum of the branch
Hamming weights leaving from or going. into a state, in a split state dia-

gram representation, satisfying

$ = alqg -~1)qb"l : Q)
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Note that (1) repregents tbe total weight of a q-ary hlock code
with Glock length o and qli codewords, By conservation of flow it is meant
that the flow % going into amd leaving any state, but the zerc state, in a
split state diagram representation, are equal, Equivalently, maximum flow
and conservation of flow properties imply that any ¢elumn of G, #nd G, can

not be all zeros.

+ EQUIVALENCE TO THE ENAPSACK PROBLEM

Since linear (bv, nV) UM codes are equivalent to (b, n, V) con-
volutional codes, [1], with at least the same free distance, we have that

UM codes form 8 special class of codes by itself,

Let the tap connections between the ghift-registers and mod q
adders be arbitrary for a given rate r = b/n. This generates & class of

linear UM codes where each code can be represented by a split state diagram

as shown in Fig. 1.

Let d be the lexographic representation of the branch Ramming
weights Yoi and Vio from the zero state to state i, sand from state i to

state zero, respectively, (aae Fig, 1), that is,

d~ {d,, d,, do, . 4, )
_— 2| [ o
! 3 " bt

with

937 Yot *V¥ie lsica®-1

The problem here ia to find each one of the voi and ¥io® Con~-

sequently, knowing v . and w; allow us to determine the matrices G, and G|

54.

respectively. Hence, the ouly parapeter we have tg know is the free dis-
tance of the code due to the fact that in general d; = d + 1 -1 for
1etig qb ~ 1, Thus, the next two Theorems establishes upper Gounds on the
free distance of convolutional and unit-memory codes which will he useful

in setting up d.

Theorem 1 + For any convolutional code over GF{q) with memory V

and rate r = b/n, ged(b, n} = 1, the minimm distance is upper bounded by

a /Garb) € min [(a=1) . @ 1P =1 (b . )] @
pl

where p {s an integer, and [a] means the largest integer less than or equal

to a.

Proof : It ie known that a terminated gq-ary convolutional code
with W information symbols is & group code with an W x n. M+ V) dimen-
sional generator matrix for rate r«1/n. Por rate t=b/n, gcd(b,n) =1,
since we have b parallel (v+1) stage shift registers, in order to termi-
tate a code we need to insert b .V known digite. The total length of the
information bits is b .W, and #0, the generator matrix has now b.W Tows

and (n/b) . [b.W-b.v] colums.

For q-ary group codes, the Hamuing distance between codewords is

M
equivalent to the weight of the nonzero codewords. WHence, if all qb

codewords are arranged as rows of a matrix then the total weight, W, of,

bh.W

the q codewords is upper bounded by

Wo g @-D L () L B Leb )

Since qb'" -1 codewords are nonzero and their minimum weight must



55.

he less than or equal to their average weight, tha minimum distance

satinfies

dgin € Q=10 @FUFY-n  om L ee )

Since this Bound holde for any b .W, it also holds for p < b .W.
What we really want ix the “least upper bound, This is achieved if we
minimize the right hand side with reuiuct to p. Thus,

. _ Pl B _
d;n hee [G@-1 . @ /P -1) . Carb) L (p+b . W] Q.E.D.

Theorem 2 : For v-memory byte oriented convolutional codes over
GF(q) with rate r = b/mn, gecd(b,n) > 2, the winimum distance is upper

bounded by

dy;. € [a-D. @1 0] va D) &)}

Proof : From (1}, the maximum flow is & = n(q-l)qb"l. But
this is the total weight of a block code with qb codewords each one
with an average Hamming weight (g-1) . (n/q).

Since there are qb-l nonzero codewords, the minimum distance of

this block code is less tham or equal to its average distance. Thus,
b, b '
ds [@-1). @ /3 -1 . (p/q)] -
Since we have V wemory elements, the minimum distance is

dpin € [Ga-12. @Mty .n] . e Q.E.D.

It should be noted that the least upper bound on (2) or (3) is

56

the unrestricted mipimus distance, that 1is, d_. Since the set d is
lexographical, we have dl-d_ and in general di-d-* i~-1l for 15ig qh—l,
vhere d_ is obtained from (2} or {3) depending upon the case in con-
sideration. From the maximum flow property, equation (1) and Figure 1, we
have that
1
PR L RS I “)
ie]
where v = 1 for unit-memory codes, and a; accounts for the number of times
the value di. appears. Using a vector representation for the elements of

(4), we have

aaxd=d {3)

vhere & represents dot product, However, for a linear UM code with fixed
rate x=b/n, 9 and 4 are known by using (1) and {(2) or (3}], respectively.
Therefore, solving (5) is ¢o find a. Clearly, (5) is & mathematical
characterization of a Knapsack Prohlem. Therefore, finding good UM codes is

equivalent to solving & knapsack.

1f the li'l are known go are the Go and Gy matrices, since this
translates the fact that wa know the'ﬂamin'g weights of the rows of each
wmatrix, Therefore, golving (5) for linear UM codes with large values of b,
the data input length, is equivalent to finding among the at most qb pos—
sible subsets of solutions the ones which will lead to the good codes. This
exponential form with the data input length of the possible subsets of
solutions is the computational complexity of the hest known algorithms for

solving knapsack problems,

These sulisets .are defined as A; = (G0 Wopo =oes "nqb-l}'



517,

(glo' Wpgs eees “ﬁhﬁlo)}' wvhere o and ¥y, Are the.hrlnch,ﬂauming weights
from the zero Etate to the Jth state and the branch Hamming weights from
the jth state Back to thie zero state, respectively, for 1 < isg qh. Note

that in each subset there are (hb ~1) equivalent codes.

. EXAMPLES

Let us consider an example of a UM code over GF(2} with rate
t = 2/4, where (5) is easily solved. This code is equivalent to @ convo-
lutional code with memory v = 2 and rate r = 1/2. Finding a good UM code is

equivalent to solving (5) for a;, that is,
5, .dy+a,.d,+a,.4dy =16 (6)

From (2) or (3), this UM code has d_ = 5, thus d1 =5, d2 - 6,

and d3 w 7, Clearly, the solution of (6) is a = 2 and a, = 1.

The 4 possible subsets of solutions which satisfy (6) are
Al - {(ﬁs3|1), (1,3,5)}, Az - {(",292). (1,3.*)]‘. A3 - {(4,2,2), (233:3)}1
and A, = {(2,3,%, (3,2,3)}. Although Ay and A, subsets lead to codes with

the same d, A, is the optimum. Therefors, one possible solution for G and

G is given by

0 1 0 I 01 1 1
G = G, =
° L o1 1 11 oo

where "1" implies that there is a tap connecting a ghift register to a
module 2 sum, and "0" otherwise, Since the encoder is represented by 2

parallel 2-shift registers, we have that the first and second vows of

1.
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co(;l} repreaent tap connections between the firat (second) stage shift

registers in the parallel arrangement to the modulo 2 adders,

As another example, consider the UM code with rate r = 18/36.
This code is equivalent to & convolutional code with memory v = 18 and rate
r = 1/2, Finding a good UM code is& equivalent to solving the following

sguation,

8 cdp + e * By 143 - 9962,143 ™ 1,437,184
for L with dl = 23, dz = 24, uwp to d262,143 m 262,165. Thus, solving the
above equation is equivalent to finding the solution(s) among the at most

4138

possifile subisets of solutions. In general, for small values of b (hg4)
the knapsack. is easily solved and consequently good UM codes can be found

hy hand calculation.

. CONCLUSION

We have shown from the combinatorial point of view that the prob-
lem of finding good convolutional codes is equivalent to the problem of
solving a knapsack. The difficulty of this problem lies eutirely on the
values of the data input length, b, since this knapsack has at most qb

possible gubsets of solutions.



Figure 1 - Split state diagram for UM codes with fized r = b/o.
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