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DETECTION OF CODED SIGNAL - SOFT AND HARD DECISION
by

Reginaldo Palazgo Jr. (%}

Thus far, we have seen how to design a communication system
that is capable of efficiently communicating one of M messages.
The problem of implementing an efficient receiver was derived
under the assumption that each member of the ensemble of
communication systems has an optimum receiver.

Optimum receivers for M signals { sif(t) } with N { gi(t) } as
an orthonormal basis is implemented by a bank of matched filters
to the { gi{t) } followed by circuits to compute the dot product
of the received signal and the set of signals.

The main problem with this implementation lies on the fact
that its complexity grows faster than linearly with N. If we
accept some loes in performance by allowing & decoder to be
included, then it will assume a role of central importance dus to
ite flexibility in processing data. Basically, what it is being
proposed is that each of the N components of the received vector
be quantized to @ levels. Note that this operaticn is irreversible
and so0 introduces degradation.

A measure of this degradation is the Ko parameter, whereas
-the Ro measures the goodness of a communication system using
parity check coders, transducers and optimum (unquantized)
receivers.

Once knowing these facts, we are going to consider quantized
channel models.
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With AWGN channel each component sj of s = {sl, 82, ., sN)
is corrupted by addition of an i.i.d. Gaussian random wvariable.
Thus, if { ap } is the transmitter alphabet, when sj = ap the j-th

component of the received vector r has density function
pq tu/sj=ap} =Jt1/ﬁ No).exp{~(u-ap)z/No}

Thus, the quantizer maps rj into an output component r'j that
can not assume an arbitrary value but it is restricted to some
quantizer output alphabet { bh > h =1, 2, ...., Q. Given sj = ap,

the probebility that r'; is bh is

aph = PIr'ji = bh/sj = apl

. = ék p,s(u/sj=apldu )
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Therefore, from the transmitter alphabet { ap }, 1 < p ¢ A
and quantizer output alphabet { bh }, 1 < h £ Q, we have the
transition probabilities { @Gph } and so we have established a
discrete memoryless channel with A-ary input and Q-ary output.

Once the discrete channel is established, the next step is
related to evaluation of the measure of degradation. It can be

shown [4), after some rather sophisticated argument, that



8 A
Ho = - log, L (L piJ@in *
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where pi = P[ sj=ail.
It 1is also possible to show that as the quantization dets

inereasingly fine that Ro tends to Ro, and it is given by

Ro = - log, ! [ F: pi J p.fuss=ail) 1 du
{ ¥

which is the same as the unquantized measure.
Example: Let the transmitter alphabet be { +c, ~-c } and p({+c)

= pl-c) = 1/2. For unquantized Gaussian noise

Palu) :J(l/l'No).exp{-ul/No}

then,
o
Ro = - 1ogt$ [ (1/2). 0 177NoY. exp{-(u-o /No} T du +
-em
fu
+ (1/2). K{1/FNo). exp{-(u+c) /No}]l ] du

After some aldebraic manipulations, the cutoof rate Ro is

given by
Ro = 1 ~« log, { 1 + exp{-c/No} )

Now let us apply the measurs Ro to some quantization schemes

of interest.
CASE I: A =2 and @ = 2 (Hard decision)

This 1is the binary input binary output channel. If al = +c
and 82 = -c¢, the matched filter output at the receiver is also

quantiged to two levels. Therefore,

Qlz = @21 = p and Qll = @22 = 1-p

where p = QJ{2Z.c/No) ).
This channel is called Binary Symmetric Channel (BSC) and it

is represented by

Lt
Due to symmetyry, pl = p2 = 1/2, and =o

T L
o = - 10317:[[1;;4@1»1 ]"
el

1 - 1og (1 +J 4.p.{(1-p) )

CASE IT: A = 2 and @ = 3 (moft decision)

A significant improvement in Ro resulting from binary
quantization can be achieved by going to ternary quantization. The
quantizer and the corresponding channel for A = 2 and @ = 3 are

shown below
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Ql2 = Q21 = p, Q13 = Q@31 = w, and all = Q22 =1 ~-p - w



where

o«
5 J(1/mi0Y. expi-(us )" /Noddu
k)

p:
)
2
w = iJ(l/vNo).oxp{-(u+ c) /Noldu
-3 Up to now,
such a channel is called Binary Symmet;ic Erasure Channel (BSEC). gquantizers.

Again, pl = p2 = 1/2, and soO

s so far.
Fo = - log, L{ Lpivain 1
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below
Note that Ro can be optimized by choosing J conveniently.
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CASE III: A =2 and Q = 8 {3 bit quantizer)
This is the most frequently used quantizer in digital
communication systems. Again al = +c and a2 = -¢, and the
quantizer output alphabet is { bi, b2, ...., b8 }. The quantizer
and the corresponding channel for A = 2 and Q = 8 are shown below
~
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Prj {u/sj=ap) =J(l/ T ND).exp(—(u—ap)z /No}
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dimensional quantizers.

a breef comment,

= PIeY

we have beerny doing analysis for one

bh/sj = apl

i prj(u/sj=ap)du

dimensional

It is also possible to generalize these analysis to N-

The procedure is analogous to the one done

for two dimensional quantizers we can

1~ log,( 1 +w +¥4d.p.(1-p-w} ) have hard and soft decision quantizers. We show this in the Figs.
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1 - a) 2-dimensional hard decision guantizer

b} 2-dimensional soft decision quantizer



