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SPECTRA VERSUS TIME DOMAIN ANALYSIS

Time Domain

Analysis of geophysical parameters is generally made in
space-time domain,at last during the first eteps.

The reason is that almost every geophysical observing sys-
tem (active and passive),records a gignal {(voltage,
current) as & function of time and /or geometric position
in space.

During this firast stage of data adquisition,there are two
concepts which we have to bear in mind ,namely:

—-The final result obtained from the equipment is a set of
values, preprocessed by the observind system itself with
certain degree of complexity,which geophysisists refer to
as EXPERIMENTAL VALUES . In fact those values are the re-
sult of applying to the received signal,a trensformation
process. based on physical models which essign a correspon-
dence between the actual received signal end the associa-
ted geophysical parameter.

-A distinction is being meda bstween continuous and dis-
crote sets of data,in faet this is en arbitrary and non-
sense distinction, as there does not exist eny continuous
observing system.

In the best case the date adquisition ig made in a conti-
nuous mannsr (passive deteotors) ,but the hardware has an
integration time ,and process the input signal in small
blocks,diving a mean value for each integration time pe-
riod. In fact the continuous-discrete data dicotomy should
be aplied in a brosder sense ,according to the physical
parameter under study, rather than to the record aspect.
{ed.1.An Ionosonde with & 15 min.sounding schedule is al-
most continuous for studies of seasonal variations, dis-
crete for tidal studiss and almost useless for short pe-
riod gravity waves gtudies.

eg.2.A standard VHF-UHF Field Strenght receiver ,with an
integration time constant in the miliseconds range is a
good instrument for studies of fading for voice and low
speed digital date transmissions,but dangerous for fading
atudies of high density data transmissions.)

Depending on the objsotives,the data should be handled in
different ways.The first step,whichever the objectives
were, is the data validation study.

This procsss enables the user to asses the validity and
confidence of the data set.At this point radiopropagation
astudies and ionospheric physical studies take different
roads. The radicpropagation field strenght data wust be
checked with most probable distribution tests ,while
jonospheric physical data is correlated with other solar
and geophysical data.



Auto and Croes correlation analysmes are going to be des-
cribed in detail in the corresponding sections,being a
dood validation test for experimental data.

Spectral Domain

In the case you are locking for periodic structures in
your data record, spectral analysis is a good one, but not
the only processing teocol you have at hand. (periodic
structures can also be detected by eutocorrelation and
harmonic function fitting, as shall be explsined later).
Basically the spectral analysis is & set of operations
performed on the data record,which depends on its cha-
racteristics.

The success or failure on getting good.physically

meaning spectral results depends not only on applying a
Discrete or Fast Fourier Transform (DFT and FFT resgpec-
tively from now on) aldoritm to a data record,but also

on the filtering and windowing of the date previous to
the FT operation,and on a judicious and critical study

of the spectral results.

Spectral data processing provides us with additional in-
formation concerningd uncovered pericdicities, relative
intensities of different periodic waves and power spec-
tral density or enerdy distribution in the operation
bandwidth. Simultaneous "ghost lines” are generated in the
process, and ALIASING of waves outside the operation band-
width can happen.

The warnings ebove mentioned have the intention to avoid
the reader’s digsappointment after having a lot of time
and effort in implementing an FT algoritm.Get the first
results, and realise that nonconclusive or meaningless re-
sults were cbtained.

Next section is devoted to FT use in detail,and the items
already mentioned will be explained, in connection with geo-
physics. This lecture has not the intention of being an FT
handbook, but the application of what the reader can learn
on FT books to our specifiec field of interest.

FOURIER SERIES AND FOURIER TRANSFORMS

The usefulness of the F.T.is based on the FS definition and
properties,which states that any continuous and nondiver-
gent function extending from -« to +o can be decomposed in
an infinite series of harmonic terms, thus being equivalent
to the original function.Mathematically can be stated as:
+o
I -jenft
5(t)= s(t).e .dt (1}
-—h
s8(t) = waveform to be decomposed into sum of sinugoids
8{(f) = Fourier Transform of s{t}
J=4d{-1)
From this definition,all the FT analysis is built up, but
this lecture will not enter that field farther than what is
needed to understand geophysical data procesaing.
As already mentioned, experimental data is discrete in na-
ture then formula (1) is useless in our case.
For our purposes, its discrete equivalent is appropriate and
is stated as:

N-1 (~J2xt . £ )
S(f )= Z ( g(t ). & i k At -t ) {(2)
k i=0 i i+1 i

{k=0,1,2,...,N-1)
However, it is easily seen that if there are N data points
in the series s{ti),and we wish to determine the N sinu-
soids approximation, there are N.N multiplications to be per-
formed.
Under certain conditions, that number can be reduced to
N.log{(N}) by the application of the Fast Fourier Trensform
algoritm (FFT).
For a clear and full deseription of FT theary,the book “The
Fast Fourier Transform” written by Oran Bringham (Prentice
Hall N.Y. 1874) is highly recommended.
In what follows,a saries of fundamental properties of FT
theory are stated,with a comment related to their meaning
for geophysical data processing.

a) If g{t) is integrable in the sense
+uo

I|£(t)|.dt < o (3}
J
-
then its Fourier Transform G(f) exists and satisfies the
inverse FT.



b) Paraeval’s theorem

I1f g(t) fulfills the a) condition,and the FT pair is defi-

ned as: +

[ (-j2nft}

a(f)=, &{t).e .dt = F.T. of g(t)
J
+oo
[ (+i2xft)

g{t)={ Ga(f).e . # Antitransformed
J

o B +o0
then: I 2 I 2

gi{t} dt = |G(f)| df {4)

which meana that the total enerdy is conserved on passing
from one space to his transformed space.This is a fundamen-
tal relation that enables comparison of associated energy
to different waves.

¢) Linearity
F{a(t)+b{t)} = F{a{t)} + F{b(t}} (5)

where F indicates FT of the time series a{t) and b(t).
This means that it is possible to filter,or separate inde-
pendent processes in a given racord.

d) Time Scaling
If k is a real constant dreater than zero,

F{g(k.t)} = A(£/k)/|k| (8)
Frequency Scaling
-1
F {G{kf)} ﬂd(t/k)/|k| (7)

This property has great importance in the windowing
process, as contractions in one space produce expansion
in the associated cne ,affecting the bandpass effecti-
veness.

e) Time Shifting
{-i2xfto)
F{g(t-to)} = Fid(t)}.e (B}

This property has important consequences in the interpreta-
tion of spectra results,as it means that two data records
might have the seme spectral lines pattern and amplitude,
but different associated phases,due to a different starting
time of the measurements respect to the phenomena under
study.

£} Convolution
The convolution has an important role in FT theory.Its de-
finition is:

o
C(t)=[ a{t).b{t-t).dr = a(t)*b(t) {9)
J

-—
where c{t} is the convolution function of a{t) and b{t}.
The importance in thi® case is because the FT of a convo-
lution product is directly the product of the FT of the
functions:

F{a(t)*b{t)} = F{a(t)}.F{b(t)} = A(f).B(L) {10}
this is of key importance in the understanding of trunca-
tion effects on a time series and filter effects on
spectra,

&) Correlation
The correlation integral,

S
e(t)= ! a(T).bi{t+r).dr (11)

—a
has identicsl properties to the convolution only in the
cese b{t) is an aven function.
In deneral,the FT of the correlation is:
*
F{ ett) } = A(L).B(f) {12)
*

where B(f) = complex conjugate of B(f)

Some geophysical pbservation techniques,as radar ,performs
an-line autocorrelation processing of the signal and after
that FT of the result.This means in fact that the result is
not a spsctra but a power apectra of the signal.
Correlation will bs annalyged in another section,out of the
context of FT.

Fourier Series (FS)
A periodic function g(t) with period Ta,expressed as a FS
is given by:
o
g(t)=ac/2 + I [an.cos{2xant/To) + bn.sin(2ant/To) ] (13)
n=1



the coefficients are given by:

[TO/Z
an=(2/To). . ¥(t).cos(2xnt/To).dt (14)
J-To/2 (n=0,1,2,...)
[To/2
bn=(2/To}. | y{t).ein{2nnt/To).dt (15)
J-To/2 {n=1,2,...)
or in complex notation:
4o 2nnt/To
y{tiz= Z an.e {16)
where an= (an-j.bn)/2
[To/2 ~Jj2xnt/To
an={1/To}. ,; yit). e .dt (17)
J-To/2

{(n=0, 1,42, ...}

This formalism is the most general mathematical formulation
of FT , but yet there is a problem, it depends on integrals
to be solved,and as we have time meries of data (or spacs
data record} which are not continuous and we have no ana-
lytic expression which describe them,no advence seems to
have been mede up to now.But a sudden jump shead is made if
we think each data point as the convolution of an impulse
distribution function {(Dirao Delta function) with & conti-
nuous function,which is unknown to us except at certain
points, those where the 5 is nonzero.

The following example uses the above mentioned ideas in a
practical case.

Suppose you have a two days long record of foF2 parameter,
taken from an icnosonde,with a 15 min. schedule rutine ope-
ration.

It means you have a set of 4 points/hour during 48 hrs, then
192 deta points.

We shall call this the Total numbesr of points ( N ).

The total duration of the record is 2 days or 48 hours or
2880 minutes, as you prafer,and this number will be called
the duration or fundemental period of the recard ( To ).
Now,we have to construct a Delta which becomes nonzero at
the location of each data point of the “"continuous” unknown
foF2{t) function.Graphically:

A l**——————-—q
1 b o time

We have to define the starting point,it cen be called O or
1 dependindg on your preferences, remember we have N points,
thus our counter should go from 0 to N-1 ,starting at O or
from 1 to N ,starting at 1.We shall name the counter as ’'n’.
In this example we will use t=0 ms starting point.Then the
set. of Delta functiorg ig:

The first data is at t£z0 thus 5{t) describes it
* sgecond " S 5 B G(t-15) " "
third t=2 G(t-2x15)
fourth t=3 G(t-3x15)
any t=n S(t-nx1b)
last t=N-1 G{t-(N-1)x15)

Heres the time have been adopted in minutes ;and you see
that 15 mins=Z days/192 points or 16=Total Time (To)/N

The & can be generally stated as 8{t-n. To/N)
Then the set of values can be described as the convolution
of a "continuous foF2(t}" and & §(t-n.To/N}.

Going back again to the general description of FT theory,
it is easily demonstrated that:

4 o
F{ £ 6{(t-n.T) } = (1/T).X 5(f-n/T) (18)

— -

and using the Delta function definition:

a(t).8(t-to)=a(to)b{t-to) (19)
we obtain :

g{t)=a(t)*b(t) -> G(f)=A(L).B(f) (20}
when b(t) is the Delta Function:

+ar
G(f)=A{f).(1/T0}.Z 8(f-n/To)
+a
G(f)=(1/To). X A(n/To).&{f-n/To) (21}

The remaining step from the theoretical point of view, to
dget the disarete FT,is the demonstration that the FT of a
continuous function is the same that of a set of samples
of that function, provided that the sampling frequency is
double than the higher frequency component in the function.



As stated in the Nyguist sampling rate.In case this condi-
tion is not fulfilled (the sampling frequency is smaller
than the highest frequency in the record ),the aliasing
effect is observed.Aliasing is a redistribution of the
higher fregquency portion of the band into the available
bandwidth, “aliasing” two or more spectral lines on a single
"name” one.Graphically,the effect is as a folding of the
full spectra in as many parts as necessary to fit into the
observable bandwidth.This effect is always present,but is
important only when the amount of energy associated with
lines outside the observabled band is important.
In geophysics it is not always easy to assert the existence
or not of considerable Aliasing in a given record.The best
way to elucidate it is the following!
1)-Obtain the Fourier Spectra of the record.
2)-Heconstruct the “original” record using Inverse FT.
If the original and reconstructed records are equal, there
is no Aliasing effect, thus no higher frequency lines are
being wmissed in your adopted sampling frequency.
On the other hand,if they differ ,the reason is that the
coefficients of the FT obtained are not purely correspon-
ding to their associated frequency.They are contaminated
(added) with other higher frequencies (outside the visi-
ble band) coefficients which have been aliassed with them
in a folding process, thus breaking the relative coeffi-
cient weight equilibrium.
In order not to extend the text, the step by step procedure
to demonstrate that DFT and IFT are #quivalent,provided the
Nyquist condition is fulfilled,wil] not be made.Now we go
to the DFT expression and FFT asocoiated procedure.

Discrete Fourier Transform (DFT)
The DFT of a record containing N points,equally spaced,
which we shall refer as x(k) (k=1,2,..N or k=0,1,2,..,N-1)
is a series of harmonic terms whose coefficients indicate
the weight of each harmonio component in the equivalent
representation, Each term of the series will be represented
as X(n). Then:
N-1 ~j2ank/N
K(n)=(1/N). £ x(k).e (22)
k=0
{n=0,1,2,...,8-1)
It is very usefull at this stage to define and get familiar
with the "buiding block” of FT,namely:
~j2n/N
a Phasor in complex space = HW=e (23)
The rest of the terms are built by rotation of this phasor
in n.k steps.
Formula (22) ig the FT hart and its implementation in ma-
chine code is very easy.The expected results are:

N
ao= (1/N).Z x(k)

N
an={2/N}. % x(k).cos(2xnk/N}
k=1

N (24)
bn=(2/N).Z x(k).sin(2xnk/N)

as you all know.At this stage,ws can introduce the FFT
ideas and to define the similarities and differences with
DFT.
Fast Fourier Transform (FFT)

As it is observed in the preceding formulas, for each an
and bn N products between the data points and trigono-
metric functions must be made.Also N terms of the trans-
form are being calculated thus N.N multiplications are
needed, together with the 2.N

gin and cos function values.This is a considerable number
of operations to be performed,even for a fast computer.
The FFT algoritm becomes so popular just for its hability
in reducingd considerably the amount of multipliications .
Let us see how it is being done.

The best way of realizing it i® by means of a practical
example. Suppose we have s four points data record ( x(0).
x(1},x(2),x{(3) ) then :

N=4

W=exp(-j2x/4)

wa define for simplicity ----—- > W.a.B=exp[{-j2x/4}.a.8]
the DFT is proportional to:

X{(0)=x(0).W.0.0 + x{1).W. 0.1 + %x(2).W.0.2 + x(3).W.0.3
XK(1)=x(0).¥W. 1.0 + x(1).W.1.1 + x(2).W.1.2 + x(3).W. 1.3
X{2)=x(0).W.2.0 + x{1).W. 2.1 + x(2).W. 2.2 + x(3).W. 2.3
X(4)=x{0).W.3.0 + x(1).W. 3.1 + x(2).W.3.2 + x(3).W.3.3

here we see the followind:

1)the first term on the right is identical with the four

eq. then three redundant multiplications are being per-

formed.

2) W.O0.0=W.0.1=W.0,2=H.0.3=WH.1.0=H.2.0=W.3.0 = 1
HW.a.f8=W.B.a

3) es a and 3 are factors,the important value is their
product result thus W.2.3 = W6 and =0 on.we can see
then that:



the four roots of 1 in the complex plane are:

1 j -1 -3 1§ -1 -j 1 J -1 ~-j 1

WO
W1 W2 W3
W4 W6
Wo
- i fi i
X(0) =
X(1) » & -
X(2) » - -
X{3) » - - [

This table shows in the upper line a cyclic repetition
of the four possible rooth valuma {or harmonic values).
The next four lines encolumns the values of the phasors
which determine the fourier coefficients.

A dotted field indicates starting of the rooths cyele.
The last four lines show the number of cycles necessary
to determine each FT coefficient ,and a small block is
in column with the used value.

From this teable and the set of squations of the preceding
page, you can see : x{2)W2=%(2)HWB

x{2}WO=x(2)W4

x(3)WO0=-x(3) W6

etc.
All these cases are reductions in the number of multipli-
cations to be performed,as well as the repetition in the
possible values of the harmonic funotions,
Another point which si clear in the table is the sequence
of W's utilization for building up the sequence of Fourier
coefficients.The first (X{0)) uses only one , the next
(X(1)) uses ALL the different values, the next SKIPS one va-
lue each time and the last SKIPS two values each tima.
Some authors prefer to say that a permutation in the roots
order must be done for each coefficient.
This permutation and reordering ig what is mentioned as the
scrambling process in the FFT algoritm.
This process is simple for data records of 2" points length
and is the standard FFT algaritm.For deta points other than
2" the algoritm is not as gimple, alpo more time consuming

but several algoritms have been developed for special cases.

FFT aldoritms are available as routine library in math,
software.As Apendix A you will see a FT algoritm which uses
some of the FFT properties to get FT of an arbitrary number
of points,being thus an intermediate speed aldoritm,written
in Quick Basic.

3. -Truncation of Time Series

In the previous section we have seen that the limited
length of the record introduces disturbances in the
spectra, named ALIASING ,which is an inherent property
of the DFT,due to its theoretical continuous and infi-
nite character.

There exists also another disturbing effect due to the
finite length of the record, in some sense gsimilar to
the aliasing,but this can be minimized by appropriate
data handling. This is the windowing or filtering effect.

The aliasing,as already mentioned, is the folding of the
infinite series of FT coefficcients over and over the
working bandwidth. Its effect is important only when the
data record sampling rate is "slower' than part of the
existing waves.

These "fast" waves cannot be appropriately identified
and are taken as part of slower ones. Remember that the
FT theory is based on the assumptions that: a)The
record lenght is equal to the fundamental wave reriod,
and b)the sampling rate is fast enough as to rick up the
highest frequency, according to the NYQUIST FREQUENCY,
This effect is then inherent to the theoretical deri-
vation and cannot be eliminated.

The sequence of additions ariging in a FT series corres-—
ponding to N data points is ,once obtained the (an) and
{(bn)} Fourier coefficients

F(f) first fold second fold
__—_) ______________ )_..—
: [ 1
ao e aN. cos Nwf +
+ +
al.cos wf <-- a{N-1).cos {N-1)wf <~a{N+1).cos (N+1)w?
+ + +
a2.cos 2wl <—- a(N-2).cos (N-2)wf <-a{N+2).cos (N+2)wf
+

+ +

+ + .
a{N/2-2)coa(N/2-2)wf <~~~ idem (N/242} <~~ idem (N+N/2-2)

+ + +
a(N/2-1)con{N/2-1)wf <-- idem (N/2+1) <-- idem (N+N/2-1)

+ + +
asN/Z)cos(N/Z)WI (mmmm e idem (N+N/2)

1 )

b S 2 -1 L it >

¥ only cosine terms have been printed, sine terms must be
added.



Filters and windows

Wheighting functions are ALWAYS used in the analysis of

data records.These functions,depending on their particular

application are commonly known as FILTERS or WINDOWS.

We shall present here only three of them, the most commonly

used . They are : Rectangular {BoxCar} ,Hanning and Kaiser-

Besgel,describing their main application and time-frequency

specifications.

A filter is a device that transmits a signal that is the

result of covolving the input signal with the response

function of the filter (h{t)).In the frequency domain this
corresponds to a complex multiplication of the frequency
spectrum of the signal by the frequency response function

of the filter. .

The most important filter characteristics are,in the fre-

quency domain:

Centre frequency: Is defined as the arithmetic or geometric
mean value of the lower and upper frequency limits.
geometric mean= 4(fl.fu)=% constant bandwidth
arithmetic meanz fo= (f1+fu)/2 = constant bandwidth

Bundwidth:is defined as the width of the working frequency
scale. The extreme values are defined by the lenght
of the record (fl=1/T) and the sampling rate (fu=
1/2.T8).The 3 dB bandwidth (Half power in amplitude)
gives information about its hability to separate com-
ponents of similar amplitude,and this determines the
resclution of the analysis.

Ripple: The ammount of ripple in the passband of the filter,
characterizes the uncertainty with wich the amplitu-
de of a given signal can be determined.

Selectivity: Is a descriptor which indicates the sbility of
a filter to separate components of widely different
levels. The basic parameter of gelectivity is the
shape factor.{The ratio of the filter bandwidth at
an attenuation of 60 dB,to its 3 dB bandwidth.

Figures 1 and 2 show the above mentioned parameters.

Fi%-i F'na. 2
welirdicnnse Ripple
it -0 S o
Zdaal Yol ~
i Filter ﬂﬁgﬁp g
:3-5 | 348 poimlt \é‘o-
g* 348 B | ¢
o : &‘
go

Limear {r!q.ue-nc.y &i_le

Windowing
FT analysis is made in blocks of data ie.each FT calcula-
tion is a transform of a record of finite length.The sig-
nal is thus limited to a window.What happens with the
signal outside the window is unknown and does not enter
explicitly in the transform calculation, but impose con-
ditions to the results, :
Individual window types will emphasize parts of the signal
in different ways, thus giving different results (different
spectra).
The three windows above mentioned are shown in Figure 3
with a table of its characteristics.

Kziser- Begse L

max. amp. min. amp. 3dB limit
Rectengular 1 1 1.0T
Hanning 2 0 0.5 T
Kaiser-Begsel 2.48 4] 6.38 T

e — -~
34dB Ripple Highest 60dB Shape
Bandwidth Sidelobe Bandw. Factor
Rectangular 0.87 6f 3.92aB -13.3dB 665 of 750
Hanning 1.44 &f 1.42dB -31.5dB 13.3 &f 9.2
K. -Bessel 1.71 &f 1.02dB -66.6dB 6.1 &F 3.6




We shall see now thome filtere in detail.

Rectangular
Thia filter/window ,also called Flat or BoxCar is in fact
no weighting at all on the finite time record.It is de-

fined as:
wit)=1 for 0 st < T ( T=record length } (25)
w{t)=0 elsewere

The filter characteristic given by the Integral FT of
this window is:
W)= { I- exp(-3fT)}/ (if) {26)
Figure 4 is ist Fourier Transform.
°f
o ¢ Fia. 4
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The filter has a mainlobe which is twice the width of the
line-filter spacing ( 5f=2xn/T ) and an INFINITE number

of gidelobes with widths equel to the line filter spacing.

For the analysis of deterministic/harmonic signals this
is & poor filter because it has :

1.- Very poor selsctivity,due to the wide 60dB bandwidth,
2. -Relatively large (3.9dB) ripple in the passband, which
means an amplitude variation of 2.38 times between maxima

end minima in the working bandwidth (the “flat top" area).

At first sight, it seems that the BoxCar is a poor quality
filter.This is not always true.For example, if you have a
sinusoid ,which coincides with the central frequency of
the filter (the window is exactly one period of the wave)
you will get after transforming, the real maximum amplitu-
de (filter factor = 1) and zero amplitude at all integer
8f velues,getting an exact result .Then this is a good

choice. The worst cese is when the frequency of the sinusoid

coincides with a crossover frequency between two adjacent
filters (eg. window lenght = 1K wave periods). The result
will be & decreased maximum value on 3.9dB,while all other
sidelobes contribute with an appreciable power (leakage).
The practical use of the rectangular window is for analy-
z2ing transients with shorter duration than the record
lenght ( T ).

Due to the flat and unit amplification factor in the time
domain,all parts of the signal are equally weighted.In the
frequency domain the bandwidth of the signal is greater
than the bandwidth of the filter, because the gignal is
shorter than T , and therefore the filter characteristics
will have no influence on the calculated gspectrum of the
transient signal.

Hanning weighting

This filter already shown in a previcus Figure,is a smooth
function defined as:
w{t}= {1 - cos (2xt/T)1 = 2. 8in®* (xt/T) for O<t<T

wit)= 0 algewere (27}
its FT expression is:
W(L)= sin(xfT)/{xf) (28)

Figure 5 is its F.T.

- 201 Fij.S‘
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The mainlobe is 45f,double the width of the rectangular
window. Sidelobes are more attenuated, and the fall off
rate is much faster than for BoxCar weighting.This
means that the 60dB bandwidth is much narrower,giving
better selectivity.The ripple is only 1.4 dB.



Defining the noise bandwidth as the equivalent BoxCar win-
dow {total area in space-time) ,Hanning window has 50%
dreater noise bandwidth than BoxCar, Then, power spectrum
values for broadband random signals will therefore be 1.5
times higher when analyzed using Hanning instead of Rec-
tangular filters.Leakage for a single einuscid as des-
eribed in the previous filter text,is greately reduced.
The Hanning window thus performa better than rectangular
one with respect to selectivity,passband ripple and
leakage, and should be used in mowt cases where continuous
gignals are analyzed.

Kaiser-Bessel weighting

This filter responds to the expression:

w{t)=1-1.24 cos{2xt/T)+0.244 cos{4xt/T}-0.003056 cos(6xt/T)
for 0 =t < T

wi(t) = 0 elsewhere {29)

The FT of this filter is shown in Figure 6,
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As it is observed,this is superior to other filters in
selectivity performanoe.The 60 dB bandwidth im only 6.1
times the line spacing ,due to the extremely low level

of the highest sidelobe,which is found to be at -67 dB.
For harmonic signals analysis, the only difference between
"best case” and "worst case” is its maximum amplitude
error {ripple in the passband of -1 dB), presenting almost
no leakage,due to the sharp sidelobes reduction.

Because of its good selectivity,should be used as window
when separation of closely spaced frequency components
with widely different amplitude levels is required.

For analysis of periodic signals, the Kaiger-Bessel window
is probably the best choice.The disadvantage, in comparison
with Hanning is speed and that a uniform weighting of the
time signal cannot be achieved by standard overlap
analysis, in aplications which require real time processing.
Also has a wider noise bandwidth (1.8 &6f },and over-
estimation of random signals gives rise to enhanced uniform
leakage at resonances as well ags at antiresonances .



Autoredressive Methods

Autoredressive methods are the statistical face of data
processing. They are closely related with spectral methods,
and that association will be shown in the following para-
graphs. A detailed snalysis of this topic can be found in
"Spectral Analysis in Geophysics' M. Lath,Elsevier Sci. 1974.
The Autocorrelation function is defined as:

Cli(z) = [ fi(t). fi(t+z).dt {30)

J-=

It has ite maximum for t=0.This function,so defined for the
one-dimensional case can be extended to multi~-dimensional
cases as:

[=["
Cll{a,pB)= ! H fl(x,y). f1(x+a,y+B).dxdy (31)
J—m ] =
The cross-correlation function is defined as:
L.
Cl2{r)= [ f1{t).f2(t+r).dt (32)
J-=

The generalization for more than one dimension is Similar
to the auto-correlation case.Here f1({t),f2(t),etc. are
real functions if we assign them to geophysical data va-
lues. Their use in the "discrete data world" of deovhysical
data records does not present any problem in their discre-
tization.Simply the integralg are replaced by edditions.
The problem is that the numerical values are not normali-
zed and the Auto and Cross correlation values will] depend
on the record length.The solution is to redefine them as
normalized correlations by dividing the above expreasions
by their value at © = 0.This wey the maximum Cij value is
one,and different record lengths can be compared .

At this point I want to make a distinetion in between two
different uses of correlation expressions.

The first and immediate one is to use these exprsssions

to determine, in the euto-correlation case,if the record
has rPeriodicities. Starting at t =0 { C11(0) = 1 ) ,the
coefficient will start decreasing as t grows.If it grows
again and reaches a relative maxima this indicates the
record has periodic structures, and the fundamental period
is the t value for the maxima. It might happen that several
T values (not equally spaced ) present peaks,then harmonic
analysis will help in determining the spectral structure,
with an apriori information of the expected waves fre-
quencies.

The croms-correlation umes two different time (or space)
series with arbitrary relative shifts.For each shift value
{ T ) there is a corresponding value of the correlation.
This function is very usefull in determining the parale-
lism between two time series.This has a great practical
sighificance in any geophysical observation of propagating
waves by meane of an array of stations. The time shift
which maximizes the crosds-correlation would correspond to
the most likely phase shift between correlated stations,

For several geophysical phenomena the auto-correlation
often decreasges exponentially with increasing time lag.
This behaviour is connected with Markovian Processes, and
once you get this result, without even doing the spectral
analysis,be sure that the Power Spectral Density of the
record has a frequency dependence of the type fexp(-3)
This is connected with the other use of correlation expres-
sions mentioned in the previous page.

This second use is connected with the ascociation in be-
tween correlation functions and the corresponding Power
Spectra of the working time series.The demonstrations of
the expressions which follow will not be given,but you can
find themn in the books already recommended.

The following mimbols will be used:

f1(t)y , f2(t) time peries

F1(1) ., F2(f) Fourier Transforms of the time seriesg
Cli{z) Auto-~Correlation function of fl{t) (lag=t)
Cl2(<T) =Cross-Correlation of f1(t) with f2{t)

E11(f) = JF1(f}|* = Power spectrum of fi(t)
E12(f} = F1($)°.F2(#) =Cross Power spectrum fi(t)and f2(t)
* = the star symbol indicates convolution

List of correlation properties and asscciations between
correlation functions and F.T.:

Cli(z) = Cl1(-7) = f1{c)*f1(-1) (33)
Cl2(r) = C21{-%) = Fl{-T)*f2(z)

E11(f) is the F.T. of Cli(z) or: Cll(t) <-> El11(f)
Cl2(z) <-> E12(f)

E21(f) = E12(-f) = E21°(~f)

Unlike the Power spectrum Ell.which is always real and
positive,the Cross-Power E1? ig in general complex. Then
1E12{1)| can be used as a measure of the cross power,

t is usefull to split E12(f) into its co-spectrum (real
part) and quadrature gspectrum (imaginary part ) :
E12(f) = P12(s$) - J.Q12(F) = F1°(f) F2({F) (34)



[T

where P12(f) is the co-spectrum and Q12(f) is the quadra-
ture spectrum {abreviated as quad-spectrum).

It is easy to demonstrate that:

P12{f) = P21{(T1)

Qiz({fr) = -Q21(1)

P12(Ff) = & [ [ c12{z) + C21(x) ] co= fr dr (35)
J
QI2(Ff =k [ [ C12(%x) - C21(%x) ] sinfr dt {36)
J

The phase leg # of F1 with respect to F2 is obtained from:
tan # = -QL2(7)/P12(1) (37)

By analogdy ,in the case of autopower:
Eil{f) = P11{f)

E22(1) P22(1)

Qli( Qz22(f)y = 0

Another definition which is always used is : Coherence
I riz{f | = { E12(8) j/ 4 [ E11(1) E22(1) ] {38)

Theoretically, the coherence function would be equal to i,
independent of frequency.It is not so in practical appli-
cations due to the windowing and smoothing effects.

As mentioned in this and the previous pade,the association
between correlation functions and power spectra is the se-
cond aspect of correlation use.As they ars an associated
Fourier pair, if you have a graphical idea of simple func-
tions and their associated FT, the Auto-Regressive (AR) as-—
pect of & data record gives you an idea of the Fourier po-
wer spectra you will obtain,and also of the prhysical pheno-
mena involved.

We shall see this with a few eoxamples:

1) You have a data record with no avident pericdicities,
and performs its auto-correlation and draws it on the com-
puter screen.The figure shows a single peak at ©t=0 and a
sharp decrease without further wecondary peaks for other
T values {exponential decreass ).

You can immedistely deduce that the power spectra will
have no defined lines,the shape will be “bell type" with
a main slope of f exp(-2).

This is the already mentioned case of Markov process. If
you calculate the Power Spectral Density ( F{r)/1 ),

and draws it in log-log scals,a line (slope -3) will
describe that spectra (the well known Garret-Munk spec-
tra).

Reasons:wave instability saturation-Resonant interac-
tions (RIA) or associated to other physical reason.

2) The same procedure than before, and you see at your
screen a { 8in a / a ) figure.Successive maxima,
peparated by deep valleys.

In the speotral domain it means a congtant signal level
in all the bandwidth {(white noise ,even in a limited
band ). Then your record doss not corresponds to dis-
crete waveA travelling ,but to a uniform distribution
of energy all over the band.

Remsons: noise level saturation-Data record excessively
short- insufficient sampling rate speed-or many other
reasons.

3) At your screen you see a wavelike pattern with succe
ssive maxima and minima .If maxima are equally spaced ,
in the spectral domain you have a gingle wave of period
t and frequency 1/t .If maxima are not equally spaced,
a set of waves are present in the reascord.

These are extreme cases (nature is not gimple ),and mixed

cases are commoh,but with this procedure you have a star-

ting point and some idea of the record content.

It must be remembered that using this method ,the FT is
the Power Spectra of the record, and the phase information
have been lost. If we are interested both in power and
phagse of a given record transform,the FT of the original
record (filtered,vwindowed etc) must be obtained ,and the
power calculated in the standard way (a®* + b*).



Reliability of Harmonic Analysis

As we have seen ,harmonic analysis is a valuable taol in
deophysics,we can get a lot of tnfor--tion concerning the
behaviour of the parameter under stuiy from its spectrum.
Now it is time to mention the 1imitations,ooncerning geo-
rhysical applications.

HMost geophysical processes are non-stationary ,and also
the media is dispersive (earth,atmoaphere.ionosphere).
Thus, a single harmonic wave produced in such a media,will
bpropagate and suffer the dispersive effeocts. These effects
are mainly the change of amplitude and speed. The obzerva-
tion of that wave at different locations or at the same
rlace and during a period of time provides us with the re-
quired data record. Easily we can deduce that our data re-
cord, supposing it contains information of a single barmonic
source will give different results depending the location,
direction and variability of the media during the meAsuring
pericd.

The recording instrument bandwidth and data sampling rate
acts as filters on the recarded information.distorting its
content as already discussed,

The spectra of such a record reven being a “gingle
harmonic” source,will be considerably distorted. Reconstruc-
tions of the signal can be attempted, provided the filter
characteristics are well known,

The above discussed case is not commonly ancountered,
Single harmonic sources in natures are infrequent. The most
commom case is that the source is non stationary (impul-
sive, short duration and band limited rather than single
oscillation).

In this case, the dispersive characteristics of the media
not only produce attenuation and Speed variations, but also
filtering of the signal.

This last effect can be described as follows. The source
produce a disturbance {rressure,density temperature ,etc)
with a given structure in time (gudden peak, gaussian, or any
shape you can imagine }.As stated in Fourisp theory, it is
‘possible to reconstruct that original shape {at the source
location) with a Fourier series.

As the disturbance propagates, BACH of its Fourier original

When using FT methods for geophysical data records study, as
in our case,we have to bear in mind that a rigurous statio-
nary theory is being used for a non-stationary process
study.

FT method assumes that there are not frequency changes
along the sample.As this is not an infrequent case in geo-
physics,a good practice is to work with a sliding window
over the record.This means to make partitions of the record,
and calculate FT of each part.Those partitions can par—
tially overlap, then we obtain a series of FT showing the
evolution of the frequency structure with time.

This is called moving-window spectra.

Two commente on this practical approach. first, we have to

be sure that the partition is sufficiently wide as to
contain the longer period we are looking for at least one
time, and second , From the FT properties we saw that time
shifting does not alter the power spectra, but the phase isg
altered considerably, then phase comparison between diffe-
rent spectra is meaningless, except if partition is made in

general this can be acoomplished for only one frequency of
the get),
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