

INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONAL SCIENTIFIC AND CULTURAL ORGANIZATION INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS I.C.T.P., P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

IN REPLY PLEASE REFER TO

ist.

SMR.380/30

COLLEGE ON THEORETICAL AND EXPERIMENTAL RADIOPROPAGATION SCIENCE

6 - 24 February 1989

THE OLYMPUS EXPERIMENT AND A NEW SATELLITE BEACON RECEIVER

V. SPEZIALE

Telespazio S.p.A., Roma, Italy

These notes are intended for internal distribution only.

ICTF

College on theoretical and experimental radiopropagation physics

6 - 24 February 1989

Laboratory session

The Olympus experiment and a new satellite beacon receiver

Victor Speziale - Telespazio Trieste 22/2/1989

Satellite characteristics of Olympus

- Experimental 3-axis stabilized spacecraft designed to meet the payload requirements of future communications satellites.
- The platform allows to accommodate a payload of

425 Kg

5.5 KW

- Satellite mission lifetime 7 years
- Olympus will carry three payloads:
 - 12/14 specialized service

(Advanced communications with small E/S)

- Direct broadcasting payload
- 20/30 communication payload
- 12/20/30 propagation package

(point-to-point and multipoint teleconferences)

Propagation beacon payload

The payload consists of three CW beaconstransmitted at:

B₁ 12501.866 MHz

B₁ 19770.393 MHz B₂ 29655.589 MHz

- All the beacons are coherently derived from a single source
- Frequency stability

Period	Signal B _O	Signal B ₁	Signal B ₂
Over any 24 hours	± 1.2 KHz	± 2 KHz	± 3 KHz
Over any year	± 36 KHz	± 60 KHz	± 90 KHz
Over 7 years	± 120 KHz	± 200 KHz	± 300 KHz

EIRP

B₀ 10 dBW

B, 24 dBW

B₂ 24 dBW

EIRP stability

Time interval	EIRP variation B ₀ , B ₁ , B ₂
Over any 1 sec	± 0.05 dB
Over any 24 hrs	± 0.5 dB
Over any year	± 1.0 dB
Over 7 year	± 2.0 dB

Coverage of OLYMPUS 20 GHz and 30 GHz Bearins (showing power contours relative to peak interest beam centre and elevations)

-e- telespazio –

Coverage of OLYMPUS 12.5 GHz Beacon (with power contours relative to peak at sub-satellite point)

-e- telespazio -

Block diagram of the OLYMPUS Beacon Payload

Polarization characteristics

- The polarization of all the beacons will be linear
- The polarization of B₁ will be either X or Y continuously, or switching between X and Y at a rate of 1866 Hz

(Full switching cycle frequency 933 Hz)

- The switching frequency will be better than +/- 2.5 parts in 10⁵
- Phase variation between the two polarizations less than 2 deg/24 h

Signal	Polarisation	Orientation/Accuracy
B ₁	Y	(90 ±2) degrees with respect to Earth equatorial plane.
	x	90 degrees with respect to B ₁ - Y.
B ₂ , B ₀	Y	(0 ± 0.5) degrees with respect to B ₁ - Y.

Polarization orientation

telespazio

5

OLY4.DRW

SATELLITE BEACON RECEIVERS DETECTION TECHNIQUES

- Analogue detection: it measures the amplitude of the unmodulated beacons
- non-coherent receiver:

sensitivity penalty

- coherent receiver:

the reference carrier at the input of

PLL phase sensitivity detector is at 90 deg

compared to the signal input.

The signal can be multiplied by a

90 deg shifted carrier to give its amplitude.

In case of switched polarization beacon:

necessary to separate the signal received in the time domain (switching synchronous to satellite)

SATELLITE BEACON RECEIVERS THE SAMPLING PROCESS

- Post detection filtering to the final measurement bandwidth followed by A/D conversion at 15/16 bit
- Relatively wide post-detection filtering, followed by
 A/D conversion at a high sampling rate with 10/12 bit A/D

Disadvantage:

- As the output of the detector can be positive or negative the A/D converter has to accommodate the full range.
- The resolution in amplitude and phase after the converters depends on the signal amplitude and phase.
- Conversion to phase and logarithmic amplitude by analogue hardware followed by a 10 bit A/D conversion.

Disadvantage:

The accuracy is determined by the inherent drift and non-linearity

SATELLITE BEACON RECEIVERS

THE SAMPLING PROCESS

$$\Delta A = 10 \log (1 + 2 \frac{K}{K^2})$$

$$\Delta \phi = \frac{\sqrt{2}}{K} \text{ rad}$$

$$-60 \qquad -40 \qquad -20 \qquad 0$$

$$K = \frac{A}{A_0} 2^{M-1} \qquad \Delta A \text{ (dB)}$$

$$\frac{1}{K} = \frac{A}{A_0} 2^{M-1} \qquad \frac{1}{A_0} \frac{1}{$$

as a function of signal amplitude to full scale (coherent detection -Worst case amplitude and phase resolution 14 bit ideal A/D)

SATELLITE BEACON RECEIVERS DIGITAL RECEIVERS

- Interest in digital receiver (DR) due to the potential accuracy and repeatibility of this unit (0.2 dB and 2 deg required)
- Cost of the unit
- Performance of the receiver under deep fade conditions

In a conventional receiver:

the PLL band reduction has a limit in the phase noise characteristics of the signal beacon

Hysteresis to reacquire the beacon

loop threshold effects related to the (sinusoidal) non linearity of the phase detector

SATELLITE BEACON RECEIVERS DIGITAL RECEIVERS (2)

In a DR only the carrier frequency is tracked. If phase measurement of the copolar/crosspolar components is required, this is performed via a separate process.

Advantage:

Phase noise produce less than 1 Hz rms frequency uncertainty

(5 Hz filter instead of 50 Hz)

Easy control of DR in fade conditions: freeze mode

In case of switched beacon, the DR has to track the satellite switching frequency (SWF). In this case, sampling frequency is multiple of satellite SWF.

SATELLITE BEACON RECEIVERS THE ANALOGUE-DIGITAL COMBINED APPROACH

- In case of simple terminals, the DR is an expensive approach
- A combined analogue/digital approach, based on:
 - a banch of filters of narrow band
 - a low cost A/D converter

could be a suitable approach.

The device a was conceived for the Olumpus 20 GHz experiment. It allows the measure of copolar and crosspolar amplitude plus relative phase.

Patent pending by Teknel spa - Via Centuripe, 1 - 00179 Roma

TEKNEL SATELLITE BEACON RECEIVER

THEORY OF OPERATION

- Translation from 19.77 GHz to 7.5 KHz. The amplitude/phase relationship is mantained
- The 7.5 KHz feeds the filter bench (15 filters, BW = 183 Hz)
- r.m.s. detectors at the filter output. The receiver acts as
 a spectrum analyzer (Resolution BW = 183 Hz) but 15 times faster
 (highly useful during the searching phase)
- No threshold as the signal is detected even for S = N (if S = N then S + N = 3 dB over N)
- Phase information is the phase between the central carrier and the sum of the first components of lateral bands.

TEKNEL OLYMPUS BEACON SIMULATOR

TEKNEL OLYMPUS BEACON RECEIVER

FILTER BENCH OVERALL MASK

FORMULAS UTILIZED FOR THE COMPUTATIONS

i)
$$U_{x} = \frac{1}{2} + \frac{2}{\pi} \left(\omega_{1} \Omega t - \frac{1}{3} \omega_{5} 3 \Omega t + \frac{1}{5} \omega_{1} 5 \Omega t \dots \right)$$

2)
$$W = \frac{1}{2} - \frac{2}{\pi} (\omega) \Omega t - \frac{1}{3} \omega S \Omega t + \frac{1}{5} \omega S S \Omega t$$

where:

$$\Omega = 2\pi.933$$

$$\omega = 2\pi.7500$$
 (or $\omega = 2\pi.19.77642$)

COPOLAR SIGNAL

At the receiver imput:

4)
$$\beta = \frac{Ax}{2}$$
 (a) we $\pm \frac{2}{\pi} Ax$ (b) we (1) le $-\frac{1}{3}$ (c) 3. le ...) $\pm \frac{Ay}{2}$ (c) $-\frac{2}{\pi} Ay$ (c) (we + $\frac{2}{\pi} Ax$ (c) we (we + $\frac{2}{\pi} Ax$ (c) we (we + $\frac{2}{3} Ax$ (c) $\frac{2}{3}$

CARRIER
$$\Delta_0^2 = \left(\frac{Ax}{2} + \frac{Ay}{2} \omega_1 \varphi\right)^2 + \left(-\frac{Ay}{2}\right)^2 = \frac{1}{4} \left(Ax^2 + Ay^2 + 2AxAy \omega_1 \varphi\right)$$

HODULATION
$$A^2 = \frac{4}{\pi^2} \left(4x - 4y \cos \theta \right)^2 + \frac{4}{\pi^2} \left(4y \sin \theta \right)^2 = \frac{4}{\pi^2} \left(4x^2 + 4y^2 - 24x + 4y \cos \theta \right)$$

FORMULAS UTILIZED FOR THE COMPUTATIONS

(2)

At the end of computations:

$$A_0 = \frac{1}{2} \sqrt{A_x^2 + A_y^2 + 2A_x A_y \omega_1 \rho}$$

$$A = \frac{2}{\pi} \sqrt{A_x^2 + A_y^2 - 2A_x A_y \omega_1 \rho}$$

$$A_f = \frac{A_x^2 - A_y^2}{\pi A_0}$$

$$A_q = \frac{2}{\pi} \cdot \frac{A_x A_y \sin \theta}{A_0}$$

$$A_f^2 + A_q^2 = A^2$$

$$A = \frac{4}{\pi} \sqrt{A_x^2 + A_y^2 - A_0}$$

$$A_X = \sqrt{\frac{2A_0^2 + \Pi^2 A^2 + \Pi A_0 A_f}{2}}$$

$$Ay = \sqrt{\frac{2A_0^2 + \frac{\pi^2}{8}A^2 - \pi A_0 A_f}{2}}$$

$$t_{0} f = \frac{\frac{\pi}{2} A_{0} A_{q}}{A_{0}^{2} - \frac{\pi^{2}}{16} A^{2}}$$

THE COMPUTER DISPLAY

```
EVALUATION [V]
                                                               DIFFERENCE [dB]
 BEACON RECEIVER OUTPUTS [V]
    A0
           A 1
                  AF
                          AO
                                   AX
                                           AY
                                                  AXY
                                                            DX
                                                                    DY
                                                                           DXY
+3.638 +1.336 +1.346 +0.153
                                +1.257 +0.170 +1.104
                                                          0.27
                                                                  0.22
                                                                           0.28
 +3.636 +1.338 +1.348 +0.153
                                +1.257 +0.169 +1.106
                                                          0.27
                                                                  0.18
                                                                           0.29
#+3.634 +1.339 +1.348 +0.153
                                +1.257 +0.168 +1.107
                                                          0.27
                                                                  0.18
                                                                           0.29
+3.634 +1.337 +1.349 +0.153
                                +1.256 +0.168 +1.105
                                                          0.27
                                                                  0.17
                                                                           0.28
                                                          0.27
                                                                  0.22
+3.640 +1.335 +1.349 +0.155
                                +1.257 +0.171 +1.104
                                                                           0.28
                                                          0.27
                                                                  0.17
                                                                           0.28
+3.635 +1.336 +1.347 +0.152
                                +1.256 +0.169 +1.104
+3.636 +1.334 +1.347 +0.152
                                                                          0.27
                                                          0.26
                                                                  0.18
                                +1.256 +0.169 +1.103
+3.638 +1.335 +1.347 +0.155
                                +1.256 +0.170 +1.104
                                                          0.27
                                                                  0.25
                                                                           0.28
                                                          0.27
                                                                  0.20
 +3.633 +1.336 +1.345 +0.156
                                +1.256 +0.169 +1.104
                                                                           0.28
 +3.634 +1.336 +1.346 +0.154
                                +1.256 +0.169 +1.105
                                                          0.27
                                                                  0.21
                                                                           0.28
                                                          0.26
                                +1.255 +0.168 +1.104
                                                                  0.19
                                                                           0.27
 +3.632 +1.336 +1.347 +0.152
+3.638 +1.337 +1.348 +0.154
                                +1.257 +0.169 +1.105
                                                          0.28
                                                                  0.16
                                                                           0.29
                                +1.256 +0.169 +1.105
                                                          0.27
                                                                  0.21
                                                                           0.28
 +3.636 +1.336 +1.346 +0.154
 +3.636 +1.337 +1.351 +0.155
                                +1.257 +0.169 +1.105
                                                          0.28
                                                                  0.21
                                                                           0.29
```

Simulator outputs Ax 1.18 Ay 0.161 Phi 24.3° 20*log(Ax/Ay) +17.3

Measured/evaluated parameters difference

Parameters evaluated from simulator outputs

Voltages measured by the computer at the beacon simulator outputs

Voltages measured by the computer at the receiver outputs

telespazio