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NOTES ON THE ELEMENTARY CHEMICAL REACTION AS A

CQUANTUM THREE BODY PROBLEM

To study features vhich are definitely assoclated with
purely kinematic effects or vith general characteristics of the
Potential Energy Surface (PES), 1t has been necessary 1in
Tecent years to reconsider the elementary reactive act as a
rearrangement problem in  quantua (or classical, or
seml-classical) mechanics. This will enable one to efficlently
ansver the complicated question of hov to deal with rotations
and eventually to reduce the full problem to an understanding of
the relative importance of vibrational and kinetic energy.

Earlier there have been extensive computations wvhich
have been carried out on the dynamics of the reactions of type
A+BC. They vere founded either on classical or quantum mechanics
and are to be considered gither "exact® or involving more or
less drastic approximations based either in the real 3D world,
and 1in somevhat artificial spaces of lover dimension. Now we
shall arttempt to  understand the 3 body problem as a
rearrangement process,

a) Coordinates for Ruarrangement Processes:

The main difficulty which arises in understanding the
interplay of the varicus factors which influence a reaction is
that both the descriprion of reactants and of products are
bound to fail somevhere in the course of & reaction, and it ia
necessary to  perform a (rasformation vhose nature and
characteristics are hardly understood, although some formal
Progress has been made recently. Tu be specific, ve recall that
there are basically threa differyent definitions of the Jacobi
vectors, vhich describe the motion of three particles in a frame
vhere the conservation of ihe centre of mass i3 exploited (Fig.
1). In terms of them (he quanium mechanical problem requires
solution of the equation:
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Here (k,1,i) are any permutation of
reduced masses, and V ig the potential energy surface.
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te be a good choice as a nearly separable variable for many
problems as will be substantiated later: other choices are of
couse possible, but may Jead to the appearance of additional

coupling terms ip certain  equations that vill given
subsequently.
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Expressing: Rk-p Sin xk
and vk-p Cos xk

leads to
ole (B2 4 (47

and xk- O (Rklrk)
p is known as hyperadius and X as hyperangle.

So in terms of p and X

[ G S - h?
5' - 9- — (" — )+ A (95) -~ — A (9|Q5)
2u Sp Y] 2n

(2)

For a particle problem the number of relevany
coordinates in 3 D space= (9-1 centre of mass)=6 cuordinatei- In
efpressions (2) p is a varlable wvhich ve define belov; 1, and
3 K [1,(1,+1) and 3,(j,+1), respectively) are good quantum
numbers, and this is sc only as long as atom K is well separated
from the () {1,1). In a reaction, this requirement cannot be
fulfilled for reactions and products at the same time hecause
only the vector sum 1 +jk-J, the total angular momentum, i3
conserved: strong serangling of orbital and rotational angular
momentum will occur specially In the traensition reglon where
rearrangement betveen reactants and products takes place.

b) Adiabatic and Diabatic representationy.

For definiteness, consider the case of a (n+l)
dimensional problem. Vhen the total wavefunction s expanded in
an adiabatic basis aset)

-n/2

Y () = a7 (0,0) F* (0) (3

the hyperradial adiabatic functions Ea are to be found as the
solutions with proper boundary conditlons ot the infinite set of
coupled linear differential equation

hZ d 2 )
[—— [1—+g(p)] +5(p)-31]g (s) - 0
im dp
(4)

Here, the matrix of adiabatic elgenfunctions 4 (p,R)
and the dlagonal matrix of adiabatic potential energy curves e
(e} are separated from others and is defined by setting up a
polar system 1in properly mass scaled space of Jacob!l vector
components. It 1is the radial coordinate of the dimensional
sphere. In terms of p vhich 1s independent of the rearrangement
channel {t 1is possible to follovw the reaction as evolving from
the intermediate state, where the particles are close together,
to reactant and product valleys. The remaining 5 coordinates are
denoted by 95.
Such a representation for the many body problem is being
actively explored because using 1t the kinatic energy operator T
becomes essentially a Laplacian of a hyperspace (see equation
(2)). Also p has proven and to arvive af equatlon (6) use has
been made of the Hellmann-Feynman theorem.
Such a representation will foster & convenient channel
expaniion whenever the elgenvalues ¢ solution of the elgenvalue
problem: -

[ B2 [2 a2 a2
- Av— —— eV (%) - e  (p,0)=0
2mp? 4 2] S R

{5)
2

vhere the operator A“ is the angular part of the laplacian of
the (n+1)- dimensional space, and V (5,2 } 15 the interaction
potential. The infinite sets are meant to be solved after proper
truncation.

The mass paraneter m, which sppears in equation (4),
depends on the definition of the hyperadiug g, Por instance in 3
body problems in 3D, p is most pften defined so that m is the
three body reduced mass.

The adiabatic approximation consists of neglecting all
coupling in equation (&) i.e. neglecting elements of the
antisymmetric matrix p (p) (a mateix introduced by P.T. Smith
for treatment of nonadiabatic (diabatic) couplings in atomic
collisions).

Py =< |3 5. (e-c,) ! |-—31|a >=-P
A v i v’ v v’ v % v viy
dp
(6}

The brackets denote integration over hyperangles on.



he adiabatic
Schemes for further corrections to t
approxina:ion have been developed. Diabatic representation
correspond to an alternative expansion:

Yo 9) = 0™ 4% () ¢! (0) )

By comparison with equation (3), equation (7) implies
the definition of an orthogonal trasformation matrix T (p)

# (o 0= ¢ (0) T ()

and

P (o) = T (p) F2(p)

has been solved by
hich can be obtained once equation (5)
tequiring that the orthogonal matrix T (p) astisties the system

~ d
P(p) =« T(p) — T (p)
L3 do

As a result, first derivatives disappear from equation
{4), vhich becomes

2 2
h d
{ - —_— [ 7 + E ] 1+ ¥ (p)] [d (p) =0 (%)
' 2m | dp

: ic term in equation
the coupling being transferred frym the kinet
(4) top the potential, which pov 1{e a non-diagonal diabatic
matrix:

Vi) =T(p) e (p) T (p) (10}
-indipendent
The prescription is net unique, since any p
rotation of p'l‘ in alse a solution: Boundary conditions are

imposed on {9) by requiring V{p) to coincide with €(p) at some p
{local diabaticity}

c) Applications and Phenomenology

In the 3 body problem, representations symmetrical for
at least some of the particles have been Investigated: none of
them is howvever "full range” in the reaction, because they do
net correlate smoothly with reactants and products, and some
kind of trasformation has in any case to be performed in order
to describe the transition.

There are tiwo different vays of achleving this: The
first one 13 based on the idea that sudden svitch during the
collision from the reactant conflguration to the product
configuration could serve as a good starting point for following
the evolution of the reaction; the second approach exploits the
apposite view, that the starting point could be the

individuation of the smoothest (adiabatic) path from reactants
to products.

Let us nov elaborate on the latter approach., The
adiabatic idea Btteapts a simplification of the 3 body problem
by individuating a variable vhich can be nearly separated from
tha others: this is possible when the overall motion can be
considered as ctaking place slovley with respect ta this
variable, so that the faster motion associated vith the others
can be effectively averaged. Non-adiabatic effects have to be
introduced In any case for an exact description, but aany
significant features are likely to be displayed when the
adiabatic coordinate is wvisely chosen.

In using this approach to chemical reactions it is very
important (o gat up @ hyperspherical coordinate system, for
vhich thara are several possibilicies. Host of the
investigations carriad out so far have dealt with the Somevhat
artificlal constraint of particles moving on a line: progress in
the extensions of these promising techniques to the full 3
disensional case hag been limited to the development of simple
test casen. In the folloving we will discuss in some detail what
we have learped from the one-dimensional case and believe to be
of interest siso for the real three dimensional world.

From purely kinematic considerations a configuration
such 43 1 + 2-3 wili be best described by scaling the tvo
corresponding jacobl vectors as shown in Pig. 1. vhen the same
is done al®g for the configuaration of products 1-2 + 3,
resulting from an exchange of the atom 2, the properties of
kinetie energy operator such as In (1) are such that the newly
scaled vectors are octhogonal but the potential energy surface
is confine to a sector defined by the reaction skeving angle o,
a function of the particle masses

1/2
« = arctan |-2(nl+n2+-3)lnl-3] (11)
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The confinement to such a sector sets boundaries to the
dynamics, which physically correspond to the prohibition for
masses on a line of passing each other. It also shows that very
different kinematic effects are 1likely to be associated with
different mass combinations. Considering (11) we observe that
the fully symmetrical exchange of an atom A In the process A +AA
+ AA +A involves an angle of 60°. Por the exchange of the atom B
in the nearly symmetrical processes A + BA - AB + A, the
relative masses of A and B determine the full range of variation
for the skeving aangle: from near mero vhen B is much ligheter
than A, to near 90° wvhen B i3 much heavier than A. The two
limiting cases, §llustrated in Fig. 2, provide effects, so that
the full dynamics obtained by iIntroducing explicitly the
potential energy surface will be dramatically effected.

Congider first the case of a very large skeving angle.
The path from reactants to products ipvloves a bend of nearly
90°: any coordinate system which aims at describing the reaction
path from reactants to products vill introduce a centrifugal
distortion at the bend, but it may maintain a
reasonable descriptive pover in the qualitative treatment of the
reactive process. From a computational point of view, setting up
a coordinate system more or less based on the idea of folloving
the evolution of the system along the reaction path entails the
Introduction of strong coupling betveen channels in a quantum
mechanical  framework, or strong centrifugal distorsions
requiring fine grid integration of trajectories in a classical
mechanical framevork. This effect 1y likely to be especially
important in the region vhere the bend is sharp, and this most
often occurs vhen the system overcomes the saddle which
separates the valley of reactants from that of the products,
Introducing a nonorthogonal system vhich follows the evolution
from reactants to products becomes increasingly difficult as
thesk ewing angle decreases, because the distortion required to
straighten the path into a Cartesian coordinate induces terms in
the Jacobian trasforeation matrix vhich correspond physically to
centrifugal forces.

Therefore evolution along the reactinn path provides a
good description of the trajectory that is really followed, only
in the adisbatic limit, i.e. for any infinitely slov process. It
is apparrent that the procedure bucomes Impractic~1 even for
computational purposes since extensive channel coupling has to
be introduced explicitly. In fact, the practical computation of
quantum mechanical one-dimensional chemical reaction rates for
small skewing angles, is a strong motivation for the use of
hyperspherical coordinates. The hyperspherical viev, allows full
characterization of reaction with small te moderate skeving
angles. When matched with more conventional methods involving
reaction coordinates which followv the reaction, we have a
complementary view for full evolution along the reaction path.

7

Which are observed in elaborate computational studies of
atomic exchange processes. The paradigmatic situation
illustrated in fig. 3 and 4, 1s that of 3 particles on a line,
involving the partially symmetric system A + BA + AB + A, For
other systems, reactant and product valleys are unsymmetrical
and additional complications are introduced by channel coupling,
hovever the general pleture already outlined for the more
symmetrical cases is confirmed.

The folloving viev of reactive processes emerges:
instead of an evalution from reactants tovards products, a
reactive procesa may be considered as a decay of the
intermediate state, locatad in the region vhere interaction is
the  strongest. This corresponds, of courses, for simple
situations to the transition state characterized by a symmetric
sfreted vibration of a abound character, and an asymetric state
vibration leading to dissociation. The system reaches this
potential energy saddle conflguration climbing from the reaction
vlley; sequentially 1in time it may come back again to give an
elastic {vibration - conserving) collision or inelastic
transitions betwveen vibrational states,

Alternatively |t may discend to product velley, litter
leading to the corresponding state of the products connected
adiabatically to the original one the of the reactants
(adiabatic reaction), or may lead to vibrational states
corresponding to nonadiabatic events. Detailed studies of these
effects have () that contrary to the previonsly commonly held
beliet that declaions gre taken by the system in the saddle
region, they are actually taken along vatershed (rdge), the
uniagrinary line that separates reactants from products.

The maln conclusions from these studies are that the
stepper the ridge the higher the nonadlabatic vibrational energy
exchange. This exchange 1n general will be favoured by large
skeving angles: The detailed analysis reported In the literatuyre
points ont that aarrasibound states (resonances) appear as
vibrational predissociating states and can be accurately
individuated and described in energy and litetime by simple
semiclassical arguments.

The very promicing theoretical advances outlined above,
are likely tools for further progress. In this regard one can
mention sample calcualations for J=0, for the three dimensional
H + H, exchange (shown in Fig. 5 and 6) that have been made
using hyper spherical coordinates.

d} Unimolecular Dissociation Rates




Now let us attempt to characterize the problem of
unimolecular dissociation rates.

An  analysis for the specificity of unimolecular
decompositions and intramoleculars vibrational relaxation may be
started by focussing on simple models for coupled oscillators,
for which diffeent modes (and transitions betveen then) have
been wvell characterized. Asymptotic techniques, which are
essentially semiclassical in nature will be considered here.
They involve the {Introduction of a reaction radius as an
adiabatic curves along which the system evolves in s first
approximation, the evaluation of non-adiabatic coupling teras,
responsible for transitions between curves.

In the treatment that follows we refer to the case of
isolated resonances, corresponding to poles of the scattering
matrix for complex va}Tes of the energy E -iT/2: the lifetime is
then given by !(Er)-t .

The starting point for the folloving developments is the
solutiopn to the problem of three turning points, which forms
the basis for the semiclassical theory of shape resonances,
supported by a one-dimensional potencial well with barrier. In
the classical regions on both stides of the barrier, the
coefficients of the incoming and oulgeling parts of wavefunction
denoted by arrovs oriented fowards left an?jsight, respectively
are connected by the two by two matrix (H) as follows:

k] -

B Gy | a

Jd 1 em o 12)
B - Ay

Here the A’s and B's refer ton the external and internal side of
the barrier, respectively, and the 1index j§ is introduced in
anticipation of the ‘°11°'t35 generalization to many channels,
as in Fig. 7. The matrix (H) ia expecitly:

2,1/2

1) (l+kj
{(H) =

)

- 1k} exp(-i6§) (1+uj2)1/2 exp(-14,)
{13)

where th tunnel probability K -2 contains the phase integral for
the barcier, and &j, and Bj are corrections. The many channel
generalization 13 illustratld in Fig. 7: Many approximately
parallel curves, each displaying a barrier separating a vell
from a dissociation continuum, arise when a multidimensional

exp (10j) ikj .xp(lBj)

9

problem is trasformedd into a coupled system in the adiabatic
representation. The simplest origin for such a situation is for
a 2 dimensional potential energy surface; such as that drowm in
Fig.8. Characteristic orthogonal trajectories an this surface
are the valley bottom line, kepresenting the steepest descent
from the saddle, and the ridge, 1.e., the line of Steepest
descent from the ninimum, In a polar coordinate system centred
at the minimum, the profile of these trajectories are shown,
together with a few adiabatic curves, such as vould be obtained
solving for bound states on wides at fixed distances from the
minloua. Extensive experience for problems having similar
topological features has shown that the adiabatic curves can be
considered as satisfactory one-dimensional effective potentials
for the 2 - dimensional problem, except for those reglons where
non-adiabatic coupling in the gtrongest: PFortunately, these

regions can be localized in particular where the curves cross
the ridge.

A pattern of adlabatic curves such as shown in Fig. ?
can be consldered typical of many situations of interest for
unimolecular decomposition but the effective humps need not
hecessarily arise from saddle in a single potential surface.
They can be due to rotational barriers or to avolded crossing
vith upper surfaces etc. Also the abscissa in the general case
need not be necessarily a reaction radius, but may be any
convenient variable describing the progress of the reaction.
Hovever, a reaction radius (hypperadius in problems of higher
dimensionality) may be more convenient than the conventional
reaction path, especially vhen the latter has large curvature or

bifurcates its use ofren simplifies treatment of symmetry of the
transition gtate.

In the spirit of transition state theory our formulation
exploits the separation betveen behaviour (n the well
(properties of the molecule) and behaviour on the mountain pass
(properties of the transition state). Molecular properties
enter into the description as a matrix o (E) vhich has the
features of scattering matrix but accounts only for the
evolurion ang mixing of states within the turning points b.J
(Fig.7).

It connects ontgeing and incoming coefficients

*«
= ¢ B (14)

w4

Properties and limliting cases for the o matrix, wvhich is
crucial for any applications of the theory, will be considered
in the following: Assuming nov that non-adiabatfc coupling is
negligible at the transition sState, the connection between the
coefficlents for evolution on each curve in given by (12). we

10



can then obtain the connection A coefficients at the external
turning points aj:

(15}

I 3
[

-5

vhere square matrix $ is nov effectively a scattering matrix,
except for propagation from each aj to infinlty, Introducing
(12) into (14) and rearranging we get

2 187! 10 ,1/2 -1¥
e +iake -tk e + a (14k“) e

is

S - [ {1+ 52)

(16)

vhere k, &, @ are all diagonal matiices having elements the k,.
#,, and ©,, quantities appearing in (13), Eq. (16) is in a fn}m
s&ltable or the search for resonances: Poles of the § matrix
can be obtained, for example, by equating to =zere the
determinant of the wmatrix whese Inverse appears in (16), or
slightly rearranging:

-2,1/2 e

det |(l+k 7) iE+ 1o |= 0O

(17}

vhere £ = # + 0

This formula ylelds familiqr results is limting cases.
Vhen all the barriers are s0 thick thyt alla channels are
effectively closed, the diagonal matrix E- tends to zero, the
extra phases can be neglected and det |1 + ig | =0 v'1]1 have as
solutions the real values of the energy correspondiny to bound
states,

Consider nov the case whera jEE adiabatic state 1is
effectively decoupled from the others. The corresponding o
matrix 1is the aimply an element of unit modulus vhich is
conveniently wiritten:
oy = -1 exp (Ziﬁj) (18)

vhere Bj 1s the phase integral for the well and the -1 factor
accounts” for the reflection at the uilnner tueaing point.

Eq. (17} then becomes, dropring index j,

n

(1« kKHY2 § exp [1(26-8)] = 0 (19)

It is well knovn that this equation for poles of the §
matrix, that in this case {s simply S = exp (2in), leads to the
Eolloving expression for the resonance phase shift

aacH1?

n = arctan [ 7173

“——o=iz— tan (& - ¢#/2)
(1+k ) +1

(20)

A convenient way to obtain the uith I of the resonance at E_is
te plot a "cross section" Sin N as a function of enefgy.
Assuming in the nelghbourhood of a resonance a lorentzian shape

Sinfn e 1+4 (e-£ )2/r?)! (21)
one has
F=2(E-E) tan (§ - ¢/2) {1+k::>i;j _

(1+k ) +1

22)

Useful formulas for the width are obtained by the folloving
jidentification

tan (&-¢/2) ~ hwlln(E-Er)] (23)

valid around resonance vhere hw 15 the local level spacing. The
formula:

-2,1/2 _

Zhw {1+k 1
T b
(24)
tends to the familiar Gamow result:
= he2nk? (25)

vhen the energy is vell below the barrier maximum (k"2 + 0). The
accuracy of these formulae to calculate positions and width of
resonances has been extensively studied.

A  similar formulation can also be glven in the

12



diabatic barrier is

ltichannel case, provided that only one a

::tectlvely open 'to tuuneling,li.e.,dwhﬁn (or oniydo:e iganTzl
definlteness the one labele y ,the inde ‘

éig:espozdlng tunneling  probability kl is significantly

different from zero. Eq. (17) then becomes

detf 1+ ek, HY2 )N+ 1g |0

(26)

ly its first
the matrix N has different from zero on

:?:::nt, vhich is 1, The analysis becomes most transparant if wve
exploit the unitarity and symmetry of the ¢ matrix to decompose
it as

= i exp (2i8) T (27)

hases, and T is an
here 8 1s the diagonal matrix of elgenpl T
:rthngonai matrix, Its transpose T being thus its inverse. Then
(26) becomes

det (kM2 1) TN T + {1+ dexp (218)]) = 0
(28)

which can be arranged as a secular equation,

det ((((1ek,"HM2 _1) THT Qv texp (2480} +1) = 0
(29)

- he eigenvalue of the
showing that -1 can be interpreted as t
natrlx‘ in square brackets in (29). But the characteri:tlc o{
this matrix is one, being determined by vhat of N. Therz orei;h
is the only eigen value diffgrent from zero and coincides v
the trace:

- ) -1 2 -
(1 kY2 o) f 1 e expastn) ™ opf = 2 0)

vhere t are nov the elements of the first colusn of the
orthogonli matrix T. Defining nov an effective phase A

A = arctan [I tjlz tan(ﬁj + R/4)| 31)
h]

Eq. (30) can be arranged to look like (19)
13

(1l HY2 4 exp 218) . 0 (32)

vhere the effective phase & glven by (31) contains the
eigenphase &J for the various channels in the well and the
coefficients “t 4 A8ccount for their mixing, Formula {32) can be
handled in thl Some way as (19), in particular to give the
resonance eigenphase H

(k73 -1
H = arctan w———-—i-———- tan &
(1+Kl' y+ 1

(31)

which includes information on the resonance position and vidih
in the gsame vay as its one channel counterpart n, eq. {20).

Specifically 1t exhibits the desired prnperiy that the
description of the transition state (contained in k.- } and that
of the ‘molecule’ (contained in 8) are separeted. Applications
of the theory require essentlally the construction of & for any
specific limiting cases. Comparisons with standard RRKM results

shows that the latter is a reasonable average of the quantum
behaviour.

(E) Bibllograghical note

Recent revievs on the topies discussed here can be found
in the books "The Theory of Chemical Reaction Dynamics" Reidel
(1986), pp. 384-413, and "Nonequilibriom Vibrational Kinetics®
Springer (1986) pp. 159-180 where references are also given to

papecs ralevant for the development of the vievpoint followed in
these notes.

Further Information on coordinate systems for chemical
dynamics apd mocy details on the hyperspherical approach can be
found in J. Chaw. Phys. 85 135 (1986) and 85 1362 (1986)

The cusonance theory of unimolecular decay is presented
in Chem. Phys, Lytters }!g 531 (1987) and 133 538 (1987) , where

limiting coses are derived and comparisons with RRKM and quantum
caleulntions ace presented.

Perugia, January 1989

14

e

Ea3

-

CorE——



-

COLLINEAR D+FD ,&ny neay Lr

aﬂ_

nown, de/nabajnc.
Co u,r?’(v*mﬁ,

Skewn I“~3 Mﬁ(‘(

3 e
eere T 84,5 ,_I_'a,
[T S
0«0 Q.diolaa_j‘fc
JETUOSUUUDY S : o
w0
w v 37 26
0,A
I I T T I
aof- .
D +FD

"4




oY
i,

e¢-slaoles
25

L1}

——

18
Bohe

is

Fig. 1. Adiabatic Encrgy curves for
a3 funclions of the hyperspherical 1adius,

Mishaa , Lindecbe

rq v 51;1.n,

73

€ lype states for H +

Hy

C:g?.‘P. L, 1_(_1 437(;’4) e

T

HeH, 1
' Ey/ev
0.3 0.4 05 0.6 0.7
42 + ¥ ‘
: 1a.6) (0,7) @8 jun | 0,309 (a4 '
,0) 0,2} * g
[ > o
A0~ PR'J'O e o %
> 000—010 ® o 8
- d"m\x 2 >
5 ° o =
EE _oa'-' - O - ‘;ﬂ:"
q o
Ive)
2 . <5 1
a %7 0 Pobocooo e Bl
(Z) L B 000--000 o @ lt
— 04— ®* el %*-\%
t'-; o q Y - mjn.
q- o
wJ op
& 02 s fﬂ:‘m;
" ¥ 04 x pRt
~® P 000—020
0 w: l ' :
0.5 0.6 0.7 0.8 0.9 10
E/ev
FI1G. 1. Distinguishable nsom 7 = 0 partial wave Feaction probabilities as »

function of energy for the H + H, (v, 0)—H, (v, , 0) reaclion on the
Porter-Karplus Potential enesgy surface (Ref. 29). The probabilitics are

by the symboj p viomsyo- The lower abcissa is the (ota] encrgy and
the upper abcisga the The ventical arrows on

multiplied by O.4 prior 10 Plotting. .
Wroere-~. .. v



Ry 8

TRANSITION STATE

- N

PRODU TS

7 -
T ridge
1 ' .
|1 PR
b S M=l
ém' r/ ” m. =4
l’ . rn=o
- A valley bottom .
A ¥ '
[
Bl
: nonadiabatic coupling .
//\ - | pling

P

Semiclassical (short wave) mechanics: some mathematical background

1. Preliminaries

The qualitative or even semiguantitstive understanding of molecular dynamica can be based

on u semiclasaical (i.2. shorl wave) spproach {1], which generaiizes old quantum mechanics

(Bohr-Sommerfeld, JWKB techniqdes, ...) and can be given & rigorous genetalization neing

the asymptotic theory of differentinl equations. An inttoduction to Lhis theory follows.
The Schisdinger equation for & monodimensionsl aystem

(Jr‘,ﬂ(z)]v(;):o (1)

{where €@ = N/2m is x amall parammeler and p(x} = E— V(2] is n real unalytic funclion with
tutning pointe} admits waympatic solulions ea € — 0 which sre uniformly valid throoghont
the turning points. The uniform nsymptotic solution of (1) is represented in lerms of the
solution ¥ and its derivative of & given compsrison equation. This method was Arst devised
by R.E. Langer [2] who studied the solutions of Eq. (1) in the case of one taening point
(#(z) = 0), snd Lhen it was employed by muny others, for an historical sarvey see [3].
T.M. Chetry [4] developed u different method which is based on transformation of the
independeat vatlable. He construcied o comparison equation as well, but in this case the
ssymptotic expansion of {he salution doedn't depend on (ke derivative of the solution of
the comparison equation. Later Lyan and Kellee [5] entented the Langer's method [2] to
oblain wniform seymptotic solution when p{z) has un arbitrary mumber of turning poinis of
any order. Zuuderer [6] and Rubenfeld snd Willner [7] made the same developing Cherzy’s
iden. Important work by Wasow 8] alss stresees relutionship with pertutbation theory.
Basically, we foliow Lynn and Keller [5] 1o obiain the asymptotic solution of Eq. (1): for
anke of elengity it is usefal lo ravlew brichy the key points of thin method. The asymptotic
solutions of Eq.(1) as ¢ — 0 when p{z) haa ¥ 41 turning points of ordet m; nre representied
in teyms of the solwiion of the following comparison equation with polynomial coeflicients:
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whars p is the sum of the ordets of the lurning points snd 74 ate Lo be speciked. The
function f(1) depends at leasi on 4 — | parameters.

2. The hamiltonian system
For the futther developments, we found that the analysis will be more transparent il Eqs.

(1) and (2) sre replaced by the equivalent systems:
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where (ﬁi(:) = &(z) wnd lﬁQ(l) = P(1) . We indicate with A(z) snd B(t) respectively
the mutrices containing p{z) and f(1) in the sbove equations. A chaage of lhe dependent

variable of the following form
¥(s) § _ 1)
( +x) ) =N “"’( Q) ) ®

takes the system (3) into (ke aystem (4), where the last is casier 10 solve asymptlotically.
We want Lo stress that (3} sad (4) tepresent real hamiltonian systems, ie. —JA(x) and
~JB(1) (] is & two dimensional matrix with the disgoaal elemenis equal o sero snd the off
diagonal elements Jy3 = =J3 = 1) ate symmetric and the change of Lhe dependent varinble
(Eq.(5)) is cenonical. This is trye if and only if the matsix N in (5) is eymplectie. A
symplectic matriz bas the following property [9]

NiN =l (%)

From Eq.(6) it follows thst the determinst of the matrix N is eqanl to 1. The original
Schradinger equation (Eq.(1)) can be transformed ssympiotically 10 a well defined selated
equation by a symplectic trasformation. The zelated equations we fnd in the literstare
are Linear second order difereatis]l equations with polynomial coefiicients. In the case of
one turning point of Aist order the solutions of the related equation are the Airy funclions
ot Bessel lunciious of order one Whitd; if there are Lwo Lurning points of frst order or oae
tarning point of secand order the solutions nre Weber functions. Sibays [10] has stndied
some properlies of tha solutions for problems witk & aumber of Lurning points grester thaa
wo.

In general, the function f(¢) in the related equstion (see Eq.(2)) can be dilfereat from &
polynomial. The Imperiant point that we want to pin down, is that the original
differentia) equation and the related onc are linked by & symplectic transfor-
mation. The related equations are the canonical reference equations for all the sysiems
with the same stinciuse of the Larming pointe. We can deline an equivalence aa ¢ —+ 0
belweea those sysiems that can be trapsformed by the same related equations. They will
exhibit similar qualitative behavior.

3. The symplectic transformation

We lollow the formulation of Lyns snd Keller |5] but we exploit the property of sympleclicity
of the matrix N. As we shall see this provide some remarkable semplifcations. Inserting
Eq.{5) into Eq.(4) snd replacing vhe variable ¥ wilh the variable { we And ihe equalions
for the elements of N: . )

AN - NB =N 1

whese the dot indicates differentiation wish respect tﬁ the variable 2. 1n the apirit of the
Langer’s method {2], Eq.(7) can be sntished formally by a powes series for the matrix N:

N= f;cw. (2
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Inserting Eq.(8) in Eq{T) and making equal lerms with the same power in ¢ we And four
squations for the elements of the matrix N ai the & order in the pazameter ¢:

iN) SN = N (9
iNy - N = Ny {10)
-Ahni 4 JONY = B ()
—Nhpz)i - Ny = NG (13)
Equations (9) aad (10) with some slgebraic munipulstions sts Lrnasformed into
Nh+Nit=0 (13)
M+ NI =0 (14)

Lyan nnd Kelle: solve this system of four equations snd And that at sny order & it is
necessary bo solve Lwo iniegrals, one Lo obisin NP and Uke olher one to obiain Ny In the
tollowing, exploiting ihe simolecticily of N we show ihal it is mecessary to calcuinie only
the integrais for N sad only when k is an odd sumber.

Considering thal ihe matzix ¥ is sympleclic we caa prove that N? and N7 have only
iheir diagonal elements along the diffecent from aero and N' has different from seto only
the olf diagonsl elements. The clementa of & mutrix which is required (o be aymplectic »i
the order & in ¢ have 10 salialy the lollowing conditions:

NOIN® = J [113)
1
NN 0 =LY,k (16}
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or explicitly form
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Deflning &~ = 0 and vaisg Equ.(15), i.¢ ded N° = 1 and Equ. (8} and {10), we And that:
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snd from Eq.(11) we oblain the relationship between the variables z and #:
4z, 18]
(Gr=1 (s)
this in « univocal teansformation only if p(s) and f(1} are holomorphic functions and if p(5)

and f(1) have the same mumber of Wuraing points of the same ordet in the domain in whick
< vaties. In order that the above translormation be regular, it has to be verified Lhat

L[ ro = [t
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fot any couple of inruing points z; snd 1;. This can be recognised as an equivalence
of phase integrals of importance in the physical applications. These equivalences allow
to determiae the p — } parameters which define f(1) (see Eq.(2)). From Eq. (16) we have

ih',l, = -Nlll
and [rom Eq. (10) we have
N, = NI'J

these two equations are satishied only if NJ; = N}, = D. The expression for calculating
Ny, obinined with some algebraic work on Eqe. (9) and (14), in:

Wi = PP - / 'f(v)""é"’(i'fj}i)dll (19)

¢] = 0 because NJy is holomorphic, so when = = 1 the integrand in the sbove equution in
symply l}? snd N3, canm be calewinind from Eq. (p). When [ =12 the Eq.(17) is

PNL i INDL = _del N = - NI NG

und from Eq{10) we can cufculuteNS, and N/, withoul performing any mew integration.
From Eq.(19) if & = 7 we have N3 w 0 and from (9) follows that N3, = 0. We wanl
to prove that the matrices N7*~! whare 2n ~ I is an odd number kave oaly off diagonal
elemenls differant from zeto and the matiices N3* wilk » sn even number have different
from serc only the clementa along the dlagonal, for any n. We prove this by the method of
induction, tequiring that the matiz ¥ g symplectic Lo the order 2w + 1. If

w1 o N7
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From Eqs. (17) and (10) we see thai N7, snd N’;, are different {rom sero, and from (19)
it follows thai N' = 0 becanse by hypaihesia Ns,"_' =0 and c* = 0 because N has to

be holomotphic. We make the hypothegis thet N3 ig o disgonal mattix and we prove that
N3*! hag different from zero only the off disgonal elements. Feom Eq. (17) we obtain

we prove that

NG 4N =0
and from Eq.(10)
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so NI4L o NI 2o NN s MM can be oblained from Eqs. (19) and (9)
respectively. The lotal symplectic tians mutionmatrix N?*! s
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The only integrals we need Lo eveluste nre N7 fori = 1,2,...,5. As shown in (6] to
complete the proof il is neceseary to prove the integral (19) is regalar at the turning points.
The cuse we have treated (see Eq.(1)) is » particular case of the method treated in [5]
because the function p(z) here is independent on the amall parameter ¢. The regularity
conditions that the integral (19) hus 10 sutisly wre [5}:

Y -tz 4N
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for any 1;, wnd
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