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We describe a representation of coherent anti-Stokes Raman spectroscopy (CARS) suitable to the
description of time-dependent measurements. This representation includes the standard energy
frame formulation as & special case when cw fields are involved. The traditional CARS cw field
frequency matching condition @, = @, — @, + @, must be generalized for non-cw fields; in that
case it refers to the Fourier component at @, of the convolution of the radiation field with the wave
packet recurrences. The influence of resonance, both in the ground and electronically excited
states, on the decay of time delayed CARS signals is discussed. As expected, intramolecular
vibrational redistribution on the ground state potential surface of a molecule causes the CARS
signal to decay in time. Model calculations show that quantum beats in the CARS signal may be
observed, reflecting either a small number of coupled states (strong and regular recurrences) or
sequential coupling of states (weak and early recurrences).

I. INTRODUCTION

Coherent anti-Stokes Raman spectroscopy (CARS) has
proved to be an exceedingly useful probe in many studies of
molecular properties. The technique is characterized by in-
tense signals, high resolution, and excellent discrimination
against sample fluorescence. These properties have made
CARS extremely useful for high resolution spectroscopy,
combustion diagnostics, and the spectroscopy of absorbing
and/or fluorescing compounds. In addition, CARS has high
sensitivity and high temporal resolution. As a result, CARS
is of considerable use in time-resolved spectroscopy.'™'* Ap-
plications to date include studies of vibrational dephasing
times in solution,® of collisional relaxation times,’ of prop-
erties of excited electronic states,” '’ and the identification
and measurement of vibrational and rotational populations
in nascent molecular fragments.* In this article we provide
a theoretical description of time-resolved CARS, with em-
phasis on the application of CARS to the study of intramole-
cular vibrationa! redistribution (IVR) on ground state Born-
Oppenheimer potential surfaces.

The CARS process involves four photons. Typically,
two laser beams are employed, with frequencies w, and w,,
whose frequency difference is resonant with a vibrational
transition of the ground electronic state. Photon 3 is general-
ly of the same frequency as photon 1; photon 4 is emitted
spontaneously with a frequency equal t0 w, — @, + @,
= 2w, — w,, 1.e., such that the molecule returns to its
ground vibrational state. The key to the usefulness of CARS
is that, if certain momentum and energy phase-matching
conditions are satisfied, the fourth photon in the process is
emitted coherently. Because the signal beam is generated by
a coherent mixing of three photons it is extremely intense,
often several orders of magnitude greater than spontaneous
Raman signals. Furthermore, the signal beam is spatially
oriented in the direction of the incident beams, whereas
spontaneous Raman emission is distributed over 47 sohid
angle.

In this paper we are interested in the case when the fre-
guency difference w, — w, is resonant with a “zeroth order”
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state, i.¢., a nonstationary state of the molecule. Examples of
such states are the nominal C-H stretch overtones of ben-
zene's" and the fundamental of the ring breathing mode
(vibration 12) of the alkylbenzenes.'* Under low resolution
conditions transitions to these vibrational states look like
single lines. At higher resolution these “lines” are seen to
consist of a tightly clustered set of transitions to molecular
eigenstates. In this paper we are dealing specifically with the
case where this cluster of molecular eigenstates is excited
coherently; it will then evolve via intramolecular vibrational
redistribution processes which transfer amplitude of excita-
tion from one part of the molecule to another. The time scale
for this evolution. and the possible existence of quantum
beats, or recurrences in the vibrational energy distribution,
depend both on the particular molecule and the energy range
studied.

There is an important connection between the methods
used in recent studies of IVR rates in large molecules and the
coherence condition on the CARS signal. Smatley and co-
workers,'® and Levy and co-workers,?® have monitored the
disappearance of the Rayleigh line (and resonance fluores-
cence in general) as a function of mode excited in their stud-
ies of the dispersed fluorescence spectra of large molecules.
The driving force for this disappearance is intramolecular
energy transfer from the initially excited part of the molecule
to the rest of the molecule {“the bath"). Smaliey’s measure-
ment can be thought of as two photon experiments carried
out in the frequency domain, However, the same intramole-
cular energy transfer is characterized in the time domain by
a decay in the CARS signal. The coherence condition for the
CARS process, which implies generation of a macroscopic
third order polarization, is that emission take place to the
initia! vibrational state. As energy is transferred from the
initially excited part of the molecule to an effectively infinite
intramolecular bath, the initial vibrational state can no long-
er be accessed and the CARS signal decays irreversibly.

The conventional formulations of the CARS process in-
volve either energy domain expressions,'*2"* or Maxwell’s
equations taken together with the Bloch relaxation equa-
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. tions.®’ Neither of these formulations is fully suied to the
description of time-domain CARS experiments as & probe of
IVR. It is the purpose of this paper to provide an-expression
for the CARS intensity that takes account of the gemeral time
dependence of the photon field and highlights the time de-
pendence of the intramolecular dynamics; we examine this
expression for a variety of resonance conditions.

First, we examine the time dependence of the CARS
signal as the frequency difference &, — w, is detuned from &
vibrational transition. The CARS signal is seen to decay fas-
ter as the detuning is increased, in agreement with the time-
energy uncertainty principle. This important concl.asion has
been reached previously, using a very different formalism, by
Zinth ef al. and by Kamga and Sceats, in connec:ion with
their studies of the suppression of nonresonant background
noise.

Second, we examine resonance CARS, i.e., when the
first or third photon in the CARS process {or bott) is reso-
nant with an excited electronic state. Tuning photon 1 or 3 to
resonance is an effective way of enhancing the CARS signal
by several orders of magnitude.”*? Such enhancement may
be necessary in order to obtain any signal at all from experi-
ments on molecules seeded in supersonic jets. With respect
to the CARS process, we note that use of a resonance condi-
tion effectively lengthens the time spent in the excited elec-
tronic state. It is then necessary to determine whetber relax-
ation processes in the excited electronic state influence the
decay in the CARS signal. It emerges from our stady that
there is an inequivalence of the first and third photons in this

respect. :

“Il. THEORETICAL CONSIDERATIONS

We now examine the formulation of CARS, in terms of
molecular properties, for the case that the incident radiation
is pulsed. In traditional treatments the amplituds of the
CARS signal is proportional to £, £, E,, via ¥ oo » the third
order molecular hyperpolarizability!s:

6N
PD (wy) = 3 Ve — @ow0y0;)

XEa(@:)Ef(@z)Ev(wa) . (1)

In Eq. (1), p,0,7, and v are polarization indices and @)y, @y,
and w, are the frequencies of photons 1, 2, 3. ¥ o i3 8 fourth
rank tensor, hence is comprised of 81 (3*) Cartesian compo-
nents. Each of the 81 components contains 24 terms, corre-
sponding to the number of permutations of the four photons
in the CARS process. N is the particle density and n is the
number of identical frequencies.

v is formuiated in the energy representation.!>2-% [
this representation each of the 24 terms contains a “ourfold
product of Franck~Condon matrix elements, formally in-
volving all the molecular eigenstates. Clearly, if mary states
contribute to the scaticring process, evaluation of these
terms becomes prohibitively difficult. Furthermare, and
more important for the present discussion, the conventional
expression for y is useful only for the case of four cw photons.
If, as a consequence of using pulsed radiation, there is a Sig-
nificant spread in the frequencies of the three incidert fields,

¥y must be evaluated for all combinations of the frequencies,

~and integrated over w,, w,, and w,.

In this paper we introduce a time-frame expression for
the CARS amplitude, valid for pulsed or cw radiation, which
avoids all the above difficulties. We deal directly with
Py} and thereby circumvent the calculation of y at all
combinations of frequencies. Our expression can readily be
used to interpret CARS experiments performed in a pump-
and-probe fashion. Moreover, the expression obtained is
amenable to a wave packet interpretation, where the impor-
tant wave packet dynamics depend on how close to reso-
nance cach of the photons is tuned. The traditional CARS
frequency matching condition @y = &; — @, + &, must be
generalized for non-cw radiation. In that case the matching
condition refers to the Fourier component at @, of the con-
volution of the radiation field with the wave packet recur-
rences. The cw expression for P, including the energy
frame representation for ¥, may be recovered from our
expression by ihtegrating over time.

The fourth order time-dependent perturbation theory
expression for P ™(w,) is

w© iy ty Ly
P;"(m0)=k% f I j f dt,dtydr, dt,

x (glew.-f.[ ”p eku,:.] e~ Hir, — /R [#yEat'r:]] e~ ity — /R

X [1,Eylty)] e H A [y E(1,}] ™ |g)
+ 23 permutation terms . (2)

InEq. (2} u4,, p,, p,, y, aredipole moment operators and
E,,E, E, are the temporal field amplitudes corresponding to
each of the incident photons. Formally, A is the full efec-
tronic-nuclear Hamiltonian. However, in practice H is the
Born-Oppenheimer Hamiltonian of either the ground or ex-
cited electronic state, depending on the resonance condition
satisfied by the preceding photons.

There are several different situations for which the four-
fold integral in Eq. (2) can be simplified. For the common
experimental situation where photons 1 and 3 are off reso-
nance, {0 a very good approximation e~ ‘&'=—4v# gng
e~ %= uV% can be replaced by &(t, — 1,) and 8(t, — #,), re-
spectively. Substitution of these approximations yields

1 1~ * i
PLJ' (o) = k FJ; } £ . dr, di,{(gle ' {n, )

X [1 Esled] e~ H0 =% (4 Exfey))
X [oEyfn)} e~ “*|g) + PT. (3)

Equation (3) has the following interpretation: u_u._ |g} is
an initial wave packet; E,(1,)E,(7,) prepares this wave packet
(or a component thereof) on the ground state Born—-Oppen-
heimer surface and e = 1% — %% pronggates it on the ground
state Born—-Oppenheimer surface. The projection is then tak-
enonto (glu,u, . Equation [3), with the above interpretation,
is strongly reminiscent of the representation of two photon
resonance Raman scattering. “>° In our context, it is the
Fourier component at w, of the convolution of the fields with
the wave packet recurrences that determine Pawy).

The expression for the explicit time dependence of the
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CARS amplitude can also be simplified. This time-depen-
dent amplitude is given by

PPt} = J' " P (gl dasy, "

which is simply the inverse Fourier transform of Eq. (2} or
Eq. (3). The fourfold integral over time is seen to reduce to a
threefold integral. We obtain, then, using Eq. (3) for P Mw,)

PlHt)= %f diy(gle” ¢ (u,)[1, Exity)]

X~ - "W[I‘rEz('z'] [PaEl('zllf - ”{ztg) {3)

‘We show, in Sec. 111, that Eq. (5) predicts dramatically dif-
ferent decay times for the resonant and nonresonant contri-
butions to the CARS signals. This effect has been illustrated
beautifully in the experiments reported by Zinth, Lsuber-
eau, and Kaiser,” and by Kamga and Sceats.®

A third set of simplifications arise when the temporal
envelopes of the light pulses can be considered & functicns on
the time scale of the IVR (or other dynamical process). Zn the
case where we can approximate E (1,1E,{1,) as E E,8(t, — 1 )
and E,(t,) as E,8(1, —  ?), Eq. (5) simplifies to
P,l;' (rak \ ELE (gl u,

xe ™ HT IRy \g)6le, —13)+ PT . (6)
These simplifications are valid when the time scale separa-
tion Tivg > 7puie > 74, holds, where Aw is the mismaich of
the incident frequencies from an electronic transition.

Of course, in the fully general case photon 1 and paoton
3 may be resonant with an excited electronic state and Eq. {2)
must be used to calculate the intensity; however, under reso-
nance conditions only a few of the 24 terms make significant
contributions to the CARS amplitude.

In order to recover the formula for ¥, in Ref. 15 we
return 10 Eq. (2) and set

Et,)=E e ",
E)t;} = E, e, {7)
Ejty} = Eye ",

We now rewrite Eq. (2) in an expanded form:

'3'{00)——J I J- J‘ dt,de,di,dt E E, E,

— iHi, — LA l"lu,—wz-#w +w.)(r — It
X (glu, e > I8 (8)
- R — w4+ w, + @il — ) - M - 1/
e iH r,:Me i 2 H, € [ AT M,
Koo, + wode; — 1,0 — Ry + @) — wy + wy — g — @l

e ig)e

[The reader may easily verify the equivalence of this equa-
tion to Eq. (2). The additional phase factors in this expression
cance] out in a domino-like fashion.] We then transform to
the new variables

W=t,—1,,
X=1,—1,,
Y=t,-1t,
L=t,.

Making use of the integral representation for the delte func-
tion, we obtain

P P e VAl B -

Tannor, Rice, and Weber: ZARS as & probe of vibrational redistribution

P”’{@).&—j J; f dW dx dY

X(g[ﬂ e~ HY, fay — -»:+~.+~;WF'
xea’ m,+u,+v,ﬂ’#?e_mwelu,+aawpalg)
X E\E;Edlw, + o, —w,)+ PT. (9)

Inserting three complete sets of states (| /), |k },|/ )) and inte-
grating over W, X, and ¥ we obtain
+r7)

P (wo)
XE,E:E;&{WI —w:+w;-ﬂ’°' (lm)

= kY pom Eo () }E (@), (030w, — @3 + @3 — @) . (10b)
The first term in parentheses in Eq. (10a) is precisely the
second term in Eq. (37) of Ref. 15. The other terms may be
obtained by permutation of @, — w,, @,, and -~ @,. Note
the 6 function condition on w,, which represents the conven-
tional CARS frequency matching condition.

e—wx

—‘ﬂz+w;—'w°

=(£J' @l Y |y K ) KK, U Gl L)
# Jit (0 — ooy — 0, + :2)e, — @)

ill. NUMERICAL CALCULATIONS

In this section we demonstrate some of the great variety
of behavior that arises from different choices for resonance
conditions for each of the incident radiation ficlds and differ-
ent possible intramolecular energy transfer pathways. First
we consider the intensity and decay time of the CARS signal
as a function of detuning ©, — @, from resonance with a low
lying vibrational level of the ground electronic surface. Then
we specialize to the case where this frequency difference is
resonant with such a level. We consider several different
forms for the decay of the CARS signal, arising from the
“small,” “‘intermediate,” and large molecule cases. We ob-
serve strong beat patterns for the two-state case, with the
regularity and intensity of the beats decreasing as the "size
of the molecule is increased. The limiting case of an infinite
number of coupled states can be described analytically, and
is approached arbitrarily closely for increasingly large but
finite numbers of states.

It is instructive to examine the behavior of PL"(I,.J with-
out including E,(t;) in order to obtain a global picture for a
variety of different delay times of photon 3 relative to photon
2. We therefore examine the quantity

P;? "‘)J“ d‘z(glppﬂv e iH (8, — WA

X tig [RYEALIE (1) e~ =" (11)
P{)t,) may be obtained from P (for photon 3 nonresonant
with an excited electronic state) by simply multiplying P’ by
a narrow envelope in time at the desired delay. For definite-
ness we suppose that E.(7,)E,(z,) has the form

Es(6)E,(8) = aleg)e ~ 4~ =%, (12}
where the envelope function air;} is given by
1
a(t2)=~(-2—’r?)l7exp(—r§/202). (13)

We arc interested in 2 product pulse which is narrow in time
{of order 1 ps) while at the same time relatively narrow in

“A EF Manmarmbhar AR
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INTENSITY

INTENSITY

0.0015 A
0. 001 4

D. DOOS A

-5 ) S 10 15
TIME

FIG. 1{a). The intensity of the CARS signal v delay time for photon 3 (pe).
Thepulns.h:pumGamdmwit.htimemtmta:D.Splmd
Frvm = 0.15 ps~'. The frequency difference A = o, +@ -ay— o,
= 0. The decay of the CARS signal is determined by the time constant for
the IVR. {b} Sume as Fig. 1(a] but Aw = 3 ps~*. The overll intensity is
greatly reduced, and the decay time is now much faster than the IVR time
constant. (c) Same as Figs 1{a)} and 1(bjbut &Ax = 30 ps—'. The overal! inten-
:ityintwoordenof'mpitudcmallﬂthuinl‘h. 1{b) and the CARS
signal vanishes when the initial excitation is Anished.

frequency (of order ten wave numbers), with a central fre-
quency @, — w,. Furthermore, we assume that

Clt)= (8[#,#- '_w./'pf“a Lg>

o~ g7 T g (14)

The exponential decay of IVR on the ground state potential
surface is a crude but useful description of that process in
many molecules. It may be justified on theoretical grounds
by considering the Bixon-Jortner level coupling scheme.”’
In Eq. {14), w, is the central frequency for the vibrational
feature s.

Equation (11} may now be rewritten in the form

Pum=f'qumﬂ”%Mwwm, (15)

where Aw = w, + @, — w, — w, represents the detuning of
the difference frequency from the vibrational transition.

Figure 1 dispiays a plot of |P] {r,)]* vs 1, when
Fyvw =0.15ps™!,0=0.5ps, and Aw = 0, 3, and 30 ps 1.
The CARS signal is observed to decay much more quickly as
the detuning is increased, and the overall intensity of the
nonresonant signal is much lower than the resonant signal.
These observations are in agreement with the results of
Zinth, Laubereau, and Kaiser’ who demonstrate the effects
mentioned both experimentally and numerically. Kamga
and Sceats® used the effect gainfully to eliminate nonreson-
ant background from the CARS signal from two component
liquids.

In Figs. 24 we again consider | P (1,)|> as a function of
I,. We specialize to the case Aw = 0, and we now consider a
different model for the IVR on the ground state surface. The

“zeroth order level s is coupled to its “nearest neighbor' ze-

roth order ievel only. This second zeroth order level is in
turn coupled to its nearest neighbor level, and so on. The
energy of each of the zeroth levels is taken to be the same, as
is the coupling between levels. This is a crude model of a long
chain molecule, or of a set of normal modes that are coupled
in sequence. The number of coupled levels is varied from two

1.5 4

INTENSITY

0 —l—L MV
-5 o S 10 15
TIME

FIG. 2. CARS intensity vs delsy time. The pulse shapes are Gaussian with
ﬁmemnlunlatO.Spt.Mhthuohtwo-level:ysm{N=2Jrsulu'n;
inqunntumbaawithmpleumdtquhrrecm.menupliupa-
rumeter, v = .75 fi-ps—".
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1 -
>
-
(2]
r4
w
Zz 0.5 S
0 v a —r——t v T v
-5 4] S 10 1S5

TIME

F1G. 3. Same as Fig. 2 but for N = §. The quantum beats are still strong but
irtegular.

to 5 to 10, simulating small, intermediate, and large mole-
cules. Mathematically, the coupling matrix is tnidiagonal,
with all diagonal elements equal and all near-diagonal ele-
ments equal. The eigenvectors and eigenvalues for this ma-
trix can be evaluated analytically; furthermore, the form of
the decay for ¥ coupled levels is an N-point quadrature ap-
proximation to another analytic function, which represents
the limiting decay for an infinite number of coupled levels.
Interestingly, this limiting decay shows early time recur-
rences in the CARS signal despite irreversible long time de-
cay.
The eigenvalue equation for the tridiagonal matrix is

r r rooooN
E, v ] t.'fW a
v
=£ 16
v E v b7 b? (18]
v
\ NS . o
1 -
[ 1}
p
—
2
&5 0.5 1
—
z
0 v J, .
-5 (8] S i0 15
TIME

FIG. 4. Same as Fig. 2 but for N = 10. Note the weak, early recurrences as
well as the (truncated) strong, later recurrence.

Weassume £, = E,. The solution to the eigenvalue equation
is

E,,=E,-2¢)oos( i )
N+1

a =sin( nw ).B
g N+1/)7

b'-‘-—sin( inm )B
' N+l

LZ'. sin”{ = l)]_m. (17)

and the autocorrelation function of the initial level
Ct)= (sle” "™ s) is given by

Cly=3 at e” ",

- § (2

LI

Yool sl ez )
XBle” {18)

Figure 2 shows the time dependence of [P (z,)|* for the
two-level case. Note the complete recurrences at times
nt = 2mn/w. It is remarkable that the first feature { = 0) has
less amplitude than the others; this is because it represents
the convolution of the waveform a(r } with the one-sided func-
tion Cft}, t > 0. Figure 3 shows the five-level case. The initial
decay is very similar to that in Fig. 2 but the recurrences are
on a longer time scale and more irregular in the five-level
case. Figure 4 shows the ten-level case. The strong recur-
rences are, relative to those in Figs. 2 and 3, pushed farther
out in time. There is, however, a weak sequence of recur-
rences at short times (r = 3.5, 7 ps), which persist in position
and intensity as ¥ increases further.

Asone might expect, C{r japproaches a limiting form as
N goes to infinity. In fact, we now show that C{r ) for finite N
represents an N-point quadrature approximation to the infi-
nite ¥ case. We may rewrite Eq. (18] as

iE e /N

N .
E o, iN+1) ghRun,t
Am1l 7
N
o N+1)
km 1 L

(19)

where

T .2( nm )
o, = Sin ,
N+l N+1

V)

We note that Eq. (19) is approximately equal to
+1

W+ tym) [ evmam 1 — 27 ds
-1

X, = cos(n

[N + 1y/7) r ' (1 —x)H2 . 1)
-1
The integrals in Eq. (21) can be performed analytically, yield-
ing
A, (2w
Cit)= ;J,(T) (22)

J. Chem. Phys., Vol. 83, No. 12, 15 December 1885
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0.8
=
-
v
r4
w
[
Z 0.4
0 v ] T T v T T
-5 0 5 10 15

TIME

FIG. 5. Szxme as Fig. 2 but for N = o. The correlation function Cit) was
determined analytically as the limit of an V-point quadrature approxima-
tion as N--oo, and is given by (A/v1) J,(2v1 /#) {see the text]. Note that the
weak, early recurrences persist while the strong, late recurrences are absent.

which is the limiting form for the decay of the autocorrela-
tion function as N—c. Figure 5 shows the function
|P; (21> vs 7, corresponding to Eq. {22). Note that short
time recurrences persist while long time, strong recurrences,
do not.

Figures 6 and 7 show

|Jm _[’ di, dt,

M i, — 1 — L -1 - gl . 2 s
X (gle ™™ T b r)e =" M alrle T e ig) | (23)

as a function of ¢,. In both figures the overlap function is
takentohavethefunctionalform C (1) = [J,(2'¢)/T'r Jon the
excited and the ground state potential surfaces, as motivat-
ed above. T is taken to be 0.75 ps~' on the ground state
surface in both plots while it is 0.7 ps~' on the excited sur-
face for Fig. 6 and 0.07 ps ' on the excited state surface for
Fig. 7. Comparison of Figs. 6 and 7 yields the interesting
result that the decay of the CARS signal is insensitive to the

0.3 A ﬂ
b
0.2 -
w
<
s
(-
zZ
0.1 4
o d }T T B T T
-5 0 5 10 1S
TIME

F1G. 6. Resonant CARS intensity vs delay time. T, =0.7ps~",I", =0.75
ps".

0.4 - ﬁ

o
w
1

INTENSITY
o
n
i

o
—
1

o g T v T d T M
-5 0 S 10 15
TIME

FIG. 7. Resonant CARS intensity vs delay time. T, =007 ps™?,
I, =075 ps~' Comparison with Fig. 6 shows that the resonant CARS
signal is insensitive to the rate of IVR on the excited state potential surface.

rate of decay of IVR in the excited electronic state. This
conclusion holds whether the IVR is much faster, compara-
ble to, or much slower than the time envelope of the wave-
forms g and b. Indeed, the only assumption required for this
conclusion to be valid is that the centers of the waveforms a
and & are coincident in time, for the following reasons. The
convolution

y= f i (gle ™ F 7 g1 )ig)ds, (24)

is very sensitive to the IVR rate on the excited state potential
surface: if " is very large ¥ will be very sharply peaked in
time; if T" is very small y will be very broad in time. However,
the convolution will have a minimum width equal to the
width of a{#,). Since b has the same width as g, and its center
is coincident with the center of g, the product of b with the
convolutior is just the width of &. It is interesting to note that
one may insert an adjustable delay between photons 1 and 2,
now taking care that photon 2 is coincident with photon 3.
Then the IVR from a vibrational level in the excited elec-
tronic surface is probed with no complications arising from
ground electronic state IVR. This small change in experi-
mental setup allows, in principle, a ready comparison of [IVR
rates of the corresponding vibrational levels in the excited
and the ground electronic states.

It is important to note that the above arguments do not
apply to photons 3 and 4. When photon 3 is resonant the
emission of photon 4 may be significantly delayed, because
photon 4 is emitted spontaneously. Hence, the quasicoinci-
dence of the waveforms of photons 3 and 4, which was as-
sumed above, is no longer guaranteed. Excited state IVR
may now contribute to the decay of the CARS signal, and no
simple interpretation in terms of ground state IVR will be

possible.

IV. CONCLUSIONS

In this paper we have demonstrated the fruitfulness of
formulating CARS in terms of a time-frame quantum me-
chanical expression, i.e., fourth order time-dependent per-

J. Chem. Phvs.. Vol 83 No. 12 15 Decembar 108€
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turbation theory. This formulation includes the standard en-
ergy frame forrula as a special case, when there are four cw
photons, but is also valid for arbitrary waveforms for the
photons. Our expression is required to properly describe pi-
cosecond CARS experiments when an adjustable delay is
introduced between any pair of the photons. It emerges from
our treatment that the traditional CARS frequency match-
ing condition @, = 20, — w, must be generalized for non-cw
fields; in that case it refers to the Fourier component at @, of
the convolution of the radiation field with the wave packet
recurrences.

We have discussed the role of resonance, both in the
ground electronic state (generated by photons 1 and 2)and in
the excited electronic state (generated by photons 1 or 3 or
both), and have calculated how resonance conditions affect
the decay of the CARS signal. Although many different uses
for time-dependent CARS techniques can be envisaged, we
bave dealt mainly with some questions related to using
CARS as a probe of ground electronic state IVR. The disap-
pearance of the Rayleigh line in frequency space experi-
ments is a signature of IVR, and may be understood in terms
of the decay of wave packet recurrences.’’ The same IVR
process manifests itself also in the decay of the CARS signal
in time. Model calculations show that quantum beats in the
decay of the CARS signal may occur, reflecting cither a
smal] number of coupled states (strong and regular recur-
rences) or a sequential coupling mechanism for a large num-
ber of states (weak and early recurrences).
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Control of selectivity of chemical reaction via control

of wave packet evolution
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A time-dependent formulation of two-photon spectroscopy is employed to show that selectivity of
reactivity can be achieved via coherent two-photon processes. The problem of finding the
optimum waveform (i.e., coherent pulse sequance] that will maximize the formation of a desired
chemical species is formulated as a problem i the calculus of variations, and solved for two

different cases.

L. INTRODUCTION

Is it possible, by control of the nature of the excitation
process, to control the selectivity of a chemical reaztion?
Previous attempts to answer this question have focused at-
tention on the free evolution of an excited molecule, treating
the excitation and the evolution processes as scparable.
These analyses, and the various experiments carried Jut to
date, lead to the conclusion that, because of rapid intramole-
cular vibrationa) redistribution, laser induced selectivity of
reaction is not, in general, feasible.! In this short paper we
show that, despite dephasing of a prepared vibrationa! state
distribution, selectivity of chemical reactivity cen be
achieved by use of coherent two-photon processes.

Il. GENERAL CONCEPTS

Our procedure for controlling reaction selectivity is
based on an inversion of the usual interpretation of two-
photon spectroscopy. The probability of a two-photon tran-
sition between states ¢, and ¢, is proportional to’

|J._ “J’_ ) (@b ir)e= 1= "%t )id Ve, d1, 12, (1)

where a(t,) and & (t,) are the forms of the first and sscond
clectromagnetic field pulses and H is the Hamiltonian for
propagation of the coupled molecule and radiation field. In
Eq. (1), |¢,) = uly.) and 4, = u|y,), where u is the transi-
tion dipole moment and y, and y, are the initial and final
vibrational state functions (with energies w, and w, in units
of #). The phase factors exp( — iw,7,) and explic 1,) associat-
ed with y, and y, have been subsumed into air,) and b (1,),
respectively. In the conventional interpretation, ai/.) and
b (z,) are thought of as “‘given.” The probability of tramsition
(1) determines the distribution of intensity observed ir, e.g.,
an absorption fluorescence or absorption-stimulated Awores-
cence experiment, the result being an accepted consequence
of selection rules and molecular parameters. We, instead,
ask the question: what are the waveforms and/or pulse se-
quences that optimize the probability of transition to a speci-
fied final state from a specified initial state? This qu=stion
can be formulated as a variational problem for the functions
a(r,) and & (t,}. That formulation leads to equations that can
be solved analytically in simple cases, £.g., stimulated fu-
orescence emission, but in general must be solved numerical-
ly.
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It is important to note that Eq. (1) refers to the case of
transition between a specified initial state and a specified
final state. We shall be concerned with the case when transi-
tions to several final states or a continuum of final states
must be considered, as when only the chemical identities and
not the internal levels of a set of products of a reaction define
the result of interest. For case of comprehension we present
our analysis in terms of a simple example.

Consider the hypothetical ground electronic state
Born—Oppenheimer potential surface shown in Fig. 1. The
surface has a central minimum and two different exit chan-
nels, each separated from the minimum by a saddle point.
The minimum corresponds to a stable form for the reactant
molecule ABC, whereas the exit channels correspond to for-
mation of products via the reactions (i} ABC—AB + C and
(i) ABC—A + BC. There are scveral ways, in general, to
promote one or both of these reactions. We explore whether
one can maximize the probability of & desired pathway, e.g.,
favoring ABC-—AB + C over ABC—+A + BC. We are not
concerned with individual final states of the products of the
reaction, but only with the fraction of each fundamentally
different chemical species produced. For the potential sur-
face shown in Fig. 1, there is a qualitative and quantitative
distinction between the two exit channels. We define a pro-
Jjection operator that includes the coordinate space associat-
ed with each exit channel, and form the following analog of

Eq. {1):

T 1, T 3
}unJ. f j 'r dr; dt} dt, dt,

Mot — 1R HAT — R —iHAT — 1 517h
X {¢,le pedT TP, e T

X e~ F=E NG Sate b (tpalt (b (1) (2)
In Eq. (2}, P, and P, are projection operators corresponding
to channels (i) and (i), respectively. P, is defined by

Po=[ B (x -l o)
allspace
where H (x} is the Heaviside function,

Hixj=1, x>0

Hix)=0, x<0. (4)

P, is defined similarly. In practice, we have identified x with
theangle {0 to 77/2) that measures progress along the reaction
path [see Eq. (11)].
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FIG. 1. Ground electronic state potential surface. This surface supports a
stable tristomic, ABC, which may dissociate to A + BC [channel (ij] or
AB + C [channe] (i})].

lil. OPTIMIZATION

The two different expressions for the intensity of inter-
est, Egs. (1) and (2), are optimized in different ways, but in
both cases with respect to & (t;). We choose for a constraint
the condition

J' " bl =1. )

Since |b (1,)|? is proportional to the intensity of the second
light pulse, the constraint fixes the total number of photons
at our disposal.

Using a variational procedure, along with the method of
Lagrange multipliers, we obtain the following result for the
optimization of Eq. (1} (see Appendix A):

o) = r (@17~ "4 g, )alr,)dt,. (6)

The interpretation of Eq. (6) is straightforward: The stimu-
lating waveform should be “matched” to the convolution of
the excitation pulse shape with the wave packet as it evolves
subject to the dynamics on the excited state potential sur-
face. This result has analogs in electrical engineering and
information theory, where it is part of matched filter the-
ory.?

Using the same procedure with respect to Eq. (2} yields
the following result (see Appendix B):

r B3 (. e +Ab (1) =0, ™
where
Atsn={ drlf' dt; Aty by 15,17, )ait e
8)

and

A= 'l_‘_m (@ Ie“"'em‘t" - :,yu‘“w.{r_ .,anPl le™ T — 1)

Xppe~ Hetim iRl ) (9}

Equation (7) must be solved iteratively for & (£,) unless
Aty 1) =A {6} XA}, (10)

in which case it reduces to the matched filter result for the
single state projection.

{V. SELECTIVITY OF REACTIVITY

We now show that selectivity of reactivity is possible if
an excited electronic state is used as an intermediary to “‘as-
sist” chemistry on the ground electronic state surface. Our
scheme supposes that the excited state surface that plays the
role of an intermediary has both a displaced minimum and
normal coordinates which are rotated relative to those of the
ground state surface.

Consider, first, the classical trajectory that originates at
the minimum of the ground state surface (x =0, y =0,
Px =0, p, =0), and imagine this trajectory projected verti-
cally onto the excited state surface. The trajectory now pro-
pagates along x as a result of a large Franck—Condon dis-
placement in this coordinate. After several vibrational
periods, because the excited state normal coordinates are not
paralle] to those of the ground state, the trajectory begins to
wind around and oscillate along y (Lissajous motion]. If the
trajectory is now projected vertically down, back to the
ground state surface, depending on when and where along
the Lissajous motion on the excited state surface the projec-
tion starts, the new trajectory on the ground state surface
may exit from channel (i), or channel (i}, or remain trapped
in the well.

The quantum mechanical theory of two-photon pro-
cesses is amenable to an interpretation very similar to the
classical mechanical description given above. The “instant”
of arrival of the first photon 7, marks the vertical transition
to the excited state surface and the instant of emission of the
second photon ¢, marks the vertical transition back to the
excited ground state surface, in conformity with the Franck-
Condon principle. Quantum mechanically, the initial state
¢, is a localized wave packet; the motion of the center of this
wave packet @, (1) = e~ #'%¢. (0} is the analog of the classical
trajectory discussed above. Under favorable conditions the
wave packet remains narrow and will track its correspond-
ing classical trajectory for many vibrational periods. This
description has been advocated by Heller and co-workers®*
in discussing a variety of molecular spectroscopies. How-
ever, the available analyses refer to the case of continuous
wave (cw) light, i.c., the use of the one or two photons with 5-
function frequency distributions. Our interest is in arbitrary
waveforms and, in particular, in coherent pulse sequences
that will enhance the fraction of a desired reaction product.
Still using Eq. (1) or its generalization (2), our scheme posits a
shift in outlook from passive to active. Indeed, we are no
longer referring to spontaneous emission, but to stimulated
emission with carefully tailored waveforms.

One must distinguish clearly between the achievable
control of wave packet propagation, phase of the wave pack-
et, and production of the composite wave function. The wave
packet propagation is only partially under experimental con-
trol. It is governed, first and foremost, by the forms of the
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ground and excited state potential surfaces; the experiment-
er can affect the wave packet propagation insofar as he/she
selects the instant to change surfaces. Similarly, the phase of
the wave packet is only partially under experimental control.
There is a coordinate-dependent phase factor {which reflects
the momentum of the wave packet} which is determined by
the properties of the potential surfaces. However, there is
also a coordinate-independent phase factor, which plays a
vital role in determining the nodal patterns set up by several
interfering wave packets, and which can be manipulated via
control of the phase of the pulse. Finally, the composite
waveform produced may be thought of as a superposition of
some number of individual wave packets. The extension of
the composite wave function, its component segments and
the relative phases of these component segments are under
experimental control, since these features are determined by
the overall duration of the waveform of the light, the compo-
nent pulse sequences and the relative phases of the compo-
nent pulses, respectively.
Consider the two potential surfaces

V, =D(6){(t - LN~ _ (1)
where
D(6)=[0.170 — 0.019{(72/m 6 — m/4)* — 2}
Xexp | — §(36/7)*(8 — w/4%}) hartree, (12)
Bi6)=[1.058 — 0.333

Xexp — {§{15/7146 — 7/4)}] bohr~', (13)
18] = [8.045 + 2.823
Xexpl ~ §{12/m)*(0 — #/4)*]] bohr, (14}
and
Vo =imed, X — x4 ymad / — i, (15)
where
m=1823m, ,
x5 = 1.1 bohr,
¥, = 1.2 bohr,
@, = 0010 au.,
w, = 0.0082 a.u.,
x={2)7"}x’ + y') + 3.4727 bohr,
y=12)""3x' — ') + 1.637 bohr . 6)

The contour plot for the ground state potential surface,
shown in Fig. 1, uses (equal) skewed coordinates with
x=R;+ 1R, and y=(2)7'?R,, where R,= —/cos @
+ 10and R, = — /sin 6 + 10, all distances in a.u.

Figure 2{a) shows the time dependence of AB-
C—AB + C[exiting out of channel {i}], while Fig. 2(b) shows
the time dependence for ABC—A + BC [exiting out of
channel (i)}, as determined in a purely classical calculation.
Note that vibrations on the excited state surface are assumed
to be purely harmonic. The ground state surface is modeled
after that for the reaction D + H,—+HD + H in the asymp-
totic regions of the potential surface, but a well with bound
states is artificially introduced in the interaction region. The
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FIG. 2. (aj Probability of exit from channel i), as & function of propagation
time on the excited electronic state potential surface. After propagating on
the cxcited staze surface the trajectory makes » vertica! tramsition back to
the ground state surface, and is propagated until it reacts, or is deemed un-
reactive after 200 time steps (2000 a.u.). Becayse the propagation is classical,
the probability for exit is a step function. The overall decay simulates a ra-
diationless process, say intramolecuiar redistribution to other vibrational
modes. as well as the effect of a finite radiative lifetime. {b) Probability of exit
from channel (ii), as a function of propagation time on the eacited state po-
tential surface. (c) Probability of finding energy E > 0 on the ground state
potential surface vs propagation time on the excited state potential surface.
£ = 0 is the energy for dissociation to A + B + Con the ground state po-
tential surface.
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coordinates of the well minimum are x = 3.4727, y = 1.637.
The time axis refers to the delay of the vertical transition
down relative to the vertical transition up {or equivalently,
the propagation time on the excited state surface). Following
projection from the excited state surface, the trajectories
were propagated on the ground state surface until reaction
occured. Reaction was defined in a transition state theory
sense—crossing one or the other saddle point (9> 6,,,,
# < 8,,,) with momentum in the direction of the exit { p, > 0,
Pe <0, respectively),—or until 200 time steps (2000 a.u.)
transpired, in which case the trajectory was deemed unreac-
tive. Furthermore, trajectories with £ > 0 (enocugh energy to
dissociate to A + B + C) were considered as a separate class.
The time dependence corresponding to these trajectories is
shown in Fig. 2(c). Calculations using this breakdown were
compared with one in which all trajectories were propagated
200 time steps on the ground state potential surface. agree-
ment between the results with and without the transition
state approximation mentioned was satisfactory. Figure 3(a)
shows the probability of exit out of channel (i} assuming
short Gaussian pulses for the pump and “probe™ waveforms
(o = 10a.u.). Figure 3(b) shows the analogous probability for
exit from channel (ii]. Note the dramatic selectivity for chan-
nel (i} at delay time =125, and the selectivity for channel (ii)

600 +

400 -+

Il

200 A

T
0 1000 2000
TIME

3000

1500

o 1000 4

I

S00 A

b

v 1 v T
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TIME

3000

F1G. 3. (s) Square of the convolution of function displayed in Fig. 2{a) with
narrow incident and stimulating Gaussian pulses o = 10. a.u.). The time
axis refers to the delay of the second pulse relative to the first. (b) Convolu-
tion of Fig. 2(b} with parrow incident and stimulating Gaussian pulses
{o=10au)

at delay time r=300. It is expected that the quantum me-
chanical effects of wave packet spreading and interference
will alter the quantitative predictions for this {and any other)
pair of potential surfaces, but that the qualitative extent of
sejectivity demonstrated here will persist.

Our method of controlling the selectivity of a reaction
depends on the coherence of the dephasing of the wave pack-
et prepared on the excited state potential energy surface. By
virture of its preparation, that wave packet can by thought of
as a superposition of component eigenstates each of which
has a nonvanishing transition dipole matrix element with the
initia] state on the ground state surface. Of course, each of
the cigenstate components of the wave packet evolves deter-
ministically, under an evolution operator defined by its ener-
gy, 50 at any time following absorption of the first photon the
relative phases of the components of the wave packet are well
defined and known. Then our optimization of the second
pulse waveform,achieves the best stimulated emission from
all of the components of the prepared wave packet, i.¢., the
effects of intramolecular vibrational redistribution on the
excited state potential surface are used to best advantage.

However, for many molecules of interest there exist ra-
diationless transitions which couple the levels of an electron-
ically excited surface to a dense manifold of guasidegenerate
levels on one or more other electronic surfaces, and these
latter evels have vanishingly small transition dipole matrix
elements with the initial level on the ground state surface.
This process depletes the prepared state and, therefore, com-
petes with stimulation of emission to an extent that depends
on the time delay between pumping and stimulating pulses.
We have shown elsewhere, in a study of time delayed coher-
ent anti-Stokes Raman spectroscopy,’ that exponential de-
cay of the amplitude of a wave packet on an excited state
surface via, say, a radiationless process, reducss the ampli-
tude of a coherent emission signal but does not destroy the
coherence necessary to create the emission signal. Provided
the quantum yield of fluorescence of 0.01 or greater, the rate
of the radiationless process is less than 100 times greater
than the rate of spontaneous emission. For a radiative life-
time of 100 ns there is a time window of the order of 1 ns or
longer in which the method described in this paper should
work.

In a forthcoming report we will describe several exten-
sions of our analysis, in particular the effects of wave packet
spreading and interference. Our analysis of the variational
problem will be expanded and the role of ais;) will be dis-
cussed. We call attention to, and we will deal with, the fact
that the definition of optimization (¢.g., as the ratio or the
difference in product fluxeg) is a boundary condition that
influences the solution of the variational problem.
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APPENDIX A

In this Appendix we derive the optimum waveform for
the stimulating pulse when there is a single final state ¢, of
interest.

The second order amplitude for a transition from i to /
ag, is given by

“ﬁ=f f (@16 ()™ ¥~ als)ig )ds dt . (A1)

We wish to maximize |a, |* with respect to the function b {t),
subject to the constraint

J‘" b)) de=1.

(A2)

Using the method of Lagrange muitipliers, we rewrite Eq.
{Al)as

1=|aﬁg2=|f J' (8,1b{r e~ *#\="%g(s)'8 Vds dr |?

+,1_U" 1&(t) dr 1_), IA3)
and we write

bit)=b(t)+bir),

I=7+61, (Ad)

where bis the allowed functional form for 4 that optimizes /,
namely / = I. Substituting Eq. (A4} into Eq. (A3}, and neg-
lecting the second order terms in the variation &b, yields

&1
=a’;j f (¢J’i6b [!}e_f”"""“afsjigb,)ds dr + C.C.

+,1f (bSb* + B%b)dr=0. (A3

Equating the integrands of the integral over r and separating
real and imaginary contributions, we obtain

a;f (¢Hevi}lu—sl/ﬁa{s”éf)ds

=agflt)= —Ab*r), (A6)
where we have defined
fi6r= [ (ogie= o= w4 )as. (A7)
Using the co;s:raim {A2) we obtain
B = azflr) _ Sit) _
st " vwa] s [[7 e
(A8)

This result states that the optimal stimulating waveform is
matched to the convolution of the incident waveform with
the dynamics on the excited state potential surface. Analo-
gous conditions for optimization play an important role in
communication theory where they form s part of matched
filter theory.? )

APPENDIX B

In this Appendix we solve for the optimal stimulating
waveform when there is a sum or integral over final states of

5017

interest. Interference between different final states gives rise
to a more interesting expression for the optimal waveform.
The expression we would like to maximize is

T 3 T H
I,=}i_x.11f fj f di, dr, dt; dr

o (g'eiwll,a[tl weiﬂuil: - l.]b {tzpe — iM{T— rzjl})] I

Xe ™ T b (1] jue ™ 1 gpe e~ e igy
(B1)
The operator P, projects out of the total second order ampli-
tude produced on the ground state potential surface that part
which is located in exit channel (i). A similar projection oper-
ator can be defined for exit channel (ii). The phase factor

€*”’, which plays a trivial role when only a single final state is
involved, must be replaced by the propagator corresponding
to the ground state potential surface when many states are
involved. This replacement accounts for the difference
between the present expression and the single fina] state
expression in Appendix A. It also motivates propagating
classical trajectories on the ground state potential surface, as
we do in the text.

We choose the same constraint as in Appendix A, name-
ly,

J.x lBir))dr=1. {B2)

For ease of notation we define the function A by

Al 15,17 = ,l.im (glem‘!’pem““’_"lue‘ ‘H'T""FP.I
xe iHIT - l‘il’Je——iﬂniri - Ji:ueim,r;Ig> ,
(B3)

and
1,=T, +61,,
b=b+ 6. (B4)

Substituting Eq. (B3) and (B4) into Eq. (Bl), and using the
method of Lagrange multipliers, yields

T 3 T U
alzf dl;f d;,f d:;f dti Al 1, 15,11)

Xa*(1,)66 *ty)a(t b (13} + C.C.
T
+4 f an(bi,)0b *(1,) + C.C.] . (BS)

Equating the integrands of the integrals over 1,, and separat-
ing real and_imaginary components, gives the following
equation for b (1 ):

] T L
f dr,f d.r;f di| Aty 1,151])

Xalt b1} )a*(r,} + AB (2,)
= [ Busa s, s + 250y =0, (B6)

where
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A'l!i-‘2)=J" d!IJ“ d’;A[tz,thti,’;)

XaltJa(t,) . {B7)

Equation {B6) is an example of a Fredholm integral equation
of the second kind. The eigenvalues of this equation are relat-
ed to the Lagrange multiplier 4 and the eigenfunctions are
the desired optimal waveforms & (¢ ).
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We present a novel approach to the control of selectivity of reaction products. The central idea
is that in a two-photon or multiphoton process that is resonant with an excited electronic state,
the resonant excited state potential energy surface can be used to assist chemistry on the
ground state polential energy surface. By controlling the delay between a pair of ultrashort
{(femtosecond) laser pulses, it is possible to control the propagation time on the excited state
potential energy surface. Different propagation times, in turn, can be used to generate different
chemical products. There are many cases for which selectivity of product formation should be
possible using this scheme. We illustrate the methodology with numerical application to a
variety of model two degree of freedom systems with two inequivalent exit channels. Branching
ratios obtained using a swarm of classical trajectories are in good qualitative agreement with

full quantum mechanical calculations.

. INTRODUCTION

In a previous report we proposed a novel approach to
achieving control of selectivity of reaction products.’ The
cases considered involved reaction on the ground electronic
state potential energy surface. but mediated by excitation to,
evolution on. and stimulated deexcitation from. an excited
electronic state. In particular, our proposed methodology
exploits the coherence properties of exciting and stimulating
ultrashort pulses (femtosecond time scale), and the dynam-
ics of wave packet evolution between exciting and stimulat-
ing pulses. The pulse shapes, durations, and separations re-
quired to achieve selectivity of product formation depend on
the properties of the excited state potential energy surface. In
the relevant time domain, which is defined by the shape of
the excited state potential energy surface, it is possible to
take advantage of the localization in phase space of the time
dependent quantum mechanical amplitude and thereby car-
ry out selective chemistry.

Our proposed method for achieving selectivity of reacti-
vity owes a great debt to the pioneering work of Heller and
co-workers,”® who have reformulated the descriptions of a
wide range of spectroscopies using an illuminating represen-
tation in terms of the evolution of wave packets. These de-
scriptions have the advantage of avoiding explicit use of mo-
lecular eigenstates and Franck—Condon factors. The fact
that the center of a wave packet evolves along a classical
mechanical trajectory provides us with a valuable concep-
tual and calculational tool.

This paper reports the results of quantum mechanical
calculations of the selectivity of reactivity possible with the
Tannor-Rice scheme. Briefly put, it is assumed that the
ground electronic state Born-Oppenheimer potential energy
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surface has two or more exit channels corresponding to the
formation of two or more distinct chemical species.

It is also assumed that there exists an excited state po-
tential energy surface whose minimum is displaced from that
of the ground state surface and whose normal coordinates
are rotated from those of the ground state surface (Dus-
chinsky effect). This excited state potential energy surface is
used to assist the chemistry on the ground state potential
energy surface. The time spent on the excited state surface is
used to select the desired chemical species. To see how this
works, it is instructive to begin with a classical mechanical
description of the dynamics. Consider the hypothetical po-
tential energy surface shown in Fig. 1; it has a central mini-
mum and w0 inequivalent exit channels separated from the
minimum by saddle points. The trajectory that begins at rest
at the minimum of the ground state surface is projected verti-
cally up to the excited state surface (Fig. 2). It now evolves
for some time on the excited state surface, after which it
projected vertically back down to the ground state surface.
The time spent on the excited state surface is one of the con-
trollable variables in the Tannor-Rice scheme. The trajec-
tory is now propagaied on the ground state surface long
enough to determine its ultimate fate, i.e., whether it leads to
A + BC, AB + C, or ABC. Figure 3{a) shows a trajectory
that exits from channel I (A + BC; excited state propaga-
tion time is 600 a.u.). Figure 3(b) shows a trajectory that
exits from channel 2 (AB + C; excited state propagation
time is 2100 a.u.). As may be seen in Figs. 4 and 5, in the
classical mechanical description there are windows of 50-
100 a.u. width for exit out of a desired channel.

The quantum mechanical description of the dynamics
follows a very similar pattern. At the instant that the first
photon is incident the ground state wave function makes a
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vertical (Franck-Condon) transition to the excited state
surface. The ground state wave function is not a stationary
state on the excited state potential energy surface, so it must
evolve as ¢ increases. There are some interesting analytical
properties of this time evolution if the excited state surface is
harmonic. In that case a Gaussian wave packet remains
Gaussian for all time, the center of the Gaussian wave packet
foliows the classical trajectory for harmonic oscillation, both
in coordinate and momentum space, and the Gaussian wave
packet develops a phase equal to the classical action integral
for the same motion, namely & = f(pqg — E)dr. These
properties are retained to a good approximation for smooth
anharmonic potential energy surfaces. Moreover, Ehren-
fest's theorem® ensures that the center of the wave packet
will obey the classical equations of motion for any potential
surface, provided the wave packet remains sufficiently local-
ized. The duration of the propagation on the excited state
surface can be regulated by the delay of a second pulse rela-
tive to the initial pulse of light. The second pulse leads to a
vertical {Franck—-Condon) transition down to the ground
state surface. Note that the wave function amplitude is un-
changed in the Franck—Condon transition. If the delay and
width of the second pulse is chosen on the basis of the posi-
tion and width of the windows in Fig. 2 it is placsible to
expect the wave packet amplitude on the ground surface to
select one channel over the other. In this paper we report the
results of quantum mechanical calculations of wave packet
propagation on the excited state and ground state potential
energy surfaces, for a vaniety of different excited state poten-
tial energy surfaces and a range of pulse delays.

I. THEORY AND NUMERICAL TECHNIQUES
A. Second order time-dependent perturbation theory

The Hamiltonian we adopt 1s a 2 X2 matrix of opera-
tors. It represents the ground and the excited electronic
states within the Born—-Oppenheimer approximation, cou-
pled by the radiation field interacting with the transition

dipole operators { u =y, = u,. )

H=( e #E(r)). (1)
nE() H,
The time-dependent Schrodinger equation reads
iﬁi(%):(ﬂa ,uE(:))(dv,). 2)
o\, HE(DH, S\, ‘
Atr =0, ¢, = ¢,, the ground vibrational state of /,, so that
H ¢y =E ¥, (3)

Also, ¥, = 0 (we are assuming the system is at 0 K).
The two coupled differential equations in Eq. (2) canbe
transformed to two coupled integral equations, namely

w,(” = e(—lH,n/ﬁwn (0)

i

ﬁ e—i[H,(h»r’)]/ﬁ”E(!.)lpb“,)dr,’ (48)

o 4
-1 — il — 173 /R
e &

ﬁ BE(t), (')dt'. (4b)

The reader may easily verify that Egs. (4) are formal solu-
tions of Eq. (2) by differentiation. We consider first the
weak field regime.

The time-dependent perturbation theory expression for
the second order amplitude on the ground state surface,
(), is

d,:h“) = ;21 J" .{-r; e_fﬂ,(:—::)/ﬁ#E“:)e—iH,,(r,—r|)/ﬁ

x pE(t)¢, (0)e ™ “"di, di,, (5)

which expression may be obtained from Egs. (4a) and {4b)
by setting

ﬁl J‘-‘ ef.},r,u_.v;,)M#E“l)d‘a(o)e-mvud!l.

(6)

Note that Eq. (5} contains the field strength to second order
only. Equation {5) has the following simple interpretation:
¥, (0) evolves on the ground state surface from ¢ = 0 until
t =¢,. At time ¢, it makes a vertical transition to the excited
state surface. The wave function propagates on the excited
state surface from time ¢, unti} time .. At time ¢, the wave
function makes a vertical transition back to the ground state
surface. The wave function then evolves on the ground state
surface from time !, until time ¢. In general, the waveforms
E(r)), E(1.) are extended; therefore we must integrate over
t, and 7., all the instants at which the transition up and the
transition down may take place. The probability § for exit
from channel 1 is

¥, (1) =

S, = lim (&, (1) P,1¢, (1)), (N

where P, is a projection operator in coordinate space corre-
sponding to channel 1 and S. is given similarly.

B. Numerical wave packet propagation

The wave packet propagation procedure used is an
adaptation of several existing grid methods.'® '~ The wave
functions on the ground and excited state surfaces are discre-
tized: They are represented by their values at a set of 64 < 64
or 128 128 grid points. The gnd we use is a rectangular
lattice in bond length coordinates R, and R. and chosen to
encompass the coordinate space region of interest: The
bound region and the adjacent portion of the two exit chan-
nels on the ground state surface. The region on the excited
state surface involves the identical portion of coordinate
space. This propagation method is in principle exact, as the
grid is allowed to extend to infinity and the grid point spac-
ing and time step (sec below ) are reduced to zero.

To calculate the time evolution of the wave function, it is
first necessary to evaluate Hy. In Eq. (2), for example, the
diagonal part of the matrix multiplication is given by

# (3*  9°
2m (af * 6y’) b

X, (xp)= [T+ V, ¥, (8)

and similarly for H,¢,. ¥, ¢, is evaluated simply by multi-

plication at each of the discrete grid points. T¢, is evaluated

by the Fourier transform method. ¢, (x,y) is Fourier trans-

Hﬂ wﬂ =
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formed to  #,(k, k), then  multiplied by
— #/2m(k; + k), and the product is inverse Fourier
transformed. This procedure has several distinct advantages
over the finite difference method for evaluating T, as de-
scribed in Ref. 11. In particular, it preserves the quantum
mechanical commutation relation

[ p.f(x)] = ififix). (9)

Moreover. the error in calculation decreases exponentially
with the number of grid points for Gaussian wave functions.
The grid spacing Ax is chosen such that (atomic units)

A‘x<]/pa.ma|\' (]O)

Our Ax = 0.1, Ay = 0.05. where x and y are mass-skewed
coordinates. Convergence of the branching ratio (see below )
with respect to grid size. was spot checked and found to be
~ 1% H,¢"; 1s evaluated in the same way. The off-diagonal
elements, uE(1)¢, for example, are evaluated simply by
muluplication. It is clear that a coordinate dependence to
#[ g = u(xy)] could be introduced easily. However, in our
calculation g is taken 10 be a constant (Condon approxima-
tion).

Given H¢ how do we construct e ~ "#3' " ¢.(1)7 We have
used the method of second order differencing. which starts

from
+ ---)u’*(:).
iHAL

V(1 — Af) = "V /5 = (1 - _T + ...)dr(:).

IHA:

w(t—f—Ar)ze"”"’/ﬁ:(l———ﬁ— {lla)

{11b)

and by addition generates

1ArtH

V(r4+ A =u{r — A1) =2 (1), (12)

This procedure preserves norm and energy. The error is of
order At °. The stability limit for Az is

A!slah = I/Emal' {]3)

where

Pias
2m

E’nll = l/mux + (l4)

In practice Ar,,, /5 is used. Our At was 0.4 a.u. Convergence
of the branching ratio with respect to time slep was spot

checked and found to be ~ 1% . The equations actually used
in our calculation are [c¢f Eq. (2} ]

v, 0+ Aty =, (1 — A1) — %A:H‘,u‘-,(r)

2i

—;Aszcosmr."b(.f). (15a;
2i
Y, (1 + A1) =t (1 — AD) % AtH o, (1)
L o=
><—-—-;— ArpE cos oty (1), (15b)

with Hy evaluated as described above.

Il. RESULTS

We show below results for four different model systems.
All the systems use the same ground state potential energy
surface (Fig. 1), but different excited state potential energy
surfaces. All the surfaces are models for the coupled sym-
metric and asymmetric stretch vibrations in a collinear mol-
ecule. The masses for the system are 1823, 1823, and 3646
a.u, corresponding to HHD. Although the ground state po-
tential energy surface of true HHD is not bound there are
excited electronic states which are bound. Our primary rea-
son for choosing hydrogenic masses was to facilitate the
quantum mechanical calculations, which are substantially
more difficult for heavier masses. In general, one expects the
classical-quantum correspondence, upon which our selec-
tivity scheme is based, to improve for larger masses.

Excited surface I is harmonic and Duschinsky rotated
relative to the ground state surface. In this case, because the
potential energy surface is harmonic, the wave packet on the
excited state will not break up. Indeed, we observe excellent
selectivity for this model: For one choice of delay time
between pulses we generate an exit from channel 1, while
with a second delay time we generate an exit from channel 2.

The second through fourth examples inctude a varen
of anharmonic excited state potential energy surfaces.

Model II has a very broad and shallow excited state
potential energy surface. It was initially believed that use of
this surface as an intermediary would favor slow alternation
{(as a function of pulse delay ) in the flux out of channel 1 or
channel 2 because of the low antisymmetric stretch frequen-
cy. We find, instead, that wave packet spreading is particu-
larly dramatic in this example because of the flatness of the
surface.

Model I11 has a “typical™ anharmonic potential energy
surface, with frequencies approximately commensurate with
those on the ground state surface. This model was intended
to represent the case in which the wave packet stays close to
the harmonic region of the excited state potential energy
surface, and thus reasonably well localized. In fact, as will be
seen, the wave packet spreading is pronounced. In model 1V
the excited state potential energy surface is taken to have
shorter bond lengths than the ground state surface. The dif-
ference in bond lengths leads to a variety of effects not seen
with the other potential energy surfaces since the initial tran-
sition is to the soft part of Morse potential, while the second
transition {depending on the instant) is to the strongly re-
pulsive part of the Morse potential. This model was designed
10 explore the possibility of the wave packet returning 1o the
original potential energy surface with a great deal of poten-
tial energy, which could be converted to the kinetic energy
required for dissociation. A related feature is that there is
dramatic wave packet contraction, or focusing, as the wave
packet evolves on the excited state surface from the soft to
the hard part of the potential.

An excited state potential energy surface with shorter
equilibrium bond lengths, deeper wells, and/or higher bar-
riers than those the ground state potential energy surface
proved to be the most useful intermediary for this selectivity
of reactivity scheme. Although these changes in molecular
parameiers on excilation are not common, there are cases for
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FIG. 1. Model ground state Born-Oppenheimer potential energy surface.

which they occur. Alternatively, one may use our scheme
with the roles of excited state and ground state reversed.
Consider starting out in the ground vibrational state of the
excited electronic state. This is the initial condition for ordi-
nary emission spectroscopy. Then one may use a two pulse
sequence to stimulate amplitude down 1o the ground elec-
tronic state and back up to the original electronic state. Now
the steepness of the ground state surface barriers accelerate
the nuclear motion so that enough kinetic energy is acquired
for dissociation on the excited state surface; also the tighter
bonds on the ground state serve to focus the wave packet. In
short, vibrational energy acquired on the steeper of the two
potential energy surfaces may be used to break a bond on the
flatter of the two potential energy surfaces.

Figure | shows the ground state potential energy sur-
face, which is of the Wall-Porter form,"’

Tannor, Kosloff, and Rice: Pulsa control of reactions

3

FIG. 2. Harmonic excited state Born-Oppenheimer potential enecgy sur-
face. The classical trajectory that oniginates at rest from the ground state
equilibrium geometry is shown superimposed.

V, =D(O)y{(1 — MU= ) (16)

This potential energy surface is common to models I-1V.
The variables / and & are the polar coordinate counterparts
of R, and R, the bond length coordinates; / is the length
from a remote “swing point™ and 6 the “swing angle™ about
this swing point. The three parameters of the Morse poten-
tial—the dissociation energy, the equilibrium position, and
the force constant—are taken to be functions of 8. This form
makes adjustment of local features of the potential energy
surface very easy, and was conducive to the systematic study
of the influence of particular features of the potential energy
surface on selectivity of reactivity. The details of the trans-
formation between coordinate systems and the functional
forms for D(8), /, (8), and B(6) may be found in Table I.

TABLEL ¥(1,8) = D(8) (1 — e #7"'~"='®\2 { Y D(g) = Dy — D Hy(B)e ™ '*" "%, B(g) = By~ Be™'* """ 25,

Lo (8) =lg+ 1,e "% g 6) = 48— w/h) e — 2.

Surface Dy D, o B o} Iy i, a v,
Ground 0.1705 0.019 12 0.007 615 1.0584  0.3334 0.043 86 8.045 2823 00685 O

I 0.1705 0.019 12 0.42 1.0584 0.6334 0.343 86 7.295 2,823 0.0685 0.06
I 0.1705 001912 0.035 1.0584 03334 0.043 86 7.295 2823 00685 006
v 0.1705 0.019 12 0.035 1.0584 (.3334 0.043 86 8.670 2.823  0.0685 0.06
0 B<m/2

R,= -lcosH + 10

R,= —1Isinf + 10

x=2"1"R

y=~R;+|R,

All units atomic units
V., ¥
Surface | (harmonic} is given by F{xy) = }(x.p) (V V") (x) + ¥
» .

v, =0.3898
v, =00430="F,

¥, =018
Vo= —0.14
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FIG. 3. Classical trajectones on the ground state surface that arise from a
vertical transition down {coordinates and momentum unchanged} after
Propagation time . — 1, on the excited state potential energy surface. {a)
—n=600au., (b)r, -1, =2100auy

The well depthis — 0.208 a.u. and the two frequencies about
the center of the well are w, = 0.009 a.u. and w,=0.016a.u.
The heights of the two saddie points are — 0.1480 a.u. The
well depths of the exit channels are — 0.1705 a.u. and the
asymptotic vibrational frequencies, based on H, and HD,
are wy = 0.020 a.u. and wy;, = 0.017. The coordinates of
the ground state minimum are x, = 1.63, Yo = 347

In model I the excited state potential energy surface is
taken to be harmonic. The parameters for this surface are
also given in Table I. The excited state frequencies are given
by

1 - B =
_
LJ
< 4
z |
-r
I ! !
o | I
i
|
. |
’ T T —
D 1000 200D 3000
TIME <AL

FIG. 4. Probability (0 or 1} of exit from channel | as a function of excited
state potential energy surface propagation time.

w] =00148au, o) =0.0097au. (17)

The coordinates of the excited state minimum are x, = 2.02
and y, = 4.30. The excited state potentia) energy surface is
shown in Fig. 2. In accord with the Franck—Condon princi-
ple (and assuming a coordinate independent transition mo-
ment) the wave function is identical in position and shape
with the wave function in Fig. 1. Figure 2 also displays the
unique classical trajectory on the excited state that origin-
ates at rest from the ground state equilibrium geometry.
Note the Lissajous motion that arises from the Duschinsky
rotation. Figures 3(a) and 3(b) show the classical trajector-
ies on the ground state potential energy surface that arise
from a vertical transition down (coordinates and momenta
unchanged) after propagation times of 600 and 2100 a.u. on
the excited state surface, respectively. The trajectory in Fig.
3(a) dissociates out channel 1, and that in Fig. 3(b) dissoci-
ates out channel 2. Clearly, there is a continuum of trajector-
ies, on the ground state potential energy surface. corre-
sponding to the continuum of instants at which the vertical

2
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o + T
0 2000 300C
TIME (AL)

FIG. 5. Same as Fig. 4 only for channel 2. Note that there is no overlap
between the windows in Figs. 4 and 5. but there are trme intervals thar corre-
spond to bound trajectories on the ground state potential energy surface
that appear as zero amplitude in both plots.
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TABLE I uE(f) = A(1)cos(w,t) + B(r)cos(w,i) = A ¢~ '~ 725

xcos (w,0) + Be " hcog (4 1)
Surface A B L, 1, o o, w, w,
I (i) 0125 0.125 30 630 10 10 01613  0.1618
(u) 0.125 0.125 30 B55 10 30 01618  0.0618
I 0.125 0.125 30 1000 10 10 0.10 0.10
11 D.125 0.125 30 760 10 10 0.180 0.180
v {1) 0125 0.125 X 610 10 10 010 0.10

(iiy 0125 0.125 30 1010 10 10 o010 .10

transition down takes place, and Figs. 3(a) and 3(b) simply
are meant to be illustrative. The fate with respect to dissocia-
tion of the entire continuum of trajectories is displayed in
Figs. 4 and 5. Figure 4 shows the probability (0 or 1) of
exiting from channel 1 as a function of propagation tume on
the excited state potential energy surface. Figure 5 is the
corresponding plot referred to channel 2. Dissociation is de-
fined as & <0, py <O for channel 1 and 6> 7/2, py >0 for
channel 2. It is clear that Figs. 4 and $ have no overlap with
each other; the definitions of dissociation are exclusive,
Those time intervals that take on the value of 0 for both exit
channels correspond to trajectories trapped in the bound re-
gion of the potential energy surface.

We now exploit the dissociation windows in F igs. 4 and
5 1o choose a suitable pulse sequence for quantum mechani-
cal calculations. We choose

HE() = A(Dcos(w, 1) ~ B(tycos(m,t), (18)

where 4(r) and B(t) are Gaussian pulses. with a delay
between them chosen on the basis of the classical windows.
The parameters of the pulse sequence are given in Table II.
The pulse delay 1, - 1, = 600a.u. was chosen to correspond
to the broad window in Fig. 4 of t; — 1, =600 a.u. The first
pulse was deliberately chosen to be VEry narrow in time so
the wave function on the excited state closely approximates

the initial state. The values for 4 and B were chosen so that

f Aydr =1 (19a)

and

J‘ B(t)dt = 7, (19b}

Figures 6(a)-6(c) represent the excited state wave function
at £ = 200, 400, and 600 a.u., before the second pulse. (In
this figure, as in all subsequent figures, it is the magnitude of
the wave function which is plotted.) Note how the wave
packet tracks the classical trajectory [Fig. 3(a)]. Figures
7(a)-7(c) show the ground state wave function at z — 0,
800, and 1000 a.u. Although not all the amplitude exits to
form product, that amplitude which does exit leaves virtual-
ly completely from channel 1. Apparently, as long as the
vertical trangition back to the ground state surface is timed
to be close enough to a classical exit window, much of the
wave packet amplitude on the ground state will exit.

We now want to establish that use of a different delay
time from that cited in the last paragraph will lead to ampli-
tude exiting exclusively from channel 2. The new delay and
width were suggested by the exit window in Fig 5 centered
at 1 = 825 a.u. Parameters for the second pulse sequence are
givenin Table I1. Figure 8 shows the excited state wave func-
tion at 7 = 800 a.u., before the second pulse. As before, the
wave packet motion tracks the classical trajectory that has
propagated for the same length of time.

Figures9(a)-9(¢) show the ground state wave function
ats =0, 1000, and 1200 a.u. As before, although most of the
amplitude remains in the bound region, the amplitude that
does exit does 50 exclusively from channel 2.

Results very similar to those displayed in Figs. 6~9 were
obtained by implementing the perturbation theory formula,
Eq. (5), valid for 4, B < 0.01. Contour plots of ¥:2'(1), the
second order perturbation to the ground state wave function,

SR N1 TN R TRTA T T 1 TER U T ]

UL L TR, L S
[FOTPRTRITTION

F1G. 6. Magnitude of the excited state wave function for the pulse saquence described in the text (pulse delay = 600a.u., 4 = & = 0.125 ). ta)f=2008.u.,
(byr=400a.u. (¢) r = 600 a.u. Note the agreement with the results obtained for the classical trajectory (Fig. 2).
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FI1G. 7. Magnitude of the ground state wave function for the pulse sequence in Fag. 6. (2) r =0, (b) r = 800 u.. (c) 7 = 1000a.u. Note the agreement with
the results oblained for the classical trajectory [Frg 3ta)i. Althougt some of the ampiitude remains in the bound region, that which does exit does so

exclusively from channel

look remarkably similar to the contour plots of ¥, (1) in the
case of stronger fields (Figs. 7 and 9). However. the plot of
the exact ¢, (7) in the weak field case is not very dramatix; it
is hard to see the amplitude which is exiting unless the bound
amplitude is filtered. Nevertheless, the amplitude can be de-
tected and the weak field case may be experimentally mwore
accessible than is the strong field case.

The second example (surface 11) shows that the simple
pump-stimulate sequence does not always work. We use the
same ground state potential energy surface as previoLsly
(Fig. 1). The excited state potential energy surface is ankar. ..
monic and. like the ground state surface. of the Wall-Porter
form [Eq. (16} ]. The parameters for the surface are given in
Table 1.

Equipotential contours for the excited state surface are
shown in Fig. 10(a). As before, we show the initial vikra-

[TTTPPTORTpT v

FIG. 8 Magritude of the exciied siate wave function at ¢ = 800 a.u.. for the
second pulse sequence descrined in the text (pulse delay = 825 aw.,
A= 8=0125: The eacited ciate wave function at 7 = 200, 400. and €00
a.u.as virtually identical 1o that 1n Figs. 6(a)1-6(¢)

tional wave function as well as the classical trajectory on the
excited state surface which originates from rest on the
ground state surface. Figures 10(b) and 10(c¢) summarize
the ground state trajectory dissociation times in the form of
window plots. As before. the window plots are based on a
unique classical trajectory on the excited state potential en-
ergy surface.

The parameters for the pulse sequence are given in Table
I1. The delay time was chosen to coincide with the broad
classical window for channel 1 at r= 1000 a.u. Figures

- M{(a)-11{c} show the excited state wave function at

r=200. 600. and 800 a.u., respectively, before the second
pulse. Clearly, the quantum mechanical amplitude is spread-
ing severely. Figure 11(d} shows the amplitude on the
ground state surface at 1 = 1200 a.u., after the second pulse.
The poor selectivity is apparent from the figure.

The failure to achieve selectivity in this model system
can be traced to the dynamics on the anharmonic excited
stale surface, and in particular the wave packet bifurcation.
This observation motivated us 1o explore systemnatically the
features of the excited potential energy state surface and ex-
cited state wave packet dynamics that are compatible with
the proposed selectivity scheme. The next several examples
explore the behavior induced by a variety of anharmonic
excited state potential energy surfaces.

Model 111 has a “‘typical” excited state potential energy
surface. Specifically. the excited state minimum is displaced
10 larger distance relative to the ground state minimum, the
frequencies in the symmetric and asymmetric stretch coordi-
nates are roughly equal, and the force constants are in the
same range as their ground state values. The excited state
surface is of the Wall-Porter form [Eq. (16)]; the param-
eters are given in Table 1.

Equipotential contours for the excited state surface
shown in Fig. 12(a). Figures 12(b)}~12(c) summarize the
ground state trajeciory dissociation times in the form of win-
dow plots, based on a unique trajectory on the excited state
potential energy surface.

Parameters for the pulse sequence are given in Table 11.
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FIG. 9. Magnitude of the ground state wave function for the pulse sequence in Fig. 8. (a) 1 = 0, (b) t = 1000 a.u., {¢} f = 1200 a.u. That amplitude which

does exit does so exclusively from channel 2.

The delay time was chosen to coincide with the classical
window for channe! | at r = 730 a.u. Figures 13(a)-13{¢)
show the excited state wave function at # = 200, 400, and 600
a.u., respectively, before the second pulse. Again, the quan-
tum mechanical amplitude is spreading severely, as the wave
packet migrates toward the soft part of the Morse potential.
Figure 13(d) shows the amplitude on the ground state sur-
face at t = 1000 a.u., after the second pulse. The selectivity
out of channel 2 is virtually complete (no amplitude exits
from channel 1). This result was unexpected: The classical

T TR

EXIT CHANNEL 1}

window predicts an exit from channel 1.

Model IV also has an anharmonic excited state potential
energy surface of the Wall-Porter form; the parameters are
given in Table 1. The special feature of this excited state
surface is that the excited state minimum is displaced to
smaller distance than the ground state minimum.

Equipatential contours for the excited state surface are
shown in Fig. 14(a}. As before, we show the initial vibra-
tional wave function as well as the unique classical trajectory
on the excited state surface which originates from rest on the

T HTTTTTeT

T T

MAARLALARIR LIAREnane a1y

EXIT CHANNEL 2

LLAACALILLA R LAl bl o)

ﬁlooo 2000 3000

FIG. 10. (a} Anharmonic excited state
potential energy surface (II in the Ta-
ble). The classical trajectory that origin-
ates from rest from the ground state
equilibnum geometry is shown super-
m posed. (b) Probability (D or 1) of exit

from channel | as a function of excited
state propagation time. (¢) Same as (b)
only for exit channel 2.

TIME <AL

1 T 1
1000 2000 3000
TIME (AL}
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[ ;

FIG. 11. Magnitude of the excited state wave funciion before the second
pulse. (&) 7= 2004a.u., (b)r=600a u. (¢) 7= 800a.u. Note the extensive
wave packel spreading because the surface 1s so flat This spreading will
undermine the selectiviry of products {(d} Ground state wave function at
1= 1200a.u., after the second pulse. The poor selectivity of products is ap-
parent.

EXIT CHANMNEL 1

ground state surface. The first pulse sequence examined was
at 1 = 30, 610 a.u. Additional parameters for the pulse se-
quence are given in Table I1. Figures 15(a)-15(c) show the
excited state wave function at 1 = 200, 400, and 600 a.u.,
respectively, before the second pulse. The wave packet be-
gins on the soft part of the Morse potential, and initially
begins to spread. However, as the wave packet migrates to
the hard part of the Morse it contracts very dramatically.
Figures 15(d)-15(f) show the amplitude on the ground
state surface at t = 800, 1000, and 1200 a.u., respectively,
after the second pulse. It is apparent that a substantial frac-
tion of wave packet amplitude exits from channel 2, while
virtuzlly no amplitude exits from channe] 1.

The next pulse sequence examined was at 1 = 30, 1010
a.u. Additional parameters for the pulse sequence are given
in Table II. Figures 16(a) and 16(b) show the excited state
wave function at 1 = 800 and 1000 a.u., respectively, before
the second pulse. Figures 16(2)~16(e) show the amplitudes
on the ground state surface at 7 = 1200, 1400, and 1600 a.u.,
respectively, after the second pulse. The wave packet breaks
up on the ground state surface with roughly equal ampli-
tudes escaping from channel 1 and channe} 2.

Figure 17 shows the quantum branching ratio as a func-
tion of stimulation time, for stimulating pulses centered 200
a.u. apart, from 210 to 1010 a.u. The branching ratio was
defined as the magnitude squared of the normalized wave
function which was beyond a critical value of 8 (channel 1:
621.17, channel 2: 8<0.4). Note the dramatic differences
between the branching ratios at different times relative to
each other as well as relative 10 the amplitude that remains
bound.

It was necessary to make some qualitative judgments to
obtain the values of the branching ratios shown in Fig. 17.
Typically, the probabilities of reaction to form products

FIG. 12. (a) Anharmonic excited state

CHANNEL 2

EX1T

v
10600 2000 3000

T

potential energy surface (111 in the Ta-
ble). The classical trajectory that ongin-
ates from rest from the ground state
equilibrium geometry is shown super-
posed. (b) Probability (0 or 1) of exit
n from channe] 1 as a function of excited
( state propagation time. {c) Same as (b)
only for exit channe] 2.

v

TIME <AL

" o v
] 1000 2000 3000
TIME A
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i

FIG. 12 Magnitude of the excited state wave function before the second
pulse {a) r=200au. {(b) r=400au. tc) r = 600 a.u. Note the wave
packet spreading is still significant, as the wave packet approaches the soft
part of the Morse potential. (d) Ground state wave function at £ = 1000
a.u.. after the second pulse There 15 complete selectivity ou of channel 2.
while the classical mechanics predicts selectivty for exst out of channel 1.

achieve a sensibly constant value 1000 to 2000 a.u. after the
stimulated emission pulse. For longer time the calculated
probabilities of reaction slowly decreased, which is an arti-
fact due to reflection off the boundaries of our grid. The time
at which the decrease starts can be different for the different
products, so the asymptotic branching ratic was sometimes
evaluated by picking values for the two “‘asymptotic™ proba-
bilities of product formation at somewhat different times. In
a few cases the probabilities of reaction had not yet reached
constant values when the calculation was stopped, possibly
because for these pulse sequences dynamical tunneling con-
tributes to the reaction. In each such case the branching ratio
is marked with an asterisk.'*

An initial classical study of this system using the unique
classical trajectory on the excited state surface failed to re-
produce many of the qualitative features of Fig. 17. A single
classical trajectory cannot exhibit the tendency of the guan-
tum wave packet to bifurcate. Moreover. the single trajec-
tory we used had no zero point energy. We, therefore, exam-
ined a swarm of trajectories with an initial Gaussian
distribution in p and x:

FIG. 14. Anharmonic excited state potential energy surface (IV in the Ta-
ble). The classical trajectory that originates from rest from the ground state
equilibrium geometry is shown superposed.

P ( 1 )2 ( [mwle . mawax;
x,p)=|—]exp{ —
PR % ﬁ
pi p: D
+ + . 20
ma i mawh (20

This distribution corresponds to the Wigner transform of the
ground vibrational state of the ground state potential energy
surface' where the ground state surface is expanded up to
guadratic terms about the equilibrium geometry. This distri-
bution was discretized with 81 sets of p,x imitial conditions in
the following way:

Plo= — (ma)" " (j—2)/1.2,

Pro = — (mw,)' “(k, —2)/1.2,
(ma,) "V, — 2)/0.25,
X0 = (me,) Y (k, — 2)/0.25,
Juknjnka =13,

Kol
5
]

m=1823a.u.,
w, =0016 155 a.u,,
w,=0.009 281 a.u.

x,.x, are the ground state normal mode coordinates, p,,p-
the conjugate momenta, and w, . the normal mode fre-
quencies. The initial distribution in coordinate space is
shown in Fig. 18. There are nine initial values for p corre-
sponding to each initial value for x. We point out that since
the initial conditions for p and x are independent there is a
range of zero point energies in the swarm. Several swarms of
625 trajectories were propagated and the branching ratios
compared with those for swarms of 81 trajectories. The re-
sults agreed to ~ 5% in units of product formed.

Figures 19(a)—19(c) shows the swarm on the excited
state potential energy surface, for the same pulse sequence as
Fig. 15 (second pulse at 610 a.u.}. The swarm mimics close-
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Iy the quantum wave packet, including the sequence of con-
traction and spreading. Figures 19(d)-19(f) shows the
swarm on the ground state potential energy surface, after the
second pulse. Those trajectories that do exit do so from chan-
nel 2. Note the strong resemblance of the swarm 10 the quan-
tum wave function, shown in Fig. 15

Figures 20 (a) and 20ib) show the swarm on the excit-

F1G. 15. Magnitude of the excited state
wave function before the second pulse at

‘ . 1=0610. (a) 1=20048u, (b} r=4002au.,
R, i (e} r=600 a.u Notc the dramatic wave
e packe! contraction as the wave packet ap-
' proaches the hard part of the Morse poten-

¢ tial. (d) Ground state wave function at

=800 a.u., after the second pulse (e)
Ground state wave functionat = 1000 a.u.
(f) Ground state wave function a1 r = 1200
a.u. A significant fraction of the w ave packet
amphitude is exiting from channel 2 while
virtually no ampiitude exits from channel 1.

ed state potential energy surface for the same pulse sequence
as Fig. 16 (second pulse at 1 = 1010 a.u.). The swarm con-
tinues tc mimic the quantum wave packet. Figures 20(c¢)-
20(e) show the swarm on the ground state potential energy
surface after the second pulse. The swarm breaks up on the
ground state surface with a substantial number of trajector-
ies exiting from channel 1, followed by an approximately

FIG. 16, Magnitude of the excited state
wave function before second pulse at
r=1010. (a)7=800a.u.{b)r= 1000a.0.
{¢) Ground siate wave function at r = 1200.
(d) Ground state wave function at 1 = 1400
au. (e) Ground state wave funcuon st
1= 1600 a.u. Note the wave packe: breakup
on the ground state surface, with roughly
equal amplitudes exiting from channel ! and
channe] 2.
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QUANTUM BRANCHING RATIOS
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FIG. I7. Quantum mechanical branching ratio as 2 function of stimulation
time. Note the dramanic differences between the branching ratios at differ-
ent times. relative to each other as well as relative to the amplitude that
remains bound.

equal number exiting from channel 2. The entire sequence is
in close agreement with the quantum wave function behav-
ior, Figs. 16(a)-16(e).

Figure 21 shows the classical branching ratio as a func-
tion of stimulation time, for the same stimulation pulses as in
Fig. 17. The trajectories are weighted using the Gaussian
distribution Eq. (20), and the same critical values of & are
used as for the quantum branching ratios. Note the qualita-
tive agreement with the quantum mechanical results in both
a relative and absolute sense. This is consistent with the anal-
ysis of the Wigner swarm presented in Ref. 15. The classical-
quantum correspondence is particularly good provided the
time evolving state has no nodes. If there are nodes, the clas-
sical propagation neglects interference terms which are like-
ly to be significant.'?

We therefore conclude that a Wigner swarm of classical

F1G. 18. Initial swarm of classical trajectories on the ground state potential
energy surface. The swarm consists of 8} trajectories (there are nine differ-
ent momentum combinations for each of the coordinate combinations).

trajectories is a valuable exploratory tool for estimating
quantum mechanical branching ratios. The computer times
involved were more than 100 times shorter than for the
quantum calculations. For heavier masses and more degrees
of freedom the difference in computer times between the
classical and quantum calculations will become even more
pronounced. Fortunately, for beavier mass systems, the clas-
sical-quantum correspondence should be even better than
for the hydrogenic mass systems illustrated here.

However, one must be somewhat cautious about using
classical mechanics to model branching ratios that originate
from excited vibrational states, and more important for our
purposes, for pulse sequences lasting a significant fraction of
a vibrational period. In the latter case the convolution of the
pulse with the propagating wave function [see Eq. (5)] has
nodes. During the free evolution stage following the pulse
the classical swarm may not be faithful to the subsequent
quantum interference effects.

iV. PHOTON LOCKING

Sleva and Zewail have recently reported “*photon lock-
ing” in a system that ordinarily undergoes pure dephasing
(T type processes).'® In a single m-pulse experiment their
observed T- is ~ | ns. if a second pulse, phase shifted by /2
from the original pulse, is applied continuously after the ini-
tial 7 pulse, the phases of the ensemble of systems are
“locked.” The dephasing time is now = 1 us. Mukamel and
Shan recently reported a calculation with essentially the
same message, i.e, that intramolecular vibrational redis-
tribution (IVR) can be suppressed by application of suitable
fields to a system.'” In particular, Mukamel and Shan show
that if the Rabi frequency (1 is large compared with the ener-
gy spread of states that have a component of the optically
allowed state,

OV, (2N

and if a strong field is allowed to operate continuously, IVR
will be suppressed on a time scale much longer than charac-
teristic of [IVR in the absence of the strong ficld.

We have applied the above ideas to the case described in
Figs. 10 and 11, where wave packet spreading on the broad,
anharmonic, excited state potential energy surface destroys
the selectivity. A square pulse was used for excitation:

HE() = A4 cos (w,1),
4 =0125 20<1<40,
A=0, 1<20,1540,
@, = 0.10.

(22)

An additional continuous pulse was applied, namely
C(t) = Ccos (w. t + 7/2),
C=0.125, 40<r<1000,
C=0, 1<40,r>1000,
w, = 0.10.

Figures 22(a) and 22(b) show the wave function on the
excited state potential surface at + = 200 a.u. and ¢ = 400
a.u. The motion of the center of the wave packet is greatly
reduced. More important, with respect to selectivity, there is

(23)
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FIG. 19. Swarm of classical trajectories on
the excited state potential energy surface,
before the second pulse at 7 = 610. (a)
r=200au, (b)r=40Cau, (¢c)r= 600
a.u. (d) Swarm on the ground state poten-
tial energy surface a1 7 = 800 a.u., after the
second pulse. (¢} Swarm on the ground
state at 1= 1000 a.u. (f) Swarm on the

ground state at r = 1200 a.u, Note the
strong resemblance of the entire sequence
(a)-(f} to the quantum wave function
shown in Figs. 15(a)-15(f).

almost no wave packet spreading. This example suggests
that strong fields may be used in conjuction with the careful-
ly tailored waveforms we have described above to achieve
selectivity of reaction.

V. CONCLUSIONS

We have proposed a novel approach to the contro)] of
selectivity of reaction products. The central idea is tha ina
two-photon, or multiphoton process that is resonant wi h an
excited electronic state, the resonant excited state potential

energy surface can be used to assist chemistry on the ground
state potential energy surface. By controlling the delay
between a pair of ultrashort (femtosecond) laser pulses, it is
possible to control the propagation time on the excited state
potential energy surface. Different propagation times, in
turn, can be used to generate different products. Some selec-
tivity of reactivity should be possible using this scheme. Our
examples show a variety of behavior ranging from virtually
1009 selectivity to poor selectivity.

In this paper we have shown how an excited electronic

F1G. 20. Swarm of classical trajectories. on
the excited state potential energy surface,
before the second pulse at 7= 1010. (a}
t=800au. (b) r=1000au (¢) Swarm
on the ground siste potential energ) surface
at7 = 1200. (d) Swarm on the ground state
at 1= 1400 a.u. (e) Swarm on the ground

state at r = 1600 a.u. Noie the breakup of
the swarm on the ground state surface. The
entire sequence (a)-(e) 1s in close agree-
ment with the quantum wave function. Figs.
16(n)-16(e).
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CLASSICAL BRANCHING RaATIDS
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FIG 21 Classical mechanical branching rat:o as a function of stimulation
time. Note the qualitative agreement with the quantum branching ratio,
Fig. 17.

state can be used to assist selectivity of product formation on
the ground electronic state potential energy surface. We

c d

FIG. 22. Excited state wave function for the photon locking sequence de-
scribed in the text. The wave function for the pulse sequence without lock-
ing is presented for comparison. The potential energy surface is the same as
in Figs. 12 and 13 (surface I1). (a) ¢ = 200 a.u., without locking, (b)
¢ = 400 a.u., without locking, (c) 1 = 200 a.u.. with locking. (d) + = 300
a.u., with locking. Note that the locking pulse curbs the wave packet spread-
ing.

Tannor, Kaosioff, and Rice: Puise control of reactions

have also argued that for some molecular systems it should
be possible to use the ground electronic state to assist selec-
tivity of product formation on an excited electronic state
potential energy surface, i.e., that the roles of reactive sur-
face and intermediary assisting surface can be interchanged.
The two choices mentioned can be thought of as examples
from a spectrum of possibilities inherent in 2 more general
scheme for achieving selectivity of reactivity. That more
general scheme involves use of some electronic state to assist
selectivity of product formation but allows the initial and
final states to be different. Imagine a Franck—Condon transi-
tion from some initial state to an intermediate electronic
state followed, after a controiled delay, by a transition to a
third electronic state {which could be the initial state). If the
final state potential energy surface and the intermediate state
potential energy surface have the right properties, use of
shaped pulses and control of pulse separation will permit
selectivity of resctivity on the final state potential energy
surface. It is also possible to imagine the use of detuning
from resonance with the intermediate electronic state as a
tool to augment control of the time scale for evolution in that
state.

Recently, several independent theoretical studies have
concluded that two-photon processes may afford some selec-
tivity in the preparation of an initial state or the resulting
product distributions. ™ '® These studies differ from the pres-
ent study in three major ways:

{1) Those authors describe the preparation of a super-
position of precisely two vibrational states. Implicitly, the
wave packet we have described consists of a superposition of
a multitude of vibrational levels.

t2) In the above approaches the emphasis is on controi-
ling the electronic state of photochemical products—/ vs I *
in Ref. 17 and CS singlet vs triplet states in Ref. 18—rather
than on obtaining products with different nuclear constitu-
ents.

(3) Finally, the above approaches do not exploit the
classical-quantum correspondence principle. This principle
plays a central role in our approach.

Clearly, there are many ways in which the ideas we have
proposed must be extended. Among the more important ex-
tensions we cite variational optimization of the shape, dura-
tion, and separation of the pulses used to generate the selec-
tivity of reactivity, and analysis of the changes induced by
inclusion of all degress of freedom of the molecule (say in the
sense of a reaction path Hamiltonian, or a dynamical path
Hamiltonian). For studies involving more degrees of free-
dom a swarm of classical trajectories should be an indispen-
sible tool.

The shortest pulses available at the present time are on
the order of 10-30 fs. The classical windows shown in the
examples (which refer to model systems with hydrogenic
masses) are on the order of a few fs. We expect the overall
time scales to become longer by about a factor of 5 for some-
what larger masses than assumed in the model systems stud-
ied to date. Thus the experiments we are proposing are at the
very edge of the existing technology. Nevertheless. as the
technology improves we expect there will be many applica-
tions and variations on the ideas suggested in this paper.
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APPENDIX

In this Appendix we describe how the exact bound state
wave functions for the potential energy surface shown in Fig,
1 were obtained. The second derivative matnx,

peo (Vu ny)
VJ‘-' V)’)’ ‘
is calculated for the potential energy surface, at its mini-
mum. These second derivatives determine a harmonic fit to
the potential energy surface, and the ground vibrational
state wave function of the harmonic surface, y7 is used as a
first guess to the true ground vibrational state wave function,

Yo Infact y§ contains a component of all the true vibrational
states wave functions,

XS :ZCHXH'

(AD)

(A2)

¥4 is then propagated in imaginary time 7, r=t, using an
expansion in a set of grid points and the Fourier method for
evaluating A/, as described in Sec. II of the text. That is

— H-A_ h — E r/%
e Yo = Y ca€ Yn-
n

Because of the exponential decay, the components of all ex-
cited wave functions y, vanish quickly compared with the
component of y, After waiting a sufficient amount of time
(see below) and renormalizing, one obtains y,. The energy
of the ground vibrational state may then be obtained from

Ey= (dyiH ). (A4)

To obtain y,, one begins with y§ |, the first excited vi-
braticnal state of the harmonic surface fit. (The subscripts
refer to the high and low frequency normal coordinates, in
that order.) This tnal function contains a component of the
true ground vibrational state y, which is immediately fil-
tered out by a Gram-Schmit orthogonalization. The result-
ing wave function is then propagated in imaginary time; only
the component of y,, will survive after a sufficiently long

(A3)

Tannor, Kosloft, and Rice: Pulse control of reactions

time. After normalizing, v, is obtained. E,, may then be
obtained as well.

This procedure may be continued up the ladder of vibra-
tional wave functions. For each new wave function the com-
ponent of all the lower energy wave functions must be fil-
tered out by Gram-Schmidt orthogonalization before
beginning the propagation. In principle, the necessary prop-
agation time is t = fi/AE, where AE is the energy difference
between the exact wave function being sought and the next
higher up. Since the energies of neither of these wave func-
tions is known beforehand, the propagation, in practice, i§
continued until convergence is obtained. As one proceeds up
the vibrational ladder the density of states increases. The
propagation times consequently become longer in order to
resolve the state of interest from the states of just slightly
higher energy.

This procedure was used to obtain all the bound state
wave functiont, as well as several long lived resonances, for
the potential energy surface shown in Fig. 1. There are seven
bound states in total. The wave functions and several long-
lived resonances are displayed in Figs. 19(a)-19(k}.
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Bottienecks to Unimolecular Reactions and an Alternative Form for Classical RRKM

Theory
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Bottlenecks to the flow of phase points i1 the classical phase space of a triatomic molecule are discussed and approximated
for the example of van der Waals predissociation of Hel,. An aliernative form for the usual transition-state theory of unimolecular
reactions, RRKM theory, is developed by approximating the intermolecular (separatrix) bottieneck and using it as a basis
for the transition-state surface. The ra es obtained with the theory are in surprisingly good accord with dynamical rates

from classical trajectory studies.

1. Istroduction

The standard, highly successful, statistica) theory of unimo-
lecular reactions is due to Rice, Ramsperger, Kassel, and Marcus
(RRKM)." The present form of the theory is due mostly to
Marcus and Rice.? who took the more primitive RRK description
of unimolecular reactions, reformulated it using a transition-state
analysis, including zero-point energy effects, and thereby arrived
at a proper quantum mechanical transition-state theor» of uni-
molecular reactions. The work of Eyring and co-workers® along
similar lines should also be noted. Actually, the transition-state
concept is more easily and generally undersiood within the
framework of a classical mechanical description of the reaction,
where it refers to a dividing surface in the classical phase space
of the system. A theory of unimolecular reactions based on the
classical transition-state concept can be formulated using, for
example, the pioneering idecas of Wigner* Such a classical
transition-state theory is often referred to in the literature as
classical RRKM theory. It is the classical version of RRKM
theory that is the primary subject of this paper.

The usual formulation of classical RRKM theory involves a
configuration space definition of the transition state.* We will
show that an alternative version of classical RRKM theory can
be formulated in terms of phase space bottlenecks, anc that in
ceriain situations this new version can give superior results. Much
of our work is based on an carlier paper by Davis and Gray.® which
in turn was based on developments in the theory of the nanlinear
dynamics of area-preserving mappings;” we briefly review this
earlier work in the following paragraphs. ,

The last decade has seen remarkable advances in our under-
standing of the dynamics associated with the iteration ‘of an
area-preserving map " One of the driving forces for the study of
area-preserving mappings has been the wish to understand when
they arc quasi-periadic and when they are partly or wholly chaotic,
and 1o determine the nature of “flow™, or successive iterztions of
the map, particularly in the chaotic regime. Mackay, Meiss, and
Percival,! and independently but to a lesser extent Bensirton and
Kudanoff,* have developed a theory of flow in area-preserving

{1) (a) Forst, W. Theory of Unimolecular Reactions; Academric. New
York, 1973 (b) Robinson, P. J.: Holbrook, K. A. Unimolecular Reactions;
Wiley: New York, 1972, (c) Hase, W. L. In Modern Theoretical Chemistry,
Miller, W. H., Ed.; Plenum: New York. 1676, Vol. 2, p 121

(2) (a) Marcus, R. A Rice, O. K. J. Phys. Colloid Chem. 1951 55, 894,
(b} Marcus, R. A. J. Chem. Phys. 1952, 20, 355, 359, 364,

(3} (a) Rosenstock, H. M., Wallensiein, M. B.; Wahrhaftig. A. | . Eyring,
H. Proc. Nail. Acad. Sci. U.S.A. 1982, 38, 667. (b} Giddins, ). C: Eyring,
H. J. Chem. Phys. 1956, 22, 538.

(4) () Wigner, E. P. ). Chem. Phys. 19378 5, 720, (b) Ibid. 1938, 7, 646.

(5) Eg.: Doll, ). D. J. Chem. Phys. 1988, 73, 2760,

(6) Davis, M. J.. Gray, S. K. J. Chem. Phys. 1986, 84, 5389,

(7) Lichtenberg, A. J.; Licberman, M. A. Regular and Siochastic Motion,

i » New York, 1983,

(8) Macksy, R. S.; Meciss, J. D.; Percival, [. C. Physica D, 1984, 13, 55.

mappings in the chaotic regime. The idea they exploit it that
KAM tori, which are defined by and therefore “support™ quasi-
periodic motion, serve as natural boundaries between chaotic
regions so that, as such tori disappear, phase points may leak from
one region to another. Indeed, the broken remnants of 8 KAM
torus, called a cantorus by Mackay, Meiss, and Percival ® serves
as a barrier, or perhaps better put as a bottleneck, to the flow of
phase points. The investigators mentioned use this definition of
a barricr to develop & theory of transport of phase points in
arca-preserving mappings. The cantorus can be identified as an
intramoiecular bottleneck or partial barrier to internal energy flow
for unimolecular reactions.'® A related but different and very
important bottleneck is one identified with the remnants of a
separatriz,’ which is a special structure in the phase space sep-
arating different kinds of tori; a key paper of Channon and Le-
bowitz!' clearly discusses flow across separatrices. Certain sep-
aratrices can be identified as intermolecular bottlenecks.® or partial
barriers to unimolecular fragmentation, and we will base our
altemmative formulation of RRKM theory on them.

The dynamics of a Hamiltonian system can be related to it-
erations of an area-preserving mapping (e.g., the Poincaré surface
of section of a two-degree-of-freedom Hamiltonian system is an
arca-preserving mapping). Davis'® was the first to exploit the
analysis of intramolecular bottlenecks in phase space using the
methods and ideas of Mackay, Meiss, and Percival® and Bensimon
and Kadanoff® to provide an interpretation of intramolecular
energy transfer in a nonrotating collinear mode! for OCS. More
recently, Davis and Gray® have developed an approach to calcu-
lating unimolecular reaction rates based on a precise identification
of both intramolecular and intermolecular bottienecks in the
classical phase space, and the calculation of fluxes across these
botticnecks. In its most rigorous form the theory was shown to
describe very accuraiely the classical fragmentation rate for a
two-dcgree-of-freedom model of Hel; vibrationa) predissociation,
an exampic for which standard RRKM theory is grossly in error.
Figure ! summarizes the results of ref 6 of relevance 1o the present
paper. Figure 1a shows the surface of section for several tra-
iectories of the T-shaped Hel, model, with the pertinent intra-
molecular and intermolecular bottlenecks drawn in as dashed lines.
Only one intramolecular bottleneck is relevant for this system at
the particular total energy chosen for the surface of section, but
it is possible in other situations to have more than one important
intramolecular bottleneck. There are two stochastic (by which
we mean wandering) trajectories shown in the figure. One sto-
chastic trajectory, at least for the time scale investigated, appears
confined within the intramolecular bottleneck (the closed dashed
curve). Notice also that within this bottleneck are quasi-periodic

{9) Bensimon, D.; KadanofT, L. P. Physica D 1984, /7, 82.
(10) Davis, M. 1. J. Chem. Phy:. 1988, 83, 1016.
(11) Channon, 5 R.; Lebowitz, J. Awn. N.Y. Acad. Sci. 1980, 357, 108.

0022-3654/86/2090-3470301.50/0 © 1986 American Chemical Society
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Figwre 1. (a) Composite surface of section for the nonrotating T-shaped
Hel. model of ref 6. Q is proportional to the translationa! coordinate,
Q = R - R, where R is the He 1o center of mass of I; distance and R is
given in Table 1. P is th momentum conjugate to Q and a trajectory is
plotted whenever r = 7~ and p > 0 in the I, canonical coordinates. The
intramolecular (inner, closed dashed curve) and intermolecular (outer,
open dashed curve) bottlenecks are drawn in. The total energy of all the
trajectories is £ = -2662 cm™'. (b) Idealization of Figure 1a indicating
flow out of various phase space regions discussed in the text. The haiched
areas represent regions of quasi-periodic motion.

trajectories, indicated by sequences of points forming closed curves.
The other stochastic trajectory lies between the intramolecular
and intermolecular (outer dashed curve) bottlenecks for much of
the time. Actually, both these trajectories can in principle leak
across the intramolecular bottleneck and enter the other's domain,
and ref 10 discusses how the rate of flow across such bottlenecks
may be obtained. The outer stochastic trajectory can also leak
across the intermolecular bottieneck, and indeed the upper se-
quence of dots above the intermolecular bottleneck shows that
it has done so. The feature that distinguishes the intermolecular
from the intramolecular bottieneck is that once a phase point
crosses the intermolecular bottleneck from the inside it cannot
return and instead continues on to the product asymptote (He +
I;). The intermolecular bottieneck is thus literally the best
transition state.'? Figure 1b gives a clearer representation of these
results. In this figure the phase space is divided into four regions
corresponding to quasi-periodic motion (hatched), stochastic
motion (A and B), and product formation (C). Actually, only
the upper half of region C corresponds to “products”™, or separating
fragments He and I; the lower half represents approaching
fragments and is of relevance to bimolecular scattering, which

{12) Pechukas. P. Ammu. Rev. Phys. Chem. 1981, 32, 159 and references
therein.
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is not the subject of this paper (see, however, ref 6). Arrows
indicate the possibility of flow into and out of the regions defined.
Note that the region corresponding to quasi-periodic motion is
inaccessible to trajectories in the stochastic regions. While the
use of a segregated phase space is far from new in unimolecular
reaction rate theory—see, for example, ref 13-15—an explicit
construction of all the phase space dividing curves for a unimo-
lecular reaction was first reported in ref 6.

At present, however, the precise construction of the relevant
bottlenecks to flow in phase space is only practical for systems
with just two degrees of freedom. It is aiso fair to say that the
method of analysis given in ref 6, while relatively straightforward,
can be quite lengthy. In ref 6 the intermolecular bottleneck was
constructed on a Poincaré surface of section via the propagation
in time of about a hundred phase points. However, it is noteworthy
that in the limit of zero coupling the intermolecular bottleneck
can be identified with a separatrix or “last bound phase curve”
of some zero-order Hamiltonian. Thus an obvious and, as we shall
see, surprisingly successful approximation is to simply identify
some appropriate zero-order Hamiltonian for the critical degree
of freedom and use the associated separatrix as the intermolecular
bottleneck. The flux across this bottleneck is then easily deter-
mined by propagating the entire separatrix one iteration on the
surface of section, as discussed in ref 6. A related idea for ap-
proximating the intramolecular bottlenecks, however, will be shown
to be less successful.

The success of the zero-order separatrix approximation to the
intermotecular bottleneck leads us to construct a simple alternative
form for classical RRKM theory. The critical configuration, or
transition state, in RRKM theory, is now represented not by a
configuration space surface, as is most commonly done, but rather
by a phase space surface involving the zero-order separatrix. When
applied to T-shaped Hel, dissociation this form of RRKM theory
will be seen to yield rates within a factor of five of the exact
classical rates, a remarkable improvement over standard RRKM
theory for this example. The alternative RRKM theory, like
standard RRKM theory, can be applied to molecules with several
degrees of freedom, and this is illustrated with a study of Hel,
fragmentation in three dimensions. Actually, our “alternative
form™ of unimoiecular reaction rate theory is not really new in
the sense that Wigner, in his original formulation of transition-state
theory,* explicitly had in mind what we now call separatrices. ‘Thus
one view of the statistical theory presented in this paper is that
it is an application to unimoiccular reactions of Wigner's version
of transition-state theory. Finally, it must be emphasized that
the theory presented here is not intended to be 2 replacement for
standard RRKM theory, which after all is very successful. Rather,
the alternative transition-state theory presented here is 10 be used
when the dynamics is such that certain of the simplest assumptions
of RRKM theory about the nature of the transition state are
incorrect, but a transition state can nonetheless be defined based
on phase space bottienecks. The fragmentation of a van der Waals
molecule such as Hel, is a particularly good example of such a
situation.

In section II we discuss zero-order approximations 1o the inter-
and intramolecular bottlenecks, and the corresponding unimo-
lecular rates for the two degree of freedom Hel; predissociation
example discussed in ref 6. Ln section I1I we discuss our simple
alternative form for RRKM theory and in section [V applications
of the alternative RRKM theory to the simple two-degree-of-
freedom Hel, model (section IVA) and also a three-degree-of-
freedom Hel, model (section IVB). Section V contains some
remarks on further extensions of the ideas presented in this paper.

II. Zero-Order Approximstions te Phase Space Bottlemecks

A, Intermolecular Bottlenecks. The zero-order approximation
of intermolecular bottlenocks will be illustrated with the T-shaped

(13) Kay, K. G. J. Chem. Phys. 1976, 65, 381).

{14) Marcus, R A Hase, W. L.; Swamy, K. N. J. Phys. Chem. 1984, 88,
6717,

(15) Hase, W. L.; Buckowald, D. G.; Swamy, K. N. J. Phys. Chem. 1943,
87, 2754,
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TABLE I: Potestial Parameters for Hel,*?
u= 38779 amu

m= 635 amu

Dx' = |8 em™! axy = 0.6033 au Rx. = 75589 au
Dyc = 4911 cm™! apc = 0.9380 au Pac = 5.6994 qu
D= 3cm* a=0.5587au R =70012au

* The reduced mass u used in this paper is 1.5% lower than the more
precise value based on current atomic masses; rates calculated with the
maore precise value differ negligibly from those with the above mass.
*Our calculations were performed in atomic units (au). The above
masses and energies may be converted 10 au by multiplication by 1823
and 4.5563 X 107%, respectively.

two-degree-of-freedom Hel, model studied in detail in ref 6 and
also in ref 16 and 17, The full Hamiltonian is taken to be

B
H=E+E+V(R,rl (1)
with
V(R.r) = ZVXB(RXB) + V'c(’] (2)

In eq 2 Ryy is the distance between He and either of the iodine
atoms and is related 10 the chosen canonical coordinates through

Rxp = (R? + 2 /4)}/? (3)

swhere Vyg and Vyc are Morse potentials for the He-I and 1-1
interactions. respectively. Throughout this paper we will use the
same Morse parameters as in ref 6 and 16; these are listed in Table
I. The Appendix of ref 16 shaws, by linearization of eq 3 about
the T-shaped equilibrium geometry (R, Fac). that a reasonable
zero-order approximation to the full Hamillonian is given by

PP
Hoy= — 4 -— + VR(R) + Vic(7) {4)
2u 2m
where Vg is an effective Morse potential for the van der Waals
interaction, the parameters of which are also listed in Table 1.
Since R. the He-1, distance, is clearly the critical degree of
freedom. we introduce the zero-order Hamiltonian associated with
R and its canonically conjugate momentum P

pz
he(P.R) = ‘i—“ + Ve(R) (3)

Equatior: 5 is the Hamiltonian for a one-dimensional Morse os-
cillator and the separatrix, or last bound phase curve, is simply
obtained as the curve in (P,R) space satisfying

hg=10 (6)

where it has been assumed that ¥ — 0 as R — «. Figure 2
displays the resulting separatrix curve (dashed line) and compares
it to the exact intermolecular bottleneck (solid line) determined
in ref 6 for the case of a total energy corresponding to approxi-
mately r = 10 in the I, bond and zero-point energy in the He-1,
van der Waals interaction, E = -3683 cm™'. It is clear that the
zero-order approximation is very close 10 the actual boitleneck.
Note that eq 6 implies that the zero-order approximation is en-
ergy-independent, but the actual intermolecular bottieneck does
depend on the energy. This is a peculiarity of how we chose 1o
define the approximate bottieneck and need not always be the case.
Comparison of the separatrix determined by eq 6 with the in-
termolecular bottienecks at higher energies (not presented) shows
there is only a slight variation of the exact bottieneck with energy
in this casc and that the zero-order approximation is still rea-
sonably good between the energies -3683 ¢em™ (¢ = 10) and -573
cm™! (¢ = 50).

It is now possible to estimate the flux across the intermolecular
bottleneck on a surface of section. Consider again energy £ =
~3683 cm™' and define an initial ensembile of, say, 500 (P,R) points
satisfying eq 6. The other two canonical variables, corresponding
to the I, momentum and internuclear separation (p.r), arc obtained
by noting that on the surface of section = Fye. Then the condition

(16) Gray, S. K.; Rice, 5. A.; Noid, D. W. J. Chem. Phys. 1986, 84, 2649.
(17) Beawick, J. A.; Delgado-Barrio, G. J. Chems. Phys. 1988, 73, 3653
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Figure 2. Comparison of cxact (solid) and zero-order (dashed) inter-
molecular bottlenecks. The exact intermolecular botileneck is for £ =
-3683 cm™.

P > 0, coupled with energy conservation, uniquely determines p.
We proceed by propagating each of the 500 (P.Rp.r) points using
Hamilton's equations and the full Hamiltonian {eq 1) unti] each
trajectory crosses the surface of section again. The resulting curve,
corresponding 1o propagation of the entire initial curve one it-
eration on the surface of section, and the initial curve, are displayed
in Figure 3a, The flux out of the approximate intermoiecular
bottleneck is the area of the propagated curve that lies outside
the original area. Most of the flux is within the upper left lobe
of Figure 3a and may be thought of as passing through a turnstile,
just as in the rigorously defined intermolecular bottleneck case.®
However, a distinguishing feature of the approximate intermo-
lecular bottleneck is that flux can also escape from otber parts
of the initial curve. Figure 3b—d displays the results of calculations
similar 1o those just described but now for E = -2662 cm™ (v
= 20), -1807 ¢m™ (¢ = 30), and -573 ¢m™! (¢ = 50). Notice
that Figure 3d illustrates clearly that flux jeaks out from regions
other than the main turnstile, which is to be contrasted with the
flux across the exact intermolecular bottieneck, Figure 10 of ref
6.

We may obtain the flux of phase points by simple graphical
means, Table I tabulates the fluxes and intermolecular bottieneck
crossing rates defined by

F &
= - -

k A 2x

(7}

where & 1s the hopping frequency through the surface of section,
F represents the flux out, and A is the total area of the inter-
moiecular bottleneck. As discussed in ref 6, @ can be reasonably
approximated in this casc by the Morse oscillator frequency for
1,. calculated for the corresponding value of ¢. There are three
different rates given in Table IT and it is importam 1o understand
how they differ. Under the heading # k we have the approximate
intermolecular bottleneck crossing rate, calculated as described
above. In parentheses under this heading we also give the exact
intermolecular bottleneck crossing rate calculated in ref 6. In this
latter calculation the exact intermolecular bottleneck, not the
2zero-order separatrix, was used. Finally, under the heading b k™
we give the exact classical fragmentation rate, calculated from
an ensemble of classical trajectories.® Since the fragmentation
rate has been cakulated making no assumptions about bottlenecks,
the difference between it and the intermalecular bottieneck crossing
rate may be taken as a measure of the importance of the intra-
molecular bottlenecks that lic within the intermolecular bottleneck.
Table Il shows clearly that our approximate intermolecular
bottleneck crossing rates are within a factor of 2 of the exact
intcrmolecular bottleneck crossing rates, which is quite good
agreement. Furthermore, it will be noted that for £ = -2662 cm™
the intermolecular crossing rate is also reasonably close to the
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TABLE H: Intermolecular Bottiemeck Rate Data’
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E.cm™ o A, au F.au @t em™ Ak==:cm™ i d cm!
-3683 10 17.3 (16.6) 0.23 (0,18) 110.5 0.23 (0.19) 0.007
-2662 20 17.3 (16.6) 0.75 (0.42) 938 0.65 (0.37) 0.17
-1807 30 17.3 {16.4) 1.09 (0.83) 771 0.77 (0.63) 0.56
-574 50 17.3 (15.7) 308 (292) 438 1.24 (1.33) 1.57

ey is the zero-order vibrational quantum aumber in 1;. The total energy £ = E{v) + Ep(n=0) except for E = 574 cm™', where it is only E(v).
b We approximate & ™ w, () = wyc - (20 + 1)xpe, Where w, is the uncoupled I, vibration frequency. From ref 16, wec = 128 cm™ and xp = 0.834
em-!. *Numerical values for rates are given in terms of the corresponding decay widths, Ak. To obtain a rate in ps™!, for example, multiply the above
numbers by 0.1884. ¢Dynamically determined fragmentation rates from ref 6. In the case E = -574 cm™', we have taken the numericai rate
calculated by eliminating the direct dissociation component, as discussed in section I1IC of ref 6. *The precise dynamical values from ref 6 are in

parentheses for comparison.

{o) A

P/AU

Figwre 3. Zero-order separatrices (solid lines) and their propagated
counterparts {dashed lines). The regions corresponding to net flux out
are marked by plus signs, and net incoming flux regions arc marked by
minus signs. (a) E = ~36383 cm™'; (b) -2662 cm™'; (c) ~1807 em™'; (d)
-573 cm™.

actual fragmentation rate. This observation is very important
because it allows us, as a first approximation, to simply ignore
the dynamics of energy exchange within the intermolecular
bottleneck, and to calculate an approximate fragmentation rate

based solely on the intermolecular bottleneck crossing rate. Of
course this is a very bad approximation for low energies, such as
E = -3683 cm™', where there is a large difference between in-
termolecular bottieneck crossing and fragmentation rates due to
the presence of intramolecular bottieneck effects, as is discussed
in more detail in ref 6.

B. Intramolecular Bottlenecks. An approximation to intra-
molecular bottlenecks similar in spirit to the approximation to
intermolecular bottlenecks can casily be generated. As before we
will deal with the Hel, model. Recall®%)° that an intramolecular
bottleneck is identified with the remnants (cantorus) of a robust
torus with frequency ratio related to the golden mean. Therefore
the simplest approximation to the cantorus is a zero-order torus
with frequency ratio

=j+g (8)

where j is a positive integer and g = 0.6180339... is the golden
mean. The torus is parameterized by the vibrational actions ¢
and n, as well as the associated angles g, and q,. If one uses eq
4 as the zero-order Hamiltonian, the Appendix of ref 16 shows
that

Ho= Eg+ E, {9
where
Eg=(n+Jw-(n+ l/1)1:7;-19 (10)
wpc?
E =@+ /wpc -0+ '/2)2‘4'5; = Dy
and

wgpln) = Eg/dn
w,v) = 3E /ov (11)

The values of the parameters w, D, etc. may be found in Table
I

‘The approximation to the intramolecular bottleneck proceeds
as follows. Suppose one is interested in an intramolecular bott-
leneck corresponding to eq 8 with j = 4. Reference 6 showed that
this is the main intramoleculsr bottleneck when E = -2662 cm™'.
If one assumes E = H, eq § and 9 can be solved for v and 1. One
may then generate (P,R) points on the surface of section that lie
on (actually near to, see remarks below) the zero-order torus by
simply determining P and R from the well-known relations be-
tween (PR} and the action-angle variables (n,4).'¢ Thus n is held
fixed at its previously determined value and g is varied over its
entire (0, 2x) range to generate an emsemble of (P,R) points. r
and p are determined in the same fashion as in section 1A above.
Note, of course, because of the coupling in the full system the
vibrational action in the r degree of freedom will be slightly
different than the value v previously determined, so that the points
(P.Rp.r) are only near, not precisely on, the torus with actions
nand v. One may propagate the points on the surface of section
generated above by one unit on the surface of section, as was done
in section 11A, and then estimate the flux out.

Figure 4 shows the approximate {dashed line) and exact (solid
line) intramolecular bottleneck or cantorus for an cnergy E =
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Figure 4. Comparison of exact (solid) and zero-order (dashed? intra.
molecular bottlenecks for £ = -2662 cm™'
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Figure 5. Zerc-order intramaiecutar bottleneck and its profagated
counterpart for £ = 2662 ¢cm™!

=2662 cm™', which is the energy corresponding to appiuxirateh
v =20and n = 0. While the zero-order approximation is in the
same general area of the phase space. it does not accurately
reproduce the shape of the actual cantorus. This observa ion is
significant because the actual cantorus closely defines ane “egion
of stochastic motion. If the zero-order approximation cannot
accurately define this structure then it will probably not lead 1o
very good fluxes. Figure 5 displays the result of such a flux
calculation for £ = -2662 cm™'. The results for other enzrgies
are similar and are not shown. The fuxes and rates obtain=d for
the relevant energies are given in Table IH. It is clear t1at in
all cases the fuxes and rates are overestimated It appear: that,
unlike the intermolecular bottlenecks, intramolecular bottlenecks
are harder to adequately approximate accurately. Perhaps higher

order perturbative schemes. or an adapatior of the Solevev .

method.'* will be more successful, we are currently investigating
these possibilities.

Hl. An Alternative Form for RRKM Theory: A
Separatrix-Based Transition State

In view of the success of the zero-order intermolecular bott-
leneck crossing calculations of section 11A. we now construct a
purely statistical theory of unimolecular fragmentation bassd on
such bottlenecks. In section I11A we present a classical derivation
of the general transition-state unimolecular rate constant anc then
specialize 10 standard RRKM theory. Section I11B presems our
alternative form for classical RRKM theory.

A. The Transition-State Unimolecular Rate. We presem here
a classical mechanical derivation of the transition state urimo-
lecular rate constant similar in spirit to treatments by Keck'? and
Wigner.* However, onc difference between this and earlier work

(18) (a) Skodje. R. T., Borondo, F.; Reinhardt, W. P. 7. Chem. Phys. 1985,
82, 461]. (b) Johnson, B. R. J. Chem. Phys 1985, 83, 1204
(19) Keck, J. C. 4dv. Chem. Phys. 1967, 13, 85,

Gray et al.
TABLE I11: Intramolecular Bottlemeck Rate Data®
Eem' o p A 3u F.au ks cm!
-3683 10 5  43(096) 0150007y 0.6} (D.12)
-2662 20 4 3922 0.31 (0.033)  1.19 {0.22)
-1807 30 3 3220 0.52 {0.050) 1.99 (0.27)

“*The precise dynamical values of ref 6 are given in parentheses for
comparison. ®The value of j used is based on a knowledge of the actuat
intramolecular bottienccks that are of relevance at a given enetgy.® An
& priof: estimate of j is, however, possible by 1aking the ratio of w,(t)
and wein) with van der Waals effective quantum number n = 0, say.
“The exact arcas A4 in brackets have the quasi-periodic area within the
cantorus subtracted out. There is no simple a priori way of predicting
the quasi-periodic area and so it has not been subtracied out of the
zero-order cantorus area. This leads, through cancellation of errors. to
zero-order intramolecular rates at jower energies (where there is more
quasi-periedic motion) that are better than the corresponding higher
energy rates.

Is that 10 obtain a true variational rate constant a more careful
analysis of the nature of the phase space of the unimolecular
reactant is required. In this respect the analysis below has bor-
rowed much from Kay's'! quantum transition-state treatment of
unimolecular rate theory. While Kay's derivation was purely
quantum mechanical, he inferred a classical mechanical formula,
via a correspondence principle argument, that agrees well with
our result below,

We define 2 volume of classical phase space V, associated with
reaciants. It is imagined that the initia) classical density of points
18

po(px} 2 0, (px) € ¥, 12)
po(P-x} = 0, otherwise

This distribution function is then assumed to evolve in time, as
described by the classical Liouville equation, until a steady-state
distribution p is reached in the relevant portions of phase space.

Imagine now a closed surface S in the phase space, defined by
the equation

Spx) =0 (13)

We require that the volume enclosed by S, V. includes. but not
necessarily equals, the reactant volume V,. The quantity

As=fysdpdxp (14)

is then proportional to the number of phase points inside volume
Vs. An alternative way of expressing the above volume integral
is

Ns= {dpax8i-S)p (15)

where it has been assumed S is defined such that when Sip. %)
< 0 the point (p. x) is inside Vs, and 8 is the usual step function
f-y=1, z20
#2)=0, z<0 (i6)

If one assumes a first-order rate relation, the total rate of flow
of points out of A is
N
kw2 amn
Ng

where the dot above Mg indicates a total time derivative. The time
derivative in eq 17 is evaluated as follows

—Ns=—fdpdxbp+pe
=-fdpax b,
=—fdpdxad—:,$p

=_fdp dx 5(S) $p (18)
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where the second step follows from Liouville's theorem® and the
last step is the usual step function/3 function relation.?’  Equation
18 is the basis for deriving Wigner's* transition-state rate ex-
pression,

While eg 18 is the most useful form for us, it is worthwhile
pointing out how the notion of fluxes explicitly comes out of this
equation, Equation 18 is mathematically equivalent to a surface
integral®

N = 1
Ns= f._dsIvSI'Sp (19)
wherc
é a é
R+ H— + T+ ..

v= -‘Laxl "ax, ."16‘1,l {20)

and ds is an element of surface area. Upon introducing
YyERE F Rkt Lt Rt 2n

and noting that the unit normal to surface S is
a=||[VSI'VS (22)
eq 19 is seen to be equivalent to
“Ng= J; Jdsmw (23)

i.c., the flux of points out of surface . Equation 23 is the starting
point for Keck's derivation'® of the transition-state rate,
Equations 17 and 18 imply the rate of reaction is

k= Ns-l_fdp dx 5(S) $p (24)

We now specify the steady-state distribution, inspired by Kay's
analysis,!* 10 be

p = Fipx) 3£ - H) (25)

where £, is a characteristic function that is unity if at some time
—T in the past the phase point (p.x) was within the reactant volume
V., and is zero otherwise. T is the time required to establish the
steady state and is irrefevant in the sense that it will disappear
from the final transition-state expressions.

The inclusion of F, in eq 25 ensures that the steady state will
be consistent with eq 12; i.e., if some region of phase space is
inaccessible to the initial reactant, then obviously the steady-state
distribution p must be zero in this region. More physically, F,
excludes from consideration phase points that lie on scattering
trajectories that are direct, and hence do not proceed at all through
complexes (i.¢., through volume V). As applied to a chemical
activation study, the introduction of F, also formally removes from
consideration those trajectories lying on guasi-periodic orbits which
correspond to complexes but which cannot actually be formed via
direct collisions. DeLeon and Berne,® as well as Hase, Buckowski,
and Swamy,'® have used similar approaches to remove quasi-
periodic motion from consideration in the calculation of a reaction
rate. The introduction of F, is also consistent with the idea of
reactant and transition state being in equilibrium, but no products
being present in the equilibrium.2

There is a simplification that occurs for Ng. Consider the
quantity

N, = fyd, dx 8(E - H) (26)

which may be written as

N,= _l;j(p.x) S(E - H)

(20) Goidstein. H. Classical Mechanics, Addison-Weasley: Reading, MA,
1980.

(21) Eg.: Messisb, A Quanrum Mechanics, Wiley: New York, 196%;
Vol. 1, p 469.

{22) Simple proofs of this are given by: Khinchin, A. 1. Matkematical
Foundartions of Siatistical Meckanmics, Dover: New York, 1949, p 34-35; and
also Keck, ref 19.

(23) Deloon, N.; Berne, B. J. J. Chem. Phys. 1981, 75, 3495,

(24) Anderson, J. B. J. Chem. Phys. 1973, 58, 4604,
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where § = 1 if (p.x) is inside ¥, and 0 otherwise. The range of
integration may be any volume that includes V, and we have
chosen it 10 be ¥5. Now change the variables to (p'.x’), where
{p’,x") is the phase point that (p,x) evolves to after a time 7.
Because the nature of Hamiltonian dynamics is such that

a(p.x)
a(p'.x’)

= | and H(p.x) = H(p'x")

we have

N,{ = -rysd” dxf a('(’f‘xr)"('r‘xr)) E{E _ H)

But since p{p’ X"} and x{p’,x’) represent the phase point that (p’.x")
evolves to when integrated backwards to a time -7, we see that
# in the above equation is precisely F (p’,x’) as defined after eq
25. We may then drop the primes in the above equation and
conclude that

Ny= j;sdp dx F(p.x) 8(E - H)

:Ns

The fact that N may be replaced by N, is significant because
the latter quantity does not depend on S.
Equation 24 for the rate thus becomes

k=N f dp dx 3(S) SF, 8(E - H) 2N

The final vestige of dynamics is removed by assuming
F.px) = 8(nv) = S (28)

for all points on the critical surface S, which implies that every
point with its flow vector pointing outward is assumed to come
from the reactant volume V,. The final, general, unimolecular
transition-state rate expression is then

k=N f dp dx 5(S) $8(S) 8(E — H} (29)

The rate given by eq 29 is a variational limit in the following
sense. The fundamental transition-state approximation, replacing
F , by a step function 8, ensures that the rate given by eq 29 will
be an overestitnate of the actual rate given by eq 24. Now al-
though the actual rate does not depend on the choice of surface
S, as long as § contains V. the approximate rate of eq 29 does
depend on S. Since eq 29 always overestimates the rate, it follows
that S should be chosen so as to minimize the approximate rate.
Notice that while eq 29 is an upper bound to eg 24 it may not
be an actual upper bound to a dynamically calculated rate, because
both eq 24 and 29 have assumed that a certain steady-state
distribution (specifically, eq 25) exists. The actual situation may
include nonstatistical components such as arise from directly
dissociating trajectories and intramolecular bottlenecks. Section
IHIC discusses these points further.

Equation 29 takes on a familiar RRKM-like form when the
critical surface is given by a condition on coordinates alone. For
the sake of argument, and for application later to Hel,, let us
examine a four-dimensicnal phase space (Pp.R.r) and assume
that the coordinates have been chosen so that R is in fact already
the critical or reaction coordinate: § = R — R! = 0 defines the
critical surface. Equation 29 is then

kprxm = NA-!J‘dP dR dp dr ¥R - R’)EO(P) 3E - H) (30)

which is essentially equivalent to Kay's," classical transition-state
rate expression. We will refer 1o eq 30 as the standard RRKM
rate although, as noted by Kay,!’ there is a difference in the
denominator factor, N,. Many microcanonical RRKM expres-
sions have a denominator factor N, instead of MV, that depends
on the choice of the critical surface. N is usually taken to be eq
26 with ¥, replaced by V. Strictly spesking, kppagw in this case
will not lead to a sensible rate constant because if one takes R
to =, N will also tend to « and the rate to zere. Thus a variational
determination of the rate, as noted by Hase,”® for example, will
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not lead 1o a sensible, nonzero rate. Actually it is the flux Nk prxm
that can be minimized in this case and the hope, probably justified
for a multidimensional system, is that small variations in R? about
the saddle point position will lead 10 a minimum in the flux and
that & is relatively constant for such variations.

To summarize the results of this section, we have derived. via
purely classical mechanical arguments, an expression for the
gencral transition-state unimolecular rate. Equation 30 is what
we define to be the standard RRK M rate within this formulation
and eq 29 is the more general transition-state rate for an arbitrary
surface in phase space.

B. The Separatrix as Basis for the Critical Surface. In view
of the success of the intermolecular bottleneck crossing calculations
of section T1A and ref 6 in estimating the rate of decay of Hel,
complexes, we suspect that in many applications the best critical
surface § should not be based on a simple configuration space
condition such as R - R! = 0 (standard RRKM theory, eq 30),
but rather on the intermelecular bottleneck. The simplest ap-
proach is to use the zero-order separatrix of section 1A as the
critical surface

S = hg(P.R) (31)

where kg is given by eg 5. Thus the condition S = 0 determines
a (2N - 1)-dimensional surface in phase space, where N is the
number of degrees of freedom: in the two~dimensional (P.R) plane
this surface projects a separatrix curve. For a related problem,
remarkably, Wigner® sketched out such a surface almost 50 years
ago.

If we now consider a phase space (P.R,pr) as we did in section
I1IA, and insert eq 31 into eq 29, we obtain

k= N,,"fdP dR dp dr 3(hg) heBlhe) S(E ~ H) (32)

kg may be evaluated by the Poisson-Bracket relation®
Ohr H Ghe oK

hg = theHl = — = - 222 (33)

dR 3P &P 4R
If we assume the Hamiltonian has the form of eq 1, we obtain

k= N;'_fdp dR dp dr 8(hg) 8{P)£[ﬂ 8E-HY (34)
m

with
dVe(R} QV(R.r)
SRN = — R~ er
and where we have used the fact that

S ar o) pepy = [ ap op) PigiP)

with g(P) being an even function of P. Actually. utilizing the §
function relation

(35)

3(x - x,)
fdx dw(x)) = fdx ? ﬁ- (36)

where 3(x,} = 0 defines the x,. the integrals over P and p may
be evaluated so that eq 34 becomes

N QCm) AR )|
k=N, 'de drm (37

Equation 37 is the alternative RRKM rate for the case of a
two-dimensional system with diagonal kinetic energy.

The above expression may be contrasted with the standard
RRKM theory expression which results from evaluating the R,
P, and p integrals in eq 30. The result is

krru = N2 [dr [2m(E - IR (38)

In this case we see that ¥, kxpyy is @ classical action integraj®

(25) Hase, W. L. Acc. Chem. Res. 1983, /6, 258.
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Figure 6. (a) The usual qualitative picture of classical RRKM theory.
(b) The alternative view. See section HIC for further discussion.

along a vibration of the coordinate r, which is normal to the
assumed reaction coordinate R. This vibration may be thought
of as an elementary (straight) periodic orbit dividing surface
(pods)."? It is important to note that eq 38 can be reexpressed
into the more familiar Marcus—Rice'? form

Nrs

hpnna.

klRKM =

(39)

where

Nrs =i fdr dp B(E— % - V(R‘.r))

d
= b1 — -
Dreacs = A aE J‘y‘d}’ dR dp dr 8(E - H)

are the semiclassical sum of states at the transition state and
density of states for the reactant. Equation 39 is still purely
classical, since it is merely a different form for eq 38. The sig-
nificance of eq 39, however, is that it leads to the well-known and
simple quantum RRKM theory wher one replaces, via corre-
spondence principle arguments, Nog and Preact With their purely
quantum mechanical equivalents. While the alternative classical
RRKM rate, eq 37, can aiso be interpreted by an equation like
q 39, the explicit form for Nyg in this case is not as casily and
unambiguously quantized. However, this should not deier use
of eq 37 and related multidimensional analogues in a varicty of
classical studies, since the required integrals can be evaluated by
straightforward numerical methods.

C. Qualitative Discussion of Ordinary and Alternative RRKM
Statistical Theories. At this point it is useful to discuss in a
qualitative fashion the differences between the ordinary and al-
ternative forms of RRKM theory that are the subjects of this
peper. Figurc 6 summarizes clearly the major qualitative features.
Figurc 6a represents a frequently used qualitative picture of
RRKM theory.! In this picture complexes exist for R < R® and
all phase space consistent with energy conservation. (Of course
in a two-degree-of-freedom problem, Figure 6 could be a surface
of section; for higher dimensionalities it is a schematic repre-
sentation of motion in the reduced phase space of the critical
degree of freedom.) One difficulty with this assumption con-
cerning the critical surface is that in reality complexes do not exist
merely for R < R*, but rather in a more restricted portion of phase
space. What we define to be ordinary RRKM theory (eq 30}
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partly accounts for this fact by having a density of states factor
N that is evaluated only in this restricted part of phase space.
However, as we shall see later in section 1VB, this does not
necessarily lead to a better rate. In many situations, of course,
it is expected that there is not a significant difference between
all phase space consistent with energy conservation and R < Rt
and the restricted portion of phase space. The realization of this
expectation accounts for some of the great success of classical
RRKM theory.

Figure 6b shows what is closer to the real situation in certain
probiems, such as van der Waals molecule fragmentation.
Complexes exist only within the separatrix branches (dashed
curve). Now imagine arbitrary critical surfaces S{P.R) = 0 that
are closed and contain at least all of the complex region. Then
the standard RRKM surface defined by drawing a vertical line
at R = R?and connecting to the energy boundary to form a closed
surface will overestimate the forward flux (and rate, if N, is held
constant for variations in 5) because it includes direct scattering
trajectories, such as the solid line with the arrow on it. Such direct
scattering trajectories have nothing to do with the complexes. 1f
we assume that the intermolecular botileneck is the only bottleneck
to flow in the classical phase space then the rate calculated from
the flux across this bottleneck is the minimum for any surface
that encloses the intermolecular bottleneck. Furthermore, in this
very idealized limit the corresponding rate constant would be exact.
However, it is important to stress the word “idealized” in the
sentence for two reasons. First, our statistical theory in practice
is not based on the exact intermolecular bottleneck but on an
approximation to it. Second, and more fundamentalty, the actual
classical dynamics can exhibit additional bottleneck effects. For
example, if there is an intramolecular bottleneck within the in-
termolecular bottleneck, and if the characteristic rate of flow of
points across the intramolecular bottleneck is smaller than the
intermoiecular bottleneck crossing rate, then ensembles of phase
points with appreciable density within the intramolecular bott-
leneck will exhibit a much smaller rate of fragmentation than that
predicted by the intermolecular bottleneck crossing rate alone $
Thus the statistical rate is not necessarily an upper bound to the
dynamic rate. a point that was also made in section 111A.

IV. Applications of the Alternative RRKM Rate Expression

A. T-Shaped Hel, Predissociation. We now apply eq 37 to
the T-shaped model for Hel, predissociation, previously discussed
in section 11 and ref 6 and 16. ¥ is then the effective He-1,
interaction (Appendix, ref 16)

Va(R) = Dl 2R R — ge=(k-R} - D (40)
and V is the full coupled oscillator potential given by eq 2.

The N, factor of eq 37, essentially the reactant density of states,

is approximated analytically by noting that

N, = J:'dededré(E—H')
d
= ELAdededro(E-m

d
= E‘rd}’ dR dp dr 8(-hg(P.R)) 8(E - H) 4

Equation 41 is still exact, but we now let i be represented by its
separable approximation, eq 4, to obtain

d 7
N, =~ EJ‘deR dp dr 8(-hyg) a(s ~ha- 5= V,c)
(42)
Finally, since the first step function restricts (P.R) to energies

between D and O, where D is the van der Waals dissociation
energy, and these energies arc small compared to £ and the I,
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TABLE TV: Fragmeatation Rates for the T-Shaped Hel; Model

standard alt
RRKM, RRKM,

E, cm™ v cm™! em™! dynamical,® om™
-3863 10 66.0 0.52 0.007
-2662 20 110.5 0.80 0.17
-1807 ko) 1387 1.09 0.%

-574 50 128.0 1.89 1.57

*From ref 6; see also footnote & under Tabie 1L

energics of interest, we neglect the hy term in the second step
function to obtain

d P
Nﬁd—E-['ddedpd.-a(—h,)o(bz—m-V.c)

= [J“dp dR ﬂ("'n)][ fdpdf 6(5- ;im - VBC)]

= area of the zero-order separatrix X 2xh X
1, semiclassical density of states

Employing the Morse oscillator relationships summarized in
Appendix A, we then obtain

4xD 2
@ wacll - (£ + Dsc)/Dac]

In eg 43 it will be recalled that E is measured relative to the
separated atoms as zero. Equation 43's validity has been checked
by comparing its predictions with a direct Monte Carlo evaluation
of the exact N, eq 26, and has been found to be within a few
percent of the exact result for the energies of interest 1o us.

Having obtained N, we are left with the task of evaluating
the two-dimensional integral over R and r, q 37. This is trivially
done via numerical integration, taking R to range from R, the
minimum value of R allowed by eq 31, to some large value, say
R = 20a,; the limits on r may be taken to be rp;, and ry,,, the
inner and outer tuning points when all the energy £ is in the I,
bond. In evaluating the integrals over momentum analytically
to obtain eq 37, it has been implicitly assumed that the range of
R and r is such that ¥ < E. Thus any points {R,r) that lead to
V > E must be rejected as not lying in the range of integration.
The results of these simple calculations are displayed in Table
1V. We compare the rates obtained to the “exact™ rates of
fragmentation obtained from classical trajectory simulations® and
also to what standard RRKM theory predicts.

The standard RRKM calculations were carried out by con-
sidering R’ as a variational parameter, similar in spirit to Adams'
Monte Carlo RRKM calculations of van der Waals predissocia-
tion. When the rate is viewed in this fashion there is no difficulty
with the fact that there is no saddlepoint on the potential energy
surface for Hel;. Simple numerical calcuiations showed that a
minimum rate is achieved as R! — «. Equation 38 is then simply
the ratio of an action integral for an 1; Morse osciliator and N,
The resulting analytical formula, inferred from the Morse oscillator
relationships in Appendix A, is

(43)

A

Dycw
kpmxm = 32D (x(E) - xY(E)) (44)
with
x(E) = [1 - (E + Dyc)/Dyc]'?

Equation 44 must be distinguished from other simple RRKM or
RRK rate expressions that may be encountered in the literature.
The main difference is that NV, given by eq 43 and used in deriving
¢q 44, is appropriate to a van der Waals system where the phase
space region associated with the van der Waals bond is much
smaller than that associated with the [; bond. If one empioys,
for example, the simple RRK rate expression,' which ignores such

(26) Adams, J. E. J. Chem. Phys. 1983, 78, 1275,
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subtle points, one finds, keeping in mind that for the energies of
interest to us the van der Waals dissociation energy D < |E], that
the rate is ~w/2x ~ 4 cm™', i.c., approximately constant and
equal to the van der Waals vibrational frequency. The reader
should also not confuse this form of the theory with ceriain
phenomenological versions of RRKM theory! that have been
designed to describe complicated unimolecular reactions where
the potential energy surface is only poorly known. if at all. Rather,
what we mean by standard RRKM theory is an explicit evaluation
of the fundamental classical RRKM expression, eq 30, and
equivalent forms such as eq 44, using the full potential and a
consistent definition of the density of states term NV,. This rep-
resents the essential approximation of RRKM theory, without any
additional, simphfying assumptions. However, this does not mean
that eq 44 will yield a better result than even simple RRK theory.
Indeed, through cancellation of errors, the simple RRK result
quoted above is better than the standard RRKM result, although
not better than our aliernative RRKM result.

Table IV makes it clear that the alternative RRKM rate, eq
37, leads to predictions in reasonable accord with the exact rates.
Thus, although the fragmentation rate for the lowest energy
studied is dominated by the influence of intramolecular bottlenecks,
as noted in section 11A, and is poorly described by any simple rate
theory, the alternative RRKM rate improves as energy is increased,
and Jeads 10 very reasonable rates for energies beiween —2662 and
-573 ¢cm™'. The predictions of standard RRKM theory, eq 44,
are always grossly in erros. Of course, for the example we have
considered, van der Waals molecular fragmentation, it is not
surprising that RRKM theory fails. However, it is surprising and
very encouraging that simply by employing a different kind of
transition state, one based on a separatrix. an alternative statistical
theory can lead to a reasonable prediction of the predissociation
rate for this system.

One way 1o understand the success of the alternative RRKM
theory for Hel. predissociation is to note that the separatrix-based
transition-state surface enforces naturally a dynamical “selection
rule” that I *lese only a small amount of vibrational energy when
the complex breaks up to form He + 1;. Quantum mechanically,”
for example, it is known that there is a very high probability for
1, 10 lose just one vibrational quantum. Classically, the amount
of vibrational energy loss is even less.* The maximum var der
Waals momentum FP,,, on the separatrix is just (2uD)'?, which
corresponds 10 a translational energy of D = 36 cm™. If the flux
out of the separatrix surface is not too large, then D provides a
rough upper limit 1o the maximum product relative translational
cnergy or the corresponding 1, vibrational energy loss.

The remarks in the above paragraph suggest a simple
amendment to standard RRKM theory that may improve its
somewhat dismal performance in this example. One can incor-
porate the dynamical selection rule approximately by limiting the
P integration in eg 30 to an upper limit Py, = (2uD)' 7. Actually,
in this case it is easy to show that eq 30, with R! = =, reduces
to

krrxm' = NJVNE)Y - HE - DY) (45)

where J( E) is the action integral for an I; Morse oscillator, as given
in Appendix A. A prime is used in eq 45 to remind the reader
that an additiona) assumption, that the van der Waals momentum
range be restricted, has been made. Equation 45 is trivially
cvaluated with the result that kpgyy is a slightly decreasing
function with energy over the energy range of interest, which is
of course incorrect. However, the decrease is only about 1% over
the range of interest and one may take this rate to be approxi-
mately constant at Akgpkw’ ~ 2.1 em™". Thus the magnitude,
but not the functional behavior with encrgy, of the standard
RRKM rate can be greatly improved by the simple amendment.
The alternative RRKM rate of Table IV is always lower than
A kggxn’ 2nd shows a much more reasonable energy dependence.
Thus it is clear that while the restriction on the momentum is an
important component of the success of the alternative RRKM
theory, the actual shape of the separatrix, which is not accounted
for by Akggpym’. is important for obtaining the best results.

Gray et al.

B. Three-Dimensional Hel, Predissociation Rates. J = 0. The
alternative version of RRKM theory can be applied to systems
with more than two degrees of freedom, which we illustrate with
an application to Hel, predissociation with 1012l angular mo-
mentum J = 0. We show in Appendix B that the exact classical
Hamiltonian for a three alom system with J = 0 is given by

P Rl 1
iR, = —  — 4 —§ — 4 —
HPpiRrm) = o4 5 b o ) + VRew)

(46)

The new feature, relative to our previous considerations, is that
there is another pair of canonically conjugate variables, namely
(J, 7). Jjis the rotational action variable associated with the
diatomic 1; or equivalently, since J = 0, the orbital angular
momenium / between He and 1;; v is the angle between the vector
connecting the center of mass of 1, to He and the 1, bond vector.
The potential ¥ is now given by

V = Vyp(Rxz) + Vxp(Rxc) + Viclr) (47)

where, as before, ¥yp denotes the Morse potential between He
and an ! atom, ¥y is the 1; Morse potential, and now Ry and
Ryc are not equal but given by

Ryp = (R + P /4 + Rrcos y)'?
Rxc = (RJ + ?2/4 - Rrcos '{)”: (48)

We use in this calculation the same Morse potential parameters
as earlier (Table 1) because Delgado-Barrio et al.?” have calculated,
via classical trajectories, rates of fragmentation for three-di-
mensional, J = 0, Hel; with these parameters.

We now choose an appropriate separatrix-based surface S and
use the Wigner form for the rate, eq 29. Certain of the integrals
involved may be evaluated analytically and the remaining ones
can be evaluated via Monte Carlo integration. 2 Although the
total angular momentum is zero it is important to realize that there
is still diatomic (or orbital) rotation and the centrifugal term in
eq 46 leads 1o a very different separatrix structure than previously
studied by us.

We define an effective potential by

;2
J 1 1
VR = of ~= + —— | + ¥RFscr) (49
il Ry} 2(#R2 — 2) (R7scy)  (49)

Appendix C discusses the nature of V(R.Fpc,y). Figure 7a depicts
V.nfor j = 10A and v = x/2. A centrifugal maximum is evident
and if one defines an approximate Hamilionian for the R degree
of freedom as

2
h= £ + Vel RYY) (50)
2u

the phase curves appear as shown in Figure 7b. The separatrix
is given by the dashed line and is quite different from the non-
rotating T-shaped Hel. separatrices in that there is a fixed point
for P = 0 and 2 finite value of R corresponding to the barrier
maximum position, R = RY. For j > 0 the energy of the separatria
is no longer zero (as in the T-shaped model) but some positive
value ¢, which is a function of j and y. Of course for j = 0, ¢,
= 0 and the separatrices are like those for T-shaped Hel,. Ap-
pendix C discusses a simple procedure for determining the ap-
proximate functional dependence of ¢, on j and 5, as well as a
similar representation of the barrier height position, RY(j,y}. In
the nonzero centrifugal barrier case not all branches of the sep-
aratrix bound complexes, rather only those branches with R <
R!. We are thus led to the separatrix surface

S(Pj.Ry} = 5 + Vi Rjy) - Uiy (51

(27) Delgado-Barrio, G ; Vilisrreal, P.; Marcca, P.; Albeida, G. J. Chem.
Phys. 1983, 78, 280.

(28) Eg.: Porter, R. N Rafl, L. M. In Modern Theoretical Chemistry,
Miller, W. H., Ed.; Plenum: New York, 1976, Voi. 2, p L.
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Figure 7. (a) Effective potential for j = {0 and y = =/2. (b) Phase
curves for the cffective potential in (a). The separatrix is given by the
dashed curve.

For fixed j and 5. the condition S = 0 determines a separatrix
such as the dashed line shown in Figure 7b. We have not explicitly
put the condition that complexes exist onty for R < R into eq
48, although we could have with a step function; rather, we choose
to restrict the range of integration appropriately, as will be dis-
cussed below.

Equation 51 may be inserted into eq 29 and the integral over
p evaluated. Using eq 36 we find

Nk = _fdp dR dr dj dy
(2m)'/25(5)56(S)

o 1 i
E-—-Z0 —+— |- ¥Wr
[ 2u Z(uRJ mrz) (Rry}]

The integral over P may be evaluated similarly to yield

Nk = J"dR dr dj dvy

2 (2m)'/2u8,8(S,)

) : — (52)

Y] Il PRI I

1P 2 INuR? mpP
where
Py = £[2u(e, - Vq)]'/?
S, w |258H OS3H S oH aS9H
*"LaRoP T & 9 PR G ¥ |,
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V¥, can also be evaluated partially by carrying out the integral
over p, reducing eq 26 to

N.=
\/29(-§

faPardrajdy J:z"') Sl =
p A

[E-u-i(mi-;)-l’]

(53)

For comparison, 2 standard RRKM rate can also be defined
by introducing a critical surface

S=R-RYjv) (54)

into eq 29. The condition § = 0 then corresponds 10 the usual
prescription that the transition state be at the barrier maximum
position. However, as with the nonrotating T-shaped Hel, ex-
ample, using S = 0 will lead to rates almost 2 orders of magnitude
bigger than the alternative RRKM rates. While this represents
a failure of classical RRKM theory in its most essential form, the
simple amendment introduced in section [VA, that the van der
Waals momentum be restricted to lic only within the values
permitted by the separatrix branches, will improve the situation.
Thus, insertion of eq 54 into eq 29, along with the above mo-
mentum restriction, leads to

N kg’ = f dP dr dj dvy
(2"‘!)”25‘19(3’)0(]” - Ps(}-?))

<0 B 1 ' v
[E—Z,u 2(.uRu+m’_z)-V(R,r.’r)]

St = ﬁéﬂq.
dRAIP v 3 & oy R=Ry

and where P,(j,y) is the maximum momentum along the R < R
separatrix branches. The numerical approximation of P, is dis-
cussed in Appendix C.

Equations 52, 53, and 55 are four- or five-dimensiona! integrals
that can be conveniently evaluated by Monte Carlo integration. -3
For example, if we denote the argument of the integral in eq 52
as F, we have

j dR drdj dy F =~ (Rpu — Ruw)Foas = Zmin)femar

(33)

with

oS dH 4aS aH

x|
PRl

where k denotes a set of four random numbers {{,.5;,4,,4,) between
0 and 1, and F, is the argument of the integral evaluated for

R= len + (Rlnu - Rm’n)fl
I = Py ¥ (Fmas = Frund€a
j =jmn£3
Y = §E4

and L is the number of different times the random number vector
is evaluated.

The actual range of integration, as for the nonrotating T-shaped
model, must be carefully considered. The minimum and maximum
R valucs are given by the absolute minimum and maximum al-
lowed by eq 51 with § = 0. These values turn out to be those
for j=Qand y = #/2. R,,, is actually infinity but may be taken
to be a suitably large value, say 254, The minimum and max-
imum r values are as in the T-shaped case, section IVA. Of course,
points that lead to negative square root arguments lic outside the
integration range of interest. A new and very important feature
in the present calculation is the existence of an upper limit on j
for compiexes to exist. Appendix C notes that a minimum in the
effective potential, for a given value of v, does not exist for 7 greater
than a certain value. We associate complexes with the existence
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TABLE V: Fragmestation Raies for Three-Dimensions! Hel,, J = 0

Efem™! v Akyggm.om™t Ak'omt! dynamicall cm”!
~2662 20 1.79 1.52 0.06
~2213 25 1.82 1.89 010
-1807 30 1.83 2.39 016
-1442 35 1.8} 282 0.24

*Thesc encrgies were chosen to correlate with the two-dimensional
case. The aciual energies used by Delgado-Barrio et al.?” were about 4
cm™! higher, which is an insignificant difference for our purposes.
$Both the alternative RRKM (A k) and momentum-restricted RRKM
(A k ‘waxa) rates are converged to about 10%. ¢ From Figure 2 of ref
27. Note these authors present half-widths, not full widths, so their
results have been multiplied by 2 for comparison with ours. The v =
20 result is an extrapolation

of such 8 minimum. A simple parameterization of this upper limit
to j is given by eq C4. We use jp,, = 17.5A, which is slightly
larger than the largest joompe, value, and points are rejected in
the Monte Carlo integration if § > fompes{¥). Note that the
magnitude of j allowed solely by energy conservation, for the
encrgics of interest to us, will be an order of magnitude larger
than « Which is typically 16%, so that the restriction noted
above, which-we will apply to both the standard and alternative
RRXKM rates, is very important. Complexes are also restricted
to exist only within those branches of the separatrix for which
R < RY, thus excluding the portion of phase space within the
separatrix but with R > RY. This means that in all the integrals
points that have R > R! are also omitted. It will be recalled that
in the T-shaped case, R? was effectively infinity so that this final
restriction never explicitly entered.

Equations 52, 53, and 55 were evaluated via the Monte Carlo
procedure described above, and the results are displayed in Table
V, where they are also compared with the classical trajectory
results of Deigado-Barrio et al.?” The entire calculation reported
in Table V required 10 h of CPU time on a YAX 750 minicom-
puter. 'While this is not an excessive computational effort, it should
be noted that evaluation of the alternative and momenium re-
stricted standard RRKM raies required about the same ~ompu-
tation effort. that the criterion of convergence used was stricter
than might normally be required, and that no special effort to
economize via use of alternative Monte Carlo sampling procedures
was made. Table V shows that the three-dimensional Hel,
fragmentation is not as well described by the aliernative RRKM
theory as is two-dimensional fragmentation. For example, even
for energies as high as £ = 1442 cm™' there is about a factor
of 10 discrepancy between the alternative RRKM and the tra-
jectory determined fragmentation rates. The momentum-restricted
RRKM results, as in the T-shaped Hel. model study, are ap-
proximately constant over the energy range of interest, which is
qualitatively incorrect behavior. Somewhat fortuitously, the
corresponding approximate value of A hgpy ' is shightly smaller
than our alternative RRKM rates over most of the energy range
studied here. There are a number of possible sources of difficulty
that lead 10 the aliernative RRKM raie being somewhat high in
the example under discussion. For example, there could be strong
intramolecular bottieneck effects, as were present in the £ = -3683
cm”! two-dimensional fragmentation studies. This would imply
that the rate we calculate may well be a reasonable intermolecular
bottlencck crossing rate, but that the intermolecular bottleneck
rate itself is not sufficient 10 describe the fragmentation dynamics.
1t is also possible that our approximation to the separatrix surface
in the three-dimensional case is not as accurate as that in the
two-dimensional case. If our separatrix model is correct, and it
is intramolecular bottleneck effects that are causing the dis-
crepancy evident in Table V, we expect that there will be much
better agreement between the aliernative RRKM and dynamical
fragmentation rates for higher encrgies. Unfortunately, Delga-
do-Barrio ¢t al.?" only carried out their calculations to about E
= 1442 ¢m™'. From the limited range of energies studied,
however, the behavior of the dynamical rate constant is consistent
with the dominance of a smalicr intramolecular rate at low energy
and the growing importance of a larger intermolecular rate as
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encrgy is increased. Indeed the rather fast variation of the dy-
namical rate over the small energy range studied may suggest that
one is in fact passing through a transition point between these
decay modes, which could account for the discrepancy between
alternative RRKM and dynamical rates, since the aliernative
RRKM model assumes only an intermolecular decay mode.
V. Discussion

This paper has been concerned with how the rates of crossing
of bottlenecks in the ciassical phase space deiermine the rate of
unimolecular fragmentation, We have shown, with application
to the problen of predissociation of the van der Waals molecule
Hel,, that the intermolecular bottleneck that separates compiexes
from fragments can be well approximated by a zcro-order sep-
aratrix. The rate of crossing of this separatrix is in reasonable
accord with that calculated from the rate of crossing of the precise
bottleneck.® Furthermore, the intermolecular bottleneck crossing
rate, particularly at higher energies, was found to be a good
approximation to the actual fragmentation rate of Hel,. A related
approximation for the intramolecular bottlenecks that occur within
the region of phase space associated with complexes proved less
successful.

The success of the zero-order separatrix approximation 1o the
intermoiecular bottleneck suggests that a unimolecular transi-
tion-state theory, which we term alternative RRKM theory, can
be developed by using the 2ero-order separatrix as transition state.
This alternative RRKM theory predicts rates better than standard
RRKM theory for both two- and three-dimensiona! models of Hel,
predissociation. Consideration of the reasons for the success of
the alternative RRKM rate also lead 10 a simple way of modifying
the standard RRKM rate, by restricting appropriately the reaction
coordinate momentum. The amended standard RRKM rate has
the correct order of magnitude over the energy range of interest,
but shows only a weak energy dependence, a result in contradiction
with both the aliernative RRKM and dynamical rate constanis.
This fact further serves to emphasize the role of the separatrix
shape in determining the best approximation to the rate constant
for the Hel, system.

The Hel, predissociation example is rather extreme. In other
examples of unimolecular reactions it may be the case that a
separatrix-based critical surface calculation would lead to rates
comparable to those predicted by standard RRKM theory. This
could happen, for example, when the separatriz branches are close
to the energy boundary in Figure 6. Related to this situation is
the case of strong coupling where most of the trajectories in the
part of phase space within the unimolecular barrier arc chaotic.
The inner branches of the separatrix that define complexes may
then be considered to have broken up. However, most trajectories
that cross the barrier also have been within any approximate
construction of the separatriz and therefore both alternative and
standard RRKM approaches should yield similar results. The
reader will recognize this latter situation as being the typical
picture of standard RRKM theory which has proven to be so
successfu!l in describing such strongly coupled situations (Figure
6a) Therefore we emphasize again that the theory presented in
this paper is not a replacement for RRKM theory, but is an
alternative way of applying it when the problem at hand is such
that the intermolecular bottleneck is 8 more severe restriction on
the flow in phase space than is the energy conservation require-
ment. Just this situation occurs for the fragmentation of van der
Waals molecules because the van der Waals bond dissociation
energy is much smaller than the dissociation energy of the mo-
lecular partner. Thus the maximum possible momentum along
the separatrix is much smaller than the upper limit based on energy
conservation. For cxample, for Hel,, if E = -2662 cm™' the
maximum separatrix momentum (2xD)'/? is a factor of § smaller
than the energy conservation limit, leading to a severe restriction
on the phase space.

We believe the theory presented in this paper is worthy of
further study. In particular, we believe it worthwhile to study
application of the theory to a greater variety of unimolecular
reactions. An obvious criticism of the theory is that it depends
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TABLE V1: Effective Potential Datn

v, deg D, cm" a,. & R.. au
0 19.2 0.6030 10.358
30 19.9 0.5924 9.808
60 247 0.5691 8.317
90 36.0 0.5589 7.002

TABLE VII: Portions of the R! and ¢, Grids

v, deg
JR) 0 30 60 90
R, au
b4 23.219 22,700 21.464 20.679
6 18.411 17.825 16.417 15.524
10 15.963 15.310 13.722 12721
14 14.109 13.339 11.348 10,134
¢, cm’!
M 0.24 0.22 0.23 0.24
& 2.39 2.47 2.69 2.85
10 7.69 8.04 9.05 9.86
14 17.14 18.17 21.41 24.16

on an incompletely designed zero-order analysis of the classical
Hamiltonian, in the sense that there is no prescription for the
optimum choice of zero-order approximation. Only through more
applications will any sort of generic “algorithm” for choosing the
optimurmn separatrix become apparent. 1t seems likely to be useful
10 couple our ideas with the reaction path Hamiltonian method
of Miller and co-workers.?*® The reaction path Hamiltonian
method provides a natural means of obtaining, from either ab initio
data or possibly a complicated analytical potential form, the
potential energy dependence along the reaction coordinate. which
could provide a very useful means of obtaining reasonable zcro-
order separatrices.

Of even greater interest is the development of a quantum
mechanical analogue of the classical theory we have discussed.
The measure of success of standard RRKM theory is evident in
the observation that its quantum mechanical version is now a
routine tool of experimental kineticists. While the classical me-
chanical alternative RRKM rate theory yields rates within a factor
of 5-10 of the exact classical mechanical fragmentation rates for
Hel,, the classical mechanical rates are themselves a factor of
three'® greater than the most accurate quantum mechanical rates.”
But what is the proper quantum mechanical analogue of a sep-
aratrix? Furthermore, even a direct quantum anaiogue of the
theory may not fully account for this discrepancy. For example,
there may be difficulties with properly accounting for dynamical
tunneling (or reflection) effects.5' It should also be noted that
the simple arguments used in deriving a practical quantum RRKM
theory involve certain separability assumptions that cannot be
made for the case of a separatrix-based surfack; one may need
to resort 1o using somewhat more sophisticated ideas such as those
used by Miller® in deriving his nonseparable quantum transi-
tion-state theory for bimolecular reactions.
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Appendix A

Morse Oscillator Relationships. We summarize herc the
classical Morse oscillator relationships of relevance to the present
paper. Consider a particle of mass m in 2 Morse oscillator po-
tential

Vac = Dyclexp(—2aac(r - Fac)) = 2 exp(-anc(r - i)l (A1)

(29) (a) Miller, W_H.; Handy, N. C.; Adams, J. E. /. Chem. Phys. 1980,

72,99. (b) For a review, see: Miller, W. H. J. Phys. CAhem. 1983, 87, 3811,

(39) E.g.: Miller, W. H. Adcc. Chem. Res. 1976, 9, 306 and references
n.
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where the zero of energy is the separated atoms. The classical
action integral

KE) = Z_rdr[Zm(E— Vaclr))]'/? (A2)

may be evaluated analytically’' and is
4‘I'D'c
KE) = T—“ - [1-(E + Dyc)/Dgcl'?  (A3)
3C

where, of course, wpc = (2Dpcanc/m). The action variable v
is given by

IE)
2xh

where the '/, term is inserted to make the correspondence principie
connection with a quantum number but is negligible for large v
(the classical limit). The semiclassical density of states is then

@ ! ' (AS)
4E  huwgc[l - (£ + Dac)/Dacl'?

In section IVA, eq AS is used 10 obtain eq 42. Also required
for that equation is the phasc space area of the separatrix for a
Morse oscillator corresponding to the van der Waals degree of
freedom. This may be obtained from eq A3 by dropping the BC
subscripts and setting £ = 0.

Appendix B

Classical Hamiltonian for J = 0. In this Appendix we outline
how the full classical Hamiltonian for an atom—-diatom system
reduces to eq 46 of the text when the total angular momentum
J = 0. While it might be argued that eq 46 is rather obvious,
it is curious that it has not been used very much in classical
dynamics studies. This Appendix reties heavily on Appendix C
of ref 32, where many useful transformation relations are given.

The full ¢lassical Hamiltonian in the center of mass system is

H=PP/2u+pp/2m+ V(R1) (B1)

where R denotes the vector connecting atom X to the center of
mass of diatom BC, 1 is the vector connecting B to C, and P and
p are the corresponding canonically conjugate momenta. The
potential ¥ actually depends only on the magnitudes of R and r.
R and r, and the angle ¥y between these vectors.

One now imagines a canonical transformation from (R,r.P.p)
to (R./.gpgpq P Pdj-7}, where the new momenta explicitly include
the magnitudes of orbital {/ = |R x P|), diatomic rotational (j
= |r X pf), and total (J = |R X P + r X p|) angular momenta.
It is easy to see from the transformation relations between old
and new coordinates of ref 32 that for J = 0 (choosing ¢, = 0
and setting A, = X; = 0) the classical Hamiltonian then has the

form
AN + V(Rry) (B2)
==t | — +— s
2 2m 2\ 4R me 7

v+l = (Ad)

It can also be seen (&g 7 of ref 32) that ¥ is related to the canonical
coordinates through

cos vy = —cos (¢, + gq)) (B3)
when J = 0.
We now introduce a new set of canonical coordinates
+=qtgq (B4)
-4~ q

and perform a standard canonical transformation®™ to obtain

PP 1| Uet i)l U P
H=2“+E+§[ R + e ]+V (BS)

{31) Eg.. Rankin, C. C.; Miller, W. H. J. Chem. Phys. 1971, 55, 3150.
(32) Milier, W. H. J. Chem. Phys. 1971, 54, 5186
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where the new canonical {angular} momenta are
o=+ j}/2 (B6)
={-5ns2

But since H does not depend on g_, j_ is a constant of the motion.
Furthermore, since J = 0, we have { = j and thus j_ = 0 and j,
= | = j. If we further realize that eq A3 implies that vy = ¢, +
w, and that x is an arbitrary phase factor, we may take as can-
onical momenta and coordinates (PpJ.R r,v) with Hamilionian

PP P 1
H==—+— 4= + — | + VR, B7
ntmti et (Rry) (B7)

which is the required result.
Appendix C

Approximation of the Barrier Maximum and Separatrix
Energy. In section IVB an effective potential in the R degree of
freedom was defined as

1 i
— + V(R Fgc. Cl
iR g ) sc.y) (C1)

Vil Riy) = ’5(

To obtain an idea of the nature of ¥{R.7pc, ), we have scanned
rays of fixed 4 and determined the potential minimum position,
R,. the well depth D, and the Morse potential curvature facior
given by

1/2
1 &V
a, = | 0= C2
3 2D’ aRz =g, ( )

where the second derivative is estimated with finite differences.
The resuits of these calculations are shown in Table V1. From
the data in Table VI it is evident that the collinear geometry, ¥
= 0°, is the least stable of all possibilities.

Two other functions of interest to us are the barrier maximum
position, R(j.v)}, and the height (or separatrix energy) ¢,(.v).
Consider a rectangular grid of jy values (j,y,). For each pair
(iv;) onc may search along R to find the maximum of eq CJ and
thus R¥(j,y,) and ¢(j,v,). Now the most accurate approach would
involve fitting some smooth analytical function 10 these data.
However, for our purposes we simply employ reasonably dense
gridsof j,=0,1,2, .., 17Th and ¥, = 0, 10, ..., 90° and rely on
two-dimensiona! lincar interpolation to define our approximations
to R! and «,. and their corresponding derivatives. Table V11 gives
a small portion of the grids used 10 give the reader an idea of how
the functions behave.

In defining the above grids, it will be noticed that j extends up
to only 17k, Actually, for a given value of + there is a certain
value of J, joampier. above which the potentiat barrier and minimum
have fused together 10 yield a purely repulsive effective potential.
Such a repulsive potential is inconsistent with our notion of
complexcs, so that the region in phase space where complexes exist
(to within our approximations) inctudes j values only up to Jooempies:
By explicit calculation we find joompe, ranges from 14.694 at v
= 90° 10 17.46A at y = 0° and is in fact well described by the
linear relationship (v in radians)

Jeompier = 17.46 — 1,763 (C3)

Finally, the maximum momentum along the R < R* branches
of the separatrix, P,(/,v). is also easily evaluated for the above
(.v) grid. For fixed ; and v the minimum in the effective po-
tential, V"(j,v), may be found by direct search along R. The
separaltrix maximum is given by

Py) = [2u(60.y) - VARG (C4)

It turns out that P, is Jargest for v = 90° and j = 0, and decreases
both for increasing j and decreasing v. We employ linear in-
terpolation to define the numerical approximation required for
P, in section IVB.

Registry No. Hel,, 64714.28-9.



Phase space bottlenecks and statistical theories of isomerization reactions
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We examine the dynamics of isomerization reactions and point out the existence of important
phase space bottlenecks. A three-state statistical theory based on the behavior of trajectories
and the properties of the phase space bottlenecks is proposed; this theory is better than
standard two-state RRKM theory under some circumstances and offers a new way of
conceptualizing isomerization. We test our ideas on the simple system, consisting of an
equivalent double well coupled to a Morse oscillator, which was studied by DeLeon and Berne.
Approximate methods of obtaining the required clementary rate constants in our theory are

also discussed.

I. INTRODUCTION

In this paper we show that a physically appealing model
of isomerization dynamics can be constructed using recently
developed ideas concerning bottlenecks to the flow of energy
and chemical reaction in phase space.' The model natural-
ly leads to the definition of three phase space domains (gen-
eralized system states) corresponding to the two isomer
geometries and an intermediate which does not coincide
with either isomer geometry. Exact and approximate meth-
ods for defining the generalized system states and associated
rate constants are presented, and application is made to a
two degree of freedom double well system previously intro-
duced by DeLeon and Berne.*

Since the three-state model presented here differs from
the standard RRKM theory model,** which involves just
two states, the remainder of this Introduction briefly reviews
the RRKM approach and then motivates the present contri-
bution by reviewing some recent work which illuminates the
dynamical nature of unimolecular reactions.

For a unimolecular isomerization reaction, RRKM the-
ory assumes the existence of isolated molecule (microcanon-
ical) rate constants k .5 ( E) and k5, ( E) for the forward and
reverse elementary reactions

A-B,
B4

Unless k ;,'» k ;3', or the converse, both reactions must be
considered, as discussed by Chandler,® for example. This
Jeads to the familiar relaxation kinetics expression

(1)

A1) =A, + [4(0} — A4, Jexp( — ki), V)
where

A, = Nky,/k, 3)

kzkAE +k341

and where the fact A(1) + B(#) = const = N for a closed
system has been used. Thus, a given initial displacement of
the A concentration from equilibrium, A(0) — 4, , relaxes to
A, with rate constant k.

*' Present address: Department of Chemistry, Northern [llinois University,
DeKalb, Ilinois 60115,
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The RRKM analysis of the unimolecular reaction rate is
completed by noting the classical phase space formula for
k g, namely

Fls
NY(E)'
where F; is the forward flux of phase points across some
surface dividing phase space into regions associated with
molecular species A and B, and N3 is a measure of the con-
centration of phase points within the A part of phase space.
There are two conditions which must be satisfied for Eq. (4)
to be applicable to a given reaction. First, either a specific
molecular excitation of total energy E must relax on a time
scale short relative to the time scale for chemical reaction so
that the entire phase space consistent with reactant A at total
energy E is filled, or the rate constant of interest is an aver-
age’ of all possible rate constants within some energy range
about E. Second, once a classical phase point crosses the
dividing surface in the direction of products it either never
recrosses the dividing surface (fragmentation reaction) or it
does not recross for a time which is much longer than the
typical vibrational period of either the A or B isomers {iso-
merization reaction). This second condition is the famous
“point of no return” requirement of transition state theories®
such as RRKM theory. Notice that there is no absolute point
of no return for isomerization unless one has an extreme
difference in the time scales & ;' and k ;,'. The dividing
surface is almost always taken 1o be defined by the condition
that some reaction coordinate y be at its critical or transition
state value, y*, which leads to the explicit expressions for the
flux

k",(E) = (4)

Fi, =fdpdx5(5-m5u—y*)&a(p,.) ()
T
and the effective concentration
Ni(E) =J’dpdx S(E - HNBU — ), (6)

where the integrals are over all the molecular phase space, y
is a particular reaction coordinate, p, is the momentum con-
jugate to p, u is the mass associated with the y degree of
freedom, and & is the Heaviside step function which has the

© 1987 Amarican Institute of Physics
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properties (x>0} = I, #(x <0) = 0. An analogous expres-
sion exists for k5, . Equations (4)-{6) reduce to the more
familiar Marcus-Rice rate constant expression,® involving a
sum of states at the transition state and a reactant density of
states, when the numerator and denominator of Eq. (4) are
divided by factors of Planck’s constant A and semiclassical
arguments are used to define the sums and densities of
states.’

There is a substantial body of literature concerned with
those dynamical features of unimolecular reactions that are
inconsistent with the above, simple, form for RRKM theory.
Significant regions of trapped quasiperiodic motion*® have
been noted. for example. Hase and co-workers'®'" intro-
duced a kinetic scheme involving transitions among unde-
fined intramolecular intermediates to phenomenologically
model their classical trajectory results for C,H fragmenta-
tion. Interestingly, recent experiments by Borchardt and
Bauer'” are consistent with a different, but related, intramo-
lecular mechanism. Clearly, both of these studies hint at the
existence of important phase space bottlenecks to reaction.

The intramolecular intermediates noted above may be
thought of as different regions of the molecular phase space,
with a bottleneck separating them. Very recently Davis' ex-
ploited some important developments in nonlinear dynam-
ics'?'"* to define precisely the intramolecular bottlenecks in a
collinear model of vibrational energy redistribution in OCS.
Often. as in Davis’ work, an intramolecular intermediate can
be associated with the temporary trapping of phase points by
partially destroved resonance zones'* and/or the remnants
of particularly resilient tori (which support quasiperiodic
motion). Davis' was also able to calculate a priori the corre-
sponding intramolecular vibrational redistribution rate con-
stants, which is an advance over purely phenomenological
approaches.

Gray. Rice, and Noid'® studied the phase space dynam-
1cs of a T-shaped model for Hel. fragmentation and saw a
variety of nonlinear behavior including strong evidence for
the existence of intramolecular bottlenecks. Subsequently,
Davis and Gray” explicitly calculated some of the intramole-
cular bottlenecks of this model system but, more important-
ly for this paper, discovered a new type of barrier to the flow
of phase points, termed an intermolecular bottleneck.
Whereas intramolecular bottlenecks are associated with en-
ergy transfer within a single chemically identifiable species,
intermolecular bottlenecks are associated with the energy
transfer required for the formation of different chemical spe-
cies. In the case of fragmentation, Davis and Gray® showed
that the exact intermolecular bottleneck had the no-return
property” of a transition state. The calculation of the loca-
tion of the exact intermolecular bottleneck requires dynami-
cal propagation of trajectories; it cannot at present be ob-
tained exactly for systems with three or more degrees of
freedom. However, as noted by Davis and Gray,” the inter-
molecular bottleneck, in the limit of small dynamical cou-
pling, becomes a simple phase space separatrix.'* In particu-
lar, Fig. 21 of Ref. 2 anticipates the isomerization separatrix
structure we will see in this paper. Gray, Rice, and Davis’
were then able to construct a purely statistical theory for
fragmentation. This theory® is identical to RRKM theory

except that the transition state condition is no longer a sim-
ple specification of a critical configurations,® but is a condi-
tion involving the reaction coordirate and momentum in-
ferred from the separatrix approximation to the
intermolecular bottleneck. The theory is particularly useful
for weakly bound systems, such as van der Waals complexes,
where ordinary RRKM theory fails. Additional aspects of
this theory have been discussed by Gray and Rice."”

The existence of permanently trapped quasiperiodic
motion, and temporary trapping associated with classical
noniinear resonances and the remnants of tori, are generic
features of Hamiltonian dynamics.'* DeLeon and Berne,* in
an excellent and thorough study of the phase space dyvnamics
of a two degree of freedom isomerization model, have noted
such phenomena. Their work preceded the recent develop-
ments concerning the influence and nature of intra/intermo-
lecular phase space bottlenecks and one goal of this paper is
to reinterpret some of their results within the new frame-
work. We will show, for example, that although the standard
RRKM theory tends to break down when the total energy
becomes significantly greater than the barrier to isomeriza-
tion, a result usually attributed to a widening of the bottie-
neck. certain intermolecular phase space bottlenecks can
still be defined and a simple rate mechanism coupled with
statistical assumptions can account for much of the observed
behavior.

Section I1 below presents surface of section plots, as well
as standard RRKM theory results, and discusses the phase
space structure of the two well DeLeon-Berne model for
several energies.” Most of our results are new; we look at
higher energies than did DeLeon and Berne and we also offer
some remarks on the influence of resonances on the isomeri-
zation rate. Section I1I rationalizes some of the results of Sec.
ITin terms of phase space bottleneck ideas and introduces a
simple kinetic scheme for describing some features of the
isomerization dynamics. Section IV discusses simple meth-
ods for obtaining the elementary rate constants required in
Sec. I11. Section V concludes by discussing possible exten-
sions, as well as complications, of the methods presented in
this paper.

H. THE DELEON-BERNE ISOMERIZATION MODEL

The DeL eon-Berne model® model consists of an equiva-
lent double well potential, ¥,, coupled to a Morse oscillator
potential. ¥,. Rather than follow the original formulation,
which expressed the Hamiltonian in terms of velocities and
coordinates and numerically integrated Lagrange's equa-
tions of motion to generate trajectories, we prefer to define
canonically conjugate'* momentum-coordinate pairs (p,.p)
and (p, x). The corresponding Hamiltonian is

PZ PI
H="X 42 LV 4V + W , 7
2 om +F +V, +Wyx) {7)
where the potentials are
V,=40"-1) +¢, (8a)
Ve =D, [1 —exp( — Ax))?, (8b)

and
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W=4y1" = 1][1 —exp( — zdx)]. (8c)

Our Hamiltonian is the same as that of DeLeon and Berne*
when y =m =8, D, =10, and ¢, = 1. The potential de-
fined by Eq. (8a) is displayed in Fig. 1. It will be noted that
an energy £ = H > 1 {measured in units of the barrier
height} is required for isomerization to be classically al-
lowed. Since we are uninterested in energies £ > 10 for which
dissociation of the Morse oscillator is allowed, we will con-
centrate attention on energies in the range 1 < E < 10. Ham-
ilton’s equations of motion,

P, o= - 9H y= _6£
y a é‘p_,'
. _gH . GH (%)
P = . x=—
ax ap,

are then solved numerically for various fixed energies and a
vanety of 1nitial conditions to generate classical trajectories
[p, (1)p, (),0(+),x(1) ]. Composite surfaces of section are
constructed by plotting [ y(r),p, ()] each time x(1) passes
through O and p, > 0 for a variety of trajectories. Note that if
[2, (D,p, (1), y().x(1) ] is a trajectory, then Eq. (9) cou-
pled with the potentials in Eq. (8) imply that
[ =2, (1)p, (1), — y(2) x(1)] is also a trajectory, hence the
surface of section has inversion symmetry.

Deleon and Berne studied many different systems de-
fined by specifying different potential coupling parameters z
and 4. We choose to study in detail one particular system,
z=1,A4 = 1.5, as a function of energy. Figures 2(a)-2(e)
show composite surface of section plots for energies
E =102, 1.25, 2, 3, and 6, respectively. Since we will be
discussing the rate constants at all these energies it is essen-
tial to have these surfaces of section for reference. DelLeon
and Berne studied the present potential coupling system for
only one (the lowest) energy so that most of the results pre-
sented here are new.

Figure 2(a), corresponding to E = 1.02, an energy just
2% above the isomerization barner y* = 0, shows very no-
ticeable regions of permanently trapped quasiperiodic mo-
tion on either side of the barrier. Consider, for example, the

¥ <0 side of the barrier. Because of the inversion symmetry
noted for this system, similar remarks will hold for y> 0.
Quasiperiodic trajectories fill out the islands of closed
curves. Trajectories started on any of the central set of closed
curves centered at about yx — 0.7, p, =0, forever evolve on
the corresponding closed curve. On the other hand, trajec-
tories started on either the upper or lower set of closed curves
repeatedly hop from top to bottom island structure, even-
tually filling out two closed curves. This behavior is consis-
tent with the existence of a 2:1 resonance condition'?
between the two frequencies of oscillation,

zajy aa"x! (10)

in the relevant portions of phase space. Actually, by setting
W = 0in Eq. (7), which defines a zero-order Hamiltonian,
it is possible, via determination of the zero-order vibrational
periods which depend on the amount of energy in each oscil-
lator, to predict the importance of the 2:1 resonance in this
case. Note that the 2:1 resonance traps trajectories on one or
the other side of the barrier. Furthermore, the trajectories
starting near one of the 2:1 island structures may lie in the
stochastic layer associated with the destruction of the separ-
atrix'® between the two island structures. The existence of
such a stochastic layer, as found, for example, in the studies
of T-shaped Hel, fragmentation,'® can also hinder reaction
if there are significant bottlenecks between this layer and the
remaining parts of phase space. Thus the mere fact that a 2:1

resonance condition exists is not at all sufficient to guarantee
resonance enhancement of an isomerization reaction, as
some work might imply.'* Quite the contrary, a resonance
can also hinder isomerization and one can only be certain of
the true role of resonances by inspection of actual classical
trajectories and, whenever possible, surfaces of section. The
chaotic splotch of pointsin Fig. 2(a) is due to a single trajec-
tory wandering throughout the phase space where quasiper-
iodic motion does not exist; such trajectories are responsible
for meaningful classical isomerization. Finally, we note that
at this energy (E = 1.02) there is only a small configuration
space bottleneck at y = 0. The configuration space bottle-
neck should not be confused with the phase space bottle-
necks which are the primary focus of this paper. By configu-
ration space bottleneck we mean the surface defined by the
condition y = 0. On the surface of section this bottleneck
will be a straight line defined by y = O and all momentap, up
1o the energy conservation limit. Since chaotic trajectories
can take a long time to pass through such a small configura-

tion space bottleneck, and there can be severe trapping by

the 2:1 stochastic layer, one observes relatively long trapping

times at this energy and, therefore, a rate constant consistent

with Eqs. (1) and (2) exists.

Consider, now, the results for E = 1.25 plotted in Fig.
2(b). It will be noted that the proportion of quasiperiodic
motion has decreased (Table I, discussed later in this sec-
tion, quantifies such observations). The standard RRKM
theory configuration space bottleneck has also considerably
widened. Although reduction of the amount of quasiperio-
dic motion can imply an increase in the rate of energy ex-
change, which is in agreement with one of the assumptions of
RRKM theory, the widening of the configuration space
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FIG. 2. Surfaces of section for the DeLeon-Berne system withz = 1and 4 = 1.5. (a) E= 1.02, (b) E = 1.25, (VE=2 (d)E=3and (e) E=6.

bottleneck leads to more trajectories recrossing the transi-
tion state on a time scale comparable to or even smalier than
the vibrational periods of the isomers. This violation of the
noreturn concept leads one to question the existence of a rate
scheme such as suggested by Eqs. (1) and (2). DeLeon and
Berne,* in fact, noted that the time-dependent reactive flux
function defined by Chandler® starts to exhibit increasingly
severe oscillations as E is increased above the barrier; such

oscillations are symptomatic of a breakdown of the rate
scheme of Egs. (1) and (2). Figures 2(c) and 2(d) show a
continuation of the trends observed between Figs. 2(a) and
2(b). For this range of increase in energy the proportion of
quasiperiodic motion decreases while the configuration
space bottleneck increases in size. Figure 2(e), correspond-
ing to E = 6, shows an interesting break in the trend of de-
creasing quasiperiodic motion. Significant islands of quasi-

J. Chem. Phys., Vol. 86, No. 4, 15 February 1987



2024 _ S K. Gray and S. A. Rice: Isomerization reactions

periodic motion have actually grown in; these correspond to
another 2:1 resonance consistent with Eq. (10). The 2:1 res-
onance at the low energy is due to coupling between a y
vibration in one of the wells {zero-order motion below the
barrier) and an x degree of freedom vibration. The new 2:]
resonance in Fig. 2(e) is due to coupling between a circulat-
ing y degree of freedom motion (zero-order motion above
the barrier) and an x degree of freedom vibration, which
implies that trajectories perpetually hop from the upper
right-hand side island structure to the lower left-hand side
island structure. Note that such resonant motion also occurs
near the edges of energy contour at £ = 2and 3in Figs. 2(¢)
and 2(d), but to a much lesser extent than at £ = 6. In one
sense this resonance leads to enhancement of the isomeriza-
tion rate on a time scale comparable to or less than the period
of the resonance. However, unless there is some means of
stabilizing trajectories that reach the product side (e.g., re-
moval of energy via additional degrees of freedom or solvent
interactions) then for a time scale greater than the 2:1 reso-
nance period the effect of the resonance on the rate constant
cancels out.

To further discuss the validity of the simple RRKM
analysis of isomerization reaction dynamics, we will exam-
ine the temporal behavior of the fraction of A systems,

A = fdx dp, dydp,p(x,p, yp, )00 —»,)

=60 —y.),- (11)
The symbol { on A is to remind the reader thar the standard
RRKM theory definition of isomer A has been employed,
namely that a phase point counts as an A point at time ¢ if the
reaction coordinate y, < y*. p is any appropriate normalized
distribution. The integralin Eq. (11) is over all initial condi-
tions {x,p..»p, 1. Equation (11) is easily related to the
Chandler reactive flux function® employed by DeLeon and
Berne.* Choose an 1nitial distribution such that all initial
points are in A:

pxXp, VD) =p(x,p, 30, )0 — y). (12)

1t is then easy to see that 4 *(r) is a time correlation function
with respect to the ensemble p ,

AN = (00 ~pOY =),
Microscopic reversibility implies that

+

- == {80 - O — )
7 (807 = »0GF —y)),,
= (80 — OB —y_.)),,
= (807 — y)8(F — ), (13)
When written as a phase space average, Eq. (16) assumes
the form
_dain
dt

= fdx dp, dydp, p.60" -y, )‘:—’50” - ¥

(14)
)

e 4§ dx{2m[E — V(xp =p)]}'""

which is essentially the reactive flux function of Chandler.

Figures 3(a)-3(e) display A4 * (1) for energies consistent
with Fig. 2. In all cases, for simplicity, the initial ensembles
were random samplings on the A-half of the surface of sec-
tion. Thus, ¥ = 1000 points (y, p,, ) were selected random-
ly on the y <y = O portion of the (y, } plane, and for each
such point we set x, = 0, withp,, > O chosen by energy con-
servation. Equation (14) becomes

A I(t);as)\"'; 80 — 5., ).

Figure 3(a) shows 4 }(1) for E = 1.02. The solid, some-
what jagged, curve is the result of numerically integrating
1000 trajectories with initial conditions defined as described
above. At first glance there appears to be a glaring deviation
from the standard RRKM theory prediction, Eq. (4). If one
assumes any (energy allowed) point in phase space is on a
trajectory which can lead to isomerization, then the expect-
ed equilibrium fraction 4, = 1/2if the initial sample is char-
acterized by 4(0) = 1. However, Fig. 3(a) shows that the A
population tends to a value much greater than 1/2. In fact,
this is a trivial consequence of there being certain quasiperio-
dic trajectories in the A part of phase space that cannot lead
to isomerization. RRKM theory, following DeLeon and
Berne,! is easily modified to take account of these quasiper-
iodic trajectories. The dashed curve in Fig. 3(a) is the func-
tion

ATRRKMGY = 31+ fhe) + 31 — fhedexp( — k1),

(15)
where [y is the fraction of quasiperiodic trajectories
trapped on orte side or the other of y = y¥ on the surface of
section and £ ' is a modified RRKM rate constant. The modi-
fication to the rate constant, introduced by Deleon and
Berne,* accounts for the fact that if quasiperiodic motion
exists in the phase space it must be subtracted out of the
RRKM theory formmulas. Equation (15) is just an extension
of Eq. (2), where a constant term for the trapped quasiperio-
dic fraction, f};, has been added and 4(0) and 4, have been
replaced by values appropriate to the stochastic part of the A
phase space, 1 — fip and {(1 — fi; ), respectively. The rate
constant k ' in Eq. (15) is given by

ok
(1—f&)
2k
(1 "f(:)P )
_ 2,
(1= fheINY
where k,k ,5.F %, and N}, are given by Egs. (3)-(6) and the
fact that k,, = k,, for an equivalent double well potential

has been used. Equation (16) can be further simplified, us-
ing the standard rules of delta function integration,’ to read

(16)

T —for) Sdx dydp, (2m/[E — p2/2u - V(xy) |}

(17)
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FIG. 3. Fraction of A systems. Eq. ( 14), defined in the standard RRKM manner. Solid lines are the rasuit of propagating 1000 trajectories in time and the
dashed curves are the RRKM predictions suitably modified for the presence of quasiperiodic motion. (a) E= 1,02, (b) E=1.25,(c) £ =2, (d) £ = 3,and

(&YE=6. )

Table I lists the fraction of quasiperiodic trajectories trapped
on one side of the surface of section, the standard RRKM
theory rate constant k, and the quasiperiodic motion cor-
rected rate constant k' for the energies of interest. Table |
also lists the total fraction of quasiperiodic motion, includ-
ing such motion as the 2:1 resonance at E = 6 discussed in
Sec. II, which is not trapped on one side or the other of

y=y*' As is evident from Fig. 3(a), Eq. (15) is indeed a
reasonable description of the behavior of the double well
system when £ = 1.02. DeLeon and Berne* also examined
this particular system and energy and, on the basis of a tra-
Jectory approximation to the reactive flux function, also ob-
served approximate exponential decay. However, the rate
constant inferred from the reactive flux was about a factor of
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TABLE 1. RRKM theory data for DeLeon-Berne system with 2= 1,
A =15

E Fip® e T K
1.02 0.57 0.57 0.0075 0.017
1.28 0.24 0.24 0.073 0.096
2.00 0.099 0.156 0.196 0.217
3.00 0.058 0.169 0.280 0.297
6.00 0.038 0.269 0.405 0.421

'fé,,, 13 an estimate of the fraction of quasiperiodic motion trapped on one
side or the other of the surface of section. /35 is the total fraction of quasi-

periodic motion. including quasiperiodic trajectories that are not trapped
on one side

"Standard RRKM theory relaxation rates.

* Quasipenodic correcied RRKM theory relaxation rates, Eq. (20).

2 lower than from RRKM theory, which is worse agreement
than our Fig. 2(a) would suggest. There are several possible
sources for this discrepancy. First, judging from the 259
error bars on DeLeon and Berne's rate constant, their analy-
sis may simply have been a little more approximate than
ours. Second. the Del.eon and Berne rate constant was prob-
ably inferred from a fit to the long time (¢ > 200) reactive
flux so that some long time correlations may be more evident
in their result. Indeed. we expect that at such low energies
intramolecular bottlenecks'~ can lead to lower rate con-
stants. Nonetheless, we find here that RRKM theory, suit-
ably modified for the existence of some quasiperiodic mo-
tion, and without adjustable parameters, describes
accurately the entire 0<7< 200 behavior of the reactant
population,

Figure 3(b), corresponding to £ = 1.25, shows more
serious discrepancies between the quasiperiodic fraction cor-
rected RRKM theory and the trajectory results [note the
vertical axis scale is different from that in Fig. 3(a)]. In
particular. only the short and long time limits seem ade-
quately described by Eq. (15). The agreement in these two
limits is not surprising. In the short time limit there are no
trajectory recrossings of the dividing surface, so one expects
Eqg. (15) to be exact. One also expects the trajectory results
to oscillate about the long time limit of Eq. (15), and the
degree of oscillation is a measure of the adequacy of the as-
sumed rate mechanism. The main point, however, is that the
simple RRKM-type expression, Eq. (15), i$ not a very good
description of the trajectory results when the energy is in-
creased 10 a value 25% above the classical barrier. Figure
3(c), corresponding 10 E = 2, shows oscillations that are
particularly severe for intermediate values of the time. Fig-
ures 3(d) and 3(e), corresponding to E = 3 and 6, respec-
tively, show increasingly dominant oscillations for all time.
The E = 6 result is particularly striking in that even in the
very long time limit very large oscillations occur, implying
that simple RRKM theory, even modified 10 account for the
trapped quasiperiodic trajectories, cannot easily account for
the observed behavior. Actually, the large amplitude long
time oscillations when E = 6 are due 1o a large portion of the
initial sample lying in the 2:1 resonance zone discussed
above in relation to Fig. 2(e). One expects, in general, that
an equation such as Eq. (15) would at best only describe the
average of the oscillations.

S. K. Gray and 8. A. Rice Isomerization reactions
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FIG. 4. Phase plane trajectories for the zero-order Hamilionian, Eq (21).
The dashed curve is the separatria.

ill. AN ALTERNATIVE STATISTICAL THEORY FOR
UNIMOLECULAR i{SOMERIZATION

In Sec. IT we showed that the standard form for RRKM
theory, even when the presence of trapped quasiperiodic mo-
tion is accounted for, does not adequately describe the De-
Leon-Berne isomerization model as energy is increased sig-
nificantly above the classical barrier height. Section Il A
below motivates an allernative description of isomerization
dynamics in phase space that involves three, as opposed 1o
two, different regions. Section 111 B outlines more technical
details associated with the actual division of phase space and
Sec. 111 C presents numerical results that verify these ideas
for the DeLeon-Berne model.

A. A three-state isomerization reaction picture

Figure 4 displays phase space trajectories for the Hamii-
tonian

(18)

where V| is the double well potential of Eq. (8a) and u = 8
as before. Notice that there are three types of trajectories: A-
type trajectories are bound vibrations to the left of the barrier
at y = »* = 0 and are indicated by closed concentric curves
centered on y = — 27 ''"; B-type trajectories are vibrations
on the right-hand side of the barrier centered on y =2~ "%,
and C-type trajectories, which forever circulate between the
left and right parts of the phase plane and envelope the A and
B families of trajectories. A separatrix S is drawn in as a
dashed curve. The separatrix is a special phase space struc-
ture, emanating from the fixed point at y =p, = 0, that ri-
gorously separates the three different types of motion.
When classical mechanical motion is integrable. ie.,
when F constants of the motion exist in a 2F-dimensional
phase space, meaningful isomerization does not exist. Note
that all one-dimensional conservative Hamiltonian systems
such as Eq. (18) are integrable. We do not consider C-type
(circulating) trajectories to lead to meaningful isomeriza-
tion because the species A and B do not have vibrational
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identities during the course of a C trajectory. Only through
the introduction of a nonintegrable coupling, W, to another
degree of freedom, as in Eq. (7), will one be able to have
classical transitions between the different types of classical
motion.

If one considers the two degree of freedom Hamiltonian
of Eq. (7} and sets W = 0, the surfaces of section as defined
in the previous section will all look exactly like Fig. 4. If one
introduces a nonzero, nonintegrable, perturbation W, one
still expects some of the structure of Fig. 4 to remain. The
perturbation W has the effect of creating the classical equiva-
lent of superposition states: some trajectories will appear to
display, as time goes on, features consistent with A-type tra-
jectories, then C-type trajectories, then possibly B-type tra-
jectories, and so on, in complicated sequences. In the lan-
guage of Reinhardt and co-workers,'” one is observing
transitions from one type of vague torus to another. Quan-
tum mechanically, of course, one can have superposition
states without there being a nonintegrable coupling term.
For example, one can imagine a one-dimensional problem
with an A-type wave packet corresponding to mean energy
below the classical barrier that subsequently tunnels to form
a B-type wave packet. Such differences between classical and
quantum mechanics are very important, but are not the sub-
ject of the present paper. Figure 5 illustrates an occupancy
sequence for a typical trajectory of the full Hamiltonian, Eq.
(7), when E = 2. In Fig. 5 we mark a 1 each time the trajec-
tory is in the A part of phase space, a 2 if it is in the B part of
phase space and a 3 if it is in the C part of phase space. The
way we decide which region the trajectory is in at a given
time ¢ is to examine its (y,p, ) point and determine whether
or not it lies within the appropniate separatrix branches. The
explicit construction of the separatrix branches for the full
problem is a little more difficult than for the zero-order prob-
lem discussed above and is outlined in detail in Sec. II1 B
following. The average period of vibration in the other (x)
degree of freedom is about three time units, so Fig. 5 shows
that there can be very long sequences where the trajectory is

n

Dccupancy
S}
1

0 * T T 1 " T
3] S0 100 150 200
Tima

FIG. 5. Occupa;ion sequence for an arbitrary trajectory of the full system.
;-\ | on the vertical axis implies the system is in A, a 2 implies B, and a 3
implies C. The trajectory displayed has £ = 2.

inside the A, B, or C parts of phase space; this figure lends
support to the notion that the trajectory undergoes transi-
tions among A, B, and C types of motion.

Actually, it is worthwhile to emphasize that the most
correct partitioning of the phase space, following, e.g., Davis
and Gray,? involves introducing subdomains within the
main A, B, and C regions corresponding to intramolecular
bottlenecks and other dynamical features within these re-
gions. For example, the trapping effects associated with ei-
ther of the 2:1 resonance zones discussed in Sec. II can then
be accounted for. The present notion of just three phase
space regions is an idealization and simplification of the full
description. The significance of this partitioning, in our
opinion, is that it is the simplest and most natural description
of the phase space because it is based on the phase space
structure of a generic uncoupled Hamiltonian for a system
which has two isomers.

The idea behind the alternative statistical approach is
that, on average, the occupancy sequence of ensembles of
trajectories can be better described by the three-state rate
mechanism,

A= — KyoA + ke, G, {19a)
B‘—_ —kBCB+kCBC! (lgb)
C=kycA+kgeB— (key + k)G, (19¢)

than by the simpler two-state mechanism of Eq. (1) and (2).
Dynamical and statistical methods for estimating the re-
quired elementary rate constants will be discussed in Secs.
IIN C and IV.

Equations (19) admit analytical solution. The case of
interest to us is that of a symmetric double well potential in
which k- = kg and ko, = k. If one assumes the nor-
malisation A+ B+ C=1, then the substitution
C=1—A4— B allows Eqs. (19a) and (19b) to be easily
solved by standard methods.?® We readily find the particular

solution corresponding to the initial condition
A(0) = 1,B{0) = C(0) =0tobe
A = (J—A)e " +ie™ ™ + A4,
B(I)=(1—B,)e""—§e"*‘+ﬂ,. (20)
City=1-A4 —B),
where
A, =B, =k /A,
Ay =k, + 2kc,, 2n
A=k .

Other multistate reaction dynamics models have been pro-
posed in the literature.2!? The difference here is that we will
employ, in Secs. III C and IV, ideas and methods from non-
linear dynamics to define the corresponding states and ele-
mentary rate constants,

B. Generation of the separatrix and the elementary rate
constants

In this paper we define the separatrix in two ways. In
this subsection we discuss the “‘exact” separatrix, the com-
putation of which requires the propagation of classical tra-
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jectories. Readers who wish to ignore these details may skip
to the last three paragraphs of this subsection for a discus-
sion of essential properties, or to Sec. IV where a more prac-
tical—but approximate—separatrix is defined.

The methods employed 10 generate the exact separatrix
(or intermolecular bottleneck ) that divides phase space into
regions A, B, and C, and the relevant rate constants & .., etc.,
that occur in Egs. (19), are similar to those employed by
Davis and Gray- for a fragmentation problem. It should also
be noted that the methods used by Davis and Gray were in
turn based on earlier work by Channon and Lebowitz** for a
particular nonlinear mapping problem. The case of isomeri-
zation is actvally much closer to the problem studied by
Channon and Lebowitz. We feel it useful, however, 1o give a
careful discussion of the explicit method used since there are
a number of technical features that are different than in the
above cited references. Also, the properties of the isomeriza-
tion separatrix are somewhat different from the fragmenta-
tion separatrix and deserve to be carefully outlined.

The dynamics in the reactive y — p, phase plane of the
full phase space is determined by the surface of section map-

pingl5
Y1 = Ty(.VA-P,-A ),
Py = Tp, FiPu ).

Given some point (p,,p,, ) on a surface of section like one of
those discussed in Sec. 11, the next time the corresponding
trajectory passes through the surface of section the point it
hits will be (¥, . .9, -, 1 ), determined by the smooth con-
tinuous mapping functions 7, and T, in Eq. (22).

The construction of the full separatrix involves generat-
ing the global stable and unstable manifolds of a relevant
fixed point of the mapping given by Eq. (22), and finding
those that separate the two isomer regions. A fixed point
{y*,p?) of the mapping is a perodic classical trajectory
whose surface of section intersections satisfy

y»=T,0%),

R =T,0°p0
The “relevant™ fixed point must be unstable and its mani-
folds must be such that appropriate unions of portions of
them generate the desired separatrix structure. For a general
problem it is usually necessary to search, via Newton-Raph-
son or other such procedure, to find the fixed poims.l Fur-
thermore, the desired separatrix structure is one that encom-
passes most or ali of the relevant intramolecular dynamics in
the two isomer halves of phase space and some trial and error
may be involved in finding the appropriate fixed point. How-
ever, with the DeLeon-Berne model the symmetry is such
that y* = p* = 0 is always a fixed point and we have found
empirically that it generates suitable separatrices.

Linearization of Eq. (22) about the fixed point of Eq.
(23) yields

(22)

(23)

AT, .| = AAT,, (24a)
where
—_ ")
ar, = | 277 ] (24b)
(p_vk _py)
and

(5).G)

ay /- c?p, .

A= (BT,,,. ) (aT” ) . (24c)
dy /-\dp, /.

The local dynamical behavior about the fixed point is
determined by the eigenvalues and eigenvectors of A.'%%*
Since the relevant fixed point is unstable, all the matrix ele-
ments are real. In practice the required derivatives in Eg.
(24c) are determined numerically by propagating addi-
tional trajectories on the surface of section in the vicinity of
(¥*#7) because, of course, 7, and T, are not known ana-
Iytically. Let ¥, and ¥, denote the two eigenvectors of A.
Positive and negative multiples of these eigenvectors then
determine four lines emanating from and forming an X at the
fixed point. We take ¥, to be an eigenvector with positive
components. One global manifold, which is termed the un-
stable global manifold, is formed using ¥, as follows. One
takes a small step away from the fixed point along ¥,. This
point is propagated once on the surface of section to deter-
mine another point near it and still essentially on ¥, because
the original step away was small. A line of points is defined
by connecting the initial step and its propagated point with a
straight line and choosing a suitable number (in practice 100
or 200) of evenly spaced points along the line. Each such
point is propagated in time on the surface of section. At the
end of each propagation step & curve is drawn through the
100 or 200 propagated points by connecting the point that
was originally the last point on the initial line (i.e., originally
furthest from the fixed point) to the point that was originally
next to last on the original line and so on. The result is a good
approximation to the global unstable manifold: if one takes
any point on this structure it will map to another point on it
as time goes on. The manifold is called unstable because
points on it move asymptotically towards the fixed point
only when integrated backward in time. Figure 6(a) shows
the resulting giobal unstabie manifold after just a few propa-
gation steps on the surface of section. Further iterations
yield an ever more convoluted structure.™'*!”

A stable manifold may be formed from ¥,, whose com-
ponents may be taken to be positive in the y direction and
negative in the p, direction. By definition, points on the sta-
ble manifold always approach the fixed point when integrat-
ed forward in time, the opposite situation compared to the
unstable manifold, so it is necessary to integrate the equa-
tions of motion backward in time to generate it. Thisis easily
accomplished by using a negative time step in the numerical
integrator used. Following a procedure identical to that in
the above paragraph, but with a negative time step in the
integrator and W, instead of ¥, . one generates the stable
manifold displayed in Fig. 6(b) as a dashed curve. In Fig.
6(b) we have also superimposed on the stable manifold the
unstable manifold of Fig. 6(a). We noted carlier that there
are four directions associated with a linear analysis about the
fixed point, corresponding to positive and negative multiples
of the eigenvectors ¥, and ¥, . Two other global stable and
unstable manifolds, associated with — ¥, and — ¥, may
easily be found by inverting the two manifolds in Fig. 6{b)
about the fixed point origin.
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FIG. 6. Construction of exact separatrix on the surface of saction for E = 2.
{a} The unstable manifold, (b) superposition of the siable (dashed) and
unstable (solid) manifolds, (¢) the exact separatrix, which is & union of
portions of the above manifoids. Note by inversion symmetry there is a re-
iated structure for y = 0. (d) Turnstiles superimposed on the separatrix.

The scparatrix is obtained by taking & union of portions
of the two manifolds shown in Fig. 6(b). One such union is
shown in Fig. 6(c), along with its inverted partner. Close
inspection of Fig. 6(c) shows cusps where the two manifold
portions were united. The union we chose led to a separatrix
that appears similar to the zero-order separatrix of Fig. 4.
This is not necessary, as discussed in Ref 2 in more detail.
The separatrix in Fig. 6(c) has some very useful properties.
If one imagines turning off the coupling W the separatrix
structure of Fig. 6(c) becomes the zero-order separatrix.
The separatrix as defined above has the property that phase
points within its branches can only enter or exit it through
certain localized regions called turnstiles.”* For example,
Fig. 6(d) shows the result of propagating the entire separa-
trix in Fig. 6(c) one step on the surface of section. Note that
the superposition of Figs. 6(c} and 6(d) defines lobes. Phase
space area is seen to leave the inside of the separatrix only
through the small areas labeled +, and phase space area
enters the separatrix only through the small areas labeled

— . Each + / — pairin Fig. 6(d) is a turnstile.

There is another property of the separatrix for isomeri-
zation worth mentioning. Consider a phase point that maps
out of one of the separatrix lobes. For the sake of argument
let us imagine a point exits the B lobe (right-most lobe)
throughthe + part of the turnstile on the lower right of Fig.
6(d). Notice it is necessarily in region C and cannot directly
hop into A. Thus only after one or more time steps in region
C might a phase point that exited region B either enter into
region A (viathe — part of the turnstile in the upper left) or
return to region B. Unlike the fragmentation separatrix,
there is no absolute point of no return here: a point leaving
one region can always return to it later on.

The elementary rate constants required by Eq. (19) are
easily found if the separatrix has been constructed. Let F
be the area of the outgoing + part of the turnstile for the A-
separatrix lobe. This is the phase space area that leaves A per
iteration on the surface of section. Thus the rate constant for
A -Cis

F! &
S (25)
T A 2n

where A4 ' is the area of the A separatrix lobe ( with any quasi-
periodic area subtracted out) and 27/ @ is the average time
between successive surface of section iterations. In the pres-
ent equivalent double well problem, ky = k. Similarly,
the rate constant for C— A transitions is

Fr @
ke, =22, 26)
“T 2 (

where C ' is the area of region C less any quasiperiodic area in
that region. Conservation of phase space arez implies
F; =F}, and for an equivalent double well potential
kep = ke,. All the relevant areas may be estimated from
figures such as Fig. 6(d) by, e.g., graphical means or numeri-
cal integration. Table I lists the relevant quantities and ele-
mentary rate constants for the DeLeon-Berne model with
E=1252 3 andé6.

A final comment is in order about the separatrix dis-
cussed in this section; it was constructed for the surface of
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TABLE Il Elementary rate constants and related data.

E 2njw f& F; A C Koo kea
125 265 031 025 364 338 00259 0.027%
200 272 018 054 412 970 00481 0.0205
300 284 016 069 424 1507 00572 0.0161
600 330 017 115 348 2572 00999 0.0140

section mapping [Eq. (22) ). Such a surface of section corre-
sponds to looking at the y and p, values each time x and p,
pass through a particular phase of vibration. Usually one
chooses the phase such that x = Oand p, > 0. Let this phase
be denoted by g, = ¢**. In general one can construct a dif-
ferent surface of section for any fixed x value and sign choice
for p, which corresponds, say, to some phase value
0<g, <2m. Thus the surface of section is really parame-
trized by ¢, . One could construct separatrices as a function
of ¢, and the most precise separatrix criterion is really some
requirement

S{yp,.q,) =0 2N

Thus, given any arbitrary point (x,,p, .p, }, Eq. (27) should
be used to determine whether or not the point is inside re-
gions A, B, or C. Itis probably clear that this involves a lot of
work because at each energy one must then carry out the
separatrix determination procedure outlined above for & se-
ries of ¢, values in order to determine some approximation
t0S(¥,p, .4, )- We do not carry out this procedure, but rather
approximate

S, 19, ) =SGp, 4. = 457)- (28)
There are three reasons why this approximation is reasona-
ble. First, we have found it to always be the case that the
fluxesin Table 11 are invarianttog, . Thus k., kg, etc., do
not depend strongly on g, and are properties that can be
obtained from any portion, such as g, = ¢, of the full se-
paratrix structure. Second, while the exact shape of the se-
paratrix is a function of g,, we have found the separatrix to
be qualitatively the same for most g, values. Finally, if there
is a reasonable time scale separation (x motion faster than y
motion) the approximation [Eq. (28)] should lead to high
frequency oscillations that are not relevant.,

C. Application to the DelLeon-Berne model

The theory of Secs. IIT A and 111 B is now applied to the
Deleon-Berne system (withz=1andA = 1.5as before).
To compare with the three-state model predictions we carry
out trajectory calculations. For each energy we take an ini-
tial ensemble of 1000 points randomly distributed within the
A lobe of the separatrix of Sec. 111 B and otherwise on the
surface of section such that x = 0 and p, > 0. Each such
point is propagated in time, and trajectory based 4 (1), B(1),
and C(7) populations are obtained by determining, at a given
time 7, the fraction of trajectories within the three parts of
phase space. For ease of calculation we have assumed the
approximation [Eq. (28)], so that the above fractions are
determined solely from the y and p, variables, although in
principle the x and p, variables should also enter into the
determination through their phase g, .

S. K. Gray and S. A. Rice: Isomerization reactions

The ensembles defined above will naturally contain a
certain fraction f&p of phase points lying on quasipeniodic
islands within A; the three-state model is easily modified to
allow for this behavior. One need only replace Eq. (20) with

A =far + U —fe)[(J—A4.)e +de~ "' + 4.},
B()=(1—fé)[(3—B.)e "=l "'+ B,],

C(ry=1—A(1) - B(1). (29)

Alternatively, of course, one could use the original Eq. (20)
but compare its predictions with renormalized trajectory re-
sults where the quasiperiodic fraction has been subtracted
out.

Figures 7(a)-7(d) show the three-state statistical mod-
el results (dashed line) and trajectory ensemble results (sol-
id line). Notice first that oscillations in the trajectory results
are not as severe as the comparable results when only two
states were assumed to exist {Fig. 3). It might be argued,
however, that if one somehow averages over the oscillations
in Fig. 3 that RRKM theory would lead to about the same
kind of agreement with the trajectory results as is observed in
Fig. 4 for our three-state model. While we have not explicitly
made this calculation, we believe this to be the case, with
perhaps the occasional discrepancy as we will note in the
next paragraph. Adopting the point of view of an experimen-
tal kineticist, however, we have still shown the three-state
mechanism 1o be a viable alternative to the two-state one.

A disadvantage of a multistate theory is that no single
number characterizes the rate of decay or lifetime of a com-
plex. An arbitrary, but instructive, lifetime definition is the
time it takes for the initial relative excitation to decay by a
factor of 1/¢, denoted 7,

Alr. Yy — At =
(7.} ( -i-uc):i. (30)
A0 —All= + =) e

If just a single exponential decay constant exists, as in the
case of the simplest RRKM model, then 7, ' = k. Otherwise
we simply interpret , as a rough measure of the lifetime of
excited A complexes. 7, can be readily determined from our
trajectory data and model formulas for A(¢}. The first two
columns of Table I11 compare the trajectory and three-state
mode) values of 7,. Table IT1 shows that our model generally
provides a reasonable approximation to the trajectory life-
time, predicting between 1.4-2 times the observed trajectory
values. We also show in Table I1I the two individual life-
times, A ' and A ; ', that enter into Eq. (20). As expected,
the values of 7, tend 1o lie between these two individual life-
times, with the difference between 4 [ ' and 4 ;' not being
large enough for the longer lifetime to dominate. We can also
estimate r, from the two-state trajectory ensemble results
and corresponding RRKM model predictions, as given by

Egs. (11) and (15). For E = 1.25 we obtain 7, = 20 from

the trajectory results and r, = 10 from Eq. (15). This con-

firms our expectations that the RRKM model can overesti-

mate the rate constant {underestimate 7, ), and that because

many initial points lie within the A lobe of the separatrix
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FIG. 7. Fraction of A, B, and C populations as a function of time inferred
from propagating 1000 trajectories (solid}, along with theoretical predic-
tions based on Eq. (29) with rate constants from Table II. (a) £ =1.25,
ME=2(0)E=)and (d) E=6.

TABLE III. Approximate lifetimes 7, and related data.

Trajectory
E ensembleresults Eq (3004 '= (ko + 2k, ) A7 =k ;)
1.25 21 L] 12 ki)
2.00 I 17 11 21
3.00 7 15 11 17
6.00 6 9 L] 10

{even for the two-state model calculation ) the two-state tra-

Jectory lifetime is closer to the three-state lifetime in Table
III than is the RRKM theory prediction. For the higher
energies a precise determination of r, from the two-state
trejectory results is a little more difficult due to the oscilla-
tions in Fig. 3. However, Eq. (15), which is roughly the
average of the trajectory results, predicts lifetimes consis-
tently 2-2.5 tirnes smaller than those in Table IEI, which is
still consistent with our interpretation above. While the
three-state model can thus be slightly more accurate than the
two-state RRKM model, it must be said that the differences
are more subtle than in the case of van der Waals molecule
fragmemation,z'J where very dramatic differences were ob-
served. The point of these caiculations is really to demon-
strate that our three-state model is a useful way to concep-
tualize isomerization dynamics. Indeed, in the following two
paragraphs we wish to explicitly point out how the simple
three-state theory does omit certain important dynamical
features.

Despite the success of the three-state model in describ-
ing certain features of the observed dynamics, inspection of
Table ITI and Fig. 7 shows that the model is not perfect. For
example. the A population tends to decrease somewhat more
quickly than the statistical prediction. We believe this is
probably due to the existence of a direct component? in the
dynamics: a portion of the A part of phase space tends to
leave quickly before it has time to equilibrate, in violation of
our statistical assumption. Therefore C, and a little later B,
tend to gain more population than the statistical model pre-
dicts. Another discrepancy noticeable from Fig. 7 is that the
trajectory results do not quite reach the predicted asympto-
tic values, particularly for the case shown in Fig. 7(c). We
believe this to be merely an artifact due to slight errors in our
estimates of the relevant areas.

A more serious difficulty in the three-state model is that
for some systems it may not be possible to construct an exact
separatrix as defined in Sec. III B. This does not prevent the
construction of certain approximate separatrices as dis-
cussed in Sec. IV, and we still believe that this latter ap-
proach will prove to be very useful, especially since it is also
much easier. Nonetheless, we were unable to obtain an exact
separatrix for E = 1.02 because the manifolds of Sec. II1 B
became entwined so quickly that no sensible appearing se-
paratrix structure could be constructed. We note that at this
energy, just 2% above the classical barrier height, the stan-
dard RRKM theory (appropriately modified for quasiperio-
dic motion) is adequate for the time range O < ¢ < 200. There
may also be cases where intramolecular bottlenecks should
be included. Unlike fragmentation, such effects can occur
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both inside and outside the separatrin. Indeed, even at high
energies a correct model of the phase space dynamics would
include trapping effects that occur in region C due to reso-
nances such as the 2:] resonance at E = 6.

In summary, we have presented a three state model of
isomerization dynamics that, while certainly not a complete
description of the dynamics, is at least a plausible and physi-
cally appealing analysis that can be better than ordinary
RRKM theory, particularly at energies noticeably above the
barrier.

IV. APPROXIMATE METHODS FOR DETERMINING THE
SEPARATRIX AND ELEMENTARY RATE CONSTANTS

The theory outlined in Sec. [II makes statistical assump-
tions with regard to the behavior of phase points within the
two isomer regions A and B, and the intermediate or circu-
lating region C of phase space. However, the construction of
the surface that separates these regions, the separatrix sur-
face, involves considerable calculation. For this reason the
theory of Sec. I1! is really of more pedagogical than practical
use. It is possible to develop a completely statistical theory of
the elementary rate constants, involving no dynamical cal-
culations. This theory is easy to apply and may be thought of
as an application of our alternative version of RRKM the-
ory>!'” to unimolecular isomerization.

In the spirit of the standard RRKM theory one defines
the required elementary rate constants to be

Fyc
k.. = (3
AC N,q
and
ke = Fau | (32)
Nc

etc., as required by the problem at hand. F ¢ is the forward
flux of phase points from region A into region C and F, is
the corresponding flux from C into A. Generally,
F,c = Fc,, and we have

F.c =J.dp dx 5(E — H)S,6(S,), (33)
which is a generalization of Eq. (7) to correspond to the Aux
across an arbitrary phase space surface

S, (px)=0 (34)

defining region A. S, in Eq. (33) is a time derivative which
can be easily evaluated via a Poisson Bracket™'® relation.
The concentrations N, and N in Eqs. (31) and (32) are
defined by expressions such as

N, =fdpdx S(E— H)6(~S,), (35)

where it is assumed that if §, <0 a phase point is inside A.

Equations (31)-(35) could be applied using the “ex-
act” separatrix surface of Sec. 1I1. However these equations
can also be used 1o obtain more approximate, but much easi-
er to evaluate, expressions. For example, the zero-order
Hamiltonian in the reactive degree of freedom, Eq. (18), can
be used to approximate the separatrix. One then has, for
y<I,

5. K. Gray and S. A. Rice: isomarization reactions

1A
2u
approximating the A lobe of the separatrix, along with an
analogous expression for y»)* defining the B lobe. ¢, in Eq.
(36) is the isomerization barrier height. Insertion of Eq.
(36) into Eq. (33) leads, following some standard manipu-
lations,>'” to

F.c =dejdy8(y‘ -»

SA= -{-Vy—€,=0, (36)

e g )7 2,

E—e,—V+V, &

{37)

Notice Eq. (37) is a straightforward two-dimensional inte-
gral involving the double well potential ¥, and the full po-
tential F(x,y), which can be easily evaluated numerically or,
if desired, further approximated analytically."” In the pres-
ent application we evaluate Eq. (37) numerically with a
trapezoidal rule procedure.

It is also easy to see that

N, = [ dp, dxdy 60% — )

172
xRe(z—m) 6(-S,) (38)
E—p/au—Vv
and
Ne=2(NY —N,)
R zm 1/2
=2J’a‘ dx dy By — )Re(———)
Py y 0y —y E—p/m—v
X80 =y —6(-50}, (39)

both of which can also be evaluated numerically. We recom-
mend using a Monte Carlo method for integrals involving
more than two integration variables.’

Table IV presents the results of & straightforward eva-
luation of the above equations for the DeLeon—-Berne model.
Note that, consistent with the notion of a purely statistical
theory, it is implicitly assumed here that there is no quasiper-
todic motion in the phase space. Table IV shows that the rate
constants inferred from the above purely statistical model
tend to be about a factor of 2 larger than the exact rate con-
stants determined in Sec. I11. The main source of this error is
not the omission of the quasiperiodic motion, which would

TABLE IV Comparison of exact elementary rate constants (upper) with
the approximate statistical theory rate constants (lower).

E ko ke,
1.25 0.026* 0.028
0.038" 0.060
200 0.048 0.020
0.077 0.040
3.00 0.057 0.016
0.108 0.033
6.00 0.100 0.014
0.180 0.030

* Exact sparatrix.
®Statisical theory (i.e., phase average of zero-order separatrix).
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lead to relatively small corrections of factors 1.2-1.4. The
error really arises for two other reasons.

First, as we have mentioned elsewhere,"” the flux in Eq.
(37) is an instantaneous value whereas the exact flux of, say,
Eq. (25), is calculated via the propagation of trajectories for
a nonzero period of time.

The second and most important reason for the factor of
two discrepancy in this case is that F,~ given by Eq. (37) can
be thought of as a phase average of flux out of an approxima-
tion 10 the true phase-dependent separatrix, Eq. (37). Tobe
more explicit, let us reexpress Eq. {33) in terms of canonical
action-angle variables®® (n_,q, ) for the x degree of freedom
instead of the Cartesian variables (x,p, ):

Fie= J' dn, dg, dp, dyS(E — HN§.6(5,).  (40)

For simplicity, we adopt the approximation
S(E-H)=8(E—H- W),

where the term H — W will be recognized as the zero-order
approximation to the full Hamiltonian, Eq. (7). Standard
manipulations™'’ lead to

2w

Foc(E) = 2L dg, fig,.E).

T Jo

(41)

where the function f(¢,.E) is the phase dependent flux out
of the zero-order separatnx given by Eq. (36). The explicit
form for /is given in the Appendix and involves a simple one-
dimensional integral over y. Table V shows the resuit of eval-
uating / for a series of vibrational phases g, with the energy
fixed at £ = 1.25. The result of a full 500 point numerical
integration of Eq. (44) in this case is 0.53, which leads to
k.- = 0.038 in agreement with the entry in Table IV. This
result supports the delta function approximation used since
the results displaved in Table IV did not involve any approx-
imation to the deha functions. Table V shows that fcan vary
substantiaily with g, . Note that for g, = 1.2, which is very
close to the value of ¢, such that x = O from the action-angle
formulas in the Appendix, the value of fis about 0.2, which is
in good agreement with the exact separatrix result displayed
in Table I1. Had we somehow used the exacl phase-depen-
dent separatrix in the calculation of f, we would have found
to be independent of phase, as discussed in Sec. III B. How-
ever, by using a phase-independent approximation to the se-
paratrix, f turns out to be phase dependent.

One could, of course, define a better zero-order separa-

TABLE V. Phase dependence of the zero-order separatrix flux for
E=1125

4. flg By
0 0.84
0.4 0.7%
0.8 0.51
1.2 0.18
16 0.16
20 0.46
24 0.68
28 0.81
32 0.84
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FIG. 8. Fraction of A, B, and C populations for £ = 2. The solid curves are
the trajectory results and the dashed curves are from Eq. (29) with rate
constants from Table V, based on the zero-order separatrix and simple
methods of Sec. IV.

trix that depended on the phase and achieve better agree-
ment with the exact rate constant results of Sec. III C. It is
amusing to note, however, that the approximate rate con-
stants of Table IV, when coupled with the three-state model
population equations (32), yield better agreement with the
trajectory results. Figure 8 illustrates this for £ = 2 and one
should keep in mind that similar results obtain for the other
energies not shown. In particular, note that the population
B(t) is much better described with the phase-averaged, zero-
order rate constants, in comparison with Fig. 7(b). The rea-
son for this result is that the factor of 2 overestimate of the
rate constant by our purely statistical theory compensates
for omission of the "direct component™ to the dynamics dis-
cussed in Sec. III C. In a sense this result is encouraging too,
because the success of a statistical theory often relies on can-
cellation of errors.

V. DISCUSSION

We have presented a three-state model for isomerization
reaction dynamics. The methods for obtaining the required
elementary rate constants in the model involve applications
and extensions of our previous work on phase space bottle-
necks.” " The results of the model using the exact (Sec.
Ii1) and approximate (Sec. IV) divisions of phase space
show that a three-state mechanism is a plausible alternative
to the two-state RRKM model. As emphasized in Sec. IV,
we have definitely not included all possible dynamical ef-
fects, and future work could be directed towards developing
a theory which accounted for these omitted effects. How-
ever, we believe the three-state model alone will be useful,
not only for semiquantiative caiculations, but as a concep-
tual foundation for future work.

It will be of interest to apply the ideas presented in this
paper to other isomerization problems. In some cases, as
noted in Sec. [II B, it may not be possible to obtain exact
separatrices. However the zero-order separatrix, as defined
in Sec. IV, or perhaps better approximations that may in-
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clude other variables aside from the reaction coordinate and
its momentum, can still be used. Since much or all of the
relevant intramolecular dynamics corresponding to an A or
B isomer occurs within the region defined by the approxi-
mate separatrix, we believe that this method will yield inter-
esting and useful results. Extensions to many degrees of free-
dom probiems, as also discussed in Ref. 3, are quite feasible
with this approach since only integrals are required.

The present paper has been concerned solely with the
tsomerization of isolated molecules. The conventional ther-
mal gas phase rate constants can, of course, be obtained via
Boltzman-weighted integration over the microcanonical
rate constants.” A more interesting extension of our work
would be to the study of isomerization dynamics in liquids.
The existence of frictional and fluctuating forces on the reac-
tant, due to the solvent, will undoubtedly lead 10 a break-
down of some or most of the isolated molecule phase space
structure. However, the low friction limit of the rate of iso-
merization is a subject of current experimental interest,’
and it is in this Jimit that the remnants of the isolated mole-
cule phase space, including phase space bottlenecks. may be
important. We plan 1o investigate such possibilities in future
work.

ACKNOWLEDGMENTS

This research was supported by grants from the NSF
and AFOSR. We also acknowledge helpful comments by M.
J. Davis.

APPENDIX

In this Appendix we: (i) introduce canonical action-
angle variables™ for the x degree of freedom of the Deleon-
Berne system, (ii) derive the explicit form for the phase-
dependent flux out of the zero-order separatrix f(g..E).

Let standard Morse oscillator action-angle variables™”
(n,.q.) replace the Cartesian variables (p, x). In terms of
these new canonical variables the full Hamiltonian of Egs.
(7) and (8) may be written as

H=H (p,yn..9)+H (n), (A1)
where
P: 2,00 —zAxin,.q. ’
H,=—2;+4y‘(y~~1}(2—e ") e (A2)
and {with fi = I for simplicity)
H, =, + ol — (n, + 1) wf/4D,. (A3}

The relation between the old position variable and the new
action and angle variables required above is

x=In{c*[1 - (1 —¢*)""cos g, } }/4, (A4)
where

c=1-(2n, + 1HA/(2mDY'"? (A5)
and D, A,m and

@l = (2D, A%/m)'"? (A6)

characterize the x degree of freedom Morse oscillator.

We now derive an explicit form for the phase-dependent
flux out of the zero-order separatrix. The full phase-aver-
aged fluy, is from Eq. (40),

S. K. Gray and S. A. Rice: isomerization reactions

F,c =fd"x dq, dp, dy 6y — y)8(p,)8(h, —¢,)

V-V,

M dy
where the first step function is used to continue the integra-
tion to the A part of the scparalnx and the second step func-
tion, as well as the term in absolute value signs, arises from
evaluation of the time derivative of the separatrix and mani-
pulations similar to those in our previous work. The condi-
tion A, = €, enforced by one of the & functions in Eq. (A7)
is, of course, the zero-order separatrix condition, where 4 is
given by Eq. (18) in the text. Evaluating the integral over p,
by writing

, (A7)

S(h, — €,y =45

yh

where p,, = + [2u(e, — V,}]’"
integral over n, by approximating

SE-¢€ —H —W)=8(E—¢,—H,),
and using the identity

HE—¢, —H,)=8(n —n_)w, (n.,),
leads finally to Eq. (41) where

P_n _py.l. )9

*, and then ev aluating the

V-V, 1
(,.E)=f-fU d > A A8
fe 3 A w, () Ay
In Eq. (A8) one has
2D X
Ma=—={1—-[1-(E-¢)/D,]"} {A9)

k)

for the action n,, . The value of x, which enters Eq. (A8)
through the full potential ¥(x,p) is determined from Eq.
{ A4) with the action given by Eq. (A9).
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