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Abstract. We presant some recent advances made in the theory of laser
aasisted collisiona. We desoribe, in particular, analytical and numerical
calculations of the cross sections of various processes ooccurring in the
course of ocollisions of {relatively) fast electrons with hydrogen atoms, in
the presence of a laser field. The toplos covered in the discussion include
free-free transitions, laser-assisted electron-impact excitation of atomic
hydrogen and (e,2e} colllsiona in the presence of a laser field. Emphasia ia
put on the lowest order perturbative approach and on a treatment that allous
us to include non-perturbative contributions. Both approaches are sxpounded
and their results compared. We discuss also the influence of various laser
parameters (polarization, frequancy, and intensity} which strongly affect the
dynamicas of the collislon. The results of our analyais show that the
“dressing" of the target states by the laser fleld plays a determining role in
the phyaics of such laser-sssisted collisions.

taria Visiting Fellow. Permanent address: Laboratoire de Chimie Physique,

Universite Pierre et Marle Curie, 11 Rue Plerre et Marie Curle, F75231 Paris,
Cedex 05, France

-2-

1. INTRODUCTION
Desoription of the (electron-laser-atom) system.

1I. RADIATIVE ELECTRON-ATOM COLLISIONS

+ Bremsstrahlung

Free-free transitions (FFT}

Laser-assisted electron-impact atomio excitatian
. Laser-assisted slectron-impact stomic lomimatient
(e,2e) collisions

B

oOms

“i1. THEORETICAL APPROACHES

A. Coupling parameters
B. Lowest-order perturbative approach
C. Monparturbative regime

IV. TOOLS POR THE CALCULATIONS

A. Closure approximation
B, Coulomb Green's function
D. The so-called Dalgarno technique

V. DISCUSSION

A. FFT and laser-assisted electron-impact excitation
B. Laser-assisted atomic lonization: (e-2e) oollisiona

1. INTRODUCTION: DESCHIPTION OF THE {ELECTRON-ATOM-LASER) SYSTEM

In these lectures we will review some recent advances obtainad in the
thaoretical description of a class of laser assiated slectron-H atom
ocollisions. The motivation for these studies was that, though hydrogen is the
sisplest atom, the system consldered here displays the main ingredients
asaential to comprehend the dynamica of laser assiated colliajons. It has, in
adiition, the advantage of lending itself to “exact™ calculations. In thias
context "exact" means that, once an appropriate set of physical approximations
has been chosen (typically: dipole approximation, single-mode laser, Born
exdansion for the scattering amplitude, ...}, the calculation of the relevant
trangition amplitudes can be performed exactly, i.e. without further



approximation. This has the definite advantage of making clear the limits of
validity of the theory.

‘The physica of the subsystems constituted of each palr of components --
electron-atom, electron-laser, atom-laser -- 13 now well understood, with,
perhaps, the exception of the atom-laser system which still gives rise to
numerous theoretical as well as experimental studies. Essentials of the
theory of e-H atom scattering can be found in t.eltbooka,1 and the problem of
the description of an slectron in a plane wave field was solved more than
fifty years ago by Volkov.? The state of the art concerning laser-atom
interactions can be found in reécent revle«s3"'I and aiso In the comprehensive
book by Faisal.?

When those components are considered all together, i.e. when considering
the dynamics of the (electron-atom-iaser) system, one has to deal, in some
sense, with an unsclvable "three-body™ probles., This means that we must
resort to more drastic approximations, in order to remain at a tractable
theoretical (and computationalt) level. See Ref. 5 Chapter 12, and also Ref.
6.

A3 an illustrative esxample of such computations we have chosen to
describe, in some detail, recent calculations of transition probabilities and
cross sections related to the collisions of relatively fast electrons with
hydrogen atoms, in the presence of an external electromagnetic field. To this
end we Cirst write down the Hamiltonian oparator for the aystem:

2 1 1

H = i=£,l % (61* % e - %; - ;6 + ;;: + H, . {1}
Here the indexes 0 and 1 labe! the projectile electron and the atomic electron
respectively; 51 are the momentus operators; ¢ = l/a = 137 a.u, is the
velocity of light; K is the vector potential of the field and Hp the field
Hamiltonian. (Note we have used atomic unita: m = 1; R:=1; q/(ﬂlco) =e=1or
e, * T4},

For the sake of future discussions it 1a convenient to rewrite this
Hamiltonian as follows:

H = Hat . HLO) + H:‘) + HI + HF (2)

where one has explicitly:

-

21
1) Hlt = 2 p1 - '..1 ' (3)
which represents the H-atom Hamiltonlan, such that
1
H o jn> 2 ¢ ln>; ez - —3 H {#)
at n”7" Tn 2n2
0y _ 1 2
l[) He - 2 po (] (5)
describing the projectile
2 -
H£°)|i> = %— k; |k = olE r . (6)
iii) HL” :-:_—-tr—l-— ' (1)
0 01
which represents the interaction between the projectile and the atom;
1+ 1 2
iv) H) = )} (z pl-] + -3 N ) BN (8)

i=0,1 2c

corresponding to the coupling between the field and both the projectile and
the atomic electron, A3 regards the potential vector ¥, we note that, since
we will discuss radiative processes involving lasers operated in the IR,
visible, or VUV ranges, we will rely on the dipole approximation. In
addition, as we will not discuss effects related to the spatial dependence of
the laser pulaes,7 it appears that the presence of the terma A212c2 in Hy,
would shift the energy of each particle by the same quantity. Accordingly, we
will use in the calculatéons, the following reduced form of Hy:

H =

R 9

1=0,1

0=

This change results in a mere (non-observable) shift of the origin of the
energy scale for the asystem,

Depending on the physical process considered and on the theoretical
approach chosen, it is convenlent to use elther one of two distinot (though
equivalent) representations of the field operators i and Hp.

1} IFf one considers spontanecus photon emission (as in bremastrahlung} or
lowest order gontributions to a given radiative process, it is wore ocnvenlent

to use & quantized form of the vector potential i, which reads:
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Note that, for the sake of comparison with the classical representation of the
fleld, we have expressed 1 in the Helsenberg picture, in order to make
explicit its time dependence. 3Se¢a also Ref. S5 for another derivation, Here
the sum runas ovar all the modes and polarization states of the field; V is the
quantization volume, and tha faotor 1/2 has been included for the sake of
coherence with the classical desoription of the fleld.

Within this quantized framework, the operators a, and a;* act on
ocoupation numbsr states |N > with tha following rules:

LR /iz|u1-1> . (11a})

-I|u‘> 2 AT, {11b)
and the Hamiltonian operator reads siplicitly:
+ 1
“F = ; .l(.l.l - 2) . (12)

1f one considers a single-mode laser with frequency w, polarization b4
and oocupation nusber N >> 1, the obssrvables of the fleld are readily
obtained from the general expression:
)
(g%g)1/2l.¢‘ .lut N

ate ity | (13)

10 4
E"clt"z

and the intensity of the laser is expressed in terms of the average value of

812

1= S| B> . (1)
As
a0 = (N>, (15a)
atali> = NN, (150)

and (N|N> = 1, we obtain, after a simple algebraic manipulatlon,

-6-

Iz %ﬂ (2N+1)

hol—=

Even for moderate laser intenaities N >> 1 (see Ref. 5, p. 125) and one gats
eventually

1o 28 )y (16)

which represents the quantity of laser radiation ensrgy flawing through a unit
surface per second.

2) If one considers intense single-mode lasers and, in addition, chooses
to use a nonperturbatlve description of the process to bs investigatad, it |y
be more convenient toc rely on a clasatcal description of the fleld. In this
classlcal limit, which correctly desoribes the fleld ainos we have assumed
¥ 1,8 the vector potential R becomes

i:Aoleos o, Oon
and the corresponding electric field is
E-E catnet (18)
with
E, = g LR (19)
The corresponding inatantanecus intensity I, is
1, = f; |E|2
and the time averaged (over one cycle of the laser field) intensity becomes
1= g g% . (20)

We note that the correspondence with the guantum expression of 1 {s ensured,
provided we identify
_ ;BaNw, 172
By = (55— . {21}
A3 the laser intensity s one of the key parameters governing the physics
of laser-assisted colllsions, a remark concerning the so-called atomic unit of
intensity IO may be in order here. ID 1s defined as the (time-averaged)



intenaity of a laser field whose peak fleld atrength £; 1s equal to the atomic
unit of eleatric fleld strength intenaity:

e 9 -1
‘0 = 2 - 5.1"2 = 10 V om . (22)

1]

0
Since the atomic system of unita uses the unrationalized Gaussian system, one
must express K, in statvolt om! (see Rer. 9, Appendix p. 611), i.e.

lOs

B, = 5.142 « 107 . 2 statvort o™’

: .75 « 107 statvolt om™
When substituting this value in the expreasion, Eq. {20), for the intensity
one obtains the so-called atomic unlit of intensity 1,:

1o = 3.509 = 10°3 erg 7' cm? 2 3.509 « 10"y m? | (24)

the latter value being often quoted in the literature.

Having defined the Hamiltonian of the global system we are (at least in
principle!) able to treat any kind of laser assisted e-H-atom collision. Let
us now turn to the description of the prooesses we will diacuss in these
lectures.

11.  RADIATIVE ELECTROM-ATOM COLLISIONS
A. Bressstrahlung

Let us first recall that, even in the absence of external sources, the
coupling between the electron-atom system and the empty modes of the fleld
{vacuum field), can lead to the spontanecus smisaion of one photon.m This is
the well known bremsstrahlung process which can be symbolically represented,
when speclalized for H-atom, as follows:

.(Elj + H(18) » .(E‘) + H{18) + y(uw,i} . (25)

This equation represents the collision of an incoming electron, with
asyspiotlic momentus El' with an H-atom, resulting in the (spontaneous)
emission of one photon with freguency w and polarization t. ‘The scattered
electron has an asymptotic momentus EA and the atoa remalns in the ground
state. Conservation of energy requires that:

-B-
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+u . (26)

As apontaneous emission ls involved here, the relevant approach is the
lowest-~order perturbative one (for higher-order corrections see Ref. 10).
Within this framework, sophisticated theorstical snalysas have basn developed
for the bremsstrahlung spectrum emitted in the ocurse of oollisions of fast
electrons with atoms, Including those for high 2 +lomants. 1! The deacription
of lower energy collisions is more involved and, again, the aystem e-H atom
colllsions 1s a good test case for the probles. It displays, in particular,
the possiblliity of observing resonances corresponding to excitation
frequencies of the atom, in the bremsatrahlung apec:l‘.rl.ln."""13 As we will shou
below, this is also the case for (stimulated) free-free transitiona (FFT),
which we will discuss next.

B. Free-free Tranaitions (FFT)

If the collision takes place in the presence of an external fleld, the e-
atom system can exchange energy (i.e. photons) with the fleld. If the atom
remalns in {ts ground state when the exchange is completed, the corresponding
process 1s usually referred to as FFT. It can be represented by the following
equation:

o(&;) « HU1S) + Wy(w,) o+ e(£,) « H(13) + (Ntu)ylw,3) . (2n

The symbols have the same meaning as In Eq, (26) above, except the term
ly(u,:) in the lefthand side, which aymbolizes the presence of a single-mode
fleld with an occupation number N >3 1, frequency w, and polarization . In
the flnal state the occupation number of the laser mode beoomes (Niv), v being
the number of exchanged photons between the fleld and the s-atom system; -v
corresponding to v-photon absorption and +v to {stimulated) smission. The
conservation of energy relation is now:

~

2
1

=N

tove (28)

I‘U"-'

2— -
Studles on one-photon FFTs were first developed in an astrophyaical context

aince they contribute to the opacity of stellar at.nospherea.“ We will
address here the more specific case of FFTs induced by strong single-mode



sources, which can give rise to the exchange of several photona (v>!). Such
processes have been obssrved in several inatances, in studies of e-rare gas
atom collisions in the presence of a far infrared (C0,) laser.'® values of v,
up to 12, have been observed. Note alsoc that abaclute values of multiphoton
FFT oross ssctiona were recently msasured for the same e-atom lylt.ls.16
Comparison sith theory ls sxtremely dirrlcult.16"7 and detailed calculations
have besn reported mostly for ¢-H-atom collisions, see Sec. I11, below.

C. Laser-assisted Elgetron-impact Atomic Excitation
The atom oan be excited as a result of the joint action of the projectile

impact and of the exchange of photons with the laser field. The corresponding
equation reads:

e(E,) + H(13) « Ny(w,2) + alE,) + H'(at) + (Nev)y(w,i) (29)

and the snergy consarvation relation is now:

Kk kK
5—01"=§—ftn!w . {30)

Though predicted since the sarly days of quantum nochanlcs,'s this
process has been observed only very recently in helium (see Ref. 19 and Dr.
Newell's lectures at this Winter College). Agaln, detatled calculations have
been reported only for «-H atom collisions, see Sec. I1l below.

D. Laser-Assisted Electron-Impact Atomic Jonization: (e, 2e) Collisions

Electron-atom collisions resulting in the tonlzatlon of the target are
often dubbed as (e,2e¢} collisions. Implicit to this designatlon ia the fact
that the two outcoming electrons are detected in coincidence. In spite of the
considerable technical difficulties inherent into coilncidence Beasurements,
such processes (cbserved in the absence of laser!} have glven rise to numerous
siperimental studies.20 We note that such an interest was motivated by the
fact that, under some well-defined conditions, the measurement of the angular

distributlon of the ejected electrons can furnish valuable information on the
slectronic momentum distribution In the target, thua leading to an actual
(e,2¢) spectroscopy. The physics of a large class of (e,2e) collisions is
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well understood and in the apecial case of e-H atom collisions, the agreement
between siperiment and theory 18 now atrlking.21

In the presence of a laser, It is expected that the e-atom syastem could
exchange one or ssveral photons with the fiald. In the case of a single-mode
laser, the process can be deacribed via the following equation:

ey} + H(13) « Welw,2) = B + e(f,) + allp) + (Mevhv(w,d) ,  (31)

and the energy conaervation relation is now:

Lol

2 2
K K
T 55 + EE 1 ve . {(32)

NIK

Hote that we have neglected here the possible recoll energy of the nucleus.

Up to the present, no experiments have been reported on such prooesses.
However, as we will show in these lectures, very recent thaoretical
lnveatigat1m322'23 suggest that the (e,2e) cross sections, hence the angular
distributions of the ejected electrons, are satremely sensitive to the
dressing of the target by the laser field and could lead to envision an (e,2¢)
spectroscopy of dreased atoms. This point will be further cllborltoﬁ balow.

I1I. THEORETICAL APPROACHES
A. Coupling Parameters

All the above considered processes can be described in a unified way
withln the framework of the conventional, nonrelativistic, Quantum
Electrodynamics theory (QED)}. However, depending on the phyaical oonditions
bearing upon the proceas considered, different strategies can be ocontemplated,
which can be clasaified as either perturbative or nonperturbative. Indeed,
two lmportant parameters govern the physics of laser-assisted collisions: the
kinetic energy of the projectile and the laser intenaity. Their respactive
magnitudes ulll‘help to decide which approach is wore appropriate to treat the
preblem considered,

Let us consider first the effect of the projectile kinetic enargy on our
choice of a theoretical method. It is indeed convenient to distinguish
between low energy and high energy regimes. Here low energy can be defined as
E, = k12/2 $ lejl, where |¢;| ts the Lonlzation energy of the target, and
correspondingly high energy means E;, > |¢;]|. The magnitude of E, affects our
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cholce of a theoretical description in the following way: In the low energy
regime (typloally a few eV) both the initial and final atates of the electron-
atom system oan be convenlently considered as excited states of the H™ fon,

e ﬁote that this picture Ls akin to a nonperturbative representation of the
electron-atom system. Within this framework, any exchange of photons between
this aystem and an external fleld may ba considered as & radiative transition
taking place between excited states (possibly doubly-excited states) of the H”
ion. The malin difficulty, inherent to such an approach, lies in the
difficulty in correctly representing the continuum atates of the H™ fon. Many
theoretical works have been nevertheless conducted along these lines; see, for
example; Refs. 5 {Chapter 12), 6 and 14. One main outcome of these studies
was the prediction, which has been indeed verified, that one could scan the
resonances embedded into the e-atom continuum. As the main features of such
low-energy radiative collisions have been thoroughly reviewed in the book by
Faisal, Ref. 5, we will not dwell on this topic, and will turn now to the case
of higher kinetic energies for the projectile electron.

Indeed, If the kinetic energy of the incoming electron 1s higher than the
fonizatlon potential of the target atam, one can rely on the usual tocls of
Collision Theory. Within this framework it is then natural to use the
(perturbative) Bern expanalon, in terms of the electron-atom interaction
potential Hi‘). to describe the dynamics of the projectile-target system. We
note also that if the kinetlc energy of the projectile is high enough
(typleally 250 eV) exchange effects can be neglected within a low order
treatment of the colllsion. As we wWill show later on, such s treatment helpa
to visualize the contribution of the scattering event to the overall
transition amplitude.

We will discuss now to what extent the magnitude of the laser intenzity
can affect our cholce of a theoretical description of laser-assisted
collisions. However, before we start the discussion a few remarks might be
pertinent here. A careful analysis shows indeed that the relsvant parameter,
to discuss the Influence of the laser on the collision, 1s not only ita
intensity, as often stated In the literature. It appears actually that the
frequency also play an important role. This results from the fact that what
is lmportant here is the magnitude of the coupling between the field, on the
one hand, and both the atom and the projectile, on the other hand.
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In order to discuss the atom-fleld coupling a good yardstiok is the
atomic fleld strength intenaliy By = 5.142 « w? v cn", which corresponds to
the average f'ield experienced by the atomic electron In its ground state. It
la expected that lowest order perturbation theory predictlons will no longer
be reliable if the laser peak fleld strength intenaity Ey beoomes comparable
to By-

The situation is mot so clear when discussing laser-assisted collisions:
one has also to take into account the effect of the field on the projectile,
50 long as one can neglect the influence of the target on its dynamic state,
the projectile can be described by a Volkov uavez'5'6:

(;|[E> = expl1k-(F-a; sinut) - tE ] (33

where £, = k2i2, and

.o, E
" e °°

L (34)

*ulc

is a parameter (with the dimension of a length) which represents the amplitude
of the {classical) oscillatory motion of the free electron into the laser
plane-wave field. The magnitude of 8y provides an indication of the strength
of the coupling between the field and the projectile. It appears that the
effect ol the field on the collision process will depend on the relative
magnitude of ag a3 compared to the spatial extension of the target, i.e. a few
atomic units for a neutral atom in its ground state. As a consequence, a good
criterion for the validity of a perturbative approach will be, in fact:

LT N JE U B (35)

This immediately shows that, even for moderate laser intensities, ay can
become very large, provided w » 0. This behavior, which is connected to the
so-called infrared divergence of QED, indicates that the low- frequency limit
presenta some special features which lead to interesting
deveiopuenbs.s'ﬁ'an'25

Another way to look at this point I3 to remark that the dimensionless
quantity i';o sinut represents some (classical) coupling between the fleld and
the electron. This coupling must remaln "small” in order for a lowest order
perturbative approach to be acceptable. For electron kinetic energles of the,
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order of a few a.u. this leads to a condition anslogous to the relation Eg.
{35). ue note also the occurrenoe of the acalar product &-%, which can make
the ‘coupling vanish if ¢ i [, whatever the magnitude of oy is. Tuis point
will be of intsrest later on, when discussing the kinematlics of laser-assisted
collisiona.

Let us now summarize the results of this discuasion conoerning the
expected range of validity of a lowest-order perturbative approach:

--For the {ground-state) atom-field interaction, the lowsst-order
perturbative description resains valid so long as:

Eg << X« 5.142 « 109 v o1, (36)

--For the field-projectile interaction, the lowest-ordar perturbative
description will be adequate, 80 long as

E

- 0

vk -3 <« 1 . {(31)
™

Since we will discusa here colliaions involving relatively fast electrons:
(/2 = o {1 5.u.)}, this condition bacomes, discarding geometrical effects
related to the orlentation of the laser polarization;

By <Culub.4x 107V en! (38)

where o’ 1a expressed In atosic units,

As a consequence, Lo ensure the global validity of a lowest order
perturbative approach one must choose the most conservative of the two
eriteria, Eqs. (36) or (38). As we will only consider here relatively low
frequency laser sources, operated in the IR, viaible or VUV ranges
{w £ 1), the condition Eq. (38) will have to be satisfled in order to safely
develop a loweat-order perturbative schems.

Before describing such an approach it might be worthwhile to mention that
» and E; are not the only laser paramaters influencing the dynamica of the
collision. As already wentioned, the kinematics of the collision, and 1n
particular the orientatlon of the laser polarization T with respect to the
characteristic momenta of the syatem, will alsc play a determining role in the
angular distribution of the outgoing electrons, see Sec. V below.

T

B, Lowest-order Perturbative Approach

As we shall consider collisions involving relatlvely fast electrons, we
can use a doubly perturbative sxpansion of the transition amplitude, 1.e.
perturbative with respect to the e-atom Interaction:

MU NSRS

. (39)
¢ or To

and to the fleld-charged particle Interaction:
1 ,+ =
Hy = 2 (BgeB, )R . (%0)

The unperturbed states of the systam ars sigenstates of the uncoupled
Hamiltonian:
_ (0}
Ho = HatprvH. ' (1)

such as:
%
Holn, N> = (e, + Moo o i,b . (42)

Here the Index n stands for the triad n = {n,t,m} of atomlc quantum numbers
and ¢ = -1/(2n2); N is the occupation number of the oonaidered single-mode

fleld with frequency w, and u:°’ 1s the free electron Hamlltonian such that:

2
W% - L e (43)

We have found it convenlent to use the Schriddinger reprsssntation of the
quantized verslon of the vector potential operator X, which reads, In the
dipole approximation:

adedn2 g ey (44)

Let us now fllustrate the technique by considering an assisted collision
resulting in the simultaneous absorption of one photon and excitation of the
target to an unspecified state |n>:

(k) + HOIS) + Nr(T,u) - eE,) + H(N) » (N-Dylw,d) (45)

the conservation of energy imposing:
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k
By re -w (46)

The corresponding loweat-order transition amplitude is seocond order
{order one in Hi" and inilf) and is accordingly of the general form:

1] 1 ] 1] L] » L] (‘)
e R LN
(2!)3 n' x' kf , k,?

(:‘. tluez= -0, -Ne- -3—)

o aym ety (47

The factor (2-)‘3 arisea i'rom the closure relation for the free electron basis
-

set:
@le = e F oI e <1 (48)

and the sum over the atom.c atates n' runs over the whole hydrogen spectums.
The corresponding transition probability can then be obtained from
Fermi's Golden Rule:

H(;n £ 2'I|T(2)|2D(E) ' (49}

the expression of the finul density of states o(E) depending on the particular
process considered.

It should be clear ai this point that such an approximation provides a
description of the collisional step within the first Boro approximation and
the one-photon absorption to the lowest nonvanishing order of the theory.

Such a transition amplitude can be conveniently represented with the help of
the Feynman diagrams shown in Fig. 1.

Note that a more refined treatment of the same process could include a
second Born description o the collisional stage, thus leading to the 6
Feynman diagrams displayed in Flg. 2.

One could also take intoc scoount the next higher order (actually third-
order) radiative corrections to the one-photon absorption step, keeping the
first Born treatment of the collision. This would lead to include 96 diagrams
similar to those shown in Fig. 3. Although all of these diagrams are not
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topologically distinet, this demonatrates, if needed, the complexity inherent
to high order treatments of the radiative coupling with the s-target syatem.

It appeara fortunately that a lowest order caloulation in both the e-atom
and field-(e-atom) couplings already contains most of the physical informatiocn
and that further refinements would not alter significantly our analysis of the
processesa considered. More precisely, one can show that, in most cases, the
low order laser-induced modifications will be muoch larger than those possibly
produced by higher order corrections.

A3 an illustration of the perturbative approsch, we will come back to the
caleulation of the transltion satrix element in Eq. {48). Let us firat
explicit the first matrix element entering the expression of T(z):

-
-X
<E‘,H-1,n|EE-|n',H',E')(E',N',n'i;ﬁ: - %E—|1s,l,ﬂi>

1 3.

T, = } J 0%k
bl r);' N u’f i
[;13 + (N=-N')u - Ee v 5 - T)

(50)
The rightmost first order matrix elemeant can be sasily reduced:

1) the interaction Hamiltonian H:1) doean't act on the photon state N>
which ia accordingly left unchanged:

> = P> and N[> =1 (51)
1i) the spatial integratlon over the projectile position FO can be

readily performed, with the help of Bethe's integral; ona has lndeed':

i, SR e,
0 o1 o (ii-ﬁ')z

-1 , (52)

and this matrix element is eventually expressed in tarms of an atomlc matrix
element of the following form:

1k -k)-F
@&l oL s s —4 e -1 12>
gy T MY G e =t
(53)
“he second matrix element entering the expression Eq. (51) can also be reduced

to a simpler atomic form but, as Hy = /e B-l acts on both the projectile and
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atomic electron, it splits into tuo coptributions:

s B2 L Gebe (54)

and the matrix s«lement becomes (after the annihilation oparator a haa acted):

< N-talhy ot ko < B2 LRy (55)
where
Ry = <k jkennn>
or

A, = "‘2"3“‘3"')‘n,n- ] {56)
{Note that we have used the fact that
3k = b oMK L gy,

Similarly ﬂ1 reads:
ﬁ‘ = <E‘]§')(n|5|n') ,
or
My« (20 g2 rafplnts . (51)

Eventuaily, the second-order matrix elament, Eq. (51) can be reurltten26'27:

k- +
ba 2aN,1/2, %A 11.
Tar 3 G el s

PIC TR ¥ -
o} folb-tlonnti{e -n)te2, (58)
n' k k
t 0-—‘-—-‘—-‘
1s 2 2 n'

where we have introduced the momentus transfer § - El - EA' a quantity which

plays a determining role in the physics of the collision. We note also that
the second term contalns in fact the Coulomb Green's functlion;

Go) - | lntn’] (59)
n

-18-

It 18 worth noting that the two terms contained in the eipression of Tar
Eq. (58), can be assoclated with the contributions of the diagrams 1 and 111,
Fig. 1. The first term corresponds to a process in which the electron
collides firat with the atom, and than absorbs one photon {diagram I).
Conversely the agcond term corresponds to a process in whioh the atos absorbs
the photon after the collision (dlagram II1).

For computational purposes, we have transformed further the matrix
elements, using the dipole-length form of the intsrastios oparator instead of
the momentum representation. It appears then, that whes regrouping the
contributions of the diagrams ! - IV, Fig. 1, the overall transition amplitude
can be rewritten as follows:

7@, f% V2 ufn)iF c(.n-u)elx"l1=> +
@l ote i o) B areTnper e

We note that, when adding together the second order matrix elementa we have
bean able to supress the (-1) terms contained in the original matrix slements,
Eq. (58). Simllarly, the change of gauge 1s equivalent to multiplying these
matrix elements by an overall factor 10.22'26

The differential cross section for the fast electron being detected
within ua(il) and the atom being excited in the state [n>, is obtained from
Eq. (50), by replacing o(E) = k,/(21)3 (a.u.) and dividing the transition rate
by the flux of incoming electrons, one obtaina eventually

-

=

do Al 2 2

——— = fxa = IT I© & ' (61)
da(k,) kg 4l Unal fo

Wwhere we have introduced the laser intensity I = Now/V; a 18 the fine

structure constants [a = 1/137 = ¢! {a.u.)] and the atomic matrix element

Tn.|’ reads explicitly:

e -
T, 1 = HenioF c(zﬂ-u)eix'f|1s> o cnjatbF G(E, +0)i-F|183)
+ éég (nl(eia'r R MIREY . {62}
-
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We note that here |n> has not been specified and can stil) represent any

accessible atate of the hydrogen spectrum. More precisely, if:
" =|n> = | 18> the matrix slesant will correspond to bremsstrahlung or one-

photon lree-free transitions,26-30

-{n> = |nw> the matrix element will correspond to a Joint electron-
photon excitation of the atom, acoompanied by the absorption of one
plwt.on.%'zs":"

-|n> = |¢:;)>, whars |o=;)) represents an ingoing Coulomb wave with

asysptotic momentum ‘B' the matrix element will correspond to a laser-assisted
{e,2e) collision. Note, however, that the approximation developed here 1is
only valld for some class of (¢,2¢) collisions, namely those ocourring in the
so-called “asymmetric p«:-et.r':.r".-"0‘23 In this latter case there are two
outgoing electrons tn the final state and the definition of the cross section
Bust be modified accordingly: The triple differentlal cross section {TDCS) for
detecting a fast electron in dn(i.) with energy E, and ancther (alow) electron
within dg{ En), the system having absorbed one photon from the laser field
122,23,

do <@ _ABI T
du(k, okglee, o %y R

2
!
g1

' {63)

where has the same formal structure than Thn. 13+ Eq. (62).
r

Tla.ia
Several interesting features, characteristic of the physics of laser-
assisted collisions, can be Inferred from the general expressions, Eqs. (62),
(63), of the cross sections, even before starting any computation:

--These expressions display the rescnant structure of the transition
amplitudes. Indeed, if the argument of one of the Green's functions matchea
(or nearly matches) the energy of an atomic bound state, the corresponding
amplitude becomes very large and wil} dominate all other contributions to the
total amplitude. We note that the unphysical Infinities, which do appear in
such a situation, arise from the fsot that we neglected the shifts and widths
of the atomic states. This is conalstent with our lowest order treatment of
the radiative process.

--One can identify the terms containing the Coulomb Green's function as
arlsing from the lowest order radiatlve corrections to either the initial or
final atomic states. This point will be made more explicit below, when
discussing nonperturbative approaches,

--in the low-frequency limit, w + 0, the last term of the amplitude can
become dominant aince its frequency dependence is in u'z. We note that this
term stema from the contributlons of the diagrass I and 11, Flg. 1, associated
with collisions events in which the projectile ploks up the photon anargy.
This observation has given rise to numerous simplified treatsents of the
problem: We will discusas the limitations of such approssiess in Sec. V. Let
us only point out here that, for small scattering angles & = (El,i‘} + 0,
and in the low frequency limit w + 0, this tendancy sen be reversed. Indeed,
Ifw+0ande -0, then s+ 0and e "+ 1, untoh can make this contribution
vanish even for small values of .

--In the limit of small momentum transfer (& - 0}, one can replace the
exponentlal o!%'" . 4 , jI.2 {Bethe-Born approximation), which leads to a
simplified version of the matrix element, Eg. (62).27 It appears, however,
that this approximation has a very limited range of vnlldlty.”'31

We will discuss now in what ways this lowest-order perturbative model can
be modified when the conditlons {36)-(38) are not verified, 1.9. in tha
nonperturbative regime.

C. Nonperturbative Approaches

If one considers either the case of intense fields such that Ey > nzlo
or resonant situations such that the laser frequency mstohes an stomic
excitation frequency, the perturbative approach is no longer valid {(at least
in its low order version discussed so far}. 1In the latter case of resonant
laser frequenciea, a two level mode) of the atos is adequate: references to
earlier works may be found in Ref. 32, see also Refs. 5 (Chapter 12), and 6
and references therein. On the other hand, in nonresonant aituations, the
role of the entire atomic spectrum cannot be neglected, which leads to a more
difficult problem, and compelis us to resort to more sophisticated
nonperturbative approaches.

A nonperturbative deacription of the laser-projectile states ia well
known since 1t amounts a representation of the projectile as a Volkov wave,
Eq. {33). Mo equivalent, ready-to-use prescription exiats for the laser-atom
interaction. Though different kinds of Floquet-like approaches have been
proposed, mainly to deal with atomlc muitiphoton ionization, they lead to
quite heavy computations and don‘t provide closed form expressions for the
"dressed” atomic wave functiany.33-36
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One can nevartheless assume that, for a bound, negative snergy, atomlc
state, the effect of the laser field will be less important than for the free
eladtron. This observation leads to the ides of drassing the projectile to
all orders, through the use of a Volkov wave, and representing the atom by a
atatic potential, It has been shown indeed that such & aimplifiad model i3
valid in the low frequency 1imit.5:6,29,37,38

A more refined model consists of treating perturbatively the laser-atom
intersotion. Earlier attempts have discussed the role of the perturbation
within the relevant atomic mltlpluta,” while more general treatments include
the contribution of the whole atomlo lp.ct;run."o We note that such an
approach is certainly justified, in the low frequency regime, for laser fleld
strength intensitlies Eqy cbeying the following tnequalities:

-1
8,2 £y > Wxy, with s van! | (64}

We will now deacribe this latter approach which has given rise to several new
interesting davelopments and presenta the advantage of joining smoothly with
the perturbative reaults, in the low intensity iimit,

Within the framswork of this model it is convenient to use the S-matrix
forma)ism, which describes the laser-assisted procesa as tranaitions induced
by the s-atom interaction H:”. £q. (7}, between dressed states of the atoms-
projectile system, For the sake of Lllustration of the method we will
oonsider the lowsat order term of suoch an S-matrix expansion:

) = 1

V) w , o0,k )|."'xi s {65)
A i

This matrix element represents the firat Born approximation for a collision

between a dressed elsctron {Volkov wave |;' ?) and a dressed atom (wave
1
function ]01->) resulting in a dressed scattered electron |l;! > and the

atom ending in the (for the time baing unspecified) dressed l:&t. (o,

The general form of Volkov waves entering this expression has already
been given in Eq. (33). A lowest-order perturbative representation for the
dressed atomic wave functions la:

ile_tek-F/e)
lep=e " n> + 5 107 Gle v} - €% (e )] B o)

(66)
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where |n> 1s the unperturbed atomic eigenket, with elgenenergy ens G(Q) 1s the
Coulomb Gresn's function and, for computational convenlence we have used tha
dipole length form Hy = -B -F of the Intersction Hamlltonian. Accordingly, we

hava included the factor o'ﬂ'”c. to snsure gauge oonsistency with the Volkov

waves, used to describe the projectile,
By using the genersting function for Bessel functions:

eup(ik-a) atnet) = | oitut Jeay (67)

iz--
the time integration in Eq. (65) is readily performed, and ona obtains:

N W
$Ue-a :Z-- g v enmg 6y - Wiy,

, (68)

where fB1.t represents the firat Born approximation for the acattering
amplitude |1s> + |n>, accompanied with the transfer of & photons. Within the
approximation retained here, 1.e. kesping only the lowest order contelbution
to the dressing of atomic states, one shows easily that rm., contains in faot
three terms?3.40-42

e * i ety o (69)

which read explicitly:

ii-#

2
fr=- :5 J, (1) <nj(e - 1 {70a})

137

1 -
fi® :i {d,,,(r)<nle Cle, -w)Ey-#[ 1>

il

- 3, (2)<nfe Gle, +w)by Fl1s) (706)
f - 4 {a)<n|B.-F G« -u)eﬂ'F | 18>
111 ‘2 tel 1] n
- J,_a)m|B T Gle «u)e‘x'; 183} ; (710¢)
t-1 0 n '

where 1 = I-Eo and 1 = ‘i'ia is the momentum transfer. The corresponding
¢roas saction is then given by the usual scattering thaory formulal:
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K
de A 2
—S— = = gy,

g (1)
da(k,) 1

An interesting property of theas matrix elements ia that, for small values of
the parameters ) « §-3, (characteristio of the laser-projectile coupling) and
L ) {characteristic of the laser-atom coupling), one easily recovars the
lowest-order perturbative expression Eq. (60) of the transition amplitude.
This is achlieved by serely retaining the leading terms in the Beassl funcotion
expansions and keeping the lowast order contributlon in Ej.

Up to now, tha expressions Eqs. (70} are general, since the final atomic
state [n> 1s stil]l unspeoified. However, depending on the final state |n>
considered, these amplitudes correspond to different phyaical processes. More
precisely, if:

-|n> = {18>, the transition amplitude fp, , corresponds to multiphoton
FFT, uith exchange of & plwt.ons.“o'“

-|n> & |nim> 4 |1s>, whers |nim> represents any atomio bound state,
he transition emplitude tm'.’ corresponds to laser-assisted excitation, with
exchangs of t photons.

-l = |¢:">, where |t;')) represents an ingoing Coulomb wave with
asymptotic m:tu\l in. the tgmlum amplltude corresponds to laser-
assisted (e,2e) wlllslm-.22-23

This lattar case, however, contains several partioularitiea which deserve
a few comments. Indeed, though this model is expected Lo provide senaible
results In the sc-called asymmetric geometry (see the preceding Section), one
sight question the validity of such a lowest-order treaiment of the dressing
of a positive energy Coulomb atate. MHore breoluly, the question arises of
deriving & oonvanient form for a “dressed Coulomd wave", which could be valid
for a low energy slsctron experiencing the effects of both a Coulomb potential
and an intense laser field.

This difficult problem has not yet been solved and, for the time being,
only various ansat: have been proposed. The [irst one, proposed by Jain and
‘l‘sm.::-,“3 oconsists on multiplying the Coulomb wave function |t:')>

B
by a Volkov-llke factor up(-iia-;o sinut), which leads to the following form
of tha dressed ocontinuum wave function:

-2

-1 .a
I'E e ( En 3 ainut)lt{_)) . an
B EB

Approximately valid in the low frequency regime, this ansatz has been used in
earlier treatments of laser-asaisted (e,2e) coliisions.™ When substituted
into the expression Eq. {65) of the S-matrix element, and negleoting the
dressing of the ground state, this approximation lesds te the following
simplified expression for the first Born amplitude:

Por e - - fi Jl[(I-EB)-:01<.;"|.‘3"|1.> . (12)
B
It should be noted however, that, in the low Intensity regime, this
approiimation does not permit recovery of the lowest order perturbative
expression, Eq. {60), of the transition amplitude 1(2). In fact, by
retaining the leading term in Ey in the espression Eq. (72) of ?B‘ , o8 wouid
only recover the last term of the perturbative fors for 1'(2). )

Other, more refined, ansatz have been proposed to deal with this
difficult pr-ol:nlcn.“s‘“B Broadly apeaking, they retain the general fors of
Jain and Tzoar's, Eq. {71}, and allow, in addition, the momentum £_ oontailned
in the Coulomb wave function to be shifted by a field-dependent 'u:-:

EB - Ea(u) =z EB +* U;O coswt . (73)
One has accordingly:
¢ ¢
-i{z= t « ‘&
5 >-e 2 8% 4 o, (T%)
RB EB(-)

It is at{ll not clear to what extent such an approximation would persit the
recovery of the perturbative expreasion for the transition amplitude, in the
low intensity limit, see however, Refs. 49 and 50. We will not discuss
further this approximation and will, instead, briefly describe an improvement
to the Jain and Tzoar ansatz, which doas not suffer from such a iimitation.
This imsprovement, first suggested by Banerji and mt:t;lmn,51 consists in
looking for a dressed wave function of the general form:
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K -
. -zt . E-co alnut)
DREN Ivi) . (15)

Then, by substituting this ansatz fors into the time-dependent SchrBcinger
oquation:

L. R TR
(F RN WP iu.{ °o , (76)
ons gets the squation verified by the unkmown function lvin

-, - Jo-(ﬁ»i)wut.}lvn:- =0, (1

where 5 is the momantum cperator. The principle of the method is then to
solve this latter equation parturbatively, with respect to the last term
inside the braces:

==to zeroth order one recovera the unperturbed Coulomb wave function:
Iv> - o, (1)

l.e. the Jain and Tzoar ansatz,

-~to first order one geta the following, more general "p,.“,lon23.‘i9.50:

1

1 -let
2 1

TREN R Gle, w)B - (3-E[ol~)>
e " ko (B

v @ Glo By G- (18)

This result, in fact, generalizes that of Banerji and Mittleman, who made the
additional approximation of taking the low-frequency limit of Eg. (78). It
also appaars that this procedure can be further iterated, leading to the
inolusion of higher-order corrections, see, for inatance Refs. 52 and 53.

The approximate sxpression, Eq. (78), of the continuum wave function has
baen recently used in a caleulation of laser assisted (e,2e)
collialona.zs'“'so It has, In particular, the advantage of making clear the
conneotion with the lowest order perturbative results, in the low laser
intensity limit: compare Egs. (75) and (78) with (66).

Coming back to the discussion of the general S-matrisx approach described
in this section, it should be kept in mind that we have described so far the
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first order Born treatment of the collision, The formalism developed here can
be extsnded 80 as to include a second order Born trastment of the collision.
Thia has been done for multiphoton FFTs in Ref, 54; such a generalization
allows one to deal with less energetio oollisions while taking into scoount
exchange offects.

Lat us now turn to the description of scme computatigesl techniquea we
have recently used in the calculation of the absye :

1V. ‘TOOLS FOR THE COMPUTATION
Either perturbative or not, the transition amplitudes ebtained in tha
preceding 3ections share the property of being supressed in terms of typloal
atomic matrix elements of the followlng forms:
~-ganaralized atomic form factors:
-

f1.n = (nfe

e . (19)

--second order matrix elements:

-
M = (nlcil'r

X G-I, (80a)

and

il

Mg = <alf-E G(ae e {8ob)

We note that depending on the particular proceas considered, the final state
can belong to the discrete or continucus hydrogen spectrum.

The caloulation of .:.he generalized form factora for the ground state, %q.
(79), is atraightforward. The crux of the caloulation lies in fact in the
computation of the second order matrix elements M, and Mp which contaim an
infinite summation over the whole atomio spectrum. For sxampls, the matrix
element M, reads eaplicitly:

iIqﬂln')(n'lF-?[\a)

ne g - L

<nle

M (81)

e
Though a direct summation can be considered, since the first order matrix

elements entering thia expression are In principle known, soms technical

(numerical) difficulties arise when performing the integration over the
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continuous spectrum. This is particularly so when the final state |n> itself
belonga to the continuum or when the argument @ of the Coulomb Green's
function 13 positive, i.&. is located on its cut in the complex plane. It ia
thus worthwhile to utilize approximate treatments or to more powsrful implicit
susmation techniques, which we will describe next.

A. The Closure Approzimption

To 1llustrate the basis of this approximation let us consider first a
typical form of the matrix element M, with @ = ¢4 tu. Note that such a matrix
element enters the expressions Eq. {60) or Eqa. (70) of the amplitudes
considered in the preceding aections. The closure approxintionss consists
of, starting from the exact expansion of the Coulomb Green's functlon,

Gl tu) = | o2l (82)

nt S1g7épeivw

to replace the difference ¢y, - ¢, by & mean excitation energy - P
independent of ¢ ,. Indeed, by replacing €15 ~ tyr = 8y, In the above
expansion, one has:

nti¢<n' -1 .
G(t"t-) - E. la::;;—l z (n"tu) 1 (82')

where 1 18 the unit operator.

The crucial step, when using such an approximation, is obvicusly to
choose the "best” value for the mean excitation energy Bq- This can be
achieved by comparing with known results for similar problems. Let us only
mention here that, so far as the hydrdogen ground atate 1s concerned, a
Popular method is to compare with the known static polarizability of H{1s)
whose expression is given in terms of the known second order element:

"0 . 2 (lulr-c]n:)(n'lr-:llv .. % (83)
n' 13 ~ o
which can be compared with:
-+ + . 2
v dalr-elntxnt [Fog1ay | Aa|{(F-e)%] 18>
My =1 a : g (8h)

n' s 1s

and leads to the (exact) value @y, = -4/9.
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It appears that this value of Qy, provides excellent approximations for
FFT matrix elements, in the low frequency limie M08 should be pointed
out, however that much care must be sxercised when deal ing with axcited atomic
states or when the laser frequency beoomes comparable to excitation
frequencies of the atom 41,42 It appears moreover, that this approximation
cannot be safely used to compute transition amplitudes invelving states
pertaining to the continucus spectrum.

We will turn now to the description of more pouerful testwiques using a
compact representation of the Coulomb Gresn's funotiom or the so-oalled
Dalgarno method.

B. The Coulomb Green's Function {CGF}
Compact representations of the CGF have been widely used in calculations
related to muitiphoton processes, ses Refs. 5 (Chapters 4, 5) and 56. We will

only mention here two of them which have baen recently used in the context of
laser-asaisted collisions.?2,23,27-31

1) Free-fres tranaitions
In the case of FFTa one may have to deal with second order matrig
elements of the particular form [see Eqs. {62) or (70)):

-+
M, = <1ateﬂ'r

's Glayr-z|1®>, @ tiat (85)

and similar expressions, symmetric with respect to the interchange of the
operators e'°°T and .1, By using Hostlsr's integral repressntation of

G(0),57 Klarafeld has been able to derive the following useful formula for the
closely related matrix oluent.:5a
= [ a¥t | &3 %e'"'re“u" Gcfr.r';n)e’ﬂ'r'c"'r' L {86a)

L]
'Y ¥

-y

1
=16ax oV

. | du 257 . (86b)
[wex) 2o (uren)2en?] 0

(1-2pusy

Here x = (-20)“2 and

(uz-lztﬁz)(u‘2-12+a'2) + nle-t'

8= ' (87a)
[uex?)e82 ][ (p*+x) 2082
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MO TS VT b TRV S Y S (87b)

[ x)%ea®H (utex)2ea )

It appears that H‘. can be obtained from M
tranaformation:

' via the following

2
1.7
Mis * % Sun' “‘ “"_l'-}"u.u'l : (88)

wrp'=1
Using the integral repressntation of Appell's hypergeometric functions of two
variables F,, 59,60 ohs oan racast the sought-after matrix elesent H in the
following compact form:29,30

My 127(R-2)[AeB(+a)+B(-a)] (89)
where
D (1) (a2 ey —Qenalen)
A= 3 (1-2%) "(a%+h) x (2 - 2 3 ) ; {90)
(2x=1){ (1+x)“+a*)
and

5
8x 1+x3 08
B{za) = x {2 ~ )
0081 (1) 202132013035 1) textia

x Fl3-1/33,250- 1000 0h) (900)

1t should be mentloned that, as the Fy function involved here can be
expresaed as & finite sum of Gauss hypergeometric functiona 2Fq, sven wore
compact forms of this mstrix element oan be derived.??d However, we have found
that the form displayed here 1s suitable for analytical as well as numerical
purposes. It is indeed an easy matter to investigate the analytical
properties of My; in some limits of physical interest {low frequency limit,
Bethe-Born approximation,...). On the other hand, nuserical ocomputations of
this formula can be easily done on s micro computer {our own computations were
run on a Macintosh Plua).29=3°

The main limitation of Hostler's representation of the CGF is that it
leads to cumbersome calculations when excited or continuum atomic atates are
involved. This limitation can be removed by using the so-called sturmlan
expansion of the CGF, which we will introduce next,
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2) Laser-assisted atomic excitation and {e,2¢) colliajons
The Coulomb “stursian* functlona, systematically studled by notenbtrg,61
provide a natural basis to obtain a very useful sxpansion for the cor .52
Indeed, when spscialized to a given partial wave component with angular
Bomentum i, one obtains the following espansion of the radial part of the CGF
- '
G irr'ia) = ) f!;&i%[éfﬁ:lifz_l ' (91)

vzi+l
where x = (-251)”'2 and s“’l(xr) are Coulomb stursian funstioms:
s, 280 = Nu"(x)e"er‘F‘(l+l—u;21+2;2!r) . (92)

with

2% 1/2
Vo= {21.1)1 Feor !]

The main features of thls representation can be summarized as follows:

1) The infinite sum over the index v 1s discrete.

11} Although they don't verify the same orthogonality and closure
relatlona,sl the sturmian functions are formally identical to discrete stata
hydrogenic wave functions. Accordingly, closed form {polynomial)} expressions
are available for the matrix elements between sturmian and hydrogenic wave
functiona.

111} The Infinite sum over the sturmian spectrum contalned in the
representation, Eq. (91), dlsplays good convergence properties, so long as
8 <0, 1.e. the argument of the CGF is negative. The oila 4 > 0 pressnts some
difficulties, whioch we will discuss below.

For the sake of iilustration of the method let us consider again a
typical matrix elesent entering the expression of the transition amplitudes
Eqga. (62) or (70):

M= <n|F-i a(aretd ¥

h |1a>, @ = L% TR (93)

Using standard partial wave expansion for the CGF and the retardation term
exp(13-F), we are left with radlal matrix elements of the form:

M, = Ryl G (a)g (ar)fR, >, (94)
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where |Ryo> and |R.,> are respectively the radial wave functions of the ground
state and of the final excited state and Jl(nr) 1s a spherical Bessel
funotion. Mote that, as & result of the angular momentus coupling rules, one
has: L = At1. These or similar matrix slements were computed by replacing
G,(2) by its sturmian expansion, Eq. (91), and the Beasel funotion by its
power serles axpanllnn.63 ill tha nesded integrals are then expressed
analytically in terms of hypergecmetric polynouials.22 A3 already mentioned,
the sturmian sum, Eq. (91), has good convergence properties, provided 0 ¢ 0.

The physically important cases in which # > 0 need special attention,
Indeed, if @ > 0, the sturmian parameter x = (-20)"2 becomes imaginary and
the sturmian functions are no longer bounded at iInfinity, which entails the
use of convergence acceleration toohniquaa,‘“ or analytic continuation
65 aspecially when dealing with physical processes taking place
into the continuum.

This latter limitation has revealed itself to be relatively harmless in
applications involving transitions towards a bound state, i.e. in the case of
laser-assisted atomic excltltion.27'23'31 However, numerical instabllities
can show up in some matrix elements entering (e,2e¢) transition amplitudes, in
which case the final atomlc state belongs to the continuum.22:23 mmya
difficulty can be overcome by using the so-called Dalgarno method, we will
present next.

procedures,

. The So-cailed Dalgarnc Method5®
This technique is based on the observation that a typical second order

matriy slement such as M., Eq. {93), can be rewritten:

M = a|ft celd 11-F

|18> = <U]e
n

1>, (95)
where the auilliary ket:
s = Gea)F-Efn> {(96)

is the sclution of the following inhomogeneous differential equation [remember
that G(g) = (0-H,,)"']:

(@-H )W = Feln> . (97)
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This latter equation can always be solved by quadrature and once |U> is knowm
one can, at least in principle, compute the matrix element M.

" In hydrogen the analytical caloulation can be pushed further and M, can
be ultimately expressed as a Taylor-like expansion in terms of Laplace
transforms of the auxillary ket |U>., This technique has besn implemented for
two-photon ionization processes by zernlk,67 and genaralized to highar order
processes (up to 9-photon lonization) by Gontier and Irnhln." Note however,
that multlphoton transition matrix elements only comtaim dipole interaction
operators and that one has to extend Zernik's approach te desl with the
retardation factor exp(il-F) contained In the tranaition amplitudes W, 22,23

We Will turr now to a brief discussion of the results which have been
obtained by using the above described techniques,

V. RESULTS AND DISCUSSION
A. FFTa and Laser-assisted Electron-impact Atomic Excitaticn

These prooesses have the oommon characteristic of involving initial and
final atomic bound atates. Accordingly the physics of this class of laser-
assisted processes presents strong similarities, We will thus only discuss
here the case of FFTs In some detall, the extension to excitation processes
presenting no lurther conceptual difficulties.

Let us now summarize in what ways the FFT differential cross sections,
Ega. (61) or {T1), depend on the parameters governing the collision dynamics,
1.e. the laser frequency, polarization and intensity and the momenta of the
incoming and outgoing electron.29:30 Note that, as our analysis is restricted
to somewhat "large" values of the projectile kinetle snergy, we will not
discuss directly its influence on the snergetics of the process.

We will first address the role of the laser fraquency and consider two
situations of physical interest:

1) The low-frequency (soft photon) limit.

One easily demonstrates that, in thia limit, the last term In the
perturbatlive amplitude, Eq. {62), becomes dominant, except for very small
scattering angle; see Fig. 4. This was expected from the general discussion
in Sec. 111B. The same conclusion holds In the nonperturbative regime, in
which case the amplitude f1+ Eq. (T0a), ts doainant ¥
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11) Optical and VUV frequencies.

At higher laser frequencies, the dominance of the last term of Eq. (62}
or t, in Eq. {70s) becomss less marked, except for large momentum transfer a
or squivalently at large scattering angles. One notes the ooourrence of deep
minima in the angular distribution of the scattered slectron, Fig, 5. Those
minima have tuwo distinet origins:

--the minimus dencted {a), Fig. 5, corresponds to an angle such that tha
scalar product §-3 = 0, 1.a. soattering geomstriea such that the laser
polarization is perpendioular to the momentum transfer. Thias effect
demonstrstes the role of the laser polarization orientation, with respect to
the momenta of the projectile In its initial and {inal states.

--the minimus denoted (b), Fig. 5, stems from a destructive interference
betwesn the components of the global transition amplitude. One obsarves
indeed that their contributions can cancel each other, for some particular
values of the oollislon parameters, as they are of opposite signs.

These minima also appear in the dispersion curves for the variation of
the differential cross section in terms of the frequency (Flg. 6). This curve
displays also the resonant atructure of the oross section when w matches an
atomic excitation energy.

Thesa general features of the cross section survive even L one allows
the laser intensity to increase and also if several photons (1| > 1) are
exchanged in the oourse of the pt-cmeu..1 The onaet of nonperturbative
effects depends on the laser intensity and alsc on the momentum tranafer 1,
through the argument i s I-Eo of the Besael functlons, entering the
nonperturbative expreasion, Eq. (7V), of the tranaltion amplitude. As a
matter of fact, at fixed laser frequency and acattering geometry, the ratlo R:

Ra (-2 (—42—, (98)
an(E‘) nonperturbative dn{ﬁ“) perturbative

departs from unity at different laser intensitiea, depending on the incoming
#lectron energy, i.e. on the magnitude of &, Fig. 7.

These results clearly demonstrate that the dressing of the atom by the
fleld plays a dominant role in the dynamics of this kind of laser-assisted
pracess. This is particularly so at small scattering angles and for optical
and VUV laser frequencies. Simplified models disregarding the role of the
atomic spectrum are only valid in the low frequency limit and they cannot
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account for the resonances and destructive interference effects predicted by
the theory. Hore detalls on the dynamios of FFTs and laser-asaisted slectron-
impact atomic exoitation, in the regime of relatively high projectile kinetic
energles disoussed here, can be found in the references (29-31, X0-42, 49 and
51-54).

B. Laser-assisted Atomic lonizatlon: {e,2e) Collisions

In the so-called “asymmetric coplanar .lnnotry'."" we have chosen to
discuss here, a fast electron of mosantum Ei is inoident on the H-atom target
and a fast (“acattered”) electron of momentum E‘ ls datected in coincidence
with a slow {"ejected”) eleotron of momsntus En. the thres momenta being in
the same plane. Moreover the scattering angle 8, for the fast electron im
kept fixed and small, while one detects the angular distribution #g of the
ejected electron EB' see Fig. 8. The thsory of the field-fres process is well
established and the agreement with expsrimantal results is excellent, see Pig.
9. An interesting feature of this kind of "asymmetric geometry” ocollisions is
that the lirst Born approsimation provides a fair description of the
process. It 1s, in particular, able to correctly predist the presence of a
"recoll” and a "binary® peaka, approximatsly centered on the momentum transfer
direction I, in the angular distribution of the ejected eleotron. See Pig. §.

We shall discuas below such angular distributions one would obtain in the
presence of a laser fleld. For the sake of i{jlustration we will present here
some results concerning collisions accompanied by the sbsorpticn of ons photon
from the laser fleld, the conservation of snergy relation being then:

2 22
-t & + W= o e . (99)
2 is 2 2

The main predictions of the theoretical analysis presented in the
preceding sections can be summarized as follows: The angular distribution of
the ejected electron can be dramatically changed in the presence of the laser,
with respect to the field-free case. As eupected, the magnitude and the form
of the modifications depend critically on the laser parameters {frequency,
polarization orientation, intensity) and on the kinematics of the coliiasion.

Let us first conslder the effects of the laser Field strength
intensity. The onset of nonperturbative effects is shown in Fig. 10, where
the angular variations of the triple differential cross aection (TDCS), in the
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presence of a Neodymium laser (w = 0.0M3 a.u.) are shown for two different
field strength intensities: E, = 108 v ca”! (Eg ~ 1.9 » 1074 a.u., ag ~ 0.1},
Pig.. 10s, and 5 = 5 x 107 V om™' (B - 9.7 = 1073 a.u., ag - 5.3), Fig.
10b. Besides the expected difference in magnitude, the angular distribution
is strongly modified, the relstive heights of the peaks being changed.
Displayed also ars the dats obtained from the simplified treatment of
Cavalisre gg_gl.“ which, though we are in its supposed domain of validity
since wa are oonsidering a low frequency IR laser, underestimate the TDCS.
This clearly shows the importancs of atomic dressing effecta, even in this low
frequency ragime.

Varying the laser frequency oan lead to even more dramatlc changes in the
TDCS. In particular, if w matches or nearly matches an atomic excitation
sxcitation frequency:

wze -, (100)

the process i3 resonant, the cross section becomes very large and the angular
distribution ia completely modified. In Fig. 11a we show the angular
variations of the TDCS for the same geometry as in Fig. 10, and for w = 10.2
eV, which corresponds to a resonance on the 2p atomic state. One observes
that the binary peak is split in two parts and that the reccil peak almost
disappears.

We note that the process also beocomes resonant if:

3
L]
bt | HKI\J

- (101}
{(see Fig. t1b for w = B.4 eV, knziz = 5 eV, which makes the process resonant
in the state n £ 2), Although the TDCS i3 of the same order of magnitude as
" before, the angular distribution is agaln modified and both the binary and
recoil peaks are split.

We 1llustrate the effect of varying the laser polarization orientation in
Fig. 12, where the angular variations of the TDCS are shown for two
orlentations. Displayed are the angular distribution for ¢i} and ¢1l
corresponding respectively to maximizing or minimizing the laser-projectile

coupling. Again, the angular distribution is completely different in either
case.
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Eventually we want to mention that there is an easy way to acan the
atomic resonances in these processes, even with a fixed laser frequency. It
i1s enough Lo vary the detection energy of the slow electron, sverything else
being kept fixed. Resonances are ocbserved if the concition, Eq. (100), is
fulfilled, i.e, if:

HJI ~
L. N V]
"
£
+
-

T = - —15 , nz23,...

n 2n
See Fig. 13. We note that w must be larger than klzlz.

This set of results clearly shows that TDCS for laser-assisted (e¢,2s)
collisiona ls extremely sensitive to the modifications of the various
parameters characterizing the laser and the kinesatics of the collision. The
theoretical analyais conducted here desonstrates the importance of the
*dressing" of the target by the laser field and shows that simplified
treatments, neglecting the role of the atomic spectrum, are not reliable, even
in the infrared domain. More details on the physies of these laser-assisted
(e,2e) collisions can be found in Refs. 22, 23, 49 and 50.

Acknowledgments: Several of the results reported hers ware obtained
thanks to fruitful collaborations with: J. T. Broad, A. Dubois, P. Prancken,
5. Jetzke, C. J. Joachain, P. Martin and V. Veniard.
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Fig. 1.  Second-order diagrams gontributing to one-photon transitions
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CGF, Eq. (62). Solid line: overall cross section (from Ref. 30).
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l-:kl + 250 eV, lg = 3, E"B =5 eV, w=1.17 e¥. (a) Perturbative
reglme, Ey = 100 V ca! {b) non-perturbative regime, Ey = 5 «x 107 v
cat, Dashed line: results obtained by using the simplified

approach of Cavaliere et al., Ref. 4. Solid line: complete
calculation,
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the resonance conditlon of Eq. (101) for the n = 2 manifold (from
Refl. 23).

(b) The laser photon energy is w = B.4 eV and corresponds to
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The TDCS for laser-assisted (e,2e) collision as & function of the
ejected elegtron angle #p. l'.:k1 = 250 eV, EkB =5e¥, ¥, 3,

Eg = 10% v cn". w = 1.17 eV. Solid line: the laser polarization
213 where § - El- Ea is the momentum transfer. Dashed line:

€13 (from Ref. 22).
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Fig. 13.

Logarithm {in base 10} of the TDCS as a function of E“B' The angle
of the ejected electron 13 fixed at 0y = 30°, E, = 250 eV, 8, = 3°,
Ey = 109 v en". w = 6.42 a¥ (Ar-F laser), Zlil %rro- Ref. 22).



