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ABSTRACT:

The theory of radiative electron collision as well as of above-threshold ionization (ATI)
in a strong laser field are presented from a unified point of view. The powerful method
of Floquet-Green’s function (or resolvent) is developed from the first principles, and il-
lustrated in details by solving a number of hitherto unsolved model problems of radiative
processes. Two supplements are also provided; one on the method of radiative close-
coupling technique for the solution of radiative electron scattering in a coulomb field, and
one on the general separable potential method for obtaining the ATI spectrum. Results
of applications of these methods are presented and discussed. A summary of the physical

results is given and two general propensity rules for radiative processes in strong laser
fields are formulated.



Introduction

In recent years, investigations of radiative electron collision and half-collision in the
presence of a laser field have made significant progress both in experiment and theory.
In the group designated “radiative electron-collision” belongsuch processes as stimulated
Bremsstrahlung, inverse Bremsstrahl sub-threshold and simultaneous electron-photon
excitation, “capture-escape” resonances and related phenomena. In the group designated
“radiative half-collision” belonge.g. the above threshold ionization (ATI), detachment and
field-induced capture processes. The present lectures treat the theory of such processes and
discuss the results of analysis and their physical implications from a unified point of view.
The first part develops the stationary Floquet Green’s function (or resolvent) method from
the first principles and illustrates it in details by solving a number of hitherto unsolved one-
electron mode] problems exactly. They include, among others, the solution of the radiative
scattering amplitudes and ATI spectrum for (a) the generalized Fermi-Breit potential and
(b) the generalized separable potential; both of these potentials can support many bound
states of different I's and the full free-wave continuum.

Two supplimentary notes are provided which deal with

1. the method of radiative-cluse-coupling equations for the solution of the radiative scat-
~ tering problem in the long-range Coulomb field (e+ HY + photon-scattering) and
2. the explicit solution of the spectrum of ATI process, using the technique of resolvent
for a general separable potential model.

Finally, a summary of the results is given and two general propensity rules for quali-

tative understanding of radiative processes in strong laser fields are formulated.



It is convenient ot start with the Schrodinger equation of the
system in the photon occupation number representation in the Schrid-
dinger picture which gives

[E-H] > = 0O (1.1)

where E is the total energy of the system and

1, 1~ ~ A2
H = [Ha+m (a+a+§) e DA + EZ:I (1.2)
is the total Hamiltonian.
We shall beusing the Hartree atomic units (e = h = Mg = 1) through-
out.
In(1.2),Ha = atomic Hamiltonian
p=-iv
{
B~ + . . - :
> 2 (a"+a) (linear polarization) {1.3)
A= < or
g [(Ex¢+ 1Ey)a+ +(Ey- igy)a] (circular polarization) ({1.4)

\

is the vector potential, where

is the normalization constant of the Field in the quantization volume
3
L-.

w(a+a + %) is the field Hamiltonian. a* and a, with

a*in> =vn*l | n> and a|n>= n | n-15,

where |n> is the number-state with occupation number n, are the usual
creation and annihilation operators for the laser field of frequencyw;



~

Eys Ey and Ez are unit polarization vectors in the indicated direc-
tions. We shall use the excellent "laser approximation" (see e.g. ref.
1 p. 125) in which

3 = {1.5)

where n, is the initial occupation number (very large) of the laser
and n is the change in that number during the process of interest.

We note also that

1
2. =

_C _ ¢8ncon
Ay = K)Fo = (25 00)?

1.6}
L3 (

is the peak strength of the vector potential and Fo is the corres-

ponding peak field strength of the monochromatic classical field of
frequency w. We now note that the matrix elements of the interactions
in (1.2) between the number states |n' + Ng>and <n + ng| are simply

<”+”OJ‘% B.ﬂ]n'+n0>

[

P : :
7o 2 By & nc1?Basr S el (1.7)
i
! (linear polarization)
{' LC I:(;X + 'Ig-y) Bn fn‘,n-.],+(EX -1Ey) Bn+l 6”',”*‘1} (:__8:
(circular polarization)
where
1
2 2
- 8r1c{nptn) 17
B = [—5—" 1.9
n [ L3w ] {
Also,
<ntngi L p2 In' + ng>
2¢c2
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1 2 .2
"8";?' [Ban_l 6"‘, n-2 +(ﬁn +Bn+1)6n',n+f’n+lﬁn+2 nl,n+21
(Tinear polarization) (1.10)
= 3
§%§ [87 (B,2+87s1 ) Sn,n)

{(circular polarization) (1.11)

In the "laser approximation" (1.5)

[T

Brap = Bpep=Bp=Bg =

chzno) -‘A
L3 w S e

and equations {1.7), (1.8) and (1.10),{1.11) reduce to

(Tinear polarization) (1.12)

’ r

0 A_ .’.‘ ¥ =z - -
’2—6 p [(Lx+]:’y) \'n"n_l + (‘_x‘}f'_y) 6n|,n+1]

| (circular polarizztion) (1.13)

and

0 ? 0
2 2
AO R AO
8(:2 [6 n',n—2+ - nlan+2] ¥ 4(:2 6I'1,ﬂl
(linear polarization) {1.14})

= <

A 2

20 .g \

2¢c2 n,n

(circular polarization) (1.15)



2. The Floquet-Schrédinger Equation

The Schrodinger equation (1.1) can be reduced, in the excellent laser-
approximation, to a most convenient set of equations for practical pur-
poses by expanding the total state vector in number states

wo> o= UJnl |n0+ n'> (21)

where nqy is the initial{large)occupation number of the field. We substi-
tute (2.1) in (1.1) and project on to < n + ng | . Adopting the convention
of measuring all occupation energy of the field from the top of the ini-
tial occupation energy, w(n, + %), taking formally the large n, and L3
1imits such that nO/L3 is a constant, and making use of the matrix elements
(1.10) and (1.14) for the linear polarization (or (1.12) and (1.15) for the

circular polarization) we immediately obtain the Floguet-Schridinger equa-
tion :

Eug = Hoou (2.2)
with

’ &3 + A2 ++

[ Hy#nw + 9w S 7, (sp+sp )+ 55? (sp *sp7)+ ¢,

! (linear polarization) (2.3)

Hy =é:
Hy #nw i 2@t o+ TTsh )+ 2,
I (circular polarization) (2.4)

. A F N
where we have introduced o = E%J =-J%, the mean “radius of vibration".
%)

The "mean energy of vibration" of the electron in the field, &. { some
times also called the quiver energy ) is

2

o>
L]
p=2
s
il
-

t
I
3]

(AN
£
e



Note that the expressignzfor the quiver energy in the case of circular
polarization is 28, __Z where A, is the amplitude of the c1rcu1ar]y
polarized vector potent1a1 related to the photon number density (—3) as
in (1.6). In eq. (2.3) and {2.4) we have also introduced the index shift
operators (1] s; which merely shift the index n of the quantities follo-

wing i1t, namely
Sp Yp = Un- 1

and (2.5)

(Y]

Sn ¥n Ins2 2 Sy vp = Vg2

We rewrite (2.2) for an electron in a potential V(F) and in the laser
field as

(E - Hﬁ) U (2.6)
where

S
Hp = Hp-V

or

(linear polarization) (2.7)

1'—.2 - QD =t - - .t
7 +nm+1w—2—(-.- sn+V Sn)+26E

(circular polarization) (2.8)




3.

We shall first consider solutions ¢ g“k?) of{2.6} without the
potential V(F):

(E-H2) 69 (F)= 0 (2.9)

We shall establish below that a complete set of solutions of (2.9)
are

- _iker 5o- . S¢
e Jn_N(K‘ Clo Ib), b —2'_w
{linear polarization) (2.10)
¢g_N(RiF) = 5
RISEN (K*a.) elN9K
n 0
(circutar polarization) (2.11)

for all (n,N} = 0, =1, 22,:- ..
and K = (K, 6y, ¢y) with K'= K sin 3,

The Bessel-functions of the type Jp(a|b) containing two arguments
a and b, appearing in the case of linear polarization, zre defined by
Jpla i b) m_:"‘ Jpizm(2) Jp(b) , p integral (2.12)
where Jp(x) are ordinary Bessel-functions of (one) argument annd order
Py G = £, ag .
Before proving thet (2.10) or (2.11) is a complete set of solutions cf (2.9)
with HO given by (2.7) we derive the following useful properties
of Jp(a|b). Besides their usefulness in the context of the present theo-
ry, they should be of interest on their own in the general theory of
Bessel-function.

Properties of the Bessel-function of two-arquments

-

Inlaib) = 2% Jnion(a) Iu(b) (3.1)

We shall first prove that Jn{a|b) satisfies the recurrence relation
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% [0,1(a]b) + 3,_1 (a]p)]-b [Jp4p(alb) +dp p(alb)] = ndy(alb) (3.2)

This is the analog of the well-known recurrence relation [2]

% [Jn+1(x) + Jn-l(x)] = nd, (x)

satisfied by the ordinary Bessel function of (one) argument x and or-

der n.

(3.3)

For future use, we also express the well-known summation thecrem of

ordinary Bessel-function[z ] in the more useful symmetrical form

N:l):.w Jn_N(X) JnI_N(XI) = Jn_nu(x-x')

and recall the identities

Inon (0) = & s
and
L (F-7) - HF-F)
K
where
- - 1 -5
= N dK
¥ (2n)3

To prove {3.2), considér first

5 [ps1la D) +p_yla b)]

=5 {5dns1s2m (@) * I 1azm(2) Wp(b):

m:_co

= £ [nt2m) 3 epmte) Jplb)
m:— [s]

= ndplalb) + 2 (2m) Jpeppla) dy(b)

second,

(3.4)

(3.5)



-b [dpsp (a[b) + 3, _o(a]b)]

b i T Jnipugn(e) Jalb) + L dp-eam(a) ()}
_—- 00 m:—m

b m-ifcn dnsom (3) i -1(b) +m‘£«> Jnsom' (2) Jm[+1(b)}
- -zm;z:mJMZm.(a)(g) [9pe_1(B) + Jprsp(b)]
- -zmifa9n+2m.(a) [m'a_«(b)] (3.9)

Adding(3.8) and (3.9)we get on the left hand side of (30) simply nJ,{a|b)
which equals the right hand side of(.% . Q.E.D.
We next prove that J,(a|b)'s satisfy che following summation theorem:

I Jn_nlajb) J,_yla' o) = Jpopa-a’) (3.10)
Proof: Using the definition(2.12)the left hand side of(3.10)can be written
as

o

m é'l—u:[ éi:" Jn-nezm 3) vntonegme (@)1 Jg(b) dpe(b)

Using (3.4)to simplify the quantity in the square brackets, we get

Z . Jn_nn+2 (m-m'j (¢-a'} Jm(b) Jml(b)

Changing the summation incices m' = m-p and m = m we get

pji - Jn-n'+2p (a'a')

= pE- _ Jn-n'+2p (a-a') Jp(O)

Jn_n.(a—a')

where we have used (3.5) and {3.6). Q.E.D.
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This theorem immediately allows us to derive the following corollary:

'i: Jn_N(a[b) Jna_N(alb) = én,nl

Putting a = a' in(3.10)and noting that

eq.{3.11) follows.

Furthermore, we prove the following two ncrmalization relations for

Bessel-functions of two-arguments:

L Jp(alb) =1

Mn=- oo

and
{alb) =1
To prove(3.12)we write

I Jplaib) = T

n=- = n=- =

oy

m:_ .

Inezmta) (bl

change the summation indices n = p - 2m arz m = =m, (n,m,p = integer)

and interchange the order of summations tc get
) [Pz Jp(a)] dy(b)

= I Jm(b) =1 Q.E.D.

{3.11)

(3.12)

(3.13)

In the last two steps we have used the well-known normalization re-

lation [2]

IoJdp(x} =1

\"

for the ordinary Bessel-functions.

To prove(3.12)put n = n' = 0 and change the summation index N--N,

in eq.(3.11) This gives at once the result

(3.14)



RGO ES

We summarfze the properties of the generalized Bessel-function of two

arguments derived above and compare them with the well-known analogous
relations satisfied by the usual Bessel-function of one argument.

Table 1 Properties of generalized Bessel-function of two arguments and

their analogs for the ordinary Bessel-function of one argument

Lo Jplap) = =9, on(a) Jp(b)

- o0

m

2. 5 [dpe1alb) + 3, q(alb)]

-b [Jn+2(a|b) + Jn_z(alb)]=ndn(a|b)

3.3
N=-
4. NE:mdn_N(ajb)Jn.-N(a|b)=6nn.
5. & Jglalb) =1
n=-.

n:—u
7. 9,(000) =5,
8 id_ﬂ (b); n even
3,(0[b) } 2
0 ; noodd
9. Julal0) = 9,(a)

10. (Jp(-a[b) = {-1)" 9, (a[b)

cx:Jn_N(a]b)Jn-_N(a'[b)=dl,1_n.(a-a')

30 = (<107 0 (x)



4 Completeness and Orthogonality of Floguet-Volkov-states

After this digressioninto the properties of the Bessel-function of two-
arguments we return to the problem at hand. Now substitute(2.10)in(2.9)
with{2.7), use the recurrence relation(3.2) to simplify, so that

[E - Hno] ¢g-N (R|F)

= [E - (K2/2 +No+ 6, )] elker Jn-N(R'E‘Olb)

2
= 0,for the eigenvalues £ = £' = %T + N + 6

similarly for the circular polarization case

[E-HS D o (K|T)

(E —(K2/2 + N . +26_:)]ei|<'r Jp-n{kiag) RLEN

= 0,for eigenvalues £ = £' = K2/2 4+ Nw + 238,

To prove the completness of the sglutions ¢g_N(F) which will be re-
ferred toas the Fleoquet-Volkov-states,we construct

i QUELD. . (4.1)

In the last line we have used (3.6} and the corollary3.1.)2f the sum-ation
theorem(3.10) proved zbove.

These functions form an orthogonal set

0 (7o SET -
Lo <¢H~N(K r) | Q‘n-N'(K | r)>
. fe‘\(*< Ker g T oo (R 1) 9y (KT )
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In the last two steps we have used the summation theorem(3.10 and the
property JN_N.(O) = 6N,N" In a similar way and using the summation
theorem of ordinary Bessel-function(3.4) it is easily shown that the
set of functions ¢g_N(R|F), eq.S3Til)§efined for the circularly pola-

rized field also form an orthogonal complete set.

>.The Greens functions of an electron in alinearanca circularly polari-
zed field.

The Greens function (or the resolvent in the coordinate representa-
tion) associated with Hg can be defined by [1]

(E - HY) 6o (FFE) =6(F -7') & (5.1)

In terms of the complete set of solutions (2.10or(2.11) we may write
down the results:

S v.s o -ikKer!
x oik-7 Ipon (Kool b} Jy y(Rsgib)e”™F
K, N=-o E - K2/2 - Nw - 3_+ io0
ng.(F,F‘EE) = < (1inear polarization) (5.2}
_ ) i(n-n')s -iK-r!
Zoo eﬂ(.r Jn_N(K*uo)e K Jn'-N(KL%)e
PRGN w E - K&/2 - Nuw- 26 + io
L (circular polarization) (5.3)
- | - . [2]
The spherical harmonic expansion of the Greens functions are
0 [} = ~ 0 [ * ”~
G (rar'[E) =k i (r) Cpmneyem (For TE) YY) (5.4)
with
GO ryr' [E)

nlm,n'1'm



T - (”]-]'A:;;'ml("uﬂo) gﬂ? (ror*fE) (5.5)

(linear polarization)

where
-7 (1) s 1y, i
21KN h'l (KNY‘) 31.(KNr‘ y ror
gw.)(nr'lﬁ) =< (5.6)
_21KN J](KNY') h]gl)(.‘(Nr') r<yr'
I'II 1 ~ e - ,: _ _ _ _ .
A:]l’ﬂ i (KNOO) = JdK Y1m (K) Y]|m1(|\) Jn,:q(KN'QD: b)Jn'-N(KN'OOHD)(S'B)
and
0 1
n]m,n‘]'m'(r’r |€)
= T (g (N) (roprs- 5.8)
= o (1) Bhim (Knzg) 97 (ryr' ) (5.
(circular polavization)
where
LI BE B R x - . (o' -
BE]; " (Kysg) = ek Y] () Ve LK) T
! 1 *, A
Jn_N\KNuO)' Jnl_N(hn,bj (5-9)

We are now prepared to derive the fundamenta’ ~adiative amplitudes of in-
terest.

6.The Radiative Scattering Amplitude

The solution of the Floquet-equation (2.6), (E-HTy = Ve ., satisfying
the initial scattering state boundary conditicn can be written down with
the help of ng,(F,F‘IE) as
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(T = 0 p(Ro[F) + BT S G (FLFE) VIF') vy (FY) oF (6.1)
with

¢ (R, [r) = AL JAK -a.[b) ; b= % {6.2)

n 0 nt"to Co ? 2w *

]

2
where E = Ko/2 + 0w = Ey is the initial total energy. We take the

asymptotic 1imit r ~ = and note that

6o (7,7 [E) = ﬁimm eitNr In-n{Ky: % !b)
roe -
=) dpeoy (Rygpl) e KN (6.3)
where
Ky = VZ(E-Nw) with ' = £ - 6,

- A o~

Ky (KN, @KN, ¢KN) = Ky2 where & is an unit vector

in the asymptotic direction of r.

Hence the radiative scattering amplitude associated with the N th outgainc
Volkov spherical wave 1is readily obtained from the asymptotic behaviour
of the second part on the right hand side of (6.1) describing the dressed
scattered waves only: '
1 = - - iRy
o k) = - on I dpen(KyGolb)<e TN
i r'l_ -~

V(F ) oy () > (6.4)

( here and subsequently the brackets with the coordinate representation
of wave functions are used to imply the integration over the coordinates)-
In the case of circular polarization

0 (= = © @K L in
Gnn.(r,r |E) = NE- - Jn-N (Kcho) e 1NN
r—+ow
1 + ‘inlo 1 -iR'FI
N ( - ?"T';)'Jn'_N(KNao) e KN e (6.5)
where

Ky = - Nw with £' = E - 26,



6.1.
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Using (6.5) in (6.1) and identifying the amplitude of the N th Volkov-
spherical wave we get

£(N) (RO*RN) = %%% n?=_mdn'—N(KNlao)e*Tn KN < e1KN.r|V(F')|wn-(F')>

{6.6)

We have thus reduced the problem of determining the amplitude for elas-
tic scattering (N=0) and of a1l free-free transitions (N=0) in a laser

field to the determination of the Floquet wave function yp(F} satisfy-

ing the initial condition wun{F) +cﬁ (Ko Ir) given by (2.10) or {(2.11).

The Radiative Born -Approximetions:

In fact one systematic method of determing is to use the iteration -

:an
perturbation method in which one solves eq. (6.1)by iteration starting with
the initial solution cg(ROSF}. Thus in the first iteration we put

F) o= (R 1) (6.7)

1 _ - - - -
o n_Jn_N(KN-%]b)Jn(KO-aolb)

; .<e1KN'r'V(F)Ie1KO'r>

fg1 (Ko-»RN) = < (linear polarizétion) (6.8)
. E%: E In-n(Ky'eg) e-in(¢KN i ¢°)Jn(K01°U)
. <eiRN'F |V(F)|eii0'F>
(circular polarization) (6.9)

These explicit expressions constitute the generalization of the well-known
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first Born-approximation to the radiative scattering.
In the second iteration we obtain the correction to(6.7) in the form
(2) _

0 - - P - - -
U T = LT G (FLFUIE) V() €. (K |7 )dr (6.10)

and substitution on the right hand side of (6.4) or (6.6) gives the correc-
tion to the amplitudes

1 - . T‘R ‘F - o} = = : ]
"7 o In-N K g b)<e N V()G (Rt ] £ V(r?)
iKger 5 -
le 0" > Jnu(KO'(:OIb)
f(NHR»R) = < (Vi larizati
B2 o Kyl = inear polarization) (6.11)

1 . -3 ) iEn-r -..0 _—
T 2- n“n'Jl’l—!‘vl(KNlc*o)e TIOKH ¢ o 1RN V(PG (FLF | Eo)

V(Fr)e o el MK g (k tq )

(circular polarization) (6.12)

—

]
They cor:uspond to the usual second Born amplitude generzlized to the

radiative scattering. Clearly the iteration of the solution Uh(F) can be
carried out formally to arbitrary orders and the entire usual Born-series
can be generalized to the radiative case. However,beyond the first few
terms the actual evaluation of the matrix-elements become extremely la-
borious inpractice.

Eqg. (6.4 ) (or { 6.6 } ) is a typical form of results of the
present theory;which allows oneto compute the cross sections for stimulated
inverse-Bremsstrahlung or Bremsstrahlung for multiple apsorption (N<0) or
emission (N> 0) of N photons by the electron which is incident with momen-
tum K, and scatters with the momentum Ky due to its interaction with the
potential V() and the laser field. The corresponding N-photon cross sec-
tion is simply given by

N RN 0 8y 2
Lot X |f(h)(K04KN)| (6.13)
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7Radiative Electron Ejection Amplitudes

In the case of detachment of an electron from a negative ion or
ionization of a neutral atom initially the solution of{26) mustgo over to the ini-
tial bound-state ¢;(F)and no photon should be emitted or absorbed,|n;>=(0 >.
ThUSSf;(F)'*¢i(F) 84,035 the field strength goes to zero adiabatically
and B = eg;tow = E ;, the initial total energy. The Floguet-solution of
(2.6) is of the form

W F) = 5 60 (RFE) VGG o (7.1)

eiKNr -

where wé (r') satisfies the boundary condition

Go(Ey L e (F
Vn (r) CI»)](F) ‘Sn’o

a., +0
0
The corresponding electron-ejection amplitude by obsorption of the N-photon
1s thus given by

(N poy- . 1 (N o
fi~+f (Ky) = - > Ti-+f (KN) (7.3)
where we have introduced the associated N-phczon T-matrix element

ikn-; I

N o - - -
AU T e aglb) < e N TR i) (7.4)
with,
1
Ky = [Z(E.i - Nw -GE)]Z

As in the case of the radiative scattering amplitude before, we may de-
vg]op TgE% as a perturbation series beginninc with the first term in which
w;.(?') on the right hand side of (6.6) is repiaced by the initial condi-

tion (6.7)which immediately gives
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T Ry Ib) <e™NTVE) 0407 (7.5)

We note that the unperturbed bound state solution ¢1(F) satisfies
[- %Vz + V(F)]mi(F)=Ei¢1(F)where €5 is the binding energy of the
state ¢1(F). Thus the integral in{7.4) can be rewritten as

<e™ NG v )] 04(F) >

.R.-
:(-%KNz‘i' E.i)<e1Nr|~+‘-|'()

=1
A\

2
- ) - K
= (C'I-EN) C1(KN)’ with N T —g"" = Ei-N L.J-fSE

javs - -
Hence(7.4 )where ¢ :(Ky) is theFourier transform of ¢; (r).reduces to

oS-
where we recall that b = ?ﬁf and

J_n(Rn- aglb) = m;- Sp-am( Ky o) Iz

is the Bessel function of two arguments. For the case of circular pola-
rization we get completely analogously

T = o) §4 (Ry) 9_g(Katag) (7.7)
with Ey = Ky2/2 = ;=N w- 28,

where JN(KE(xo) is an ordinary Bessel function and K; = KNsineKN.

These electron ejection amplitudes,eqs.((7.6)and(7.7}) which corres-
pond to the propagation of the ejacted electron({after absorbing N-photons
(N<O) from the initial state of ¢.)in the continum with the momentum

Ky have been derived for the first time jn_LaJ using the first order
S-matrix theory and once again later on L5,
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The individual N-photon differential rates of electron ejection

are obtained as usual from

(N) N)
dgﬂ = |T1.£Nl (Rm)f2f= VN |f1‘-(>f) (KN)|2 (7.8)

K
where p =(§%)3 is the density of continum states per unit energy and
vy = is the final velocity (vy = Ky Tna.u.).

Using (7.6) and (7.7) in (7.8 we get

r

KN AT oy x_d_Eiz
Gmz e 7 B i) gy o1 23
(N)
—%%T— =4 (Tinear polarization) (7.9)
KN LV .
B | (esEN) G5 Ry (Ko ) |2
) (circular polarization) (7.10)
2
Fo

where § _ = T2 and all N consistent with a minimum integer N, deternined
by the threshold of electron-ejection in the presence of the field, namely

2 .
Ko =2 (- |ej] -Nyw - 5 ) >0

(Note that for absorption processes, by convension , N and N, are neca-
tive integers).

The total ejection rates integrated over the ejection angles RN=l can
also be given analytically L6 ].

Og, 42

2 s =
W = 4 kBN Z Py | Lol L Swam plepkninlz )] (7-10)

(linear polarization)

Sn,p(aoKN) = n/? E (—I)J C'(n’p) (UOKN)



(

1,2n+4j+]
)

JHM ) T3 (ne23-p) T (3/2+ A(ne25p)

(n+24)}

;ntp = even

(n.p) _

VAN

0 5 n+p = odd

and ,

W) 4KN(E1-EN)2|F]i(KN)]2(°OKN)2N .

® n (o)™
. éio (-1) (2N+n) IrT(2N+2n+1) (7.12)

(circular polarization)

where F1.{Ky) is the Fourier transform of the radial part R1.{r) of the ini-
4
tial bound state o(F) = R]i(r) Ylimj(r)

8.Correction for electron accelaration towards the nucleus due to coulomb
attraction

It will be noticed that the transition amplitudes derived above satisfy
the plane-wave Volkov outgoing condition which is appropriate for proces-
ses in which the atomic potential experienced by the ejected electron is
short ranged in nature; for example in the case of detachment of negative
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ions.

For the important case of ionization of neutral atoms (or ions), the
ejected electron, however, experiences a long range coulomb attraction
towards the residual nucleus in the final state. This effect is
expected to be particularly important in  the case of Jlow
energy electrons. An exact solution of the coulomb case can
be handled only by elaborate numerical methods [7 ]. Here
we shall give an approximate way of accounting for the main effect
of coulomb accelaration on the ejected electron by modifying the
plane wave results using a property of asymptotic coulomb waves from the
theory of coulomb functions. The outgoing coulomb wave function
| ¢ R> ¥ of momentum K is related asymptotically to the plane wave state
| ¢ Z> by Van Haeringen's asymptotic relationl 8]

oy > = ep> (07(K,p)]T (8.1)
1im p» K

where

-7 2 2_- in
D (K,p) = e niz r{1-ir) (Egig_‘li)

and - 1 < ang (pZ-KZ-iE) <7,

3

1

]
>IN

is a factor which typically arises in the momentum representation of
the coulomb wave function. We may rewrite every plane wave asymptotic

expressions developed in the previous sections by multiplying each term
of them by unity in the form

1= {0 (Knop)1 0D (Kyop) ]
Lim p- Ky

Thus, for example, using it in the asymptotic Green's function we obtain

_ . '|KN!" -1 - -
6ot (7,7 [E) = R & — [D"(Kn,p) 1 9, _n(Ky-%alb)

r +ox

x

i - - TN
I. -5 dpoy (KoY [0* (Ky,p) JemTRNCT (8.3)

n'=-o




Using(8.3) in(7.2) and .identifying the coefficient of the Volkov-
Van Haeringen outgoing waves

eiKNr

—— [0 (Kyp) 1710y (Ry )

(in place of the usual Volkov-outgoing waves) we obtain for the corrected
N-photon transition matrix

(N) = - T -
T]—+f = nZI Jnl_N(KN'Qolb) D (KN,p)<KN|V| wnl > (8.4)
Lim p~ Kn
. M(N) 2 . . .
It is seen from |Ti+f | that the N-photon Transition rate is modified

by the simple factor

{2 - 7/KN)
(1-e"27%/ky)

. Z
Lim |D+(KN,p){ =
P~ Ky

where / is the nuclear charge.

The coriected angular distribution for the N-photon ATI is

dW{N) ) 2n 27Ky dN(N)

d KN l-e“ZHZ/KN d RN

(N)
where dwg is given by the corresponding plane wave result, Egs.

(7-9)0r(7_T0)The physical impltication of the correction factor found here
can be made clear by notingc that it exactly corresponds to the relative
probability of finding the electron at the nuclear center in the presence
and absence of the coulomb acceleration towards it, since 9] it equals

{8.6)

Lk (0)] T 2 m/Ky
Lo ky(0)2  1-e"Z7 /Ky

(8.7)

In the Timit Ky ~ 0 the slane wave rates ( e.q. eq. { 7.9 )) decrease
G
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directly proportionally to the density of states Ky . However in the same-
o
1imit

Z T?Z/,I(_N . 217

Lim —y — (8.8)
Ky-+0 |-e 2 ]k Ky

Lim , .

Ky >0 cancels the density of state factor Ky - Note, finally

that for large Kys NN+ 0 and the Coulomb correction factor
Lim —77, " L (8.9)
K== l-e”“"5 Ky

yielding as can be expected the plane-wave rates.

Explicitly the N-photon ATl-rates, includina the effect of Coulomb accela-
ration for the force field of a residual ion of charge Z, are

v oy S LE TRV ER LI R
(linear polarization}
and
dQ(N) _ l z ", - 2
dy  1-e2lly, 2m [E5-Ex) o5 (Ky) Jopn(Ky" 2g) ] (8.11)

(circular polarization)



9.Analog of Volkov-states for unperturbed bound states.

The Volkov reference state_in the product space corresponds to photon
dressing of the plane wave e'K'T, It is given by

N - . - -
[¢R:> s 3 elk-r In-n{K-aglb) [ n> (9.1)

== @

2
with b = Se/(24), eigenvalue E = Bt Nuss,

(linear polarization)
Or,

|¢g> _ ch e'iK-'r‘ Jn_N(KLC‘D)ein ¢K|n>

l=-w«

With eigenvalue € = K2/2 + Nu+ 25 _ (9.2)
(circular polarization)

Recall that the coefficients of [n> above are the eigenfuctions of Hno,
eqs.{2.7) or {2.8). We now consider the analog of the plane wave Volkov
state for an unperturbed bound state. Let ¢1(F) be the atoric bound state.
We may express it as a superposition of plane-waves

s

5 (7) =1 8(Rjeikr

-

where $1(E) is the Fourier transform of ¢;{F)

Now, each component plane-wave eiK‘r in this wave packet can evo-
Tve freely like the Volkov-state(9.1) or(9.2) in the presence of the laser
field only, giving a coherent superposition of Volkov states with weigh-
ting amplitudes equal to the Fourier transform of ¢ 1(?). Thus the bound
state analog of the Volkov-state is

N VI y - -
|9, > % ﬁqa]-(K)e’KrJn_N(K-anb)]n > (9.3)

(linear polarization)
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or

¢, >= I I Ei (K)eiker Jpon(K'a 0)e1n¢K|n > (9.4)
n

(circular polarization)

The coefficients of |n> above are again solutions of the reference
Floquet-Hamiltonian Hn0 (eqa.(Z.?)or {2.8)). These wave packets have
average energy E=--E—— + Nw+ &8, (linear polarizztion) or
= 0 12/2 + Nw+2§ (civcular polarization) where &= - xiz/g is the
i 0,
the wave functions (9.3) and (9.4)go over exactly to the usual product

binding energy of ¢ ,(F). Note also that in the weak Tield “imit

states

N - .
¢y > = ¢i(r) N> (9.5

0.12
with eigenvalue E+ - -5+ N w

The states (9.3)or(9.4) form a convenient set of initial or final re-
ference states inside the field in the strong field condizion,in the sa-
me sense that the Volkov-states constitute a set of contiruum reference

states inside the field in the strong field case.

Some Exactiy Sclvable Models for Electron-Atocm Interacticn in a lLaser-
Field i

The power of the Greens function method within the Flaquet theory
developed here can be seen from the exact solutions of a number of hither-
to unsolved model-problems which are obtained below.Although they cannot replacs
the importance of a fully realistic computation in a specific case, the
usefullness of having such exact model solutions are many. They often
give qualitative but quite general insigths into the nature of the pro-
cess which otherwise may require too elaborate numerical computations in

realistic cases to be practicable. They can some*imes reveal .nsuspected aspects

‘whichmay remain buried in the necessary technicalities of c:mplex computations.

They permit considerations of extreme limits in interesting parameter do-
main which may not be possible in realistic computations.



They can provide test cases against which complex algorithms for
realistic computation may be tested. Finally, they are of pedagogical
interest in quantum theory generally.

10.1.An Electron in a 3-D 6! - Potential and a Laser-Field.

The model Hamiltonian of the system is given by

Ho= - 27 2 4 (F) - = p-[le, + i e )@t + (g - i gal
+ %é? (a* + a)? (10.1.1)

where

Ve Yy Uy () <y (10.1.2)
with

Uy(r) = ;1 fgr) (;r}zl?1 et (10.1.3)

o - Ll e o
and s = {%ﬁ%?) 1s the norrelization consti:it of the vector potential
(chosen here to be circula=ly polarized for algebraic simplicity)

A= llerigla’+ (5 -5l (10.1.5)

The potential V supports ore bound state of angular momentum 1 and the full
set of continuum states. This model is a direct generalization of a single
s-state model with

v=.2 3r)3 1.6
v 5 2 o r (10.1.6)
investigated for radiative processes by Berson[lo] and others[11 - 13],

to any angular momentum state 1. Following the procedure of section 2 we
can write down the Floquet-Schridinger equation of the system

0 - r
[E-Hyly = ¥ 9, (10.1.7)



where

s VTST) + 28] (10.1.8)

0 2 .« + -
Hn=[-%V +nw+ iw —;—(VSH

Using the unperturbed Green's function (5.3)we write

- 0 - 0 - - 1 oy -t
n(P) =ap(F) + B G (7,7 [E) Y (Pt) > Uy (et ) <y q (et )] g (F1) > (10.1.9)
with
20 (F) = e oty (K tag)e Mo (10.1.10)

the incident plane-wave Volkov-state in the sirong field case. We proiect
(10.1.9) on to <Y1m(r) l,define

N Iwn> - Fn]m(r)

and
3, 21+% 141 ' _

(5 (r ot g = Cy(m) (10.1.11)
and obtain

Frm{T) :A:ﬂm(r) # 5L 20Ky by )

'R b 1 “j‘i(Ker) ,
321;] " (Kyag) 7] odr e T Gimdn) (10.1.12)

where

O"?Hm(r) } 4Ti]j1(K01r) Y;m(ko) Jn(KoLO‘o) e'™o {10.1.13)

and we have used the spherical harmonic espansion of the Greens
function, eq.(5.8), and of the plane wave

i - z ami 3y (Kor) Y]m(r)YTm(Ko) (10.1.14)

To obtain the equation satisfied by the unknown constants defined by



C]m(n)

8)2]+1r1+1

we operate on(10.1.12)from the left with &{r)(=

i , integrate

with respect to dr', make use of the limits

. 1 I = KN]
UL s s FIFSOIT

21 1 !
G ke g = (2P Wiy - {21

S (10.:.15)
and use the definition (10.1.11)
to simplify and get
Cm(n) =3¢ (Ko)= 1 Syp(n[n)Cypln) (10.1.16)
where
o421+ nlm _ : , .
Siminin) ﬁ (ay5y) Bn]—n(KNOO) (10.:.17)
¢ (R} = A i (21+1)1 KN (K )0 (K . )e Mo
“pimt Ko’ T 21T " o mt to/¢nihRg g
nlm - 22 ]
Bn]m (KNIO) d':K 5mn @k| O]m (“K)l Jn_N (KEO‘.O) (10-.18)
and O]m(eK) are defined by[lq]
eiNQK
Y1m(6K’ ;K) = O () = (10.1.19)
From (10.1.1C) one gets
o -
¢ 1.{Kq)
- __'nim' "0 )
C-im(N) = ']Wﬂm (10.-20)
We take the asymptotic limit r-» = in (10.1.9) to obtain
o= - eiKNr ;- ino (N) = - . 51
Pz te)e & =— 3.\ (Kya e C R Ky), (10.1.21)



with

fartan(-)5, (kyr' X (Ky)-

:r.‘";) Copin' )i (10.1.22)
We have identified the coefficient of the out-going spherical
Volkov-state as the amplitude (™) of the radiative scat-
tering in which N-photons are exchanged (N< 0 absorption,N>0 emission

and N = 0 corresponds to field modified elastic scattering). We simpli-
fy it using (10.1.15) to obtain finally

VR, Ry) = I, 3 (K e T
Ap(n'sN) - 0 (K e le’™ %o (10.1.23)
where
21+1 Ky, 1 . o
- (Kgay) (kad Ym (K Y (KD
Ay(ntsn) = - =0 o S“”( ‘ T (10.1.24)
N 1 ]m ﬂ‘ﬂ
with
. o |
KO = K0 sin <, l
\ (10.1.25)
KNJL = KN 51n TKN !

It is interesting to take the zera field limit, «, = 0, of{10.1.23). In

0
this limit
h
In-n (Kyfog = 0) = €
n'lm
Bnlm (0) = ¢ - . (10.1.26)
21+1
S]m (n|n) =2 (Ko ])
and /
21+1
- - (K a})
FIN(R Ry =5, o dm 0 RN (R (10.1.27)
0 "o N,0" K, 1+i(KOa])2]+1 im0 "m0
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We show below that it exactly corresponds to the (Im)th partial scattering
amplitude in the central potential for which aj is the 1 th scattering-
length.

To prove this let us first note that(KoaT)z]+1 corresponds[lqjtothellow

energy limit Sf the tangent of the scattering phase shift§;(E) at an

energy £ = E%h , or

21+1
(Koa]) = - tan 6](K0) (10.1.28)
Lim K= 0
Using the relation(10.1.28 )we may re-express the quantity in curly brackets
(10.1.27) as the low energy linit of

4n tan 61(Ko)
K, I-itang (K,)

- 2singy (K) el 9(Ky) (10.1.29)

[w]

Eq. (10.1.29) is 1identified as the well-known expressionfor the 1th partial
amplitude for potential scatte-ing expressed in terms of the phase shift
§(E). One sees that this correspondenéea]sojustifies our anticipated
notations in the definition of the model 6y-potential, eqs. (104.9-(10.1.53.

Interestingly, this result provides a very simple solution to the
well-known inverse scattering Jroblen}ﬁv ich requires the construction of
a pseudo-potential frem a knowledge of the phase-shifts Z,(E) (or, at
low energies from the knowledge of the scattering lengths ay.) In
the next section we shall introduce and solve the most general dy-poten-
tial model including the laser field. It will be shown there that a bye pro-
duct of this solution will in fact provide a solution of the inverse scattering
problem just mentioned.
Before concluding this section we note that in the one-term pseudo-potential
case 1=0, the radiative scattering amplitude (10.1.23) reduces immediately to

FN(R=Ry) = 2™ 3 g(Eytog) e iM%y~ o).
n:-m

d
1+1'500(n|n) JH(KO‘QO) (10.1.30)

where
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® , 2
Soo(nIn) = 7 s7(aky) sin gy I \(Ky* ap) 63y (10.1.31)

N=-o@

Eq. (10.1.30) is identical to the solution originally obtained by Bersonl10 ]
by a differ.nt method.

10.2.Exact Solution of the generalized Fermi-Breit Potential Model plus Laser Field.

The most general Fermi-Breit Potential model is the extension of the

previous case to all partial waves:

v =j§]1| Mmg >V (1) <Yy | (10.2.1)
where J is an arbitrary integer, and
Uy, (r) = 2l o) (221541 154 (10.2.2)
3 2 plj42 or
and
by = %;# (a1j)21j*1 (10.2.3)

This pseudo-potertial supports an arbitrary number (J) of bound states of

angular momenta (]jmj) for all j and all the continuum states.

The floquet-wave-fupction Uy (r) for this potential can be written as
{see section 2}

e M (10.2.5)

is the incident wave.



Defining

3 .215+1 e
(27977 [pl3* Cng 14>1 |2, c5tn) (10.2.6)

projecting(10.2.4) on to< Y]jmjl’ multiplying throughout from the left
912 1:+1

with 8(r) {(—=)° '] r]J+1, substituting the spherical harmonic expansion
Sr

of the Green's function, eq.(5.8),and integrating with respect to dr dr
and dr' we get the equations for the determination of the unknown constants

- o] o nJ
Ci(n) = ¢ (n|K,) +Z ) h) B (Kyo.)
. % j'=l n'=- = N=-o NJ N%
15415041 215141 ,
(k) 373 107 et
®n' n-mj+my: (10.2.7)
where
B:_:JJ(KNQ 0) =./roﬂ dE)K sino K \Jn_N (KNLGO) Jn'_N(KNlao)
.. (Be) O4., . () (10.2.8)
RLI U FIU T K |
with
1
Ky = [2(E - Nw - 25_)]2 (10.2.3)
and
Ky = Ky sin s (10.2.20)
with
) = _ RF lj (215+1)! * ~ ine
’; (nfkg) = 4mi'd (k) T?T%TETT! Yljmj(KO) InlKgtap) e
and 1
ko = K, sin 6. (10.2.11)

We transform the index n to p where (n,p)=0, *1, +2,...ta are integers in
the same domain by

n = p-l-m. (10.2:2)

J

rewrite eqs. (10.2.7) as



J
z

¥ -
i : s . . = o .
§io [ 5jj' + Sjju(p+mJ|p+mJ )]CJ.(p+mJ.) % (p+mJ|KO) (10.2.13)

where

Sigr(ptmylptmyt)

(215+1)1 (215 +1) 1!

AFEMICAFINIY (10.2.14)

The set of algebraic eqs. (10.2.13) can be solved to get
J -1 o -

Cylptmy) _3§=1 [ (pd gy =5 lpomyKg) (10.2.15)
where W(p) is the JxJ matrix defined by

G T D8 45001 Sygulprmylprasi)] (10.2.16)
for any given p = 0,z1, =2,....z=,

We now take the asymptotic limit v'~ = in {10.7.4) to get
TRy .
= = - : N,z ¢

W(F) = 22f)e o kgt o) ek e N R LRy (10.2.07)
where

A R =2 Lo (k) e (1)1 (ky)

o "N j'=l,n'=- o n'-N*"N ‘o Tyrmy e doN

(215:+1)11 205041, g

Multiplying (10.2.13) inroughout by thenumber state |n> and suming over n,
we get the asymptotic behaviour of the total state vector in the product
space:

0 i w TKNr -
= ! - i ing ]
!!"u:; I ¢R0> ) Nu:— o [f>!:=- x r Jn‘N(KN D) € K|n g

- N (kg - Ry) (10.2.19)



where | ¢- > is the incident Volkov-plane wave state(9.2) in the pro-
duct space and the quantity in [ ]-brackets is the outgoing Volkov-
state associated with the absorption or emission of N-photons. Hence
£(N) (RO_RN) given by(10.2.18}s provedto be the amplitude of the N-
photon process of interest.

Changing the index j' to j and replacing the infinite summation over

n' by that over p = n'-m;in(10.2.18)and substituting for cj* (p+my) from
(10.2.15)and (10.2.11) we finally get the explicit result for the amp!itude of
the N-photon radiative scattering process:

- (P+mj )¢’ KN
I {0 em. n{Kg)e
'l=1 p:._ ?; p+mJ N '

i(p+mj')¢0}

.(Eo) Ajj-(D;N)Jp+mj,(Ko*ao)e (10.2.20)

where
. . 4n . 1J'—]j 1 (2?j+1)§!(213-+1)!
jir(esl) = - g () [Wp) 150 (277 1) (213 +1) 11
215+41 K 150-15
(Koa]j) ! (K:)T (k) * (10.2.21)

i

when [N_I(P)]jj- is the inverse of the JxJ-metrix [W(p)}] defined by (10.2.16).

It is instructive to take the field free Vimit of(10.2.20by putting as0.
In this limit

Jn-N(O) = 5n,N
We also find from eqs. (10.2.8) and (10.2.14) that

nljl _
an (KN‘O) => &,n> On,No éjj'

21 +1 .
JJ|(p+mJIp+mJ ) =2 (Kp+mJ a1 ) ¢ ,]J'



and from (10.2.16)

CRENRES

Hence from (10.2.20) and {10.2.21) we find that f(N) (Rd‘KN) goes over

to the Timit
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and (10.2.14)

1 P
a )21j+1 3]
pm; 15

1+i (K

J

MR Ry) = 1 =7 e {PHmyloky

5 .
§*1 pe-w NPT

.(_ 7
Yy
1jm;

=EN,0 )X (2

0 1+i(Kp+mja].

(Ky) ¥*

an (Koay;)°'3*! Ky

1
< - =1"]
J)?TJ+I (Ko)

(K

6
im;

0) ptmj,0

'I.

1+i(Kya1 )

Cosa = Cos (KO,KN)

Letting {see {10.1

215+1

.28))

<=> - tan 6]j(KO)

Lim Kg* C

we may rewrite {10

f(o)(cos 9)

.2.23) as the low energy limit of

tandy . (K,)

1 i‘"o

— I (21;+1) . P.(Cos 3)
Ko 15 7 1-1 tan&3(K,) B

1 . -167,(Ky)
‘K_O 1}: (2]J+l) sin G}J(KO) e J Pi

J

{Cos 6)
J

(10.2.22)

(10.2.23)

(10.2.28)

(10.2.25}

(10.2.26)

(10.2.27)

where <> is the elastic scattering angle. £q.(10.2.27) is of course, the
welT-known exact expression[14] for the scattering amplitude in terms of

phase shiftéh (Ko)

.

Thus we have shown that given the scattering lengths ay, the general
J



- 37 -

Fermi-Breit pseudo-potential (10.2.1) - (10.2.3), yield the exact
scattering amplitude determined by the given a] s. Furthermore, when
{ay. )2]J+1 is substituted by the energy dependent phase shift 6} {Ky)
accord1ng to the continuation formula

21;+1

(K.a J 7+ < tan 61j(K0) (10.2.28)

)
0 IJ

in (10.2.3) then the general Fermi-Breit-Potential reproduces the exact
scattering amplitude.

An interesting application of this result is in the case of radiative
coulomb scattering with the known phase-shifts[14]

N\

1l

arg r(1r0+1j+1)

and (10.2.29)

(Ky) = arg r(ivN+1j+1)

where ny = i%(nucTear charge 7).

The gentral Fermi-Breit model for the coulomb radiative scattering
amplitude for emission or absorption of N-photons becomes:

(N) .. - J . . -i{ptmy )z
fol (Kg=Ky) = T 27 0, v (Ky* a.)e IRy

c o N jyd'=1p=-= PTMj=N AON Mo

(C) i +mai
" Rjgr (psN) Jp+mj.(Ko* ) eHPmitle g (10.2.30)
where
(c) PRSI FEVE PR (21541)11(215%1)1
ijt (psN) Ky (1) L (p)]JJ (215+1) 1{215041) 11

- tan [argr(1j+1+ir10)]

KN\ 75 Tii-15 R
' (Eg)]J(KO) 7 1, imj (KN’Y1..m ,(K5) (10.2.31)
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where [Hc(p)] is the matrix defined by

. le)
[We(p) 150 = [855:+1S550 (prmylpmy)] (10.2.32)
(c) o oy |
Sisn (D*mj|p+mj') = - I B (KN(IO) tan[argr(1j+1+1*N)]
J\] N:— oo p+m‘j’j
15-150 (2V3+41)1(215041) 18
. J7°) J J
(Ky) (215 ) 1215 1)) (10.2.33)
ptmyr, 5 IS L . !
Bp+m§’j‘] (KNO'. 0) = fo dUK S]ﬂ:iK Jp+mJ"N(KNL ;ID) Jp__mj'_N(KNL :Cj
. (8 e 6 SN R (10.2.34)
1JmJ ( K) 1J mj ( K) mj,Mmj
with
1

KN = [2(E1—Nw- 268)] ,KN‘L = KN Siﬂ%K.

Similar results can be easily obtained, by proceeding exectly analogcusly
as above, for the linear polarization case.

10.3.Hard Sphere Potential.nlus Laser Field

We give an exact solution of the problem of electron scattering <rom
a Hard sphere in alaser field. The hard sphere potential is defined by

V() = {10.3.1)

where r  is the radius of the hard-sphere.

The total wave function must satisfy the condition that it vanisrcs

for r < To-
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Circular Polarization:

We express the Floquet wave function wn(F) in terms of the reference
Green's function (5.2) as

= - ik 'F 'in¢ [} - - ~
Yfr) =e ™0 Jn(Ko*ao) e'"Yo + ﬁ' Gnn.(r,rO]E)Cn;(ro) dr, (10.3.2)

with

-
I

where the first term corresponds to the incident Volkov-wave, and C,.{ 0)
are constants to be determined. We first show thatuh(F)satisfies the Flo-
quet-Schrodinger equation with the potential (10.3.1) at all points of

space except at the point r=r_. Thus

0°

c iK.-r
(E-Hn) [e © Jn(Ko*u

t

(E-H, ) v (F)

slrerg) 0 (10.3.3)

1]
o
+
(4]
—_—
Y
=
I

for both r > r  and r < rg (for all finite C .s).

The solution is fully determined from the requirement that at v = o

dh(F)= 0 for all n = 0,21, =2, ...t=, , {10.3.4)
This determines the unknown Cnis.

Thus projecting (10.3.2) on to< YT-m-" using the partial wave expansion of

the Green's function in the outer region, eq. (5.3}, for rzr'=r_, intro-

0
ducing the index j to denote the pair of gquantum numbers (1jmj), expanding

Up(r) = ZJ Fajlr) Y1J~mj('") (10.3.5)

Cplror) = § Cj(n) Y]jmj(r)

and setting r = r, we get from (10.3.2)
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J,®
o - 1
F oo{r .} =35(nlK.) - L Qiselnin') csln') 8.0 o o gm:y (10.3.6
nJ( o) J( ! o) jei.nt=-s Ji {n) J n',n-mj+mj )
where
. _ o) 2 (1) . n'j'
ij.(n|n ) = &;-(n Ky h]j (Kyro) J1j'(KNro) an (Ky a,) (10.3.7)
B" (kg ) =5 d (Ko ) d e (Kt o) G (8 )3y (B )sinzyds
nj VN®ol TS0 Sn-NUENT @ o) It Ny o) O (800 gumy BdsTnSgd e
(10.3.8)
with
= s * ~ ing
¢?(n|KO)= ami 3 015(Kprg) 4 m; (KoPInlKgag) &0 (10.3.9)
We change the index n by p + my in the range{-o,+ =} where p is an in-
teger and impose the boundary condition:
Fp+mj,j(ro) = 0 for all p and j
which gives the required set of =quations for uniquely determining the
unknown constants cj(p+mj):
o -
;j/_:l iju(p+mjlp+mj') Cj'(p+mjl) = J(p+r;JKO) (103.10)
From the asymptotic behaviocur (6.5) of ths Green's function in eq.
(10.3.2) we get
- o ;- eiKNr gk
wn(r) = ':n (r)+ z r Jn_N(KNL,LO) e N .
r o N
) (R~ Ky,) (10.3.11)
where the N-photon radiative scattering amplitude is exactly given by
N)s ooy L i(ptmjleg
fMkeoky) = 2 Iprm;-4(KN" ¢ o) e N
NENR
-i(ptmj* )¢
Ag3(PN) g (Kytag) e 17 (10.3.12)

with,



_q.l—

gy (o) = _Bﬂ(i,Tj'-‘a‘ﬁjmj (k) 31505m0) [T (0150

*

'j]j'(Koro)Y}j.mj.(Ko) (10.3.13)

To check the self-consistency of this result, take the zero field limit

ay=0. Remembering that Jp(O) = ép,o we at once find from (10.3.12):
. . Jr1: (K r
im £ (Raky) = 6y o [ I (21541) —3--2 O py (Cos8)]  (10.3.14)
0 N “Ky 7:0° 970 (T) J
0 013 1: (KOrO
% ~ J
where we have restored the index j = (Tj,mj) and used the identily
".
J -~ * ~ 2}"'1
) Yy o (K Y7 (K} = —— P1.(Cos8) (10.3.15)
mj=-1 TJmJ N ]JmJ 0 &1 3

where cose=£N-£0 and ¢ is the scattering angle.Eq.(10.3.14)exactly re-
produces the we11—known[14] expression for the scattering amplitude by
the hard sphere potential in the absence of the laser.

Linear Polarization:

In this case the Floquet-Schridinger wave function may be expressed in
the form '

0 i) + I Gope(T, rolE) € (Fy)dr (10.3.16)

o

where ng,(F,FO[E) is given by the Green's function (5.2) appropriate for
the linear polarization.

Expanding
p(ry = I Fyp(r)Yy () (10.3.17)
J imj
and
Co(Fo) -t Cinlro) Y jm;(ro) (10.3.18)

and proceeding similarly as in the case of circular polarization above
and setting r = ro we get

Finlro) = 4mild j1 (kor}Y*  (Ko) dnlKo G o)
jroo ]jmj
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© L Qnegrnt Cyrpe(rg) (10.3.19)
Jgn
where
- ik 0 (k) 3100 (Kyro) L9 (Ko ) (10.3.20)
an’j'n' - £=—m 21KN h'lJ Nro J]jl Nro nj Nao 3.
with
n'j' _ =
i’ = £

degsingy Jn-N(KN'BO’mdn'-N(RN'Jo’b)

Oy, (8 SR (95 B SR (10.3.21
ljmj( K) 1J mj ( K mj,mj )
We impose the boundary condition
an(ro) = {0 for all j and n (10.3.22)
which gives the equations for Cip'
! O (r ¥ 10.3.23}
;,;'zl an,j'n‘ Cjtnl(r‘o) = jj (1 KO) ( e I i
with
0 o . . ‘* " o - \
?] (riky) =4~ 17 35 (Kgrg) Y‘nimj(K‘O) In(Kgaglb) (10.3.24
From the asymptotic behaviour for r~ - of (10.3.16) we get
ik L eiKNr o _ .
L R T L) 2 oF MR, >k (10.3.25)
where the N-photon radiative scattering amplitude for the linear polari-
zation case is
N g .oy - (N) = -
FN (R~ ky) = I o Gigdgn gin In(Ke s o) (10.3.26)
n,n'
with,
aM s e T Y ) (e [ - (k)
jn,j'nt T 7 ETU 13ms' N 315 (kN )10 ]jn,i'n‘“j('(h"‘oﬂh-mj- o

(10.3.27;
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where [al]jn,j'n' is the inverse of the discrete-matrix [Q]
by (10.3.20).

jn,i'n

v defined

This result should be compared with an alternative expression in the
linear polarization case to be found in the 11terature[16]. Note that in

the zero-field limit (a0=0)

nljl

Lny™ > $5,3' Sn.N Spr N
[Q] > 2iKy h (1) (Kpa o) d1s(Kyr ) 6; .0 &
QUsn,j'n VAN M5 NEol JT5VRN"G! 85 50 Cn N
and
A 6 6 4r o fli%f%iil___
: CO R e ] 6 ] T
n,j'n , n,N *“n',N K 1
in, ] J»d N ; (Kor)
Therefore, for g =0
_ . , 315 (Kyrg)
FN) (Ry > k) = oy ol T g (21541) Ay P1;(Cos )]
]j 0 hlj (Koro)
£
which ts the exact hard sphere scattering aa‘nph’tudeLl'ﬂ'J in the absence

of the field, as it should be.

Solution of the general finite-range separable Potential Model with a

Laser Field,

1

The separable potential model can be defined by[l7’18]

<>
]
1

i IY1jmj(r) Uj (r) >< Vj(r) Y]jmj(r)|

(10.2.28)

(10.4.1)

when J is an arbitrarily fixed integer. This potential supports J number
of bound states of, in general, J-different angular momentum symmetry (1j,

mj). j = 1,2,3,...J, and all the partial waves continua and phase shifts

dj, the first J of which are in general non-zero. We shall give exact solu-
tions of radiative amplitudes and the spectrum of ATI for this system of
potentials plus a laser field. The Hamiltonian of the system of "electron +

potential + laser field" is given by {1.2). The corresponding Floquet-Schro-

dinger equation is (see eq. {2.6)) :



(r)

J
[E-Hn°]| wn(F)>=j51| Y]jmJ Uj(r) >< ij] |wn,> (10.4.2)

AR

Circular Polarization:

We consider the case of circular polarization first.

Solution of the Radiative Scattering Probiem:

Using the Green's function {(5.3) we write

J ~
1 - — 0 - o« 0 =St 1 ] ]
v a(F)> = % (r)+_};1 Qz_ajﬁnn- {(r.r'|E)] Y T_m_(r ) Uji(r )>Cj.(n [E}
J n J7
(10.4.3)
where we have defined
< Vs{r) Y]jmj(r)[ bplr) > = Cj(nIE) {10.4.5)
And
i v .
D) = e 0 nlketa,) e M (10.4.6)
is the incident Floguet-Volkov wave.
Projecting on (10.4.3) with<V.(r) v, _(;)i we get
J 1JmJ
o _ J
CJ(”'D = G'j (anU) +j:'=13jj'(n,n-mj+mj'{E)C‘jl(n—ij‘Tj'lE) (10.4.7)
where
' = Fdike T 4g o cin o -
Sjj.(n,n lE) = J diK S, d8ysin gy gjn,j'n'(K’*K|E) {10.4.8)
with
1 ™ N\ 1
In,gn ¢l (27)3 Ne-w 1jmj K il )E-K2/2-Nm-26€+io
L i ~
In-NCKN" o) dpe Kyt ag)Uj e (K) %1 ey (8] Snt nomgem;. (10.4.9)
and
Uj(K) = <uj(r)la—11jj]j(xr)>
> {10.4.10)
Vi(K) = <vylr)ja-ily gy (ke)>




Also,

= i * “ in
BONRy) - Vi (ko) Y]y (ko) In(Ko'ag) et (10.4.11)
and
KO = (KOQGO !¢0) = (Kz’ Kla ¢K)
KO = b/ﬁ

Making the useful transformation n = p + ms for any integer p, n and my
in (10.4.7), we get the closed system of J algebraic equations

J
I [85-S

j'zl (P+mj: D+mj1|E):| Cj'(p+mj'|E) = fg (p+mj|ko) (10412)

33’
Solution of this equation is, by Cramer's rule,

Ci(p+mj[E) = Ay(p+mj|K;)/Dp(E) (10.4.13)
where

Dp(E) = det | &350 - Sj;0 (pmjy, ptmj+ [E) | (10.4.14)
is the determinant of the JxJ coefficient matrix on the left hand side

of (10.4.17)and Aj(p + mj|ﬁo) is the deterrinant obtained by replacing
the jth Column of {10.4.14) by the right hend side Column of (10.4..2).

Hence
g (r) =¢9(F) + % 5 6 (Fr E)|Usi(r' )y (A')>
Y ' N X L | r .
n n jl=l p=_ o nn J ]j|mj|
As(ptmi [Kg)
SN J Y
Dp (E) (10.4.15)

To abtain the radiative amplitude f(N) (RO+ EN) for N-photon Bremsstrahlung
(N> 0) and inverse Bremsstrahlung {N< 0) processes, we take as usual the
limit r-> = and identify the coefficient of the out-going Floquet-Volkov
state in the NN channel. Thus

iK ,
e N i(ptmj)e gy

wp+mj(F) = :g+m.(F) + I

———— LP
; Ne_ e T ‘Jp—mj~N(KN uo)e

r -+ o

(N (RoRy) ' (10.4.16)
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and
- - J -1( '+m'|)¢:
(% <k = L , . pmj+ ) Ky
f (K KN) 27 J'}.:—_l ‘E-:_mdp"’m‘j"N(KN Oo)e
" o Aji(p+mic]Ko)
J 4 '
R N (3 (10.4.17)

The associated cross section for radiative scattering is given by (6.13).

Rate of N-photon ATI-Process:

For ATl amplitude defined with respect to the initial dressed Volkov-
packet associated with the initial bound state ¢;(r) (see section 9!, in
equation (10.4.15) we have

Q(F) = %e“"r §T(R) Jp(Kiagle’" K (10.4.18)
and hence
® (n)z U5 1 (100>
= v Y e (R L, Tnéy
: Vi(K) Y]JmJ(K)ci (K)J (K o) e (10.4.19)

Hence absorption of N-photons can be obtained exactly by the technique
of the previous section. The result is

J i (pems i)
MRy = -2 T 7 g Homy )iy

o Ajr(p'Hmyr)

 (Ky) B, () (10.4.20)

Tjrm;

where the determinant Dp'(E) is given by (10.4.14) and Aj'(p'+mj') is ob-
tained by placing the j'th cotumn of Dp-(E) by dg,(p'+mjr) obtained from
the definition (10.4.19).

The differential rate of N-photon ATI-transition is simpty

S = vy 11Nk (2 (10.4.21)

where vy = Ky {a.u.}) is the final velocity of the electron.




Solution of the Eigenvalue Problem:

The fundamental solution of the eigenvalue problem is obtained from the
condition of existence of solutions of the homogeneous system corresponding
to (10.4.15) without the first term on the right hand side and hence from
the secular equation

Dp(E) = det l6jjl'$jj'(p+mj,p+mj'IE)I =0 (10.4.22)

we observe that the irreducible Floquet-eigenvalue E = E, . and the asso-

ciated eigenvectors Cj(p+mj| E - EA) satisfy the Floquet twin-transfor-
mation[1’17]

E"_\“’ E)\ + muw
(10.4.23)

Cj(p+mj|EA)-+ Cj(p+mj+m | E + muw)
This is established by the observation that the system of equations, (10.4.7.2),
with the right hand side set equal to zero, remains satisfied under the trans-
formation (10.4.23) and on changing the arbitrary integer p to p+m and at the
same time modifying the summation index N of {10.4.9) defining Sjj' (ptmjptms+|E)
in eq. (10.4.8) and (10.4.22), by N+m.

Hence to every irreducible eigenvalue E, ., in a given F]oquet—zone[ll]
A

3

there exis:s an infinite set of eiaenvalues EAj+m¢u, m=0.1,+2,..,which
occur 1n all the Flugquet-zones, The ergenvector Cj(p*mj[f = tki) can be deter-
mined to within a normalization constant for every p from the set of algebraic
egs. (10.4.12), with the right hand side put equal to zero. The total state

vector at the dressed energy E . ; can now be constructed explicitly as

J
N = 2 o . (p) - . s . . 4
I' E}“j> J‘I‘zl p= - m|p+m‘}> F‘]Jl(r) CJI(p+mJ IE)\JI) (10.4 2 )
where
(p) - - 1R'F n
FJJ'(r) —RENE Jp+mJ_N(K QO)Jp'FmJ"-N(KLOU)

! N FELY A
-4 I U5 (k)Y 10.4.25
E;\j-KZ/Z-Nu-SE n (i) UJ (K) ]ij (K) ( )

We observe that both the scettering and the eigenvalue problems can be sol-

ved[18] using the "length-gauge" interaction, if desired, in an analogous
way.
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Linear Polarization:

In this case the Floquet-Schridinger wave functionsufn(F) are

[ 4] sg=1 0 -y . A|
. n£|=_;dr G {rsr [E)U 0 (r )Y]J_mj(r‘ )Cjrqe (E) (10.4.26)

(11 ur K &9

() = ¢ 2(+) L

where Gng is now given by (5.2) and we have defined

= - . - 4 A7 1y
Cjtnt(E) = fdr Vj-(r)Y]j|mjl(r)¢n ('I") (10.4.27)
and
07)- o Ty (R - T 10.4.28
¢n(r)— e Jﬂ(KO‘ OO'D) y b = Z_u) ( Ja, )

Multiplying (10.4.26) with Vj(r}Y?,m_(F) integrating with respect to df and

simplifying we get in a similar way as before

J
: -39 (K < & _
an(E) qajn(Ko)}:Zl ,f»;-:nSJ”sJ'”'(E) CJ.n,(E) {10.4.29)
where
= f'm 2 e .
Sin,j'n(E) =/ dKK fy 48 singy gjn,j.n.(K,eK) _ (10.4.30).
where
(Ky2g) = ——= =7 V.(K) J. u(K
gjn!jlnl ,:K) - (277)3 f:':—oo J( ‘J]ij(eK) n N( J-Olb)
1 K+ AN 10.4.31)
Y . g1 K- b) © S U (K 4.
mj;mj' E—KZ/Z-NL*-é:+io n'-N ( a 0| ) 1 'mj'( K)UJ (K} (
where
e} - " * ~ - -
d)jn (K,) = VJ-(KO) Y]jmj(xo) In{Kgs gl b) (10.4.32)

Y W
and VJ(K) and UJ(K) are given by (10.4.10).

It should be noted that the system of equations (10.4.29) like eq.
(10.4.12), constitutes a countable set of algebraic equations inspite of
the fact that the Floquet-Schrédinger equation accounts for the continuum
motion of the electron completely. This should be contrasted with an at-
tempt to obtain the solution by eigenfunction expansion with atomic eigen-
states which will lead to a non-countable system of equations (a system of



e.g. integral equations) for the coefficients of such an expansion (due
to the presence of the continuum), Presently, however,one may solve
(10.4.29) by discrete matrix algebra only. We take the asymptotic limit
r-= in (10.4.26) and obtain, as usual,

v p(F) =0 2(F) ¢ 2 S dnn(Kyrag b) £(N) (R, +Ky) (10.4.33)
r—+ox ==
with '
J
NYew o5y 1 - =
FN R - Ry) = - L na(Resg o)
A ~ .
Using the solution of the system of algebraic equation (10.4.29) for Cj.nq(E)
one finally gets the result for the linear-polarization case,
N)iw ” _ 1 - - - (N) .o
f( )(KO—> KN) = - 2— Jn J n'Jn_N(KN’&Olb) A_jn,j'n'(E) Jn(KO'Golb) (10.435)
where
(N) o ~ -1 * "
Agn, gt (B) = U5 k)Y,

(Ry) [ (E)]jn,j'n'y1j-mj- RV 3k, (10.4.36)

Rate of N-photon ATI-process:

We may obtain the multiphoton ionization rate in a strong linearly pola-
rized field in a similar way by choosing the initial state in the field to
be the Volkov-packet state (see section 9}:

C

©(F)=z e K b.(R} 3, (K

: 2 40b) (10.4.37)

\ - - -
where ¢ ;(K) = <K [95{r) > is the Fourier transform of the initial bound
state ¢>i(F). Proceeding exactly similarly as above for the radiative
scattering amplitude we obtain for the ATl-amplitude

f(N)(EN) = - :—11; J_z In-n{Ky g [b) Us(Ky) Y]J J(|<N)
: in
(R (E)). .. . 2%(n) (10.4.38)

where



* ~ - - 8
(K) 1 (R 6 (R (R D)3 b =5 (10.4.39)

o IR T 1
¢j.(n ) )13_( VJ-.

The differential rate of ATI transition is

dw(N)

- (N)(z v12
= = f K 16.4.40

where vy = Ky(a.u.) is the final velocity of the ejected electron.

.Exact Solution of the Resolvent and the Flogquet Greers Function for the

General Separable Potential Model with a Laser Field.

Let us write the general separable potential model as

ve= 1 |uU
j

3-{F) >< VJ(F)! (11.1)

where Uj(F) and vj(F) are defired in the form shown in eq. (10.4.1). The

total resolvent of the system of "electron+potential+laser field" in the
product space can be expanded in the number states as
B} <n', (11.2)

A

The total Floquet-resolvent or Green's function Gnn.(F,F'[E) satisfies
the equation 5

[E-H) V] G (FoF1E) = 2 (F-F') 8, (11.3)

where Hg is given by eqgs. (2.7} or (2.8).

Explicit Resolvent: Linear Polarization:

We use the potential free Floquet-Green's function ng. which satifies
(E-HO) 62, (7.7 E) = < (F-F')5, oo (11.4)

to write the equation of the total Green's function Gpp' as




Gnn' = ng.-+2m 0 ve

or more explicitly

(11.5)

- 0 -, Jyoo 0o ;- = -,
Gnn,(r,r [E} = Gnn.(rr [E) + I Gnqi(r,rllE)|Uj1>lenl(n [F')(11.6)

J1=1,r|1'=_oo
where we have defined
Ci n.(N{B ) =<vi (F ;|6 7 (ry,F |E)
Jln1 l J1 qfn ]

Projecting (11.6) with <Vj! throughout, we get

- 0 - -

C- f i - " (n‘ r‘) +L S o
where

0 - = ]

an(n'Ir') = <¥G(r)|cgn-(r,r [E)
and

Sjjl(n ni|E).z <\3(F)’ ngl(F,F1|E)| Ujy () >

Hence eq. (11.3) can be solved as

J .
— P I AV N
G (ryr' [E) = Gnn.(r,r £) +j];=1 Ir.;,l:-mGnnl(r,rl|E)[U‘}1(r1)>
J2=1 n2=_oo
WD), o v (B & (7 E)
J1Mpadonp 2 2

where [ﬁl(E)} s the inverse of the matrix [W(E)] defined by

[N(E)]Jlml’Jznz = Léjl’jzénl’nz - SJIJZ(nl!nZIE)]

(11.7)

(11.8)

(11.9)

(11.11)

(11.12)

This result, eq. {11.11), can be used to obtain the line shape spectrum
or the probability density of any process involving a transition between

a given pair of initial and final states of interest.

The N-photon Electron Ejection Spectrum: Linear Polarization:

We now give a systematic method of obtaining the line shape for N-photon



electron ejection or AT] spectrum. In this case we consider a transition
from the initial product state

|4 > = ¢,{(F)[0 > (11.13)
where ¢ 1-(F) is a bound atomic state and no photon is emitted or absorbed,
Ins > =] 0>, into the final Volkov-state

©  jKeer = = ¢
|¢f > = nE-i f Jn_N;Kf cx0|b)[n>; b =m (11.14)

in which the electron has the kinetic energy Kf2/2 and Nephotons are ab-

sorbed. Note that the total energy of the "electron+field" system in state
| ¢5> isE; = & + ow where ¢; is the eigenvalue associated with ¢;(r)
and in the state [o¢ >, Ep = Ke2/2 + Npo + 6. The matrix element of

e

the transition of interest is
<OplBlog> = I <opin> G <n'| o> (11.15)
Substituting for G, ( ,r') from {11.11),

<PplGld;> = £7 0 <¢ ¢ |G0 {r,r'|E)]0.

= - w .

R RGN CEN IRTIR GO M 13)

n=- j,n, 1 1 Jinysdang
Jz’nz Vi, (Fp) |Gﬁ20 ro,r IEN L 5 (F1) > {11.16)
where
o(F) = TR Jn-Nf(Rf'aolb) (11.17)

Substituting further from (5.3) for Gﬁo (ror') in the first part of the
right hand side of (11.16) we get
In-n{K-zo ) y(Keag |b) <K e

E - K2/2 -Nuw -6 +io

I3 oy (K SolB) <R R
K,.N

l.] N(Kf uo |b Kf JO ’b \.1 (Kf)
E-Kfz/Z—ir -1, +io

LI Re G ) (11.18)

N -
where ¢(K¢) is the fourier transform of the initial atomic state o;(r).




Note that the quantity in the square brackets above isé NN¢ by the complet-
ness relation of Table 1. We then get, for this part, simply

1
J_y, (K b) = (K 11.19
E-Kel/2-Ngu-§ +io N¢ °f % | ) (Ke) (11-19)

The second part of {11.16) can be simplified in a similar way. We get

1 - R (1)
rJ (Re-a VU5 (Re)[WH(EDD, Cion,(E)
. : NARE f i
E-Kel/2-Ngw-§ +i0 jyny N ° g I R1.d2n27 32"
J2n;
(11.20)
where
~ e (K-%g | B)d_y(K-0 [b) s (K)
c(1: (6) =1 v (k) nexh{Keo 1 D1 p(Keog b) o5 (11.21)
J2n2 KN Se E-K2/2-Ne-§_ +i0
Combining (11.1%; and (11.2:) we have
T 1 {Nf)
<PelGiey> = EEeto Arr (E) (11.22)

where Ef = Kf2/2 + Ng‘+ 5., and the stationary transition amplitude of the
process in which the e1ectvon is ejected with momentum Kf in the direction

between Kf & Kf + dKf and Ny photons are absorbed (Nf< 0) from the field,
is

X " o !'-.1
+ ;, Jnl_Nf(Kf-JO,b) Ujl(Kf) Lh (Ef)]jlnl,jznz .

’ Cjznz (Ef) (11.23)

The probability of transition associated with this transition is
(N¢) Nf)
Pt =L [Ap (Ep) J2 (11.24)
Ke
where the summation is over a group of final continum states around the mo-
mentum Ef and Rf + de and energy E¢ and Ef + dEg. Hence the associated

double differential probability density spectrum is

2. (Ng)
d P1+f

_ . (Nf) 2 - 25
ddeEf IA1 +f (Ef)l * (Ef) (11 )



K
where P (Ef) = —~f—§ is the density of the final states. The individual

probability of i exchange of N¢ photons is obtained by integrations:

(Ng

) ~ (Ng)
b ke dee| AL (EQ) e (Eg) (11.26)

p

Since in the usual electron ejection or ATI-experiments the number of pho-
tons exchanged are not detected either separately or in coincidence with
the electron energy, but only the electron energy is measured, the total
probability density spectrum of the measured electron energy is obtained
from the sum of (11.25) over the final photon numbers and integration
over angles of ejection:

as(E¢) . () ,

Explicit Resolvent: Circular Polarization:

We may proceed as before but using now the reference Green's function

ng.(F,F') given by (5.4). Here we quote simply the final results:
G= I nG  {r,r' E)<n'| (11.28)
nlnl nn -
with
o (77 ; R :
G, o{r,v" E) = G° (r,r"iE) + I I G (7o 7 E) U (70>
" e 31adgs p=- e maprmy LTI
-1, . o . |
(W (p)15, 5,5, (r2) |Gp+m32,n.(r2r |£) (11.29)
where the matrix [W(p)_: is defined by
(P y,5, = [85,,5,755,5,4ptmy »pemy, 1E)] (11.30)

where Sjljz(p+m-l,p+mj2|E) are defined according to'egs. {10.4.8)-(10.4.10).
We note that, due to the planar symmetry of the circularly polarized field, in
this case the matrix [W(p)] is essentially diagonal in the Floquet-(or the
photon index) space and can be treated separately for each p and thus its size
is determined by only the rank J of the separable potential chosen. In the
linear polarization cese, because of the reduced, axial, symmetry, the size

of the corresponding ratrix [W(E)], eq. (11.12), is determined by the size
of the Floquet-space zs well. |



The N-photon Electron Ejection Spectrum: Circular Polarization:
The corresponding matrix element of the total resolvent between the
initial bound state in the product space,

|% > = ¢i(F) |0 >, Ei =ei* ouw (11.31)
and the final Volkov-state
Inons(Ke* o) € " n> (11.32)
where,

Ke = (Kes 8¢, 0), Ke* = Kesimg, Eg = Ke, g w426

is

: 1 (N¢
<GelGidy > = - AL (e 11.33
Atk E-K¢2/2-Nwe-26 +io T*fz ) ( )

with the amplitude

(Nf) LV
Ayo¢ (E) = J;Nf(Kfl ap)d . (Ke) +
J o] - - + . ) A -
P TD 0 ket agedl P Mk T (k.
Jl’JZ:i p:-::: p+mJ1 f 0 JI f
-1 (i)
Wedl;,5, G, (ptmy, |E) (11.34)
where .
i IV i(p*m. )z
Ci,7 (pms JE) = T V. (K) 0.y _n(K* o )e J27 K
Jo J KN 92 p+mJ2 N 0
1 1 Y
J_yn(K (K 11.35
E-K2/2-Nw- 26 _+i0 WK o) @ (K) ( )

The total electron ejection or ATI-spectrum is given by

dS(E¢) C o (Ng)
P AR (EN? o (Eg) (11.36)
.f.‘




bt

where Agffl (E¢) is given by (11.34) with

(.2
E = Ep = —0 + Npur 28, (11.37)

Before concluding this section we also give the simple expression for the
amplitude Aiﬁﬂ-(ﬁ) for the commonly occuring case of electron ejection from
a single bound s-state corresponding to a potential of rank one. From the
exact general result {11.34), for J=1, j=1,(p,11,m1)=(0,0,m, we get:

. = s Y vl 7y. 1 (i)
Ao g (B) = Joy (Keta ) Togike)+U Re) 15,7 (0.0]E) C; (0]E)] {11.38)
where

V1 (k)38 (KA ag Uy (K)

$11(0,0]E) = I , 11.39
11(0,018) RN E-KZ/2-Nw-26 #i0 11.39)
(i) T (KRR ag) § 4 (R)

¢y '(OfE) = BURNEAS Lkl : L (11.40)

N E-KZ/2-Nuw-268+i0

A

Detailed quantitative studies of this and related models have revealed a
number of interesting phenomena such as the mechanism of ATI peak sup-

. pression, peak-disappearance, the presence of additional counter-shift
of the spectrum (which partly compensates the usual shift due to the qui-
ver energy) and the existence of Wigners threshold-cusps in the ATI-spec-
trum{at the thresholds of opening of higher photon channels in the spec-
trum of lower photon channels.) These will be reported e]sewhere[lgj.

We should observe in the context of this general solution of the se-
parable potential model, that the important problem of radiatve processes

in the coulomb potential can also be so]ved£17] by the separable potential.
Thus letting

and L

(11.41)

Py

(z is the charge of the coulomb center) where o;(r) are the so-called
radial sturmian functions[zo ]

55(F) = Pn515(r) 1 mg (r) (11.42)



12.

with
os15(r) = Nyre T PP (141on5,21 422 ) (11.43)

where

1541
_(@x )37 (ngg)e 4 . 25)%

Nj (2]j+1)! (ﬂj-]j-ij)z » X

1

we obtain the diagonal separable expansion of the coulomb potential:

(t-“)><¢1-(.r") | (11.44)

"]
N
Sie

i
This is a particular case of the general form treated here.

Similarly, the separable potential for any system which may be mocelled
by @ finite number of bound states and the continum in a potential v r} is
obtained by replacing the original central potential v(r) by the sepzrable
potential of rank J:

cvir) o i) (v) o {11.45)
where J¢j(F) > are the exact ortho-normalized eigenstates of the (field
free) Schridinger problem. This is easily established by considering the
Schridinger equation,

[_%..2+:,:H¢_i:-:gjiq:_i> (11.46)

where cj is the energy of the eigenstate [¢j> . Putting (11.45) in . 11,46),
1 _ _

projecting with <¢j.(F) {» and noting that <:j.(r)‘:j(r) > o= éjj;, ine at
once confirms that

[- 3 =2+ v(n)]] 4(7) > =e; |05(F) >, forall § =1, 2, ...0, (11.47)

as required.

Solution of the Model :-D Da2lta Potential Plus Laser Fielc

The Radiative Scattering Amplitude:




This is perhaps the simplest system whose exact solution has not been
obtained before. The potential is defined by

v(x) = -vg 6(x) (12.1)
The Foquet-Schriédinger wave function is
- e'M0%y (x VoI~ 60 (x [E (X (x Akt (12.2)
Up(x) = (Ko [0)-¥ Oniz_w N0 X' | X L7 )dx )
Evaluating at x = 0 and rearranging we get
g‘ (¢, u+VOGnn (0,0]E)] b F Jn{Kgag b) {12.3)

The 1-D Green's function is

-iKx!

6o (X E) = i " dke X Jp_n(Kagib)dp o (K |be (12.4)
E-KZ/2-Nw- es + o
In the x - =
0 , Ky X 1 :
Bone (XX 1E) = & N g w(Kyalb)ve t It -n(Koo lode “ TRy
Therefore
iK_x : KN ‘ i ‘
L'n(X) = e 0 JH{KO lo b) +Nzn1e N Jn_N(KNCRO@ b)( )TKNJ ' (KNO'O‘D)['”HI(
X« ’ (12.5)
with the N-photon scattering amplitude in the forward direction
N _ Yo . .
FIN (K~ ky) = Ko L, dnron(Ky o 210, (0) (12.6)
where
| ) -1
un.(O) = %'[w (E)]nn. Jn.(Koaolb) (12.7)
S S ) . . .
where [W (E)}} is the inverse of the discrete matrix defined by
= 0
W] e = [8 ) o + Vg Gyt (0,01E)] (12.8)

An expression similar to (12.6 ) hoids for the backward direction.

0)



The N-photon ATI Rate:

Let us consider the strong field initial reference state to be the
Volkov-Tike bound state (c.f. section 9)

o > = I 62(x) |n> (12.9)
where

o 1 Yo iKx _ Se
¢n(x) = 7 S dK cbi(K) e .Jn(Ka0|b) , b wm

v
where ¢? (K) is the Fourier transform of the initial atomic bound state
:1{x).

The Floquet-Schrddinger wave function of the system is

x) - Vo L 62 Ax,xPE) S (x')uh.(x')dx'

Uyx) = ¢ ' nn

substituting X = 0 and rearranging

Io[op ne + vg G (0,0 )T w0 (0) = ¢ Z(0) (12.10)
- ‘

The asymptotic behaviour of “p(x) s

‘ . TKnx .Y \
n(x) = el(x) + L€ Jn-niKy @ b)}ﬁ(?ﬁg)dn»ﬁN(KNzo(b;wn.(O) (12.11)
X -+ o

=

Identifying the coefficient of the outgoing Floquet-Volkov state on the

right hand side for the NN chanrel we get for the N-photon bound-free

transition amplitude in the forward direction of electron ejection
()

Por () = (129)

= Jpon ) TRHE)T e, (0) (12.13)
N n,n' n

where [W(E)] is defined by (12.%) and
0 _ 1 i

An expression simitar to (12.13)} holds for the backward direction of ejection.
The rate of ATI by N-photon absorption is thus given by

wﬁﬁff = VN IfENE £ (KN);2 _ (12.18)



where vy = Ky = V2(E-Nw- ch is the final velocity of the electron.
We note that the ATI-line shape spectrum can be obtained similar to
the previous cases from the exaxt resolvent desired above.

The Exact Resolvent:

0
Gpr (Xsx'[E) = G {x,x"'|E)

x> 0 , I
+ :1=_mj'dx, Gnn'(x,x [E) (-vg) 8 (x.) Gn’n(xl,x |E) (12.15)

Integrating over dx, and putting x = 0.

= o]

; _ A0 .
§,=- m[én,n' + VOGnn.(O’OIE)] Gn.,n'(o’* [E) = 6. (0,x"|E)
or
' = * -1 0 . [N
Gn nl(osx iE) = nZ=_m[W (E)]nn‘ Gn n.l(O,x |E) (12.16)

-1
where [W (E)] is the inverse of the discrete matrix defined by

[ W(E)] [+ v, 6 ,(0,0]E] (12.17)

nn' ~ n.n 0'nn'

Hence from (12.15) we get the exact solution of the total Floquet resolvent
for the model delta potential plus the laser field:

G (x,x" E) = Gsn. (x,x"| £) +"1%:;= _U_Gznl(x,0|5)
(o) TR (E)] G0 0 (0,x'[E) (12.18)
ning 2

where the usperturbed resolvent ng. is given by (12.4), and the product-
space total resolvent is

i

G= I |n>G__.{x,x"|E}<n | (12.19)
an' nn

13.The Delta-Shell Potential Plus Laser Field:
This potential is defined by




vir} = - vo 8(r-ry) (13.1)
where r, is the radius of the shell and vy s the 'strength'.

linear Polarization:

The Floquet-Schriodinger wave function is

W(F) = & (F) + g'.ngn.(F,F'lE) (-vg) 8(r'-rg) ¥, (7' )dF" (13.2)

where the initial Floquet-Volkov-packet in the field

r"
-‘_, "" _ -
e'"o " Jn(K0~ 1, i b) (for radiative scattering) (13.3)
GiF) =< or
jK-r "k - -
2oe S (K) Jn(K-a0 ib) (for ionization) (13.4)
" i
~
v - -
where ¢ :(K) = <K{c1(r) > is the Fourier transform of the initial bound-
state ¢ ;(r).

Performing the integration over dr' and taking the limit r-= 1in (13.2)
we get

eiKNr (N)
— - O - -
Y (r) = ¢ (r) + § — Jn-p{Ky-ag i) f (13.5)
with
N 1 . - - 2 —iKy -,
f( ) = - 2__ r'_l Jnl__N(KN' )U lb) (-VOYO )fe N Ollh.(ro)dro (13.6)
Introducing the partial wave expansion
o = * . Y r M ] = : :
b (rg) 1§'mj -5 (norg) 1jmj(r0) v 3= (4,my) (13.7)
eik“';°= P4 () 5y (Kyra) ¥ (r) v* (Ky) (13.8)
ljmj ]j N"o ]jmj 0 ]jmj N :
we get
N) _ 1 - = = N -
f(N) o 7 Jnon(Ky- g |b) &7 (3)713 J-]J_{KN'Y'O) v]jmj(xn)

(- voro?) wi(n [ry) (13.9)



To determine w {n'|ro) we project on to (13.2) with <\3 (F){, sub-

stitue the part1a] wave expansion (5.5) for 63, (rr'|E), muﬁt1p1y with
8§ (r-ro) and integrate over r2dr and simplify, to get

¢j(n]r0) = nlr )+ f " Sjn,j.n.(E)vJ.(n']ro) (13.10)
where

0" B ‘f'-]'l n'j' )
jn:jlnl(E) i ZN:.m(‘l) > Ln.] (KNGO)[]KNVO]'

S

L g o)1 Y ) Uy 40 4 )

(13.11)
with
n‘jl _ -
L ni (KN‘lo) = d X s1an n- N(KN 0Ib) 1 5m; (BK) 1 s (QK)
J '-N(KN.G lb) 6mJ'mJ (13.12)
where
x -
41 J J; (KaTo) Yyims (Ko) JplKgeag 1B
JM)
(radiative scattering) (13.13)
O _
Slalry) = 5 or
it ] ~ N - - -
7 4 Iy * .
E 4-(4) 31J(KrO)Y]jmj(K) ¢1(K) Jp(K a0|b) (13.14)
(multiphoton ionization)
\
with
T
b = T

Thus the solution of (13.10) is

_ -1
bypdntirgd = F RO G : (13.15)



where [W(E)] is a discrete-matrix defined by

[Q (E)] = [G'l i1 § ' [ ‘S

jlnl’jllntl 'L n',n (E)] (13.16)

jn,i'n'

Finally substituting (13.15) and (13.13) in (13.9) we get the N-photon
radiative scattering amplitude

F Mk - Ky) = £ 9 Ky o paltV ((Ky* g 1b) (13.17)
0 in,i'n' n-NY"N Jn,j'n' ¥n'\No Yo
where
N T50-1 ~
§n33‘n' = 8a(i) g Kyrg) Y1JmJ(’N) (voro?)
-1 ) " -
[N (E)] jn,j'n' J]j'(KOrO}Y]jlmj'(Ko) (13.18)

The corresponding radiative differential scattering cross section is c¢i-
ven by
dQ(N) _ KN
dﬁh KO

(RO"RN”Z | (13.19)

Rate of N-photon ATI-process:

The above-threshold-ionization (ejection) amplitude is, similarly, ob-
tained as

f(N)(RN) = L

- - ].
Jpon(Ky ag ib) 41 (1) 3 3, (Kyra)y
n,j'n n-N\"N" ¢ 1J No/ ')

K .
| -ty

.

vgrg®) TRHENT u e Gt ing)

where ¢}g|(r' | ro) is given by (13.14). The differential rate of ATI is
now given by

aw (M) (ky)

dKy,

= vy 1FN R 12 (vy = Ky» a.u.) (13.20)

Circular Polarization Case:

This case can be solved similarly. In this case the Floquet-Schridinger
wave function @n(F), given by (13.2) with ng. given by 5.3) asymptoti-
caily becomes



Inn (Kytagle " Pkn £(N) (13.21)

n r
with
N 1 R -in‘o Ky r .
f( ) = - 'é"'_h I’-:Il Jnn N(KN o)e N('V0)<e N'o |1.'Jn.(r‘o) > (13.22)
and
!
iK.-r N ing
g O Jn(Ko ao)e 0
(radiative scattering) (13.23)
(r) =¢ or
.R.' - .
Te | TR g (Kage " K (13.24)
¢ i
(multiphoton ionization)
N
We also expand
Inlrg) = T g5 {nfrgd¥ o (rg) (13.25)

. b

3m3

and proceed as before to find,

vnirg) = ¢g (nirg) +Z S--.(n,n-mj+mjn\E)w

: i3 j.(n-mj+mj-|r0) (13.26)

where

1 . 15-150 o n‘j! . .
Sjj'(”,” [E) = (i) 3 J L anJ(KNao} [‘KNVO}‘[JIJ(KNrO)

N= -
' hlfj?)(KNro) * hig)(KNro)j}j,(KNro)] (13.27)
with
B:;j'(KNao) = Sod0y sing dy (Kytag) e M ORN g (k)
O]jmj (Ey) Gﬁj-mj- (eK) 6n',n-mj+mj- (13.28)

with



Ky = Ky siney

and
( . Tj ) * ~ N ing ,
41 (i) J]j(Koro) Y ]jmj(Ko) Jn(KO a, Je (13.29)
(radiative scattering)
¢§(n]r0) =J or
_ 1 ] * ~ *, = ing
I oan(i) ;]J(xro)v]jmj K)$ L (K)ap (ke g)e " T K (13.30)
K
1
Finally, putting n = p+mj and n' = p+mj. we get for the radiative scattering
amplitude
Lz Joo -i(p+mj}o
FINGK 2 Ry) = © Jos_nlKn*a Je 370Ky
TR LS PR
. i(ptmy):
. Ajj.(p;i\') Jp+mj,(K0‘10)e J 7o (13.31)
with
Ny = oae (aylittTls - 2
[0 5y (o) YY (R (13.32)
Plgg 91 ema) Yy (K -
J J )
with the discrete matrix [W(p)] defined by
[w(p) ]jj' = [5j.j' *Sjlj-(P+mjsD*mj'fE)] {13.33)

Rate N-photon ATl-process:

Similarly, the ATI-amplitude in this case is found to be

o)e-j(p+mj) Pky
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-1 0
W ~{p) 15 ¢j,(p+mj.lro) (13.34)
. 0 .
with ¢j,(p+mj.|ro) given by {13.30}.

These exact amplitudes indicate the following qualitative picture of the
N-photon radiative processes. First, the electron is dressed by the field
into a superposition of n-photon component states each with an amplitude
proportional to J,. Second, the electron in each of these component states
interacts with the potential which leads to an exchange of N-photons into
the corresponding component states with (n-N) photons. Third, the electron
propagates in these final component states with the associated amplitude
J,_N- The total ampiitude of the observed N-photon process is the coherent
sum of the products of the individual amplitudes for these three stages
over all n,

Note also that in the limit of weak field strength, or low-frequency,
or high kinetic energy, the interaction amplitude with the potential in the
second stage of the process tends to take the form of the ordinary scat-
tering amplitude f(E-nw) evaluated at an energy, E-nu, shifted from the
initial energy E by the energy of the component waves, nw , for each n.
This leads to the so-called "iow-frequency approximation"[zl'zsj of the
radiative scattering amplitude:

T dpn(Kyrag ib) F(E-n w) J,(Rye T olb) (13.35)

N==o0o0

(linear polarization)

FN) (R, Ry) =7

@ ing
2 Jpn(Kyta gl RN F(E-nw) J, (K ta e

A== @

“1M70 (13.36)

(circular polarization)

i

Analogous expressions in the same limits hold for the ATI amplitudes as
well.

We obtain,
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- - - - - ‘L -
% Jn_N(KN-a.OIb) f(K+KN|E-nw)Jn{K-ao;b) ¢1(K) (13.37)
(linear polarization)
(N) x ¢
far (Kn)
vain{dg,- ¢ ) K | T
%Jn_N(KN‘ao;e KN" P07 f (e Ry JE-n w) Iy (K ) <14 (13.38)

(circular polarization)

.

where f(K-Ky|E-nw) is the analytically continued scattering ampli-.de

for K~Ky at the off-shell energy E-nuw.
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We report on the numerical evidence of 2 new

dominate the field-modified elastic (Rutherford)
cross scctions in the presence of a strong excimer laser.

PACS numbers: 34.80.Qb. 32.80.-

During the last few. years much interest has

" developed'® in the study of electron scattering in the

presence of sfrong laser fields. One of the-basic problems
in this context is to understand how the e+ H* scatter-
ing cross section, described exactly by the well-known
Rutherford formula, changes in the presence of a strong
laser field.

Up to now this apparently simple scatiering problem
has defied exact solution. This is primarily due to the
analytical difficulties associated with the long-range
Coulomb potential and with the increased dimension of
the Schrodinger equation in the presence of the radiation
field.

Recently this problem has been discussed by Gavrita
and Kaminski,® using a high-frequency approximation in
which only the static part of the “dressed” potential seen
by the electron was retained. Their high-frequency ap-

class of low-energy e+ H * scattering resonances which
and the inelastic (inverse bremsstrahtung) scattering

tion for the low-encrgy (electron energy less than the
photon cnergy) radiative Coulomb scattering; it did not
reveal a whole class of Rydberg resonances. which are
reported in this Letter. These resonances are found to
dominate both the clastic and the inelastic radiative
Coulomb scattering,

In view of the lack of an exact analytical solution we
are led to attack the problem by direct numerical means.
To this end we extend the well-known close-coupling
method® of solution of the ordinary electron-scatiering
problems and incorporate the interaction of the radiation
ficld via the Floquet representation of the scattering
equations. OQur numerical solution of the extended
close-coupling equations for the problem reveals a new
class of resonances which dominate the cross sections of
the clastic (Rutherford) as well as the inclastic {inverse
bremsstrahtung) processes in the presence of the field.

proximation presumably provides only average informa- The Schrédinger equation of the problem s
e=h=m=1)
iZvt = |- Lo AQ 5 gy 2zl | ®
ar 2 < 2c . r ‘
where we have chosen a circularly polarized radiation field
A(r)=Ao[E,cos(wt+é‘)—Eysin(w1+5)]v (2)

éx and &, are the orthogonal unit vectors. Ag is the peak vector potential, w is the frequency, and & a constant phase;

P=-—iV,Z=!forHY

tance and is thus not convenient for direct application of th

resentation by makiag the unitary transformation '®1!

‘{/(r.f)-cxp[—if dr —Agi-ﬁ-l-zcl—:l\’(r)]

in (1) to obtain
i00(r,1)/9r =[— $VI—Z/r— et} 10, 1),
where ag(r) =¢ ""J”drA(r). .

(1)

- In the present form the interaction Hamiltonian in (1) docs not fall off with increasing dis-
¢ close—coupling asymptotics. We therefore change the rep-

(3)

1)

The interaction Hamiltonian in (4) has a Coulomb asymptotic behavior which can be conveniently treated within the
well-known close-coupling method,? extended for the strong-field radiative collisions.® We make a Floquet plus partial-

wave expansion of ®(r,¢),

o)=Y Yexpl—iEt+inlwr+8)]lr " Fute(r) Yim (7, (5)

A™ —={m

and substitute it in (4), cquate cqual coefficients of explin(wr +6)), and project onto ¥, (7) to obtain the Floquet rep-
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_resentation of the radia! close-coupling equations for the channel functions Fam{r) in the channel i= (n,Lm):. _
dl o 1U+1) 27 :

Y +

dr 2 rl (r 14 0.8 ) 12

where the multipole-coupling potentials are -

(n—1)n |*
T L’]

- )
Fun()==2Z 3 T Vimi¥y, (0.0) Yo dF ooy pmir), (6)

At p=0f'm

. b Y
ragsin®

ri+ad

1
(r2+ad)V?

" with A, =k —2p and k,=[2(E —nw)]V?. The asymptotic behavior of the jth solution in the ith open chanae! for the
scattering problem is _ . :

explir o) A (7)

FPU) |, wm= (k) ~V218;5in(8)) + Kiycos(8)), i j=1.2. .. S (8)

|nopw -—

where 8, =k;r — Lin/2+(Z/kn(2k;r) +argl U+ —iZ/k;). nep is the number of open channels included. K ={&;}
is thereal K matrix which is related to the {complex) S matrix by §j; = [(14+iK)(1 —iK) ~']y. Exponentially decreas-
ing boundary conditions are required to be satisfied by the closed channels. We can show by an cxtension of the stan-
dard analxsis" that the radiative-scattering amplitude in which the momentum of the incident clectron, ko, is in the

direction kg and the final momentum, kx. after exchange of N photons, is in the direction ky, is related to the open-
channe! S-matrix elements by

fom wlkokn) =fcoutoms(@)n0+ T Uo%)l—ni’"—‘cxplf(o;ﬁ-o,)]}’;:,,.o(io)}’;,.(in)[6N,05,1.6M.—53';Z",.°}. (s)
tymolm N

o; are the I** partial-wave Coulomb phase shifts and fcoutomn(©) is the ordinary Rutherford scattering amplitude,
where © is the angle between the incident and the scattered directions, for N =0. Hence from {9) the clastic cross sec-
tion modified by the field is

{0}
90 _ () — docouem(©) | | £590(0) 12+ 2 Relf Eoutoms (©)f5d (O)], (10)
an an
where f,(EJ(G) is the term with N =0 in the second ex- [
pression on the right-hand side of (9). Similarly for the this is essential for the successful implementation of the
inelastic processes of stimulated absorption (N < Q) and standard close-coupling method in practice. In Fig. 2 we
emission {N > 0) the differential cross sections are show the real part of the angular dcpendence of the
do'™ X o "multipole-coupling potential (7) for A=0 to 3. The
;n @) =k_~ | fE (kg kw )12 (an imaginary part has a phase shift of ¢ =x/2.
0
where ffﬁ)(io.i:h~) is given by the second part of (9) for
N#=0. Hence, from (11) the angle-integrated total cross RADIUS
section of NV-photon absorption or emission ts given by 0 o ® e
Wiy 4t ly . Nim e e _
"M (k) Y1 Y i®explio;)Shigm Yigm (k.o)l ; z
l\& i llomg . ? * =
&
(12) o
a
Figure | shows the radial dependence of the channel- w5
coupling potentials as a function of increasing radial dis- z
tance r for A=0, 1, 2, and 3. The ordinate is shown in 5;
units of Z/ap and the abscissa in p=r/ao, where S
ag=Agwlc=F o/w? is the classical radius of vibration of
the electron in the ficld of peak strength Fo It is to be
noted that for A =0, at small r the laser field lifts the

usual divergence of the Coulomb potential at r =0 and w1
gives a constant value — Z/ag which decreases in magni- FIG. 1. Radial dependence of the channcl-coupling poten-
tude with increasing ficld strength, Fo, and/or decreasing tials for the multiples A=0, 1, 2, and 3. The ordinate is in

frequency. Higher-multipole potentials are scen to de- units of Z/ap in a.u. and the abscissa is in p=r/ac (a.u);
crease both in maximum strength as well as in range; ag=Fo/w? (a.u.); ¢=0, 8=x/2; p=0.
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FIG. 2. The angular dependence of the real part of the
channel-coupling potentials for the multiples A=0 10 3 at a
fixed radial distance p=rfag=1! a.u.

We first present the result of the field-modified elastic
scattering in Fig. 3, as a function of the incident electron
energy. For the sake of comparison we have shown the
ratio of the ficld-modified scattering cross section to that
in the absence of the field—the latter being given by the
Rutherford scattering formula. The most prominent
features of this result are (a) the existence of a series of
very clear resonance structures and (b) the fact that
away from the resonances the field-modified elastic cross
section is rather closely given by the unmodified Ruther-
ford cross section. At a given laser frequency (how
=6.419 ¢V) which matches the encrgy diflerence be-
tween the incident electron energy (positive) and a
Rydberg-level energy (ncgative) the laser field can force
the electron to emil a photon and cause it to be captured
temporarily in the Rydberg state until the subsequent
absorption of a photon permits the electron to escape
from this state into the continuum again. The delay in-
troduced by this capture-escape cpisode shows up as a
resonance in the scattering signal.

874
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FIG. 3. The ratio of the ficld-modified elastic e+ H*
scatlering cross section in a circularly polarized field of field
strength Fo=0.005 a.u. and Aw=0.472 Ry=6.419 ¢V, with
respect to the ordinary Rutherford cross section, as a funciion
of incident electron energy. The incident momentum is in the
direction Nlp=(0 «90° ®=0°) and the final momentum is in
the direction 1 =(@=90°,®=90°). The ficld propagation
direction is along the z axis. Note the occurrence of the
capture-escape Rydberg resonances with respect 1o the n =210
5 states of neutral H.

Figure 3 provides the first numerical evidence of such
resonances corresponding to principal quantum aumbers
n =210 5 of the intermediate neutral H atom. We note
the interesting analogy of this resonance with the radia-
live e+atom scattering resonance which is duc to the
formation of a negative ion.3%*5 The numerical re-

&

fA.U.)

CROSS SECTION
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]

325
ELECTRON ENERGY (RYD)

FiG. 4. The one-phonon angle-integrated total absorption
€ross section as a function of the incident electron energy in the
presence of a circularly polarized field. Field strength
Fo=0.005 a.u., hw=0.472 Ry=6£.419 cV. Incident electron
direction 05=(90°,0*). The Beld propagation direction is
along the z axis.
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FEG. 5. Magnification of the one-phonon angle-integrated
total absorption cross section for e+ H * scattcring in a circu-
larly polarized field in the region of the capture-escape Ryd-
berg resonance with the n =2 staic of neutral H. Incident elec-
tron momentum along No=1(90°0°). Laser propagation
direction atong F axis. Field strength Fp=0.005 au,
ho=0472 Ry=6419cV,

sults used here were found to converge rapidly within a
maximum photon order || =3 and angular momentum
channels up to /=3 for each photon order. With in-
creasing intensity and/or decreasing frequency the num-
ber of relevant channels increases rapidly and the calcu-
lation is limited mainly by the available computer
storage space.

In Fig. 4 we present the radiative inclastic (inverse
bremsstrahlung) cross section for the absorption of a
photon, which is also dominated by the capture-escape
Rydberg resonances.

in Fig. 5 we show the n=2 resonance in
magnification. It has a width of =35 meV. We note that
with increasing field strength this and the other reso-
nances for higher n tend to broaden. In particular the
higher Rydberg resonances (which are weak at the given
intensity) begin to appear significantly with increasing
field strength. We also remark that the width of such a

~  resonance with a given n can-be thought of as a measure

of the strong-ficldphotoionization rate of that particular
Rydberg state of the neutral atom.

Finally, we note that these resonances can be “tuned™
cither by varying the photon frequency at a fixed clec-
tron energy or by varying the clectron encrgy at a given
photon frequency. This fiexibility in tuning the reso-
nances combined with the fact that their widths can be
manipulated by a change of the field intensity may prove
to be uselul in observing them experimentally.

This work has been supported by Deutsche For-
schungsgemeinschaft under Project No. SFB-216-M2.
A preliminary version of part of the results reported here
has been presented at the Cortuna workshop. '
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ANALYTICAL ATI SPECTRUM OF AN EXACTLY SOLVABLE
3D-MODEL OF LASER-ATOM INTERACTION ‘
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ABSTRACT

Starting from the stationary quantum Hamiltonian and using the theory of resolvent
we rigorously define and analytically derive the stationary intrinsic ATI spectrum of an
exactly solvable 3D-model of laser-atom interaction. The result permits us to determine
the phenomena of switching, suppression and disappearence of the ATI peaks as a function
of the field intensity. The dependence of the ATI] spectrum on the field modified ionization-
gap and the broadening of the initial bound state are investigated. The modification of
these spectra due to ponderomotive acceleration is also shown. The results are discussed
with graphical illustrations and their implication for ATI in genera! are pointed out.
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‘Experimental information {e.g Agostini et al. 1979, Kruit et al. 1983, Bucksbaum et
al. 1986, Hippler et al. 1987) on the above-threshold-jonization (ATI) of atoms in strong
laser fields are primarily obtained as energy spectra of the ejected electrons | consisting of
a series of peaks spaced by the photon energy. These spectra reveal a numbcr of dynamical
phenomena like switching, suppression and disappearence of the peaks as a function of laser
intensity. In order to get a physical insight into these processes, ideally one requires the
knowledge of the exact solution of the Schrodinger problem. Due to their great complexity.
exact solutions of the real systems arc at present not possible. A number of authors
(Geltman 1977, Cerjan and Kosloff 1987, Pindzola and Bottcher 1987, Javanainen and
Eberly 1988, Collins and Merts 1988, Dorr and Shakeshaft 1988, Sundaram and Armstrong
1988, Kulander 1987, 1988) have therefore begun to consider numerical solutions of simple
models of laser-atom interaction to investigate the energy distribution of the ATI electrons.
These calculations, however, could be carried out, due to their purely numerical nature.
primarily for 1D-models and generally for restricted domains of interaction time. The
latter restriction tends to generate non-stationary energy spectra which often requires
some adhoc procedure for selecting the cut off-time, in order to ensure certain stability to
the calculated electron energy distribution. It is thus desirable to obtain the rigorously
stationary spectra of exactly solvable models of ATI which would complement the short
time investigations. It would be also desirable to extend the 1D-model studies to 3D-
models. This letter reports on the fully stationary ATI spectrum obtained for the first
time analytically from an exactly solvable 3D-model. The result permits us to determine
quantitatively the nature of the phenomenon of switching, suppression and disappearence
of the ATI peaks as a function of the field intensity. The change in the ionization-gap
and the width of the initial bound state due to the laser interaction are also investigated.
Implications of the present results for ATI in general are summarized in the end.

The exact solution of the Schrédinger problem of laser-atom interaction defined by
(e=m=h=1)

3 .
iz (W) >= (56— A + ] | ¥(r) >, (1)
where

LU (r)Ye, m; (7) > < Yijm, (F)V,(r) |

3
Il
—a
£

=1
a general separable potential of arbitrary rank J, and a circularly polarized field represented
L%¢

field normalization volume, can be obtained as shown in [Faisal, 1987 a,b]. For the present
purpose we restrict ourselves to the simplest case and choose the hermitian potential,

1
by the vector potential A = s,((é; +1¢,)a* +(é; —ié, )a], where s, = (2—'}"-’-) * and L? is the

b= lu><ul= = | 10) >< 1)} | @)

where ¢,,(F) is the 1s— wave function of the hydrogen atom. Potential (2) supports a
bound-state whose energy and wave function coincide with that of the hydrogen atom in
the ground state and allows for the entire free-wave continuum.



We solve the corresponding equation for the total resolvent G defined by
(E-H)G =1,

where H is the opera.tor.on the right hand side of (1) with the potential (2), and calculate
the matrix element of G between the mitial and final states. As the initial state in the
product space we choose

[‘I’,‘>=I¢|’>|O>

with ¢; = ¢,, , and no photon is emitted or absorbed. The (unperturbed) initial total
energy 1s E, = — | ¢;, | +0w.

The final state is described by the dressed state corresponding to the quantum Volkov-
state (sec e.g. Faisal 1987 c)

| &) >= e"Kf'?ZJ,,_N!(R'fao.sz"nﬁf)e""“” fn>.

. . . ? K7 .
The energy of this state is Ef =€+ Nw + 2%%, ¢; = —<* {we use the convention

7
Ny < 0 for absorption and Ny > 0 for emission).

The desired matrix element of the total resolvent is then given by

) g i S>= ——— ANy
<%, (G| > E_E, 110 AUE)
where the amplitude of absorption of Ny photons is
ANNE) = (2m)} T n, (K paosind )[4,(K ) - a(R,) Cis(E)). (3)

q-5; and # are the Fourier transforms of $1. and of u =| ’;¢;, >, respectively. The coefficient
C1.(E) is given by the formula '

<uIGgof¢5.‘>
I+ <u |G, ju>’

Cl(E) = (4)

where G ,(7,7') is the unperturbed Floquet Green's function (Faisal 1987 ¢).

(Ng)
The stationary probability-density spectrum did—if—(fd for bound-free transitions in-

volving the absorption of N f photon is obtained rigorously from the square of the amplitude
ANNE = Ey) in eq. (3):

dP(Ns)(e .

Bl CAVLECI S
=2 (Hya,)tl [ INe1+4 2,2
T2|Ng [+ 2N, 152 w1, IN,i+;|'“K!°’o]x



x | F(Ky) - Fu(Ky)- Cu(E) [* Ky, - ®
where F; and F, are the radial parts of ¢; and 4, respectively.

The full electron energy spectrum S(es) is therefore given by the sum of(5) over all
channels Ny:

= dPI(e
sep= Yy ) (6)
=Ny =|Noj f

starting from | N, |, the minimum number of photons required to overcome the binding
energy of the atom in the field.

The coefficient C,,(E) is evaluated analytically. We have:

0 iy (—ai)lNl
<U|G°o|u>= —4 Z mBN, (7)
N=-o0o .
and .
2 ()M
N 2N
1 1 |NI+1 2
X 14 f\'{ {(! N | _§) 153 [l-\'f“§.22!Nl+l Iao] +QBN} . (8)

In these expressions,

1 R e
BN:—(]-I-K?\J? {—(1+KN) DF] ['2|N|+1 IO::]
_ 1 INI+2 2
+| Nij+i! 2 ||N+E, 2N |°’o]
d Nip2N+1 IN|+4 2
+| N +L("1)' Ky 1 £2 [IN|+§.22|N|+1 ! —K,{,ao]} , (9)
2

Ky = \/2(E — Nw - -;CL:) 1s the wave number in the Nth channel, and oF1 and | F; are
generalized hypergeometric functions (e.g.. Erdélyi,1953).

Expressions (3) - (9) give for the first time an exact analytic solution of the problem
of ATI-spectrum for a 3D model system.

Figure 1 shows the ATI spectra for four different intensities corresponding to the
frequency of the well-known high power excimer laser (e.g. Rhodes, 1985)w = 6.419¢V (A =
193nm). Note that for convenience of presentation the scale of the spectrum at the top is
chosen to be different from that of the remaining ones. The considered range of kinetic
energy of the ATI-electrons is shown divided into intervals or zones of w, labeled by the
zone index S, starting with S=0 for the zone between 0 and w. The ATI peaks can be thus



identified by S, according to the zone in which they lie. It is, however, more informative
to identify them also with respect to the absolute number of absorbed photons, (- N 1)
The minimum value of (~Ny) is of course the minimum number of photons required to
overcome the perturbed ionization-gap.

The spectrum at the top of Figure 1 corresponds to the intensity I = 1.0 x 10"3W/cm?
and shows a regular behaviour , i.e., the successive ATI-peak heights decrease monotoni-
cally. This is expected from the usual perturbation theoretical intuition. Note the arrow
on the energy scale which is set at the unperturbed energy value of the first peak. This
would be the position of the $=0 peak by absorption of the minimum number of pho-
tons (=N, = 3} if the initial bound state were unperturbed. The actual S=0 peak at
I'=1.0x10"%W/cm? is clearly displaced to the red from the arrow. The red-shifts of ali
the peak positions in Figure 1 are due physically to the increase of the ionization-gap in
the field. This energy-gap can be determined from any of the ATI-peaks in the spectra of
Figure 1 using the relation:

ionization-gap = | Ny |w — position of the (—Ny)th peak.

We now consider the non-perturbative phenomenon of peak-switching, in which, for
example, a peak in a given zone becomes shorter than that in the next one. This can be
seen in Figure 1 in the second spectrum, which is obtained at I = 1.5 x 10"°W/em?. On the
next lower spectrum, corresponding to I = 2.5 x 10'W/cem?, the first peak (5=0,-N;=13)
is seen to be strongly suppressed. However, it has not yet completely disappeared, as can
be confirmed formally by noting that the position of the (—N; = 4) peak can still be
found in the S=1 zone. Since the energy difference between neighbouring peaks must be
w (a consequence of the quantum nature of the photons), the (~N; = 3) peak at this
Intensity, greatly suppressed as it is, must still lie in the S=0 zone. The disappearence of
this peak below the positive energy threshold occurs in fact at a, still higher intensity; in
the present case at Iy = 2.9 x 10'3W/cm?. The last spectrum in this figure corresponds
to I'=3.5 x 10'*W/cm? and the observed peak in the S=0 zone arises from the red-shift
of the peak (—N s = 4), which could be seen in the S=1 zone at intensities lower than 7.
The lowest energy peak S=0 in this spectrum therefore can be designated unambiguously
as the (- Ny = 4) peak. !

It is important to note that these spectra are generated inside the field, assumed
to be of constant amplitude in the region of photon-atom interaction. The change of
such an ‘intrinsic' spectrum at the boundary of the macroscopically extended field may
be obtained by translating the spectrum along the energy axis by an amount equal to
the kinetic energy due to the ponderomotive acceleration experienced by the outgoing
electron. For sufficiently long pulses this is given by U, = ’f . wa where I is the peak
intensity of the pulse. This is consistent with the argument originally made by Muller et
al.(1983). The ‘extrinsic’ spectra thus obtained from those of Figure 1 are shown in Figure
2. Note that in this (extrinsic) representation, the ATI peaks appear as Mue shifted with
respect to the expected unperturbed positions, while in fact they are red-shifted in the
“intrinsic" representation. In the case of pulses shorter than the passage time of the ATI
electron through the field gradient, the kinetic energy of ponderomotive acceleration must
be smaller than the maximum Uy. This would cause the peak-positions of the observed



(extrinsic) spectra to depend on the pulse lengths. Such dependence has in fact been
observed in a number of experiments using short pulses (Luk et al., 1987; Agostini et
al., 1987; Freeman et al., 1987; Muller et al., 1988). It is thus clear that the observed
(extrinsic) ATI spectra require te be deconvoluted with respect to the macroscopic effect
of the ponderomotive acceleration, before the intrinsic positions of the ATI peaks, which
are directly determined by the atom-field interaction dynamics,can be ascertained.

In Figure 3 we show the actual dependence of the increase of the ionization-gap |
which is an intrinsic quantity, on the field intensity. The zero on the ordinate corresponds
to the value of the unperturbed ionization-gap, | €1, |. The exactly calculated intensity
dependence (continuous line) is highly accurately reproducible by a linear fit with a slope

= 1.98[eV/(10"*W/em?)]. This behaviour is similar to the linear dependence of the

well-known "quiver energy”, §, = ‘;:, , on the intensity. Despite this similarity, the exact

result (for the entire range of intensity considered) is found to be not equal to but less
than the quiver-energy (dotted line). This difference between the quiver-energy and the
actual increase of the ionization-gap may be attributed to the shift of the initial bound
state. We should note that conceptually the least ambiguous quantity is the jonization-
gap, rather than the shift of the bound state and the so-called "continuum-shift”. The
linear dependence on the intensity of the exact result in Figure 3 strongly suggests that
in the intensity range considered (and at w = 6.419 eV) the change of the ionization-gap
and hence the change in the positions of the ATI-peaks, follow the lowest order perturba-
tive (LOPT) behaviour in intensity (in this case the usual second order AC-stark shift).
The actual heights and line shape of ATI however, behave, as seen above, highly non-
perturbatively. This implies that there could exist intensity domains in which one aspect
of the ATI-spectrum exhibits LOPT-behaviour (e.g. peak positions), while another aspect
behaves highly non-perturbatively (e.g. peak-heights). It would be interesting to test this
conjecture further in future.

Our calculations show that the FWHM of the ATI-peaks in Figure 1 are equal. This
suggests that for non-resonant ATI processes the peak widths are essentially due to the
field induced broadening of the initial bound state. The actual dependence of the line
width on the laser intensity is shown in Figure 4. This dependence is clearly non-linear
in intensity. The initial rise of the curve is found to be proportional to I*, where A ~ 2.
Since the width of the bound state is a measure of the total rate of ionization, this rate in

the present case does not follow the lowest order perturbation theory, which would predict
A=3.

Finally, the calculated ATI-spectrum is found to be practically free from a background
80 long as it has a ‘regular’ or ‘perturbative-like‘ behaviour (see e.g. the top spectrum in
Figure 1). At higher intensities the ATI-spectra clearly develop & non-zero background
between the peaks.

We conclude this report by briefly indicating the implication of the present results for
ATl in general

(2) The fundamental characteristics of ATI-spectra (e.g. the switching, suppression , dis-
appearence, shift and broadening of the ATI peaks), can be understood qualitatively
invoking the single-electron hypothesis of laser-atom interaction.
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Figure Captions :

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

The "intrinsic” ATl-spectra for four different intensities at w = 6.419eV(\ =
193nm). From the top: I = 1.0x10"5W/cm? the spectrum is regular, i.e. the peak
heigths decrease with increasing cnergy. The arrow on the energy scale indicates
the position of the first unperturbed peak. Note that the actual peak positions
in this and subsequent spectra are displaced to the red. T = 1.5 x 1013W/em?
exhibits ‘peak-switching’, i.e. the peak in the first zone (S = 0) is smaller tha»
the peak in the next zone. I = 2.5 x 10"*W/cm? exhibits *peak-suppression”, i.e.
the peak in the first zone (S = 0) is reduced to such an extent that the first visible
peak lies in the next zone (S = 1). T = 3.5 x 10'3W/cm? shows that the observed
peak in the S = 0 zone arises from the red-shift of the peak which wax in the S
= 1 zone at lower intensities.

The“extrinsic” ATl-spectra for the same intensities and frequency as in Figure
1. They are obtained by taking into account the effect of the full ponderomotive
acceleration experienced by the outgoing electron. Note that the ATI peaks now
appear as blue shifted with respect to the unperturbed positions.

Dependence of the increase of the ionization-gap on the field intensity (continuous
line). The zero on the ordinate corresponds to the value of the unperturbed
ionization-gap | €1, |. This result can be accurately fitted to a straight line with
a slope m = 1.98[eV/(10"°W/em?)]. Dependence of the *quiver™energy on the
intensity (dotted line) is also shown for comparison.

Dependence of the line-width o the field intensity. The initial rise of the curve
is proportional to I*, with A = 2. Note that in this case LOPT would -predict -
A=3
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Summary

We have shown that & general connection exists between different radiatjve scattering
processes involving the motion of the electron in the continuum in a laser field. The origin
of the most dominant structures in the radiative scattering cross sections and in the ATI
spectra can be understood qualitatively in terms of the following two propensity rules:

1. Every singularity of the S-matrix of the unperturbed system (e.g. eigen energy, field
free scattering resonances, threshold singularities or cusps etc.) in the absence of the
field, tends to be replicated in the continuum in the presence of the field, at an interval
of energy Nuw,(N =0,%1,42,...).

2. The ‘replicas’ in the continuum tend to appear significantly at field intensities, I, for
which the quiver energy 6c = fn—221rI /w?, approaches or exceeds the energy of the
photon, hw i.e. for 8¢ > hw.

More specifically it is shown that physical channels which are not energetically available
to ordinary electron scattering can influence the scattering cross sections dramatically in
the presence of the field; typical expressions of such influences are the pnew resonances
such as the capture-escape resonances and resonant (and also non-resonant) sub-threshold
excilation processes.

We have seen how the presence of the laser field which breaks the axial symmetry
of the e-atom scattering process in the absence of the field, causes modification in the
angular distribution of the scattered electrons. Modification of the angular distribution
can also arise due to differences in polarization of the field. Besides these “geometrical”
modifications, the angular distributions are seen to be altered, by the dynamic effect of
field intensity.

For a suitable description of half-scattering processes the cross-sections (or rates)
are found to be inadequate parameters; they are more appropriately described by the
probability-spectrum, i.e. the probability of finding the jonized (detached) electron any-
where in the continuum within a small interval of energy (between E and E + dE).

The characteristic properties of ATI spectrum, for non-resonant cases (no intermediate
resonance) can be essentially understood as the dynamical effect of field intensity on the
“lonization gap” and on the width of the initial-bound state. The resonant ATI process is
further controlled by the splitting, shift and width of the intermediate resonances.

Finally, radiative scattering and half-scattering processes can alter the properties of
the radiation field e.g. at selected incident electron energies, the incident photon field can
be amplified by the scattering electrons.
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report results of experisents with laserpulses
sbout 0.5 ns duration and wavelengths around
and intensities up to 10'* Wew™2, -

Introduction:

Hhen short laser pulses are used for multy photon-
1onizetion [MPI) of atoms two new effects are ob-
served: 1, The energies of the detected photo-
tlectrons are shifted towards values lower than
those expected from simplest energy considera-
tions (1, 2, 3). This effect is reasonably wei)
understood. 2. The "above threshold ionization™
[ATI] neaks belomging to different numbers of
photons sbsorbed in the contimum show a sharp
substructure when pulses of about 0.5 ps duration
are used [2]. This substructure was interpreted
by Freeman et al. [2] by lssuing that high lying
excited states of the atom are shifted into re-
sonance in the intense field, thus providing very
efficient fonization pathways at well defined
Intensities. In a first approximation it was
dssumed that a1l high lying atomic states and the
fonization 1imit shift by the same amount, given
by the quiver energy of a free electron in the
intanse laserfield. This effect was first obser-
vad in exveriments with xenon atoms [2). The re-
sonant states were {dentified on the baiis of the
peak energies in the photoelectron spectrum.

lie have performed MPI exneriments with atomic
hydrogen which provide a simpler tast case for
comparison with theory. In addition to slectron
energy spectra we have measured amgular distri-
bations of the photoelectrons. -

Figure 1 shows an energy diagram for atmic hy-
drogen with the relevant sta and their {ntan-
sity dependent shifts. For siemiification it is
assumed that all excited states shift by the same
mawnt. This 1s probably not true for o = zis and

Awd. The shift of the ground state (3 ected .
Also shown are the of the ground Stase
munmzm.qm fram 5 ts ).

Resomsat enhanciment of W] secur at in-
tensities wherg 2 shi Sound state “erosses®
one of these (is + Mhw) stains. s 5 exanplh

this sitwation is shews ;?mﬁrﬂn

‘photq,electnms' from this resomant jonization 1s

also shown. At velengas around 608 nm we have
the spectal sitdation that {1s + Shws) and
{15 + 6hu) are nearly rate (vesonant) with
the (n = 2) and (n = 3) states at low intensities
respectively, This should lead to efficient re-
sorant fonization at retatively low intensities.
I;Mn? celculated cross sections (4, 5] for this
wave ungth a saturation intensity of less than
§ - 10'? Wea™ my be expectad. As we find no
signal which can be attributed to such a simple
5- and §-photon resonant 7-photon fonfzation
process we shall concentrate here on the h‘i'?her
n-states which are shifted into resonance with
‘1: + Thw) at higher intensities of up to

» 10! Nem™?,

%103 cm-1

————— e
 — deinnsity [Wewd)
Figure 1: Stmpl{tied Slagrem of Tevels

and tigir intensity dependent shifts.
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(b) ATI, considered as a half-collision process, satifisthe general propensity rule (Fhisal,
1982) formulated in connection with radiative electron-atom collision processes. Ac-
cording to this rule all singularities of the S-matrix of the system in the absence of
the field (in this case, the initial bound state) tend to be replicated in the continuum
in the presence of the field at an interval of the photon energy.

(c) Significant background to ATI peaks can. -develop at intensities for which the
widths of the bound state becomes > 4.

Details of the mathematical derivations as well as results of investigations of resonant
ATI-processes will be presented clsewhere (Faisal et al., 1988).



