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Figure 1

According to Hartree-Fock theory chemical bond is formed as a
result of distributing of electrons among different electron
states, obtaned by solving one-electron Schrodinger equation in
self-consistent electrical field. One-electron states, increasing
their energy with lenghenirg of intranuclear distance, are named
bounding orbitals, while those decreasing are called repulsive.
Potential energy of molecule - molecular term — results from summation
of coulomb’s nuclear potential and electron configuration energy.
Usually attractive orbitals energies are. lower then those of repulsive
ones. Transferring one elect-on from attractive orbital to repulsive
one (this can be done via abscorption by electron cloude of the photon
of certain frequency) sometimes results in change of the form of term’s
potential éurve. In other words, obtained electron torm may become

repulsive. In this case the tond breaks.

Figure 2

Polyatomic molecules have a number of bonds. Attempting to break
one of them by transferring one of tLhe electrons from attractive
orbital to repulsive one, may fail because of electron c¢loud energy

8

redistribution: electrbn vacancy, created on attractive orbital will be
filled by electron from ano_her bond, while electron from repulsive
orbital will go into another bond. These factors are taken into account

when considering exact molecular term (ground and excitedl. Electron

cloud transition to certain excited state may result in potential curve
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formation corresponding to breaking of chosen bond. How to break a
certain bond? - Just finde excited term repulsive in needed direction
and produce agppropriate transition by one- or mul tiquantum
photoeffect. However electron state of fragments created may be highly

excited, and number of secondary processes may take place.

Figure 3

Here is number of exsamples of different photochimical processes.
One can see that usually by making radiation wavelength shorter it is
possible to switch on some new chanales of decay without switching off
previous ones. It take place due to secondary processes,when absorbed

energy lead either to heating or to luminescence.

Figure 4

If appearence of highyly electronicaly excited fragments is
undesireble, an attempt should be made to break chosen bond by resonant
vibrational excitation within the frame of ground electron term.
However usually it is not easy to achive due to nonliniar interaction
of different vibrational degrees of freadom - vibrational energy of one
bond is quickly transferred to the other ones; thus the bond brPoken is
not the swung one, but the weakest. In order to succeed it is necessary
ej ther to find an excitation met hod free from vibrational

thermalisation, or to pump energy to intended bond fast encugh to
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prevent its transmition toc the weakest bond. It can be done only in
case when the bond destined for breaking is located far enough from the
weakest one. The approach presupposes the necessity to find the way of

description of stochastical vibrations excitation.

Figure 5

There's one more intermidiate possibility. If the first excited
term is not repulsive for bond of interest, but vibrational energy
needed for its break is relatively low, it is possible to excite
molecule vibrationally within the frame of ground electron term along
the needed bond below the level of stochastization before electron
transition. This approach allows to expect the appearance of fragments
at relativly low level of electron excitation. However, description of

such a vibrational-electronic process is much more 1l abour —consumi ng.

Figures 6-9

Approach to stchastization problem is well develocpped in
classical mechanics. What is needed for stochasticity? First, at least
bidimentionality of motion. In this case phase spase is 4-dimensional,
iswoenergetic surface is 3-dimensional and its Poincare’ section is
bidimensional. An exsample of such a section is shown in figure 7.
Regions of stable motion are separated by regions of stochasticity.
When non-linearity is small regions of stochasticity are small too and
corresponds to those points in space, where overlap at least two

resonances, i.e. ZCOH/aIk) Nk= O for two different sets of {Nk». For
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mul tidimentional preoblem, even for small nonliniarity there is a dense
net of resocnances, s¢o that stochasticity region can cover vast domaine
of phase space. In the vicinity of "islends of stability" motion is a
superposition of independent vibrations of two degrees of freadom Cthey
do not necessarily corresponds to initial coordinats, being rather a
complex non-linear combination of themd). Energy is not transmitted from
one degree of freadom to another. But how to obtain such vibrations?
And what happens in quantum case? In order to answer these questions,
one must resort to the theory of molecular spectra and theory of

spectrally complex systems.

Figure 10

As one of many-body problems, the description of polyatomic
multielectron molecule is possible only due to small parameter
existence (Born-Oppenheimer parametr CmeM ' . Due to this parameter
existence the molecular hyerarchya of spectra appears. Electron
motion is $¢f zero order of magnitude, vibrational guanta of second
order, cubical anharmonicity - of third one, rotational energies and
4th order anharmonicity are of forth order. In one-dimensiocnal case

- for 2-atom molecule - +this nearly always allows to separate

completely electron vibrational and rotational degrees of freadom.

Figure 10-13

In multidementional case (polyatomic moleculed situation is much

more complicated. In harmonic approximation levels are characterized by
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sets of quantum numbers C(different modes occupation numbersl, density
of states increases quickly with the growth of energy g _ 8 -1 a4
number of vibrational degrees cf freadom. Many levels are close to each
other.-Anharmonic interaction brings them to Fermi rescnances. States
Ia> and Ib>,whose energies difference |E°—Eb| <« V - is smaller than
their interaction value, are considerably restructured to form new
eigenfunction basis. If resonance of frequencies occurs, for example
Lk—v{¢x(v;;:'k/h, anharmonic interaction is capable of making total
change in vibrational spectrum. Condition of Fermi resonance is an

additional Cguantum) demand with respect to the classical case. Under

these conditions the destruction of gquantum numbéers may occur.

Figure 14

For polyatomic molecule placed into external monochromatic field
quasienergetic representation can be employed. Sometimes external field
can be treated as an additional mode. The situation is completely
analogous to the case of molecule with vibrational space dimensicnality
larger by 1. Matrix structure of the eqdation sistem for both problems
is practically identical. Whether quantum states having definite
energies in modes decay in these conditions (Fermi resonances? and to
what extent depends upon spectra and interaction operator structures.
What characteristics describe this process adequately and what 1is
criterion of tdtal stochasticity in this C(guantum case? Answer to

these questions lies in solution of model many-level problems.
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14 Ao == ———— the energy values niu;
= [\ _— e — 2) in each vicinity there is a large number N> 1of
= —1 = =———=  levels, which are numbered by the index m;
=/f{l) e by
¥4 ; _ 3) the dipole moment differs from zero only for an
— B =¢1] trangitions between neighboring bands.
il . = The Schrodinger equation for such a gystem is written
) = in the form
4 ¢
Ao : Nti m’
t ‘// = A W _QV J ’
n,m N Tn,m n,m Nt wm
= a7} s A
y ’. ' where ul" are the matrix elements of the transitions
with random dipole I.Dments_‘
assumptions

1. The energy position A, of each of the levels k is stats-
tically independent of the positions of all the other levels of
this set, {k} (we assume that it is equally probable over the
interval from — I to I'; we will later take the limit I' - @)
and also statistically independent of the value of the matrix
element V.

2. The state density of the band, {a}, is 50 high that the
band can be regarded as infinitely dense.

3. The matrix elements ¥, are random quantities, such
that the only nonzero ensembie averages of sums are of the
type 2, ¥, V. X(a), where X(a) is an arbitrary smooth
function of the level energy, while averages of the type
2,V VI X(a) vanish. )

4. The ensemble average of the quantity

Z_.v.v..- Vi Vin (e=A) ' (E—a0 ),

e
which is proportional to the population flux from one level
(k) to another (k '), does not depend on the particular leveis
k and k* which it couples.It is equal to some function Se,é)
which is identical for all pairs. _

3. The ensemble average of the decay rate of the band
levels {k} into the band (a), given by

L,ViaVer(e— A,)~", does not depend on the index k. We ‘

denote this value by y{e).
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Figure 198
The problem of many-level resonance may be divided to three

problems: decay of one level to a band, multiband problem and a problem

of the combination of two first.

Figure 16

There are some types of many-level problems (general encugh? that
allow detailed analitical‘solutions. The best known bne, Fano problem,
can be solved in gquadratures. Exact solution in a long enough interwval
of time can be also found for the problem of aggregate of zones
population dynamics, when initially only one levil of one of the zones
was populated, while all states of neiboring zones are coupled by
perturbation with matrix elements changing irregulary. Exact solution
may be obtained for the problem of decay of single level into the zone
with all its states interchanging populations by means of so éalled
“random walk' process with preset correlative properties. In order to
obtain analitical solution of these problem Cespecially for two last
ones), it is necessary to use Wigner’s idea of ensemble averaging.
Ensemble avareging naturally arises in problems where stochasticity
exists. Fano's problem provides us with answer to the gquestion about
chosen harmonic state’s decay, becouse of its inter;ction (due to
anharmonism? with other states which are suppousd not interacting.
Second, aggregate of zones,problem simulates anharmconic interaction of
these states with other, similar, ones. The third cone shows tLhe complex

sone states interaction influence on level’s decay into such a zone. It
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sort of conjurgation.-of twe previous problems.

Figure 17

Classical motiqn stochasticity manifests itself in exponential
instability of trajectory with respect to small change of hamiltonian
or of initial conditions. Quantum system motion stochasticity is
revealed in the complisity of matrices corresponding to operators of
unconservable values. They change dramaticaly as a result of
transformation of energy  basis due to s=mall perturbation of
hamiltonian, Averaging by small perturbations of hamiltonian is
equivalent to averaging by ensamble of interaction matrices. Statistics
of distances between neighbouring levels Ce.v. of ﬁ;» for totaly
stochastisated motion is described one of Dyson’s distributions. If
stochasticity is not total, this distribution is of Poisson’s type.
Matrix elements of interaction operator should obey to Wigner's

statistics.

Figure 18

Even if initial hamiltonian ﬁa corresponds to nonstochasti
motion, and interaction operators C’ structure is simple enocugh, the
procedure of ensamble averaging can still be used. This happends if
interaction 0 itself causes stochastization, In thi's case ;{o and G
wouldn’t generate some simple algebra - their different commutators

wouldn’t commutate between themselves. Then by dividing matrix Ho +V

in coarse enough blocks (larger "stochastization lenghthu or 'free path"r
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length) and by diagonalizing diagonal blocks, we’'ll obtain a matrix
with randomness in of-diagonal blocks. This procedure resembles

scaling.

Fiqure 19

General approach to many-level problems consists in the following.
Population evolution operator is written down in the form of direct
product of Green’s functions for ...} - "bra"™ and - i{...> - "ket";
each of them is represented as a perturbation power series of
interaction operator. In the graphs unperiurbated Green’s functions
Cs-—Ho)_" are represented by points, and operatorr's Q matrix elements -
Vt.k- by lines, straight for ‘ket and undurlatory for ‘bra. Series, thus
cbtained, is averaged over (G} ensamble. As a result only "“stuck”
graphs survive, where each transition is passed even number of times.
Topological structure of graphs thus obtainec; differs for different
problems. In Fano problem they are "bush”-like,and '"dress" ground
state. In many-zones problem, at time scale when graphs’
selfintersections are neglectable, they are "tree"-like, and permit
rencrmalization of eginenergies ("dressed” states), acquiring as a
result imaginary additjgons. Third problem graphs’® topology is complex,
they contains numerous returns and selfintersections. The same graph
may be-‘ passed through in different ways, i.e. many different
trajectories give the same contribution to sum. Interference of returns
occures (like in optical resonator).l In order to estimate correctly

this circumstance, it is necessary to take into account the expression
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for number of Eiler's roundwalks of orgraphs. Next figures dwell on

these problems in details.

Figure 20

Schrodinger’s equation for Fano problem gives, after Fourier
transformation over times, the well-known expression for ground state
population probability amplitude. Behaviour of the sistem differs
qualitativly on small times (lower than zone states density-g> and
large times scales. On small time scale, due to uncertainty principle
levels of zone are not spectrally resolved and summing may be replased
integrating by gdA. Exponential decay take place as a result. Fano
problem scolution is conveniently illustrated by the example of resonant
transition between two states; the upper one due to under-barrier
transition may with probability I' decay into long and shallow potential
pit. Particle’s t.ime-of—-f‘light between walles is T, levels density g-~T.
Zone of width I' containing I'g levels replaces upper state as a result
of tunnel interaction. Interaction ¥ will distribute its cross-section
amcong these levels, which will give for partial amplitudes wvalues
V o~ ‘Y/Cl"g)‘/z. On times t« upper level’s dacay is irreversible and
peopulation of lower level is decreasing exponentially
p~expC-"Vz/T'tD~expC—VzﬂgtD . When t>g reverse streams of population
frou{.he large pit to the level (Javanainen) are significant and
popul ation Py stabilizes its average value at p°~CVg)z. In order to
obtain considerable extent of population decay it’'s necessary to have

Vzgz»i. Zone population is localized at Vzg vicinity of the resonance
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and has lorentzial form over energies. This is Ferme’s golden rule
correction by higher orcers of perturbation theory. Value Vzgz=gcvzg)

is a number of levels, participating in rescnance.

Figure 21

Many-zone system is described by Schrodinger's doble-index
equation. Procedure of developing to perturbation series and subsequent
ensamble averaging permit at 'L<g3Vz C(when graps, selfintersections are

"

not actual?> to “dress up levels and to renormclize its
‘energies. Correspondent equation for new CGreen's functions X results
from geometrical seria. Series for total popﬁlat.ions of zZones are
redused to geometrical series as well. Only nearest C-Vzg) vicinities
of resocnances become populated. Zones total populations dynamics is
described by balance equation. "Random walk"™ process takes place among
vicinities of resonances. Analysis of problem on large time scale
(Shepelyansky) shows that at t»g’V? quantum limitation of diffusion
occurs CAnderson’s localization phenomenon). Sometimes it seems that

population in stochactic quantum systems wouldn’'t "like’ moving far

away from initial states.

Figure 22

Solution of problem of level’s decay into the region of “random
walk™ is aimed at answering the guestion about extent of population
localization on the lev=l under conditions when it can decay into the

zone where interstates iransitions may be fulfilled inderectly due to

i0
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interaction through the other states. This interaction is

characterized by ensamble average of two-time evelutionary operator for
density matrix - fCt,7) or it's Fourier image f(¢&,8D. Similar
situation may arise if in Fano problem model particle from long pit is
capable of jumping back and forth into other similar pits. Main problem
consists in correct estimation of graph'’s selfintersections, 1i.e.
correct calculation of interference of amplitudes of probabilities of
returns into the zone. Many different trajechkories possess same graphs.
The simplest case, that of orgraph, permiting two possible round walks
Ctwo different trajectories with the same contributiond, is taken as an

example.

Figure 23

Step-by-step solution of the problems requires determination of
numbers of roundabout. ways for every graph (CEller’s ways). Resull is
determined by character of f-function. If “random walk® is returnable,
and characterized by finite correlation time T, then on the time scale
when number of returns of “random walk" will exceed g/rz. population
will reach its assymptotic value, exponentially small over parametr
Vzg? In other words we?k localization is present ; localized componen
measure is exponentially small over parametr Vzgz.If "random walk®™ 1is

unreturnable, decay is total.

Figure 24

Now one can say what is needed for stability islends existence in

11
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quantum case. If mode comes into Fermi-resonance with three different
hybrid vibrations, then total stochastization occurs. In case of two
resonant hybrid vibrations, small over phase volume archipelago of
islends of stability exists even when interaction V exceeds spectral
density of resonanses. Single- or double hybrid rescnance, if the last
with additional invariant of motion, leads to strong localization.
Dynamic component measure in this case is big. Sometimes anharmonic
interaction of mhigher orders must be takent into account. Higher the
order of anharmonism, higher, usually, the density of ultimate states.
Correct estimation of value ngz presupposes summing up over all orders

Cover all scales).

Figure 285

In SFa molecule Three times degenerated mode may be tuned at
resonance with IR-radiaticm from COz—laser. Intramodal tensor
anharmonism leads to splitting of initianaly many times degenerated
excited levels and formation of zones. Howevrr conservation of sum of
quantum numbers n‘+nz+nz corresponding to three degrees of freadom
appears as an additional invariant. As a result, resonance
(isoenergetic) space 1is one-dimentional. Strong localization is
present. In the external rescnant field it becomes bidementiconal din
this case it is isoquasienergetic surfaced and weak localizatien of

population on lower levels is possible.

Figure 26
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Hybrid wvibration frequency vz+vd is close to v, frequency, and
when excitation extent is relativly high, they hit the Fermi-resonance.
The first ones to enter the resocnance are levels of v, zone centre.
As vibration vz is two-time and va—three-time degenerated, their

Vs mod2
switching in must consequently destroy stability islendsyand lead to
total stochastization, involving other modes too. This can exert

certain influence on localized in ground state population component as

well. ¥

Figure &7

In molecules, possessing relatively low number of degrees of
freadoem - d, which, multiplied by Born-Oppenheimer parameter, gives
value less than 1, value §ngs in averege over the phase volume is less
then 1. Evaluetion shows that it take place for less theh 10-12 atomic
molecules. In other words, dynamic behaviour is typical for them.
However, in the vicinity of Fermi-resonance CEVSQ,)Z”i’ Cbecause g is
large therel and stochastization of motion is possible.

Let’s consider model system. Mode L is excited by radiation.
Central parts of zones come into Fermi-resonance with vibrations vz+v6
and are included into stochasticity region. If the fregquency of the
radiation is such that we get into unstochastizated parts of the zone,
bidementional process is taking place. Considerable part of‘population
remains in ground state because of localization, while the other part

goes up through stability islends te high enough energy levels. In this

13
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case population of totaly stochastic states caused by quantum tunnel
decay from stability islends is small. Excitation at frequencies,
corresponding to centres of zones leads to total stochastization of
motion. Ground state in this case must keep considerably smaller part
of population. Dissociation is more likely from stochastical states. It
must be mentioned that in real situation stability islends may
correspond not only to the levels of mode LT Interaction with other
degrees of fredom not leading to stochastization Cresonances of not
large enough dimensionality) can cause their vibrations, linked by
phase to vibration of mode Vo The last circustomstance impedes the use
of such a method of finding stability regicons as, for example, Raman’s

scattering.

Figure 28

Phenomena of quantum localization is responsible for appearance of
vibrationally cold and vibrationally hot ensembles in laser field and
for localization of vibrational excitation in small number of degrees
of freedom. Affecting at different frequencies it is possible to obtain
a situation when same average abscorbed energy is distributed in
different ways among molecule states. When é}xcitation trough stability
islands is prodused, relativly small portion (because of returnability
and low dimensiocnalityY of molecules can be highly excited into states
corresponding to preferentional energy contribution inte certain
degrees of freadem. In +this case excited molecules becomes

"stretched"). When stochastizated states are being excited,

14
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considerably larger number of molecules will get excited up to smaller
energies. Then equal distribution of energy among degrees of freadom
will take place. If equal distribution of energy among degrees of
freadom will take place. If experimental proof of this is found, a hope

for bond-selective IR-UV processes appears.

Figure 29

TOF-masspectrometry is one of the methods for stability islands of
vibrational motion searching. What is the phisics of this method?
Electron cloud shape of molecule in ground state differs from that of a
molecule in a '"stretched™, vibrationally excited, state. That’s why
energies of electrons, occupying corresponding orbitals differ as well.
¥henever bond is stretching, energy of elecirons at repulsive orbitals
decreases, while energy of electfons at attractive ones increases.
Hence probability of ionization by electron impact with dislodging of
repulsive electrons and as a consequencs formation of stble molecular
ion decreases, while prcobabilityof dislodging of attractive electrons
leadiné to formation of unstable dissociativ meolecular ion increases.
Corresponding changes of fragmentation pattern - ratios of
probabilities of formation of different ion-molecular fragments,
created by electron impact - observed by masspectrometr. Electron cloud
éf the same shape must lead to observing same fragmentation patterns.
By comparing fragmentation patterns,it is possible to compare shapes of

electron clouds, shapes of molecules.

13
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To avoid any effect of a charge in the fraction of excited molecules with Varying
frequency and intensity of the laser beam, we used the following procedure to analyze
the experimenta! results. The electron impact causes a fragmentation of both excited
wnd unexcited molecules. The signal (4,) fepresenting the ion current of fragment
sonsists of the signals coming from excited and unexcited molecules. The increment in
be current upon excitation is proportional to the fraction of excited molecules, ¢, and
o the change in the cross section for the production of charged fragments with in.
‘reasing energy of the molecule, E: 44, ~¢|0,(E) — 0,{0}]. This value of g also deter-
nines the relationship between the average absorbed energy W, measured by the
ioustooptic method, and the ene-gy of the excited molecules, E: # = ¢E. The ratios
AA,/W)~[0.(E) - o,(00)VE do not depend on g and are determined exclusively by the
nergics of the excited molecuies and the nature of their fragmentation. These ratios
an accordingly be selected as pasameters that describe the state of the molecules. If
be vibrational motion has become stochastic, then the values of these parameters, at s
xed energy E, are the same for all frequencies of the exciting IR field. Although we
© not know E, its logarithm differs from that of the measured Quantity, W, by an
dditive increment of In ¢. I, by choosing this additive increment appropriately, we
nage to bring all the curves of In W versus the parameter 4A,/W for the various
scitation frequencies into coincidence at large E, we can thereby determine not only
¢ randomization boundary but also the fraction of excited molecules.
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Figure 30

One can see how probability of molecular ion fragments formation
depends upon vibrational excitation of molecule. Fragmentation pattern
is sensitive not only to the type of molecule and abscorbed energy but
also to type of vibration and friquency of excitation. Small
polyatomics excited in a different way have different form of electron

cloud.

Figure 31

To avoid the effect of localization and to finde the stochasticity

borders position some kinde of fitting procedure may by used.

Figure 32

Here is experimental dependence of character of fragmentation of
SFo molecules on energy E absorbed by "hot“ensemble ('cold” ensemble
excluded), and on frequency of excitation. Within the limits of shaded
area (s.r.D) fragmentation pattern with E fixed doesn’t depend on
frequency. In other words,that is stochasticity region. Stochasticity
region is limited. Beyond its limits shape of electron cloud differs
from one within. It is important to mention that even near dissociation
border total stochasticity wouldn’t exist. This gives some hope. Ratio
of excited molecules - g -~ decreases when the border of stochasticity
region rises over energy. This corresponds to the ideas about
localization length beﬁavior. Similar pattern was obtained for CF‘zClz

molecule as well. When bond C-Cl is being vibrationally excited,

16
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dependence of fragmentation pattern on frequency dissappears already
after absorbtion of 4 quanta, and for bonds C-F after 10 quanta.
However fragmentation patterns for excitation of C-F and C-Cl bonds are
different and coincid only at the level of 15 absorbed quanta. In other
words, vibrations manifest local, not total, stochasiicity up to 15hw
energy. F atoms vibrational energy is not transmitted to Cl atoms. Thus
it is not surprizing, that switchiﬁg of channals of UV photochemical
reactions of these molecules using vibrational excitation is achieved

CCrajevskyd.

Figure 35
Nonstochasticity of CF‘zClz vibrations permits to carry cut bond

selectiv chemistry in ArF‘ laser radiation field.

Crucial experiments on selective IR-UV bond destruction, what
would they lock like? It seems, they must be performed on isoctopic
molecules of HDCO or CHzDz pype C(Frequency of C-D bond vibrations are
close to COz-laser generation bond); IR-excitation of deterium
vibrations, followed by subsequent transiticon of molecule into
electronicaly excited term must lead to preferable decay with deiterium
tearing off.

I+ seems very likely, that molecule excited into locolized state
must have completely different spectrum of electron transitions Cin

visible or UV-regions) with respect to molecule in stochastizated

17



state.

There are several possibilities to provide bond selectiv
dissosiation of molecule. The first wuniversal one is one- or
mul tiphoton electron transition. In the frame of this approach
requested bond disscsiation is accompanied by high extent of
electronical excitation of fragments obtained. This is a way of
traditional photochemistry. Second rather exclusive one - is to reach
dissosiation of requested bond using its multfiphoton infrared resonant
vibrational excitation. This way is far from universal one and may be
sucsesful if either the bond .s sepérated spationally far enough from
weakest one end energy pumping is sufficiently fust or vibrational
spectrum of molecule permits the existence of bond locked highly
excited wvibrations up to dissosiation intended. The third, most
promising approach, is a combination of the previous two. By exciting
of intended bond beyong stochastization level,through stability
"islends"™ in stochastic "sea', and providing subsequent electronical
excitation sometimes one could obtain bond selective dissosiation while

electronical excitation of fragments isn’t very high.
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Decay of an isolated levelinto a continuum corresponding to an infinite random
walk '

V.M. Akulinand A. M. Dykhne '

Institute of Genergl P ysics, Academy of Sciences of the USSR
(Submitted 8 ) uly 1987)
Zh. Eksp. Teor. Fiz. 94, 366-382 ( April 1988)

1.STATEMENT OF THE PROBLEM AND BASIC RESULTS level-continuum model (or the model of a level and a dense
) band) are extremely diverse. They include processes which

The problem of the decay of an isolated level into a correspond to the complete decay of states which are initial-
continuum is encountered in many fields of physics,'-? Al. ly filled [spontaneous emission,” many-photon ionization of
though this problem does have a formal solution in quadri- atoms,* and the formation of an absorption line during the
tures, it is generally not possible to draw any really meaning.- interaction of electronic configurations in atoms® (autoion-
ful conclusions about the nature of the decay. Even the ization)] and processes in which the decay of the states is
answer to the qualitative question of whether the level de- incomplete (the excitation of low-lying levels of polyatomic
cays compietely depends substantially on the details of the  molecules by & resonant field,® the formation of localized
spectral density and the matrix elements which couple it states in Anderson insulators.’etc.). Problems involving the

i AR e om e i e B W

with the continuum. destruction of quantum numbers and the appearance of
In this paper we wish to examine the problem—not of quantum chaos, which are usually studied numerically for
universal applicability but a fairly general particular case— simple systems, ™12 oap also be reduced to level-continuum

of the decay of a Jeve] into a continuum, in which it is possi- Systems and studied analytically. This comment also applies
ble to reach some substantial conclusions. This analysis ap- o complex systems, if physically reasonable assumptions
plies to systems in which an isolated leve) interacts directly are made regarding the random walk in the stochastic layer.
with a relatively small fraction of the quantum-mechanical The nature of the decay of a level into a dense band
states of the continuum {a large finite or countable subset), (continuum) of course depends on the statistics of the ener-
which, not being eigenenergy states, interact in turn with all gy levels of the band and the size of the matrix elements of
the other states and thereby indirectly with each other. the operator representing the interaction of the level with the

We will analyze the asymptotic behavior after a long  band. The statistics are in turn determined by the particular
time~—longer than any of the temporal parameters in the features of the dynamic process which resulted in the forma-
problem. The asymptotic behavior of such a system is related tion of the band. We believe that the most convenient way to
to the well-known problem of localization """ which arises incorporate the statistics is to use the method of ensemble

in a study of one-electron states in solids with randomly dis- averaging,'" which can be used successfully in problems
tributed impurities. The approach taken in the present Paper  involving randomly inhomogeneous systems.'* The analytic
is significantly different from the approaches which are cus- €xpressions can be made insensitive to the microstructure of

tomarily taken in solid state physics to solve problems of this the spectrum by appropriately choosing the ensemble of sys-
sort. We wish to formulate severa] rather general assertions  tems having identical average values of the characteristics
regarding the nature of the motion in the system. Thereafter important to the Process under consideration, and then aver-
we will make no assumptions of the nature of the existence of aging the perturbation series for the leve] population over
a renormalization group. Our approach is thus valid for  this ensembie. The procedure of ensemble-averaging is
studying systems of arbitrary spatial dimensionality, and closed by a test to see whether the variances of these expres-
there is no requirement that the systems be spatially uniform  sions are small.
““on the average.” ' In this paper we will apply the procedure of ensemble-
The physical processes which can be described by the averaging only to that fraction of the continuum states

856 Sov. Phys. JETP g7 (4}, April 1988 0038-5646/881040856-10504.00 © 1988 Amarican Institute of Physics 856
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which are directly coupled to the level. We assume that the
distribution function of the values of the interaction matrix
elements is given, and we assume that the energy position of
cach of the states selected is statistically independent of the
positions of all of the other states selected. The interaction of
the states with each other, medieted by all the other states of
the dense band, is assumed to be complex and to have the
characteristics of a random walk. The probability for the
transfer of population from one stase to another over a fixed
time ¢ is determined exclusively by the relative energy posi-
tions of the levels.

In other words, we are dealing with the dynamics of the
filling of state 0 (which we will sometimes refer to below as
the “ground state”) in a system described by the Schro-
dinger equation

iy = 2 Vats
[
iAot Vel + Z, Viate:

. (1)
ifa=A.ta T+ E Vuvm

B(tm0) =1, Ami, | pu()e-dimpre),
[ oy etatmp @),

with respect to which we adopt the following assumptions.

1. The energy position 8, of each of the levels k is statis-
tically independent of the positions of all the other levels of
this set, {k} (we assume that it is equally probable over the
interval from — I' to I'; we will later take the limit ' — a0 )
ang also statistically independent of the value of the matrix
element Fy, .

2. The state density of the band, {a}, is so high that the
band can be regarded as infinitely dense,

3. The matrix elements V,, are random quantities, sach
that the only nonzero ensemble averages of sums are of the
type 2, V.. V. X(a), where X(a) is an arbitrary smooth
function of the level energy, while averages of the type
2,V VI.X(a) vanish.

4. The ensemble average of the quantity

ZVmVn' Vie'Varr: (e—Aa) "' (§—Aa)"",

e’

which is proportional to the population flux from one level
(k) toanother (k '), does not depend on the particular levels
k and k' which it couples.It is equal to some function f(£,£)
which is identical for all pairs.

5. The ensemble average of the decay rate of the band
levels {k} into the ‘band ({(a), given by
2 Vo Vo (e — A, ), does not depend on the index k. We
denote this value by y(£).

In other words, we have singled out from the entire
dense band those states {k} which interact directly with lev-
el 0, and we diagonalize the Hamiltonian in terms of all the
other states of the band. As a result of the latter procedure,
we form a set of levels {a}, which is related to the levels {k}
by the random matrix elements ¥, . The rate at which popu-
lation flows from one level k to another level from the same
set in the course of a process similar to a random walk is

857 Sov. Phys, JETP 87 {4), April 1988

determined by—only the function f{¢,£), which is identical
for all pairs. In other words, all the levels of band {k} are
equivalent from the standpoint of the redistribution of popu-
lation among states of the continuum.

To avoid any misunderstanding, we wish to stress that
the interaction of levels {k} with continuum states {a} gen-
erally does not have to lead to a complete and irreversible
(exponential) decay of these levels. In other words, the in-
teraction of some level with a dense set of other states can be
described in by no means all situations by introducing a de-
cay—a corresponding imaginary increment in the energy of
this level. Under conditions such that this interaction is
complicated, irregular, and even a discontinuous function of
the energy of the state in the continuum, the dynamics of the
decay of a noneigen state will generally not be exponential.
In a problem of this sort, the particular function fle,£) is
responsible for this irregularity, as it is for the nature of the
decay process.

A distinction is drawn between two types of motions,
depending on the nature of the behavior of the function

J&e.£) in the limit £~ £. The motion is a “‘returning” motion
if we have f— oo 85 £~ £, or it is & “nonreturning” motion if
we have f—0 as £—£. For a nonreturning motion, a quan-
tum-mechanical particle which is in one of the band levels
{k} at the time r = 0 will leave this level, and in the limit of
large ¢ it will not return to any.of the other levels of this band.
In this case, the decay of level of the band {k} 10 states of the
band {a} is irreversible. In the case of a returning random
walk, we are dealing with a different situation. This type of
motion corresponds to a repeated retyrn of the quantum-
mechanical particle to levels of band {%; i.e., the integral of
the total population of all these levels pver time diverges at
the upper limit. If the probability for the particle to be in the
states {k} is calculated by a path-sum method, the implica-
tion is that in the limit of interest here (long times) the situa-
tion is dominated by paths which undergo repeated self-in-
tersections at the levels of the band {k}. We are actually
talking about incorporating an interference among the wave
functions which arise as a result of the repeated returns of
the particles to the given group of states.

Incorporating the effect of path self-intersections is the
basic problem in carrying out a summation. Although the
topology of the Feynman diagrams which arise in the course
of the calculations is considerably more complex than usual
(trees, ladders, etc.), it nevertheless turns out that these dia-
grams can be summed. The procedure required here, which
is based on certain methods of graph theory, is extremely
laborious; we will present it in the following section of this
paper. At this point we think it is worthwhile to preview the
results which are found as a result of this summation and to
list the characteristics of the system which are responsible
for the decay of the ground state.

The most important results are two in number. First, a
nonreturning random walk leads to a complete decay. Long
times correspond to a decay law of the type
poc exp( — const ¢'7?) (slower than exponential} for the
population of state 0. The reason for this decay law is the
existence in the selected ensemble of some improbable real-
izations of bands which do not have levels k which are suffi-
ciently close to state 0. In this case, self-intersections of paths
are inconsequential.

The second important result refers to the case of a re-
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turn random walk. If a particle repeatedly returns to the
levels of band {k}, all the paths will intersect repeatedly,
thereby leading to s substantial change in the pattern as a
result of interference effects. In such a situation, a return
random walk leads to an incomplete decay of the level. In the
. limit of long times, an exponentially small fraction
exp{ — V3¢ const} of the population remains at this level;
here g is the state density of band {k}, and V2 is the mean
square value of the interaction matrix element |V, |

An important role is played here by the characteristic
correlation time of the random walk, 7.: the time over which
the wave functions of the states of band {k} are changed by
the nondiagonal matrix elements ¥ia of the Hamiltonian.
Although this time does not appear explicitly in the resuit, it
determines just when the asymptotic distribution of popula-
tions is established. This event occurs when the number of
returns in the random walk exceeds the number of levels in
band {k} which fall within a 7. ' neighborhood of the energy
of ievel 0. If the correlation time is cxceedingly small, r. -0,
on the other hand, and the asymptotic value p is not reached
over the time intervals of interest, then the random walk may
be regarded as noncorrelated. Correspondingly, we would
have f{£,£) « fle — £). As a result we have the intermediate
asymptotic behavior p,« exp( — const #2/*). This func-
tional dependence, as in the case of a nonreturning random
walk, results from the influence of improbable realizations of
the system. Consequently, the asymptotic time dependence
of the population of level 0 is determined by two characteris-
tics: the correlation time and whether the random walk is of
a return nature. '

2. CALCULATION OF THE DECAY PROBABILITY

It is convenient to seek a solution of Eq. (1) in the form
of an infinite power series in the interaction V. In this case
the probability amplitude for the filling of the ground state
can be written as a sum over all possible closed paths which
begin and end at level 0. Each path corresponds to a particu-
lar term in the series. A path is represented as a sequence of
transitions between levels {0, {k}, {a}}; each of the levels
met along the path corresponds to a factor £~ !, (¢ — A
or (¢ — A, )™, and each of the transitions corresponds to a
factor ¥y, or ¥,,, which is the probability amplitude for the
given transition.

Over the long time intervals in which we are interested
here, the system has time to undergo many transitions. The
corresponding paths are thus long, with many self-intersec-
tions. If we represent each path by an oriented graph (or-
graph), the graph will have a large number of parallel edges,
since a given transition occurs repeatedly, or pairs of levels
from the band {k} are connected by different nonintersect-
ing paths. Since only the numbers of levels and transitions
encountered along the path—not the particular order in
which they occur—contribute to the series in a perturbation
theory in ¥, many paths will have identical orgraphs and will
thus contribute identically to the sum of the series. A sum-
mation over paths can then be replaced by a summation over
different orgraphs with appropriate “statistical weights,”
Le., with the numbers of various possible circuits of the or-
graph or “Eulerian paths.” An explicit expression is avail-
able’® for a number of this sort:
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& {H (d~1) l} det][p,[, 2)

where d, is the multiplicity of node J, i.c., the number of
edges which leave it (the number of times level j is encoun.
tered on the path}, and det||p, | is any of the minors of the
connectedness matrix [|p, [, which consists of the matrix ele.
ments p,, which (with /%) give the numbers of parallel
edges connecting nodes 7 and jor (with { = j) are assumed tg
be equal to the total number of edges which leave the node
Pi = X,p;. For definiteness below, we will always deal with
the minor which corresponds to the deletion of the row and
the column which correspond to the ground state.

We are interested in the population, not the wave func-
tion, of state 0. To find the population we need to go through
a completely analogous procedure—taking Fourier trans-
forms, carrying out a series expansion in a perturbation theo-
ry in the interaction, and writing the series as a sum over
orgraphs—for the complex-conjugate wave function, which
we denote by ¢(£), using a different variable &, which is
conjugate of the time. We then need to multiply the resulting
series term by term. Most of the terms in the series for the
populations which is formed in this way vanish after we car-
1y out the ensemble-averaging, by virtue of assumption 3.
The only terms that are left are those for which the parts of
the orgraphs which differ in topological structure from trees
and which correspond to the ievels of band {4} and {@} and
to transitions between them, ¥, , are completely identical
for the right-hand and left-hand brackets. If we also allow
for the fact that the parts of the orgraphs which do have the
topology of trees can be summed separately, with the result
that we find a renormalization of the node factors [the level
energies A, acquire imaginary increments r{e) and ¥(&)
which are positive for ¢ and negative for £], then we can
assert that the only terms of the series for the populations
which are nonvanishing are those for which the orgraphs of
the transitions between states of the {k} and {a} bands are
identical. By virtue of assumption 2, we can ignore self-inter-
section of the diagrams at the levels of band {a}. By virtue of
assumption 4, we can associate identical factors He &) with
all coincident edges of the orgraphs for the right-hand and
left-hand brackets connecting different levels of band {k}
and passing through levels of {a}.

It thus becomes possible to further simplify the struc-
ture of the perturbation series for calculating a population.
Specifically, we can now eliminate the energy levels of band
{a} from consideration. The nodes of the orgraphs will then
refer exclusively to the {k} band. Each edge connecting
these nodes can be associated with a factor Hef). The ma-
trix elements of the connectedness matrix p; now refer only
to the number of parallel edges between nodes of band {k},
and a combinatorial factor compensates for the indistingui-
shability of the nodes of band {&} which results from this
procedure.

(; Py )! /II (pis!)

The difference between the number of Eulerian circuits for
the right-hand and left-hand brackets now results exclusive-
ly from the difference between the orgraphs at the levels of
band {k} and level 0. If we denote by m,, the number of
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° W
transitions ¥, which are encountered for the left-hand
bracket, and by n,, the corresponding number for the right-

hand bracket, we can write the following expression for the
population of the ground state:

e v—gdog 2 3 3 (S

B} Mgt mggt K

. (Z‘_‘ o) ! (k;k py;) ! det| 5,

- 51:;(2 Py y— Moy} [ det I Py
K

- ou(zpw""u)l I {M
g

niexl Pl
[ (Vou)"“ (Vi) ~ Zy g

e [ — Ay — iy (a)]"ﬂi"' Z, "n‘ﬁ LYY -‘E'(nr?j

(V™ (Vo "or~ B0 }

™ - ) Tiok — A, —i 5 ﬂor‘-E,P,; (3)
[ of ?%‘fhﬂli [E — Ax— iy (B)

where a summation over {p, } means a summation over all of
the p,;, each of which takes on values from 0 to «. Similar
comments apply to n and m.

As an example, Fig. 1(a} shows a graph representation
of one of the terms of the series for the population (straight
lines correspond to the right-hand bracket, and wavy lines to
the left-hand bracket). Corresponding to the orgraph is a
term of the following form in the series for the populaticn:

e (e—Ay~iy) T (e—A—it) T (e A=) THE-A I,
(E—Atiy) {E—-Antiy) ! VoiVos Ve Vo' Ve Vo' [ f (&, £) ]
(4)

Here p, = 1; p,,, = 1; the number of Eulerian paths for the
right-hand bracket is equal to I; and that for the left-hand
bracket is equal 2. Figure 1(b) shows Eulerian paths for the
left-hand bracket.

For convenience in the calculations, we will make one
more change in the order of the summation. The reason is
that there are many different levelsinband {k}, and a pat of
finite length is incapable of reaching all of them. This asser-
tion means that among the factors in expression (3) there
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FiG. 1.

are many Is (zeroth powers). We eliminate them from con-
sideration. To do this, we choose exclusively those levels
through which the paths of the given orgraph pass, and we
call the set the “carrier of the orgraph.” We carry out a
summation over all orgraphs with & given carrier, and we
then carry out a summation over all carriers. With the sum-
mation in this order, the value of ng, + my, +2,p; is a
natural number for any node k. Expression (3) can then be
put in the form

p(e, k)= 24“, 222( R (5)

1x) (prg} (Me) imen
where the sum over { X} means a summation over all possible
carriers.

We now make use of assumption 1: In our ensemble,
each level k is distributed at random in the band, and it can
take on values A, from — co to oc with equal probabilities.

e average the terms of series (3), noting that we have

j i 1 gdA = 2nig (n+m—2)1

= fa—A)™ (6-A)" (a—d)™+"-* (n—1)!(m—1i)!
(6}

forn,m>0.Inthecasesn =0,m = 1,andn = I, m = O the

integral is equal to + igm (depending on the sign of the

imaginary part of a and b). Using the integral representation

of the factorials

(Z’,X,) ! ==’_‘.];I {a™}e=° do. M

we find the following expression for the population of the
ground state:
- A

r=zr 3 5 5 N

-

3§ §ao

X1 inge} imgy} tpgyt © [ 0
—A—g— —fEyr P 1}
Xexp(—A—g—1) H {[_—ETW)'] Pry det“p,U

X i
— 8y Zp” ldatlp”—Bu(Zpﬂ—n )l

X {— S dty %ﬁ’i 2nig, (e—E —2v)

—ValtAty, \™( |Valor, \™®
x(s(e——-ﬁ-—ﬁy)) (E(e—og—zkzv))
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X IV Il E! "k]-p]l) z,?” [nto t mhl [

+ 2(».,- — )]t [mat X eo=e]]}

-where 2y = y(e) + ¥(£).

The idea of the following transformations is to put the
population of the ground state in the form of a product of
factors each of which depends on only the parameters corre-
sponding to one level. An averaging is then carried out over
these parameters. In this approach, the primary difficulty
stems from the presence of determinants which depend on
the indices of many levels in expression (8). The levels can
be split, however, by using generating functions. The actual
procedure, in the form in which we have managed to carry it
out, is extremely involved, and we do not have space here to

reproduce it in detail. It is summarized in the Appendix,

where the appropnatc notation is also introduced. The final
expression is

pm—[dn*(e—ing<V*)) (E+ing<V») ]

f§f di\.dodrj jdxdyjdu

. j dv(4nuv) ' exp(—A—0—1—2'—p")
lt—u) (1—v) (1—-4,) -
exp(d,—A4,) + |4, (1—-4,) Fexp(d,—4,) ], (9

where we are using the notation

A k)= J‘(V{dv J av -*I ij (14u)

Ciw)} -8 =1

T J N P
Ag(k)=— Jg(v)dv dv,[ f J1eA® dB 4B, nsme,

€l -n-n
Ay (k)= — j.g(v‘)“lw favl | doaes

-explA (k) Hi(0t8) ), prme

A(k)=—(e—E—2iy)ve " +2(| V|™)"
) [( ~hexp(4—s/2) )‘h

E+ing< Ve
L s cexp(R—s/2) \*
con (015 + 1)+ (22T

I PULEEA)

+2i{fx) v[z cos(0+0)+y sin (8+6) ] +frvi.
(10
Here @ is a contour around the origin, and C(4 ) is a contour
consisting of a ray which starts from the origin and goes off
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to infinity at an angle u from the real axis. The phase u is
chosen in such a way that all the intcgrals converge. The
quantity g{ ¥} is the spectral density of those levels for which
the matrix element of the interaction with the ground state
lies in a &V interval around V.

Expression (9), along with expressions (10), describes
the behavior of the population of a state associated with a
band of levels between which the transitions described by the
transfer function f(£,£) occur as & result of a mediated inter-
action through a dense band. Although this point cannot be
seen directly from the expressions written here, the popula-
tion of the ground state remains equal to unity at ali times in
the case ¥'=0. To verify this physically obvious fact, it is
necessary to carry out severai transformations which consist
basically of using the relations found for the Besse! functions
after integrating over d@ and 49, introducing the new vari-
able J = A, — A,, and integrating by parts.

For the transformations below, we make use of the spe-
cific functional form of g(#), which makes it possible to
substantially simplify the expressions derived above:

e (V)=(2¢V/V.)exp(—~V*/V.Y), (1)
where Fyz= (V' ?)'/? is the mean square matrix element of the
transition operator, and g is the spectral density of all levels.
Noting that ¥ and & — ¢ can be treated as polar coordinates
under integration, carrying out the corresponding integra-
tions in terms of the equivalent Cartesian coordinates
¥ cos(6 — &) and Vsin(6 — ), changing the order of the
integration over d(6 + ) and the differentiation, introduc-
ing the change of variables v — v exp{s/2) and then differen-
tiating with respect to ds, dL, and dR, we find an expression
for the population. After the terms in the relation for the
quantity J = 4, — 4, which are proportional to v~ are eli-
minated through the use of recurrence relations for the Bes-
sel functions; after we use the identity

exp(frv')mu—* j exp[ (fr)*v¥Y-Y*]dY; (12)

and after we introduce the variables

Z=(e—Et~2iy)}+Vi[o(e—ingV,2)
—A(EtingV,?) ' |+2(fr)*7,

P=4{Vi~Ao(e—ingVi!) - (E+ingV )" ]*
+i(fr) "z} ~4f1y®, @=arcig(y/z) (13)

and
o'=§[§(e—ingV..‘)"—A.(§+iugV.’)“, L=e—E, n=e+t§,
s=o(8—ingV.*)~'+A{t+ingV,5) 1, (14)

this expression for the population takes the form
p= —-—I do’ dzdndrdrdy[ (1-A,) (1-4,) (1-4,)*

—An(1-4,) "'~ | 4,|* (1-4,) *Jexp(J—0' —isn—2z'— "),

(15}

where
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—21(fx)*2]"—dfvy’
HV T [/2-tr GO T [V ot
—24(fx) %)
~ -2+ VIO T 420 T
wxp(—¥}dY,

Ay=— ;‘f;‘ {(Z’—l‘)"exp(—Y‘)dY,

A.——-e"-z-‘t%i (2 (Z—r')—rlexp(~T")dY,
Anmisigfe | [12-'-(:— + s)Z(Z‘—r‘)"—r‘(Z‘—r‘)"]

x exp(=T*)dY,

| s @-m-y@-m

n*gf
2

Ag:,-

Xexp{—Y"dY. (16)

We consider the following cases in more detail.

a) We assume /=0 and y=0. In other words, we assume
that there is no interaction between band {k} and band {a}.
We then have 4, = A, = Ay, = Ay, =0, and the expres-
sion for the population of the ground state becomes the same
as that found in Ref. 6 for a level-band system. Under the
condition ¥,g <1, there is essentially no decay of the level,
while at ¥2g*» 1 a steady-state population po~ ( Veg) % is
reached after a long time.

b) The case of a nonreturning random walk (¥#0, and
f—0in the limit £ - 0) corresponds to

Ap=Ap=Ap=A4,=A4,=0, I=—"2g(Via'ix/t)* (17)
from which we find
1 . . ng(V.,u'i-f "’}
Po -:E'[du exp{-—a iy —_C ) , (18)
and, at long times,
po~ (g Vol exp {—'/: (g’ V') "} (19)

¢) The case of an uncorrelated return random walk, i.e.,
the case y#£0, fl£,1m) —27if({), corresponds to

Ag, L=’n’ziﬂg[ Vnzﬂ’t—i(f")%lu’cn. o{2),
Ap="fsingl Vita't™ (fT)‘r']-whcm.(I)‘

A:=e_~A3=‘f1ing[ Vuzqrt—i (fT)l” ]_"F'Cz(z) '
I="ngl Vo6’ (fr) " 15 {x},

where ¢ (x), ¢, (x), cgy (X), €5 (X), ¢, (x) are functions of
the integration variable x, which are of order unity. Using
the expressions given above; carrying out the integration do’

(20)
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(the 1 — A4, pole) and over dr by the method of steepest

descent, in which we make use of the smali values of the

quantities ¥,~’g ™% f 7', and {; taking a Gaussian integral

over dy and a steepest-descent integral over dx, we find the

following expression for the principal component of the pop-
ulation after a long time:
(gV.')"

= Fr T

tl}’I'hecaseofareturningmdomwllkwithaﬁnjw
correlation time 7. leads to the following expressions for f
and  in the asymptotic expressions for large values of 9, i.e.,
atp»r, "

F& M)~ (ST’
1 (&) +y (&) =y (3, n)=1{L, 0)/v "

exp[—const(gV,'e)*]. (21}

(22) -

Specifically large values of % are responsible for the incom-
plete decay of state 0. After a long time, we should retain in
expression ( 13) for the quantity Z only terms of order ¥ 30’
and of order V3o'L ~'(fr)'/%. Since in the limit £-0 we
asame (L)L ~0, wehave 4, —~A4;— Ay, —0, and the integral
over do’ is evaluated by the method of steepest descent. The
saddle-point vatue ¢’ is such that in the limit {0 both 4,
and 4, tend toward zero. After the change of variables

=)t/ L), s= (AR 0 (23}
and an integration over 4, we find

V. ,
b~ J 2 (i)
4
xexp{—in's’ V' ¢'¥ (n'; 2) }dn' dz’ dz,
where W(%';x) and U(7';x) are functions which are of order
unity for arguments of order unity. Evaluating the integral

over dz’ and the integrals over dy’ and dx by the method of
steepest descent (¥ 2g>» 1), we find

pﬂ""t-'g-‘Vn" pr(‘—Vn'g! const) ' (24)
which yields, in the limit 1= oo, '
po~g~' Vo' exp(—V,'g" const). (25)

The correlation time 7, does not appear in the result for

the population. It determines not the steady-state value g,

but the time which is required to reach a steady state. Specifi-

cally, since the saddle-point value is 7'~1, we have

n~ )T, 21", so satisfaction of the condition
7% 7. "' requires

PHEY > (26)

Using £ =¢ ~', we find from this expression an estimate ofthe
time required for the population to reach its asymptotic val-
ue.

3.DISCUSSION OF RESULTS

Limiting cases b and ¢, which correspond to a nonre-
turning random walk and an uncorrelated returning random
walk, can be given a graphic interpretation on the basis of the
idea that the spectra for Poisson and Dyson ensembles differ
in “*hardness.” For this purpose we need to examine the
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probability for returns of a random walk to the levels of band
{k} as an effective interaction between them. A returning
random walk in the asymptotic behavior at large ¢ then cor-
responds to a strong interaction, while a nonreturning ran-
dom walk corresponds to asymptotically noninteracting
states.

The temporal behavior of the population of the ground
state, pg, 88 I— oo determines those realizations of the band
which correspond to the slowest decay, i.e., bands which do
not have levels which lie close to state 0 along the energy
scale. The probability that there will be no levels of band {k}
in a A neighborhood of this state under the condition gA » 1
is of order exp{ — gA) for a Poisson (noninteracting) en-
semble and of order exp( — g?A?) (to within the cocfficient
of the exponential function) for Dyson ensembles. The rate
of the decay of the population of level 0 to states of band {a}
through a level of band {k}, tuned an amount A away from
resonance, is determined by the composite matrix element
W, which can be estimated to be

W(A)~V /AL Q@n

The rate of the decay through this and all other levels of band
{k}, detuned by a greater amount, is

W= [ Wmgdn-vogia)-

L1 3

(28)

This is the decay rate of level 0 in the case in which the
nearest of the states in the realization of the band {k} lies a
distance A away along the energy scale. We can thus write

pe exp(—V, ygt/|Al}. (29)

Taking an average of this quantity over the probability dis-
tribution for the formation of an energy gap of size A in a
Poisson ensemble exp( — g4 ), we find

Vqgit
= Jor |Alg

~(Viyg't) "‘iexp[—2(V.'w‘t)“],

which agrees with expression (19). Taking an average of

—¢lAl Jgda

(30

expression  (29) over a Dyson  ensemble,
(gA)%exp( — g2A?), we find
Pa~1*"* exp [~const(yV,2g%t)"], (31)

which agrees to within the coefficient of the exponential
function with expression (21). If the function fin the asymp-
totic region of small { is represented in the form ¢ ~#, then
there is complete agreement between expressions (21) and
(31) under the conditions a = 7 — B, and yg~ 1. Since we
have 1> £ 0 for a returning random walk, we find that the
quantity a lies in the interval 7> a > 6. In other words, the
interaction of states as the result of an uncorrelated return-
ing random walk leads to the formation of ensembles which
are harder than ordinary Dyson ensembles. Here, however,
we are talking about that hardness which determines the
coefficient of the exponential function in the asymptotic
expression for the case of large separations between levels.
Furthermore, since we are dealing with a repulsion of decay-
ing levels in this example, it is totally meaningless to talk
about their relative positions at distances smaller than the
decay rate.
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We should emphasize that the results found for cases b
and c indicate that after long times the ground-state popula-
tion is not self-averaging. It is dominated by systems which
lead to a slow decay of the level and which are encountered
only rarely in the ensemble. Consequently, the results found
here cannot be used to describe any single system, and valid-
ity of the model requires the physical existence of an ensem-
ble of different systems.

The situation is quite different in limiting case d, in
which the wave functions have a finite correlation time, and
the level decay is incomplete. The reason is that the asympto-
tic expression for its population should obviously be a con-
tinuous function of the microscopic parameters of the sys-
tem (the extent to which the levels are “detuned,” the matrix
elements of the transition operator, etc.). Consequently, if
the mean value of the population of state O is finite in the
limit f— o, then it must also be finite for the overwhelming
majority of possible specific realizations of the system. The
exceptional case comprise a set of measure zero. In other
words, a finite value of the correlation time leads to the exis-
tence of a Jocalized component of the population.

The role played by the requirement that the correlation

time be finite can be understood by noting that only when

this requirement is met does there exist a nonvanishing pop-
ulation flux from a state of band {k} to level 0. Specifically, if
the quantity X, ¥y, ¢, (1) (the flux of probability ampli-
tude) varies irregularly with a typical correlation time 7., its
time integral can be estimated from

t»r, T
X J vanoa~ (L) [ Y vanoa

Te

~Z,<V..|¢.|>(-r,:)'-, (32)
A

which corresponds to diffusion fluxes
~VorZip.

We would also like to call attention to the circumstance
that the correlation time 7, does not appear in the expression
for the asymptotic value of the population. This time deter-
mines not the steady-state value p, but the time which is
required to reach the steady state. Condition (26), whichis a
necessary condition here, means that the quantity gf(£)¢ 2
exceeds the number (g7, ~') of levels which fall in a 7,
neighborhood of the resonance. We note that the variable ¢
is related to the time by £ ~¢ ~*. We also note that the func-
tion f({) signifies the Fourier transform of the probability
for observing a particle at time 7 in some level & of band {k}
under the condition that at £ = 0 the particle was at a level
k't k of this band and first returned to it at the time ¢, We
then see that the quantity ¢ ~2f(¢)gisan order-of-magnitude
estimate of the time integral of the total flux of the popuia-
tion which returns toband {k} by the time 1~ —'. When the
value of this quantity per state of band {k} participating in
the process (there are g7, ~! such states) becomes of order
unity, the decay of the ground state is terminated. The return
fluxes of population from the band to the level stabilize its
average population.

This statement means that a necessary condition for the
termination of the decay is that the quantum-mechanical
particle described by the Schrodinger equation (1) must be

population
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in each state of band {&} which satisfies the resonance condi-
tion with & probability close 1o unity. It can also be asserted
that the steady-state value of the level population is reached
after the quantum-mechanical particle which was originally
localized in a phase volume 7 ~ (22%)% of one state of the
band goes, in the course of the random walk, into a phase
volume corresponding to another state of the band. The time
required for this event is essentially the Poincaré recurrence
time for the minimum (consistent with quantum mechan-
ics) phase volumes.

There is yet another interesting circumstance here. In a
quantum-mechanical system consisting of an isolated level
and a discrete band,'”'? the band may be thought of as a
continuum with smoothly varying parameters—the square
amplitude of the transition probability and the state den-
sity—at times ¢ < g, when the typical distance between levels,
8~g~', is smaller than the uncertainty in the their energy
position, ~t ~'. For such a system, the wave function of the
ground state is

%u(2)=exp(—V’gt const). (33)

By a time t~g, i.e., by the limiting time for which the analy-
sis is valid, the population of the level is

poexp (—V,%g* const), (34)
which agrees to within the coefficient of the exponential
function with (25). At times 15, “revivals”—return proba-
bility fluxes from the band to the level—begin to play an
important role. These revivals subsequently lead to an in-
crease in the population of the level, to a value g~2F,~?,
corresponding to the principle of detailed balance. Specifi-
cally, if t>»g, and if the phase shift between neighboring
states satisfies (A, — A, _,|¢» 1, these population fluxes
may be regarded as random, rapidly oscillating fluxes, equal
on the average to g~'. Equating the forward and return
fluxes, p,Vig = g~', we find p,~ ¥ 5 %g 2 In other words,
the population of the level is on the order of N ~', where
N = g(¥3g) is the number of states of the band which have
reached resonance.

The presence of an interaction between the levels of
band {k}, mediated through the states of band {a} in the
course of the random walk, apparently has the consequence
that the phases of the wave functions of levels & are interact-
ing—locked together or correlated. The phase shift between
neighboring levels, on the other hand, is not a random quan-
tity. Accordingly, that linear combination =¥, , (¢} of the
wave functions of band {4} which determines the probabili-
ty amplitude flux to the ground state can no longer be esti-
mated from of the wave functions of band {k} which deter-
mines the probability amplitude fiux to the ground state can
no longer be estimated from ¥,s N '/°V, /N2~ ¥, asin the
summation of N randomly oriented vectors each of length
Vo/N'"%. The uniform arrangement of the phases of the ¢
functions on a vcircle leads to the estimate
Fyz ~ ¥y exp( — N), which agrees to within the coefficient
of the exponential function with expression {34) and which
leads to expression (25). The phase capture suppresses the
“revival” process.

In conclusion we would like to discuss two physical
problems which can be solved through the use of the model
system which we have been discussing here. The first of these
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problems concerns the dynamics of the filling of the low-
lying levels of polyatomic molecules in-an electromagnetic
field which is resonant with one of the vibrational modes. We
are interested in the mechanism for the formation of a so-
called cold ensemble, i.c., a significant fraction of the mole-
cules which, despite the existence of an external field, either
are not excited or are excited only slightly. This analysis can
be carried out on the basis of the model of a multilevel band-
type system.> The role of the factor which forms the ensem-
ble of systems is played by the rotational motion of the mole-
cule as a whole, which, by virtue of the thermal distribution
of the¢ molecules among rotational states and by virtue of the
vibrational-rotational interaction, can lead to irregularities
in the vibrational spectrum and in the matrix of the dipole-
moment operator. At times shorter than the Poincaré time,
such a system can be described by balance equations, and the
average populations of the levels which have reached reso-
nance decay in accorance with a random-walk law. Limiting
d makes it possible to describe the behavior of a system at
times longer than the Poincaré recurrence time. State 0 is
understood in this case as the only level which is occupied at
1t =0 (and which corresponds to the vibrational ground
state); the states {k} are understood as levels which are di-
pole-accessible from this state; and the function fis under-
stood as representing those transitions which, under the in-
fluence of the radiation, couple levels k through higher-lying

“states. If the spectral width of the absorption band is finite,

80 that its inverse—the correlation time of the random
walk—is also finite, the decay by a random-walk law will
come to a halt, the population distribution will reach a
steady state, and a level which initially had a population
p=1 will be populated only slightly:
px exp( — ¥ g’const). A situation of this sort corresponds
to quantum-mechanical steady states localized within a re-
gion. } "« exp( Fig’const) in terms of band indices.

The existence of localized states can explain the forma-
tion of a cold ensemble during the infrared excitation of a
system of small polyatomic molecules.?’ Specifically, if the
density of quantum states in the region of the low-lying vi-
brational levels and the spectral widths of the bands are
small, the time required for dissociation of the molecule, 1,
may be much longer than the Poincaré recurrence time for
the low-lying levels, ¢,. There will thus exist a time interval
Ip » %1, within there are localized states in the low-lying
levels. Because of the rapid growth of the number density of
quantum levels with increasing energy, the population dis-
tributions corresponding to these localized states decay rap-
idly with increasing index of the excited level.

The second problem concerns the disruption of inte-
grals of motion (quantum numbers) in nonlinear physical
systems when they are subjected to a perturbation. In classi-
cal mechanics, a resonance between the periodic motions
corresponding to these integrals can be achieved by appro-
priately choosing various values of the integrals of motion
which are conserved with any prescribed accuracy in the
unperturbed system. In systems with three or more dimen-
sions, this situation can be arranged at essentially any point
in the space of the action variables; i.e., the grid of reson-
ances is dense everywhere (Ref. 22, for example). For this
reason, if a perturbing interaction is not degenerate because
of some symmetry, it will lead to the complete destruction of
ali the integrals in motion other than the energy, and it will
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lead to the appearance of a stochastic motion over the entire
constant-energy surface.

- In the quantum-mechanical case, the situation is more

complicated. On the one hand, because of the discrete nature
of the spectrum it is not always possible to satisfy the reso-
nance conditions. On the other hand, even in the absence of
an intermediate resonance there may be an effective tunnel-
ing interaction. To what extent the integrals of motion are
violated in the process can be determined by solving the
problem discussed above. For this purpose, we can take state
0to be any state of the unperturbed Hamiltonian which cor-
responds to a completely integrable motion and which can
therefore be described by a set of quantum numbers {n A
perturbation ¥ of a sufficiently simple structure gives rise to
probability amplitudes for transitions from this state to oth-
er cigenenergy states of the unperturbed Hamiltonian with
quantum numbers {;} which differ from {n,} by a relative-
ly small change in the values of 7, in a relatively small num-
Ber of positions. The set of these states, along with those
which are reached in higher-order perturbations in ¥ as a
result of tunneling through greatly “detuned” levels, should
be treated as & band of Jevels {k}.

If, on the other hand, we also know that this interaction
1s capable of leading to the formation of a stochastic layer
(states for which the nondiagonal terms in Vare greater than
the energy differences) for at least a relatively small fraction
of the eigenenergy states, and if the random walk corre-
sponding to this layer is a returning walk, then we can choose
asband {a} the set of cigenenergy states which are formed in
the layer when ¥ is taken into account. If the correlation
time of the random walks (the reciprocal of the width of the
stochastic layer in energy space) is finite, the state does not
decay completely—only to a magnitude exp( — g°F?). A
nonreturning walk and an infinitely short correlation time
may lead to the complete violation of the integrals of motion
(quantum numbers). It can also be assumed that approxi-
mately exp( — g ¥ ?) - 100% of the total number of quantum
states are states which have not decayed and which are de-
scribed by the previous quantum numbers. A fraction of un-
decayed states of this magnitude corresponds to realizations
of the {a} band which have no levels in a ¥ neighborhood of
the resonance. The quantity exp( — g>#?) under the condi-
tion gk'» 1 describes the probability for such a realization in
Dyson ensembles. 5

We wish to thank N. V. Karlov for a discussion of these
results.

APPENDIX

Let us go through the procedure for deriving (9) from
expression (8). Using standard relations of the type
x=(d/dy),_, exp(xp) we introduce variables L., R,,
@, and s, which are the adjoints of n, 0 Mg, Py and Zp,,
respectively, in the determinants. In this case the determi-
nants become differential operators of the type
J

Y det]|—rrv—tu{ 2 + -2 et]| ~ frvie, +
w’alx]det” fw,'\?. ﬁn( as. aRl ' e fwivf 6“
{e'je{x)

58.
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det” Ba.,+ 6.,( Py + ok, ’

and they act on the expression as a whole. We then carry out
a summation"’ over n,, and m,,. As a result, Bessel func-
tions arise. These functions can be expressed by means of the
variables 8, and ¢, in terms of the corresponding standard
Sommerfeld integral representations. We then carry out a
summation over p, , and as a result we find an exponential
function of argument fr:

z,v,,v, exp (i, +i0,—i0—idtay),
ey

where v, =7, (e — &£ — 2y) " exp(s,/2).

After the order of the summation and the integration is
changed, this exponential function is acted upon by two dif-
ferentiat determinant operators. As a result, the first deter-
minant acquires, in place of the arguments d/da,,, argu-
ments { ... Yexp a; and itself becomes the object acted upon
by the second determinant. The action of the second deter-
minant on the exponential function leads to the Appearance
of the same arguments as in the first case, along with which
we should retain the operator part 3 /3a,,. After this proce-
dure is carried out, the variables @, , in the argument of this
exponential function, “carried through™ the differentiation
operators d /da,,, are assumed to be zero, and they become a
bilinear form of variables corresponding to different levels:
2, 4,9:a?. For the exponential function of this bilinear
form there exists a two-dimensional integral representation
(fdxdy exp( —x*— %) (...)] of the quantity exp(xA

+ yB + C), which is multiplicative in terms of the variables
with different indices, where

4 ~2Rea,, B ~Z Ima,, Cl~2 |aa]?
L 13 1 3

In this step, the only quantity which is not multiplica-
tive in terms of the variables corresponding to different lev-
els is the product of the determinants. Since the order of the
derivatives with respect to each of the a,; is no higher than
the first, it can be written in the form

a
det.”—jw.v, +exp[i(0,+06,—0,—0,)] —
6‘:1..,-

+5u( 9 + 3-%) “det”—i‘w,v.(i—dn) +5n(£‘: + _B_)” -

35, oL,

Expanding the determinant of the sum of the two matrices in
minors, we have

2 ettt |
det” . det| eyl

A (T} fm{C') X}/ {C) Ja(X}HC")
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where {C} is the set of rows, and {C} is the set of columns
(which have identical numbers of ¢lements). The first two
determinants, however, are nonzero only if {C} and {C'}
differ by no more than a single element. The product of the
last two determinants is a numerical factor, equal to the
number of nonzero terms in the determinant with a zero
mean diagonal or a zero diagonal nearest the mean diagonal.
The nonzero determinants can be written in multiplicative
form:

detf—fvivi—8uCull [ smics

L —1g -t 1 -
= 5] o Il oy -i1as,

hu{C)

det]| —frvvi—8utul [ naicspmsntcrm=—FTVm¥a II (fvit—~a),
hmiC)

where contour ® circumvents point 0 in the positive direc-
tion.

Since a summation is carried out over all possible carri-
€rs, a surnmation over minors can also be incorporated in it.
The reason is that the minors differ from diagonal minors by
no more than a single element. The transformation from a
summation over carriers to an integration over the param-
eters of the levels and a summation over repeated levels with
identical parameters is then made. In other words, we carry
out a chain of transformations of the type

H a (Vl‘l gk)

AT ki)

N (Vy, Ex) 2 Vs, 81"
n (V8!

— 11
VYELV) (V. g0
=gl

—exp S NV, g a(V. g)dV dg,
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where N( V., g, ) is the {fraction of levels with parameters ¥,
and g, , and n(¥;, g, ) is the number of their repetitions.
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Dynamics of excitation of multilevel systems of the band
type in a laser fieid
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With the population of high-lying vibrational state of polyatomic molecules as an example, we consider the
problem of the kinetics of population of multilevel systems of the band type. Physical arguments are
advanced to show that for sufficiently compiex moiecules the dipole-moment matrix elements can be
regarded as random and satisfying the Wigner “microcanonical™ distrbution. Within the framework of
this hypothesis we consider the limiting cases of strong and weak interactions of the system with a Iaser
field. For strong interactions we obtain and analyze an expression for tae population distribution over the
bands. For the case of weak interaction we derive a balance equation that describes the kinetics of the
population of a multilevel system. It is shown that multilevel systems of the band type exhibit
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simultancously both coherent and stochastic properties.

PACS numbers: 33.80.Be, 42.50.+q

The action of laser radiation on vibrational degrees
of freedom of molecules was first considered in®?, The
model of the anharmonic oscillator> ¥ is extensively
used at present. This model describes the excitation
of diatomic molecules and the bujldup of the nondegen-
erate modes of polyatomic molecules. At the same
time, much attention is being paid to a process recently

- observed in experiment, collisionless dissociation of

polyatomic molecules under the influence of a high-
power electromagnetic field that is at resonance with
the degenerate modes of polyatomic molecules, ™) The
anharmonic-oscillator model turned out to be inndequate
for the explanation of this effect and jt was found neces-
sary to take into account a peculiarity of polyatomic
molecules that manifest themselves in a high density of
the vibrational states. [

A direct approach to this problem would be to calcu-
late the spectrum of the vibrational states of the poly-
atomic molecule and the matrix elements of the dipole
moments, followed by a solution of the Schrodinger
equation. However, owing to the large number of dif-
ferent vibrational states that actually take part in this
process, none of the stages of such an analysis can be
realized in practice. To describe the effect of colli-
sionless diescciation one uses therefore various model
approaches. A distinction can be made between two
groups of model approaches. In the first!** are con-
sidered almost-resonant single ievels and a coherent
energy acquisition. In the other one uses a stochastiza-
tion hypothesis'® and thermodynzmic considerations,!!!!
These models have & limited applicability. Thus, in
coherent modeis no account is taken of the large number
of closely-lying levels (which are also resonant), and
one neglects effects of interference of a large number
of excitation channels that proceed via different levels
with comparable amplitudes. Allowance for this cir-
cumsgtance can cause the snergy acquisition by the mole-
cule to have in a number of cases & random-walk char-
acter, Statistical methods, in turn, ignore compistely
the coherent effects that can cause, for example, only
marrow vicinities of the resonances to be substantially
populated, Yet in the problem of excitation of a multi-
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level system with a complex spectrum an important role
may be assumed (and is in fact assumed) simultanecusly
by coherent and stochastic process. As a first step we
wish to propose solvable models that do not ignore either
of these aspects of the phenomenon.

The purpose of solving this type of model problems
is to find those characteristics of the spectrum and of
the Hamiltonian of the interaction of the system with the
tield, to which the results are most sensitive (e.g., the
efficiency of energy acquisition). There are physical
grounds for assuming that the number of these charac-
teristics is small, In this case the behavior of an en-
tire ensemble of multilevel systems with different spec-
tra and interaction operators turn out to be the same.
It is therefore natural to use the method of averaging
over the ensemble. This part of the problem is general
in character, does not depend on the actual structure of
the molecules, and can be used to describe any system
with & complex spectrum and with & “stepwise” charac-
ter of the interaction. In this paper we restrict our-
selves only to this part.

The subsequent program could consist of a direct cal-
culation of the aforementioned characteristics for con-
crete molecules, In this approach there is hope of get-
ting rid of the influence of a large number of degrees of
freedom, 80 that the problem might be solved by a direct
method.

1. THE MODEL

" We have chosen the following model of the spectrum:

1) the level groups are localized in the vicinities of
the energy values nkw;

2) in each vicinity there is a large number N,>>1 of
levels, which are numbered by the index m:;

3) the dipole moment differs from zero only for An

=21 transitions between neighboring bands.

The Schrodinger equation for such a system is written
in the form
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where uy ™ are the matrix elements of the transitions.

Carrying out the transformation §, ,, = ¥, ,, exp(- inw?)
and neglecting the oscillating terms, we reduce Eq. (1)
to the form

N.’-.--A-,-Wm- +E E“:,'l;l-' Yu' my (2)

where A, ,=E£, ,—nw. We write down the solution
of (2):

$onlt)m 2 {exp—iAO LT $u-al0), 3

where
HuB, Vb, 8. A atEprn .

From (3) follows an expression for the diagonal ele-
ments of the density matrix

Prm == (n, mle='® §(0) e'ftln, m> (4)
or, using the formula for the function of the operator,

i

E__”hl,m)._ i (5)

p.','.'-é- j daj Y e=tu-Ni (p | ﬁa(m

- Cy

where the integration contours C; and C, are shown in
Fig. 1. If we use the expansion

(2—By— V)= (2=B,) "+ (2B T (z~B) £ ...,

then the integrand in (5) can be represented as a sum
over the trajectories ’

) 2 (‘_A-.-)-‘V(:- s V:.f.(a—ﬁu.n)"P:: .

(rhin)

DB TV LV (A )L (6)

If each term of the series is represented in graphic
form, then we obtain diagrams of the type shown in Fig.
2. The wavy lines in this figure correspond to the right-
hand operator bracket and the straight lines to the left-
hand bracket. Each straight or wavy line joining the
point (a, b) with the point (¢, d) corresponds to the matrix
element V4 §=Eu%} of the interaction operator. To
each point ?a, b} on a wavy line corresponds to a factor
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TR TEIY WA Ul adplilt LUIBS Sldalll UAL LIOID PDOLNLS COr-
responding to levels populated at the instant time £=0,
and terminates at the point (s, m) of interest to us, I
only a certain level (n,, m,) 18 populated at the inatant of
time £=0, then the population of the {level (n, m) 18 ex-
pressed as the sum of all the possible trajectories that
begin at the point (ny, m,) 2nd end at the point (»n, m).

The subsequent analysis of the problem depends es-
sentially on the statistics of the dipole moments, We
confine ourselves in this paper to an analysis of a sys-
tem with random dipole moments. The phyaical argu-
ments favoring such a model are the following: The
presence of anharmonicity of the vibrations of poly-
atomic molecules causes the levels of various degener-
ate and multiple modes to experience Fermi resonances,
as a result of which the dipole moment of the oscillatory
transition becomes smeared out between them. This
smearing has a complicated and irregular character,
The only requirement that the matrix elements of the
transition dipele moments must satisfy is the sum rule
(the sum of the squares must be constant). A natural
model that describes this situation is the total ignorance
model, which leads to the “microcanonical” Wigner dis-
tribution funetion’

£t =6 [ py (u.'_’:'-"r—(u.“‘r] H dultiT. (7

According to the distribution {7}, the matrix elements
of the dipole moments do not correlate with one another,

As u result of the distribution (7) the essential con-
tribution to the sum (6) is made only by those trajec-
tories in which each pair of points is joined by two lines
{see (8), where diagram b is the schematic representa
tion of diagram a), :

AN
N O

} {ymy} nm}
: \
»
mm)
. b
a

(8}

In addition, the condition N,>> 1 over times shorter
than the Poincare return point allows us to sum only the
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principal sequence of the seriea (6) and neglect the self-
intersection of the trajectories, This form of the dia-
grams allows us to renormalize the operators corre-
sponding to points on the straight and wavy lines, The
operators are obtained from the recurrence rela-
tions (9):

L.

-
XE
.e.= —r— + - nen,

- A

X XX

.39, ®

' Xe A
% x E O m S
E-dpm

The concrete form of these operators depends on the
relation between the interaction Hamiltonian and the di-
mension of the band of levels y,. If V>>y,, the interac-
tion is “strong” and we can neglect the size of the band
and regard it as degenerate. In the opposite limiting
case we can let the band dimension tend to infinity, after
fixing the average level density.

The quantity p} 5 is self-averaging. In fact the small
contribution O(1/N) of the gelf-intersecting trajectories
means that the variance is small:

Cpamt=C{panm Ym0 (L/N).

This means that for the overwhelming majority of sys-
tems with noncorrelating matrix elements of the dipole-
moment operator the distribution of the populations over
the bands is the same. This justifies the use of the
technique of averaging over the ensemble for the de-
scription of a concrete system with random dipole mo-
ments,

2. TWO DEGENERATE LEVEL BANDS

We consider the problem of two degenerate levels
such that dipole transitions are allowed between all the
sublevel, In this case each line corresponds to a factor
V=Ep™, and each point on a wavy (straight) line corre-
sponds to a factor £7!(c™!). For this case, relation (9)
takes the form

ne§(30) -t 5o 5 (33 wo

v
where u=NCL‘p.:}), and {-+.) means averaging over the

Wigner ensemblé., The summary population of the upper
level is given by

XX, efuXX,
el (ef)'—(nX.X,)*

el i 1]
1

it
e fa (11)
-2 -
and the population of the lower level is
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st (ef)'—(aX.Xy)" (12)
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We define the quantities I, =pi +p! and I,=p} - p}. Tak-
ing (10) into account and making the change of variables
£=(2u)'"*coshp, £={(2u)""?coshy, T=(2ul"'?, we get

Ly [ § (e#*%1)~* sh ysh g expliz(ch v—ch ¢) 1dg v, (13)

[N

where the integration contour Ci is the segment Re¢ >0,
Ime € (- #/2;37/2) and the contour C; is the gegment
Rep>0, Imp<(37/2;~ 7/2). The integrals (13) can be
evaluated:

Lt KL @@=, (14)
We ultimately get
o -%[g+m1.(aw<(w'r>)‘n], (15)
h’—-}[!—mhww( 1]
AS t— = the populations become equalized at a rate
Upu—pu| i~ (16)

It must be noted that this result can be obtained also
in another manner. For a two-band degenerate sub-
matrix the dipole moment submatrices can be diagonal-
ized. As a result, the band-population probiem reduces
to a determination of the average level population of an
aggregate of two-level systems whose transition dipole-
moment matrix elements are described by the known
“gemicircular” density distribution® 13: g{u)=(2my)™!
x{4nu — u)'?, The population of the upper levels is
given in this case by the expression

pt(t)= [ (hmu—pt)* sic* (Ept)dp.

We emphasize that the expression for the eigenvalue
density of a random matrix was obtained in''¥ for a
“canonical” Wigner distribution. In our problem we
used a “microcanonical” Wigner distribution, which led
to the same result. This result is natural, inaamuch as
over times much shorter than the Poincaré return time
only a small fraction of the dipole moments (subsystem)

_has become involved, and the microcanonical distribu-

tion reduces to a canonical one,

3. INFINITE SYSTEM OF DEGENERATE LEVELS

Such a system simulates the acquisition of energy by
a polyatomic molecule in the case of a strong interac-
tion with a laser fleld (v, <E(N(u>F)H"?). Inthis
problem, the operators X, and X, retain the same form
a8 in Sec. 2. To determine the population of the a-th
level it is necessary to find the number of trajectories
that go from the point n, into the point x and consist of
wavy and straight line jointly. Por an infinite system
of levels the number of trajectories of length M, joining
n and n,, is determined by the number of combinations
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the n~th level at the ix;atant of t'ime t is given by

i B faeagiore s (BE) enu an
» o, c
H we use the relation
2:‘*'6’.“""—(‘:‘-1— -1 )-'heoa ) ln:cuuzi?) . (18)

which is obtained with the aid of the integral represen-
tation for Cj, then we obtain from (17) and (18) for the
case p)(0) = 87

o -;:[d‘c'!dt et [(x—:;;)' - 1]"1".-.. (Y.?tt._u) {19)

At Iarge 2 this is a saddle-point integral. It canbe
represented in the form

pu~t-tG (mE), (20)
where G(n'/1) is a certain universal function that atten-
uates exponentially at infinity and containg oscillations
in the vicinity of s SEAN(D)V2. The oscillations of
the function G are the traces of the coherence, and the
dependence on the argument n’/t is a consequence of
the atochastic behavior. In the easential regions n’
~E{NuHI?, where G~1, the contributions of the co-
herence effects and stochasticity are of the same order.
We shall not present the explicit form of the function G,
which can be expressed in terms of parabolic-cylinder
functions. We note only that (20) enables us to show that
the acquisition of energy by the molecule in the case of
& strong interaction is given by

E~[Et(Nph) "], {(21)

4. CASE OF WEAX INTERACTION

We consider the case of a relatively weak interaction,
such that
1N B[ (T ) V. (22)
This model describes most probably the acquisition of
energy by & polyatomic molecule. For simplicity we
consider the case of an equidistant spectrum® a, ,,
=am and set a equal to 7. This means that the anergy-

dependent quantities are measured in units of @ /r and
the time in 7/,

Equation (9) leads in this case to the relation

-x:.—(u'rn)- [ "'A-.-“V'.Z-! X.(n', m") (Q—A..l-',)-l - .

(23)
If we put

Q= Z X.(n',m) (2—Au 2},
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X inm) i

t=d..  e-Aua—V'Q, (24)
and for Q, we have the squation
1
o.-Z———I_,,.O._M = ctg(e—1Q). (25)

At V¥>1 there exist roots of (25) that do not depend
on the microstructure of the spectrum: Q, ,=:i. In
this case the following recurrence relation holds for the
total populations of the bands:

n i LE Y -y v V
pat = (pusi Tpa-i) ;mm (26)

After summing (at V> 1) and taking the inverse Fou-
rier transform we arrive at the equation
PV (o2l +pis ~2p.7). @n qf \
This s the usual kinetic equation. From its solution
we find that at V independent of » the total acquired en-
ergy is

%

Ju)-z onp,"~ (V1) (E:—"?-z ) . (28)

If we sum all the terms of the type (7) of the seriea
{8), taking into account the distribution of the popula-
tions over the levels in the band, 1.e. , Without summa-
tion over the initial and final points, then we can show
that the levels that are substantially populated are those
deviating by not more than 2V, i.e., by 22EXud/a,
for the harmonic position of the energy. ‘The population
distribution over an individual band takes the form of a
Lorentz curve:

2
At 4P
-m

Pam =pa*

(29)

\(
It is easy to modify the problem of Sec. 4 to accom-
modate the case of two bands. Then

[ v |4 i v v 30

Pam J"‘r; ‘“.-:w 3HV I—g* 2—A, o~V AV’ 30)
L. L4 L4 q v 4

Pr= c-[ d'; =iV IV 1—g' e—A,u—iVF R—A, FiVF

where

9= Y VetV mnm) (- am) = (1—i(e—8) (V7))

The integrals (30) yield directly an exponential oqualiza-
tion of the popuintions, with » characteristic time

(2v"), with the stationary populations localized in the
2V? vielnity: A, o~Ay.=0.

The obtained kinetic equation shows that in a mmlti-
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level system of the band type, under conditions of weak
interaction, the phase shifts of the off-diagonal elements
of the deasity become effectively randomized. At first
glance this condition contradicts the localization of the
populationa in small vicinities of levels with A =0,
Actually, however, these conditions do not contradict
one ancther. The population of a band is given accord-
ing to {29) by a Lorentz curve and behaves like Ao"% as
4=, while the probability amplitude tends to zero lize
A™, While the integral of A converges at infinity, the
integral of A™ diverges at infinity. Thus, the phase
randomization, which is determined by the interference
of the probability amplitudes, receives contributions
from states {ar {rom resonance, while the population
receives contributions only from states close to reso-
Dances. '

We emphasize that the foregoing analysis was based
essentially on the hypothesis that the dipole-moment ma-
trix elements are random and have a zero mean value.

If the dipole moments correlate, then the results can
change significantly. Thus, in the case of complete cor-
relation it turns out that the acquired energy relaxes ex-
ponentially to its stationary value. This question will

be considered in detail separately. :

One of us (V. M. Akulin) is deeply grateful to N. V.
Karlov for interest in the work.

Y Dysan®*! advances arguments that the Wigner distribution is
incorrect for Hamiltonians and has therefore no physical
realization. In our problem the submatrix of the dipole mo-
ments {s not a Hamiltonian and because of the sum rule it
satisfles the Wigner distribution.

BWe derive this distribution In & manner simpler thap inf1.
W) =ImBple = V=id)™ | oy =ImX 71| o = (2mu)" (40w — u2)1/2
at [ | <(4m)"?, This is in fact the Rabi frequency distribi-
tion.

Y the inequality (22) is satisfied, the answer does not depeni
on the concrete structure of the spectrum of an individusl
band,
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UV many-photon ionization of vibrationally excited
polyatomic molecules

V.M. Akulin,V:D. Vurdov,G.G. Esadze, N. V. Karlov, A. M. Prokhorov, and
E. M. Khokhiov
Institute of General Physics, Academy of Sciences of the USSR

{Submitted 28 January 1985)
Pis’'ma Zh. Eksp. Teor. Fiz. 41, No. 6, 239-241 (25 March 1985)

Experiments reveal that vibrational excitation of polyatomic molecules influences
their UV many-photon conversion accompanied by the formation of molecular
ions and charged fragments. When various conversion pathways come into play,
and when switches occur between these pathways, there are some observable
consequences. Changes are also observed in the number of photons involved in the
corresponding processes upon a change in the vibrational state of the molecule.

Vibrational excitation of molecules changes the positions of their electronic ab-
sorption bands' and thereby significantly increases the capabilities of classical UV
photochemistry. There are known cases® of a switching of a UV photochemical reac-
tion by the IR field which excites vibrations of a definite mode composition of a
CF,Cl, molecule. The mechanism for this effect has not been studied at the level of the
elementary event.

In this letter we report observation of the clementary event of many-photon ioni-
zation of CF,I and CF,Cl, molecules by the light from a KrF laser. We have studied
the effect of IR vibrational excitation on this process. The experiments are carried out
in a time-of-flight mass spectrometer. The IR beam from a pulsed TEA CO, laser’
enters the working chamber of the ion source of the spectrometer, which contains
molecules of the gas under study at a pressure ~5X10~% Torr. The ionization is
performed by the focused beam from a KrF excimer laser (wavelength of 248 nm), in a
pulse 30 ns long with an energy density of 4 J/cm?.

Figure I shows the heights of the peaks representing the current of ion fragments
of the CF,Cl, molecule versus the energy absorbed by the v, mode, which corresponds
to valence vibrations involving C-F bonds. During excitation of the mode vy, which
corresponds to a vibration involving a C-Cl bond, we do not observe a decay of the
molecule into charged fragments (at the sensitivity level of the ion detector, which is
1077 of the number of bombarded molecules). This result is evidence that a stochastic
situation does not occur at the excitation levels reached. Further evidence for this
conclusion comes from experiments on electron-impact fragmentation of the molecule,
carried out by the method described by us in Ref, 4. It is interesting to note that the
heights of the ion peaks remain in the same proportions as the absorbed energy is
varied and also as the excitation frequency is varied within the v, band. This result is
apparently a consequence of the excitation of only one of the terms of the molecular
ion, which corresponds to dissociation with fixed proportions of the decay products.

A qualitatively different behavior of the heights of the ion peaks of the charged
fragments is seen in the case of the CF,I molecule (Fig. 2). Since the vibrational motion
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CF;1™, one of which correspons to a bound state, and the other to an unstable state.
The same conclusion is impled by the observation of a dependence of the fragment
formation probability on the UY intensity (Fig. 3). The number of photons involved in
the process involving the formation of the CF* ion is four and is independent of the
vibrational excitation level; only the cross section for this process changes. The num-
ber of photons involved in the transition accompanied by the formation of the CF,I*
ion changes both with an increase in the reserve of vibrational energy and with an
increase in the UV intensity.

We believe that the results found on the UV many-photon photoionization of
vibrationally excited molecules can be explained qualitatively in the following way.
The ionization of the molecule by the UV light occurs through intermediate states
corresponding to vibrational Jevels of excited electronic terms. Upon a change in the
vibrational state of the electranic ground term, which is the starting point for the UV
process, due to the IR excitction, there are changes in the frequencies of Franck—
Condon transitions to intermediate terms, so that therc is a change in the structure of
the intermediate resonances which changes the cross section for the many-photon
transition. The same explanation can be offered for the behavior observed for the
CF.Cl, molecule. To explain the effects that occur in the CF,1 molecule, we should
take into account the possible existence of different pathways for the UV excitation,
corresponding to processes involving different numbers of photons. A change in the
starting level causes different small changes in the intermediate levels for the various
pathways, thereby changing the relative probabilities for the formation of various jon
fragments. In polyatomic mols=cules, whose vibrational motion is inherently multidi-
mensional, the number of intermediate states involved in a Franck—Condon transition
is large, and their density is high. For this reason, the many-photon transitions do not
go through isolated intermed:ate levels but through zones of levels formed by the
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probability on the UV intensity. We are apparently observing such a change in the
formation of the CF,I* ion during vibrationa] excitation of the CF,I molecule to the
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Stimulated-Ramanc version
quartz optical fibers
E. M. Dianov, A. Ya. Karasik, P. v.

V.N. Serkin, M. F. Stel’
Institute of General FPhysics, 4

multisoliton pulses in

Pis’'ma Zh. Eksp. Teor. Fiz. 4 No/6, 242-244 (25 March 1985)

A mechanism of stimulated- amplification from ap incident wave self.
induced by a phase self-modulatid is Proposed. When a fiber is Pumped with light
withr=-30psati==1.5-—l, i 00fsandP=56kW
are produced at the Stokes f;

Single-mode glass opti UAibers, can perform a phase
self-modulation of light pulsés in a unify; beam cross section. This
self-modulation leads to iigniﬁcant ex i 12 of these pulses. Whep
frequency-modulated p of this sort medium with 5 negative
group-velocity dispersigh (dV, /dA <0), they i self-compression. !
optical fibers have? df, /dA has been exploiteg®

to achieve both 39h’ton Propagation regimes' and a self-compression of picosecond
pulses. The possibility of a nonlinear comversion of a three-soliton pulse into single-
soliton pulse /i/m‘olving 90% of the energy during a stimulated-Raman ificati
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