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INTERFACIAL INSTARILITIES
PART A- STEADY CELLUIAR CONVECTION

1. - Introduction.

Bénard convection or, more appropristoly, Bénard-Marangoni convection
refers here to the buoyancy-thermocapillary flow induced in & liquid layer
heated from below when its upper boundary is a free deformable surface open
to the ambient air. Earlier work by numerocus authers [1-37] has elucidated
the salient foatures of this problom. In the following notes we analyse the
evolution of the liquid layer with special reference to the evolution of the liquid-
air intorfaco (for an illustration seo fig. 1).

Wae consider the case of a horizontal lignid Jayer confined betweon planes
located at heights 2 = 0 and z = d, respectively. For simplicity we limit
ourselven to the case d < L, whore L is either of the two horizontal scales of
the layer. Later on wo shall even restrict considoration to a two-dimensional
goometry thus disregarding one of the two horizontal scalee. The layer is
assumod to be heated or cooled from below. In the simplest Newtonian-Boussi-
nesquian approximation the evolution of the liguid layer is governed by the
following balance equations [7, 38}:

(1.1) dv,Joe, =0,
(i.2) o*(0v,f0t -+ v, 0v,f0x,) = — Opfox,+ n Vie,+ pge.,
(1.3) 0% 6, (0T /3t 4 v, 0T fox,) = — BT ). fox,

together with the equation of state
(1.4} o = p*[1- o{T*— T)].

The summation convention over repeatod indices is assumed. Here an astorisk
denotes some constant reforence value taken, say, st the undisturbed inter-
faco. Besides, p denotes density and p, pressure. v, and T denote the i-th
component of the velocity fluld and temperature, reapectively. 7 is the viscosity,

{*) Lectures delivered by M, G. VELARDE.
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Fig. 1. - A top view, magnified sume 25 tines, shows the hexagonal convection
pattern in & layer of silicone oil one millimetro deep that is heated uniformly below
and exposed to ambient air above. Light rofloctod from aluminium flakes shows liquid
rising at the centre of each cell and descending at the edges. The exposure time in ten
roconds, whereas finid movea across the cell, the deformed liquid-air interface, from the

coutre to the edge in two seconds. a) Bénard convection—a few polygonal cells;
b) Bénard convection—the hexagonal cell.

1 = ¢v with » the kinematio viscosity, ¢, the specific heat at constant pressure,
g is the acceleration due to gravity and e the unit normal vector along 2. « is
the eoefficient of thermal expansion. In eq. (1.3) we have also used the simplest

caloric equation of state between energy and temperature, To a first approx-
imation the heat (J,) flux is

(1.5) (Jo)y= — A8T{ox,,

A is the thermal conduectivity.
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An wo consider the liquid layer open to the ambient air, we use the following
equation of stato for the purface tension, o, at the open interface:

(1.6} o = o*+ (Jo[OTHT — T'*).

As & consequence of the thermal gradiont across the layer, and for moderately
low values of AT, the fluid establishes itself in a motionless steady state denoted
by the superscript s:

(1.7) ﬂ: = N
(1.8) T= T*— (AT|d)z,
(1.9) p* = p*—p*glz — d) — p* gx AT (2 — d)[2d

with AT = T®— T*, where the superscript * denotes valuea at & =0,

We are interested in the instability of the motionless steady state when
the thermal constraint takes higher and higher, albeit controled values. A
reagonablo assumption is that under increased constraint the thermohydro-
dynsimic fields would tend to depart from their steady valuee eq. 1.7-(1.9)
and the upper surface would not remain level. The latter would move to a height
z=d + t(z,t) which shows inhomogeneity along the horizontal. For sim-
plicity we restrict consideration to a two-dimensional problem (x, 2} and dis-
regard any y-dependence along the horizontal. Thus we exclude explicit con-
sideration of hexagonal tessellation at the upper surface in the Bénard layer.
The remsaining quantitios are v, = 0 4 3v, (i=1,2), T+ 3T and p + 3p,
where all disturbances depend on z, # and ¢ These disturbed fields also obey
the original thermohydrodynsmic equations. We have

(1.10) on,for, =0,

{1.11) ov, /ot - 9,(Bv,fox,) = — (p*)' O 8p [0z, ¥ Vo, + « 3T ge,,
(1.12) 3Tt + v,(d3T[dx,) = x V8T + (AT/d)v,e, .

On the other hand, eq. (1.8) becomes

(1.13) g = o* 4 (oo [3T — L(AT(d)]

with x = /g, being the thermal diffusivity of the liquid and e = (0, 1). I
the problom (1.10)-(1.13) together with the appropriate boundary conditions
(b.c.) has nontrivial solutions, then the steady state (1.7)-(1.9) will be unstable.

We shall consider the following b.c. The lower surface located at 2 =0
is taken mechanically rigid, that is

(1.14) v,=10 at 2 =10.



222 J. L. CASTILLO, P. L. QARCIA-YBARRA and M. 6. VELARDE

Heare heat is assumed to flow across the boundary following Newton’s law of
cooling (Robin, Biot or mixed condition). Wo have

{1.15) A938T(0z = ¢° 37 at 2=10,

where ¢* is & parameter that accounta for the transfer charactoristics of the
boundary. The limits ¢* going to zero and to infinity, respectively, correspond
to the cases of a poor and a perfectly conducting surface. At the upper surface
we have an interiace liquid-air, and we assume that it follows the velocity
fiold (no cavitation exists). Thus we have

(1.16) olfot = Nv,n,.

We aleo have continuity in the prossure (stress) field

(1.17)  {(—p*— 8p + p*In+ n(dv 0z, + Ov,fox,)n, =
= kan,+ (i,00/0z,)t, , i,j=1,2,

Note that writing eq. {1.17) we have tacitly assumed that the ambient air
at the upper lovel is some kind of a large reservoir and that the interface liquid-
air although deformable is mechanically ideal. Thus we have

(1.18) —n,3p + nfe*gl + e* g AT 2d] + yny{Ov, oz, + Ov,fox) =
= kan,+ (t;0fdr,)t,

with o given by eq. (1.13). We have intreduced the following notation. n is
the outward unit normal vector to the liquid-air surface, givon by

{1.19) n = (—&f{dz, 1)}{N

and the unit tangent vector ¢ is

{(1.20) t = {1, d/ox)|N .
The eurvature k
(1.21) k = N1 /ox?

with ¥ a normalization factor given by
(1.22) N =1+ 8z},

Wo alto assume that temperature disturbances follow, wt z=d 4 {(=, 1),
similar b.c. to (1.15). That is, for the temperature the b.c. becomes

(1.23) T + 3T)jdx, = — AAT/d — q*3T — L AT/d) .
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For universality in tho argument we now vescale the variables wsing the
following units; d for longth, d¥fx for time, x/d for velocity, nx/d® for pressure,
AT for temperature and denote § = ST/AT. With these units the systom
(1.10)-(1.12) becomes in dimonsionless form

(1.24) oy, foz, =0,
('.25) 1'1’“(69"’8‘ + ”,a”dauﬁ) = afulaxg‘l— 1{30(4“ '
{1.26) ot + v,(cbicx,) = Vi 4 w

with ® = (4, w) and the stress tensor of the liquid t, = — pd,; + (dv,jom, +
+ Ov,{0x,). &, is the Kronecker delts. The following dimensionless groups
have been introduced:

L]
(1.27) Rayleigh number: Ra = EE‘%V_QE;
(1.28) Prandtl number: Pr o= yfx,

At 2= 0, the b.e. {1.14) and {(1.15)

{1.249) u=w=>0,

(1.30) oilfoz = Bi'd,
whereas at 2 = 1 4 £ (£ = {/d), we have, from eq. (1.18),
{1.31) 8¢/t = Nosn,.
From the continuity of atress at the interfaco, eq. {1.18), we have
(1.32) Tuyns = — (BojC) (e + %’5-) #, -+ (K[C)[1— MO(® — &)]n,—
— {430 M0 — &))fox} e,

For the temperature field, the boundary condition at the free surface, eq. (1.23),
becomen

(1.33) #,00/dx, = — Bi*(0 — & + (1 — NJ)IN .

The dimonsionless curvature of tho interface, which appears in eq. (1.32), is
given by

(1.34) .. K = N3 @¢fox
and

{1.35) B = (—offox, 1)/N,
(1.36) t = (1, 0f/cx)/N,

(1.37) Ni=1 4 (DEf0z)r.



224 J. L. CASTILLO, P. L. GARCIA-YRARRA And M. G. VELAKDE

Also, we have introduced the dimensionless groups

{1.38) Bond number: Bo = p*gd*o*;

(1.39}) Capillary number: € = nx/o*d

and

(1.40) Marangoni number: M = — F!_a' ATd .
T nx

The heat transfer groups (Bi* and Bi*, with Bi= g¢d/i) are all nonnegative.
Another useful group is the ratio of the Bond and the capillary numbers

(1.41) Galileo number: ¢ = Bo/C = gd*/xv.
Lastly, wo note that the Boussinesquian approximation demands that
dr= aAT = (p*— 0" /p*= RaC/Bo<x 1.

For moderatoly high thermal gradients this condition would be fulfilled even
for horizontally elongated cella.

To help the reader we give now the b.c. (1.18) or (1.32) in explicit form,
For the normal component

(1.42) p— G 4 de£22) 4 [1/C ~ M8 — §)]{2%[0a?) N =
— 2{(Ou[Or)DE[r)— (dufdz -+ Dw/Sx)PLfor) 4 (B[R} N*

and for the tangential component

(1.43)  M[30/ox — 0&fdr + (3&/02)(00/Bz)] =
= — ((0w}3s 4 dw/Oz)[1 — (D&[dz)*] 4 2(Sw/0z — Ju[Ox)(DE[Ox)}/N

with 4 =9, and w=1,.

2. - Scaling analysis of the evolutionary problem.

When the heat transler across the horizontul boundaries of the liquid layer
is small enough, it is known, according to experimont snd to earlior linear
stability analyses [13, 38], that the pattern at the onset of convective insta-
bility tends to be of long horizontally elongated cells which dissipate less.
Xe shall take advantage of this fact and set

(2.1) Bi*=¢' and Bi*=0.
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which defines a sealing and smallness paramotor. Thus we now rodofine tho
units of time and length in the appropriate manner. We set

{2.2) T =¢€'t,
(2.3} X =¢br
and

(2.4) Z =z,
Thon we assume that

{2.5) tf = gfe,

i.e. wo assume Gdy, = O(*). This is not the unique acaling that can be introduced
for the gravitational acceleration. An alternative to (2.5) is

(2.6) : G =g'q.

Whe shall later on comment on the use of (2.6), while for the present analysis
we ghall explore the relevance of (2.5) only.
Togother with (2.2)-(2.6) we now assume the following expansions:

(2.1 §¢ =¢ebiteh+ .,

(2.8) ¥ =yt e, 4 ] =t
(2.9) w = efw, + ewy + ...] = ¢ib,
(2.10) P =Pt it o,

2.11) 0 =0,+eb4 ...,

(2.12) Ra = R, R 4 ...

and

(2.13) M =M+4:M+...

Note that we do not consider here any non-Bounssinesquian effect thus restricting
consideration to small values of d,.
Thon the disturbance equations (1.24)-(1.26) become
.14) oGfoX 4 SB/6Z =0,
{2.15) e iifor -} el Of/OX + HOR[OZ =
= — Prdp/oX + Pr(e34/0 X 4 3'a[oZY),

(2.16) e'BfOT + '@ OHfOX + ' BEDOL =

= — Prop/oZ 4 Pr{e"0"5/0X* 4 e0%5[/02?) 4 PrRaf

15 - Rendiconii S.I.F. - XOIX
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and

(2.17) €230/t 4 eGI0[OX - eiB(CO/OZ — 1) = £3¥0[DX2 - D221,

i) Zeroth-order problem (linear stability analysis). Inserting the expan-
sion (2.7)-(2.13) in these equations and keeping in mind that e is an ordering
parameter, the evolution equations must be satiefied identically whatever the
value of ¢. To the zeroth-order approximation we have

Oy, aw.
(2.18) ax + 0z = 0,
. aPn a*u,
(2.19) ax—az =0
(2.20) aag — Ryy=0,
. a0,
(2.21) =0
togother with the b.o. at Z =10

00,
(2.22) u,=w,=a_z“=o
and at Z=1(")
(2.23) w,=10,
(2.24) Po== gk,
ab, — au.,

(2.26) Moax =" oz

30,
(2.26) 57 =0-

(*) Note that the b.c. are at Z =1 4 £&. We shall be consistent, however, with the
expansion procedure introduced and take for any function

HE =148 = 04 bt o84 ) =
=10+ o) e+ e (3F) + 5 2 (SF) + 0.

Thus incorporating the s-expansion we aro allowed to take the b.c. at Z = 1, according
to the ordering indicated by the power of s. Besides the fullowing relation aleo holds:

1+
jfdz —ftdz + 1) + 0N .
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Tho solution of {2.21) is
(2.27) 0= F(X, 7).

Then from (2.20) and (2.24)
{2.28) Po= Ry F[Z —1]4 g¢,.
From {2.19) and (2.26) we got

(2.29) e == Ry B [?— i +7]+ge.[——-2] Mz,

where the dash denotos a derivative with respect to X. From (2.18) we now get

3 ] . 3 Z
- R oy BN T{ S A H P L
Using b.e. (2.23) we got
(2.31) Lot pr —] —o,

1
which is in fact [ J' u,dz] and, as there is no net velocity of the liquid iayer

L]
88 & whole, the bracketed term vanishes. We have
(2.32) LI M‘ R‘] =0,

Now we note that another relaticn can be established between £, and F,
i.e. between £, and §,. This can be obtained from the energy equation integrated
over thoe liquid depth. It piays the role of solvability condition for the e-hierarchy
of equations. To the loweat-order approximation in & we get

(2.33) F [1+%—-%]+g-5;=0,

that together with (2.31) yields

(2.34) £, | M,

au0 T8 — 19

which defines the line of neutral stability [14]. Thus the geroth-order problem
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gives
(2.356)
(:2.36)

(2.37)
and
(2.38)

with

J. L. CABTILLO, P. L. GARCIA-YBARRA and M. 4. VELARDE

8y = F = — y&i 4 pl1),
Po= xR&[—2Z 4114+ 95+ RoglZ —1],

s LI A2
w=t[R(-5+5-12)+ 2]+ 9815 — 2)

w.=1~5f[lt'.(f—;- 5-+”z) 24z-]+g5,(

6 40

=4 !

L= T TR0

L
+3)

ii} First-order problem. The next approximation in the &-oxpansion is

(2.39)

(2.40)

(2.41)

(2.42)

F)u, o,

axtaz="
Oy Opr . O | Oty Bu.]
Yt s Gty l’r[ vax T3y

dp Oty
'a_'z!-Rial"‘ R0, + YT

0, _ 0, 2,

s =" axs T Er T

together with the b.e. At Z =10

(2.43) U, = wy = ¢0,/0%Z = 0
and at Z=1
auw
(244) o= Eine— b 5
p au, af), aluﬂ
{2'45) aZ 'al-*'Msl Ml-“‘ £I
0 0
(2.46) P= b+ 25— b
and
s 80, _
(2.47) 7

L

B,
ax’
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Wo soo that the left-hand sides of (2.39)-(2.42) and (2.18)-(2.21) aro identical
and will be so at all ordors in &. Thus instead of tho energy rolation (2.33) to
golve the problem we could have used Fredholm's slternative. Note also that
in (2.48) wo have £, a8 in (2.24) we had £,.

A gimilar proceduro to the mothod skotched for the zeroth-order problem,
using again the energy equation to the appropriate order in ¢, after elementary
but lengthy algebra, provides

VAR A
(2.48) o,—xcs.r[( i —+1,,0)R. sz-+4z']+

80
+ 2l [Ru= f + = mgp) F 5 B2+ |
s 780 " 300 480) ' b '

VAR Al Z
(249 pi=gME )[( e dm,+m,) .+R.(——+z')]+

VAR A i
+ &l [120( izt IE“E)'*'

4+ RTZ 4 MX,v)+ Ryp(r)Z — R 28 2,

z. Z7 Z' Z? Z.
N R TYT It 2T | R A T » e s
(250)  wi= FTEN] [(5-7-720 7:25-72 +14400) Rt R"( 70 +30) +
__Zl zl Z!
. ' [ - . — - - .
+ by [R'( 987720 T 7-14400 7-14400)"‘

pA Zr1  Zv Ze I
+R’(3-70“';71Ti+40 T ) az‘+sz-]+

7-32-727 42-120 ' 144000 6000 ' 19200
zr 29 ZYy | 3620 127
_— - - L] ————— - — 1}
+R"( 58 T 306 7'~ moz"'zo)"" 5 +12z]+

e B ,z- :
+ Ral 3 + 17 ?_R‘E'_ﬂ_+ VZ
and

, s [ — 20 Z0 z
(250 =) [(7::-7-726 170000 " 720 zoo)m+

LA o[ on " 2z 2z
+ R‘(r.tm"am)] + s [&(72-7-7200—18-7-7266 + '16’-7-’7-.'(;0) +

z* B i
+R"(‘72-7d"‘§4’-'?6"£46+ﬁ »m)+ z- “‘]+
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— o pA 3121 ze Z*
s P — - P P
+ {(H] (7 “rzers T aes-120 " 70822000 T 75500 96000) +
Ze 29 Z 36 12 12
_ ANRAR a4 S Wt { PNy 1 [

+R'(7'-33 7-30 +mmz 100) TR
Zl
-—-R,I"—--—”' +RIZEI '.,—

togother with an equation for §, which comes from applying the solvability
condition using the integrated energy equation (2.17) to order ¢*. Thia equation is

192
(2:52) E'*'E [ 1"1_-2;'}-3_*59 RES TR ]"'

+a[ (Gt m)| e rarntas

Ny 3¢ 3 map [— 14191
+ 2] [_7769'+ T :,:0 q— .,0] +E[(E.)'] [,7;5;9 *+ g.7.90 q—g] +

nay | 168 8 48
+ )] [ TR AT L JJ]

with ¢ = R,/320. Thus, in order to obtain the temperature, velocity and pres-
gure fields, we must solve eq. (2.62) which is in fact the nonlinear evolution
equation for the doformable liguid-air interface.

3. - Nature of the bifurcation of the nonlincar steady convective state.

The nonlinear evolution equation of the liquid-air interface, eq. (2.52),
can be written in a more compact and clear form by roscaling the spaco co-
ordinate. Taking

241

a8
(3.1) _[ 11-27-36 +94oq+ x,

eqg. (2.62) becomes

G2 S ey emE 4 6 DOGOT + BUET + HIGT =0

with
=1l B[ — 241 38 e
@33 = [ “"(43 340)] 11-27-35 ”""6?5'9"“15]

which plays the role of the control parameter. Note indeed that neither M,
nor R, taken separately are the relevant control parameters but rather the
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combination of both as in the bracketed torm. 8 = M/48 4 Raf320 deofines
the critical lino. The critical stato, for Bi® = 0, corresponds to §, =1, eq. (2.34),
whereas 8, = M,/48 + R,/320 accounts for the departure from the critical
value. Then 8, gives the first-order corroction when Bi* is very small albeit
nonzero. The other quantities in eq. (3.2) are

241 38 1]
= i . o3 —— —
(3.4) Dm[1+q1[ neras Tttt

4 397 13, 1[ 8 209 1
b J == —_——? —_ — — -]
@8)  B=x =g+ 0055 T pr| 315 Fi2eo? 5]}
241 -1
. —— I
[ 11-27-35 +o4sq+15
and
128 48 241 -1
3.6y Hs= "'[ 35817t 105 3_5] [_11-27'-'35' ¢+ 55 94.; + '

To study the onset of the convective branch we now sssume infinitesimal
digturbances. We get

(3.7 €1~ exp [ikE 4 wr].
Thus, neglecting the nonlinear terms, we obtain the dispersion relation
(3.8) w—2mk*4 k+1=0.

At the noutral states @ = 0. Then when dw/dk = 0 we have the critical
state. It followa from eq. (3.8)

(3.9) m,=1 and k,=1.
For o slight departure of Bi® from zero, these are the corrections to the critical
line, oq. (2.34), and to the wave number, respsctively.

The nature of the bifurcation in the neighbourhood of the critical state,
m, =1, can be studied by considering small departures around m,. Wao set

(3.10) m = m,(1 4 %)

with 4 a smallness parameter yot to be determined.
To be consistent we rescale the time

(3.11) F=0T7,
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We now seek solutions of eq. (3.2) in the form
(3.12) & = 8%, &) 4 O 04(F, &) + 6*Lu(F, £) 4 003Y).

Ap in the previous sections ¢ is an ordering parameter. To first-order approx-
imation we have

(3.13) £, = A() o0sE,
whereas to the second order

(3.14) fa= AyT) 008 (% + &) + AND — E) g 008 2F .

The solvability condition (Fredholm alternative} for the third-order squation

in the 4-hierarchy originated from the nenlinear eq. (3.2) implies the following
relationship:

(3.15) ‘45 =2+ 4 [ZH+ é-(D-E)(D-}-zE)],

which is a form of Landan equation in the slow time seale. Therefors, when
the coefficient of A} is negative, the bifurcation is direct and, when it becomes
poritive, the bifurcation is inverted. We shall not dwell on this point any
turther for the sign of this coefficient depends on the actual valuer of the pa-
rameters in an experiment.

4. — The case of thin liquid layers and/or microgravity conditions.

Until now we have restricted ourselves to situations where @ = O(e1),
that may correspond to conditions on Earth and arbitrarily thick liquid layers.
However, for experiments conducted aboard a spacecraft like the SBhuttle
with thin liquid layers, G could be of order unity (e*). Under these circum-
stances, the appropriate scaling is rather (we atill keep Bi' ==e¢')

(4.1) ¢ =3 e,
(i !
(4.2) % =t E: u,,
=1
(4.3) w o =¢ ¥ o,
=1
(4.4) P o= 3ep,

=1
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©(4.5) i =X &0,
=1
(4.6) R = R4 eliy + ...,
(4.7) M=M4+eM+...

Noto that with respoect to the former gealing (2.7)-(2.11) the main differonce
is that all the variables have increased one order in e, oxcopt the surface de-
formation. Also the leading order of the product GZ has inereased, boing now
G¢ = O(¢), whorcas formerly was of order unity.

Inserting this scaling into egs. (1.24)-(1.26) and boundary conditions at
¢ =0 (1.29), (1.30) and at z = 1 (1.31)-(1.33), (1.42), (1.43), we obtain again
a hierarchy of lincar equations in powers of £. Solving the first-order equation
and accounting for the gotvability condition to the following higher ordor, we got

(4.8) (MoJ18 + Iegf320 — 1)2GH3 + Mo(1 — Joo/120) = 0,

which defines the critical line for the transition to steady cellular convection.
As oxpeeted, in the limit of G going to infinity, it coincides with the result
obiginad in the previous seetion, eq. (2.34). Boesides, for a siress-froe upper
surface (M= 0), the onget of buoyancy-driven instability is at Ra == 320
predietod by other authors [38-40). Note that the latter critical valuo does
not depend on @, whereas, if buoyancy is negligible, the critical Marangoni
number is

(4.9) M, = 18)(1 + T2/6),

which shows » drastic dopendence on G. In particular, in the limit of vanishing
/, M, goon to zore and a vanishing small hoating suffices 10 make unstable
the liquid layer. This was also predicted by other authors [13).

Finally, to the lowest-order approximation in the hierarchy we also obtain

(4.10) (1 — Rof120)0,(ed, 21} = — GE,(eta, )/72 + glert),

that relates tho first-order temporature distorbance 6, to the interfucial de-
formation £,. One is tomptod to say that one quantity tightly slaves the othor,
We obtain from eq. (4.10) that 0, is maximum where §, is minimum provided
Ra < 120, which sgrees with Rénard’s finding [1,2]. However, for higher
values of the Rayleigh numboer (f.e. Ra > 120) we have the opposite structure
as predicted long 1ime ago by JEFFREYS [41] for buoyancy-driven convection.

Solving the second-order approgimation and accounting for the corre-
sponding solvability condition, this yields the nonlinear evelution equation
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for the interfacial deformation
(4.11) Q. ok jor + 288 -+ O+ Q.6+
1. . » d
3o+ e — (o + ) e —otier=o
with
{4.12) 8y = (1— Ry120 - @[72)3 M,[2G +
+ [(G7120 —1){(1 — Ryf120 + QT R, /192 .

8, plays the role of the bifurcation parameter. For cenvenience to have s
compaot form (4.11) wo have used
(4.13) Q= (1—8¢/3){1—16q) + G(1/8 — 8gf9) 4 G*[216 ,
(4.14) Q.= (1—8g/3 -+ Q[T2)GJ6 ,
{4.15) Qs = [24/5 — 64-46/315¢ + 29-8¢¥/315 + 32043/603 -+

+ G145 + 38¢/2835 — 241 -6493/628T)) G172 + (1— q)(1 — Bg/3)/3C,
{(4.16) Q= (G/3 — ) G[72
4.17) Qs = (1 — 8¢/3)(40¢g — 3) ,
(4.18) Uy = (g —1){1—Bqg/3)320¢/6 4

+ (—12 — 268¢/3 4 G1g3) G2 + (¢ - 1) (Pf216

(4.19) Y, = 03 — doq,
{4.20) Q4 := (¢ —1)3204/3
and
(4.21) g = R,J320.

Equation (4.11) is now the analog to eq. (2.52) when G = O(s*). The condition
that volume must be conserved

F 2
(4.22) j £dX =0
[ ]

with periodic boundary conditions at X = 0 and X = L determines p{T).
Now wo rewrite eq. (4.11) in & more universal form. We define

{4.23a) = (QJORX,
{4.23b) [ =1Q,0:,
(4.23¢) ¢ =&Qu(Q,0)4,
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and then oq. (4.11) becomes

) Gkt o L Doy —B(@ + 2 ) - Hor —o
with

{4.25) m=8,¢ (¢ )",

(4.26) D == Qa4

(4.27) E Q@0

{4.28) I = Qulth Gyt

Using (4.22) we obtain

) L
di - -
uze) o~ opi—etil | [ g5 [rectrn e e+ 9.
[ ] L]
Equation (4.24) looks very much like oq. (3.2) and again, a8 in scet. 3, we
study tho onsct of convoetion by eonsidering infinitekimal disturbances. We aet
(4.40) ¢ ~oxp[ikE 4 wl].

Thus, neglecting tho nonlinear torms, we got the same dispersion relation
©q. (3.8) with critical values m_ =1 and % = 1, respectively.

The nature of the bifurcation can also be studied by introducing (3.10)
and (3.11),

(4.31) m == m ] 4 31},
(1.32) £ == 0l

and secking solutions of eq. (4.24) in the form (3.12). Wae set

(4.32) § == 80T, B) + B 4(F, &) 4 62 (F, £) 1+ 0189,

where again J i8 an ordering parameter. To first-order approximation in 4
(4.33) {i== A7) c0sE,

whereas to the second order

(4.34) o= Ay(F) 008 (E + D) + ANE) [81- + D] 5 008 2% .

To obtain {, we neod the solvability condition (Fredholm aliernative) for tho
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third-order oquation, which a8 in (3.15) yiclds & Landau equation

] dd, | i N 1)

(4.35) 4 = 2+ A} [(g + D) -1 !-'-—4—5,] .

Then, aa in the preceding soction, the sign of the coofficient of A} detormines
tho nature of the bifurcation, direct or inverted.

S. — The simplest case in microgravity: Kuramoto-Velarde equation, bifarcations
and chaos,

When cither buoyancy effocts are negligible (g = 0) or surface tension
inhomogoncities are absent (g == 1) the last term in eq. (4.24) vanisher. Then
the evolution of the interfacial deformation is given by

a 13
B Fe e Dy = [epaz =0,
L}

with periodic b.c.: (Z + L, I) = {(Z, D).

With ¢=0, D= }(1 — G/38) and thus according to eq. (4.38) it appears
that tho bifurcation is direct for & smaller than 456 and inverted otherwise.
In the opposite case, ¢ = 1, the bifureation is direct for @ smaller than 60 and
inverted otherwise.

We shall refor now to the case ¢ = 0. For this case under appropriate change
of scales and variables, respectively, eq. (5.1) becomes

(0.2) %4 et a [u..+ %(u.)' + y(uu,).] + ﬂu—(aﬂn}f e, de =0,

where the subscripte denote time (t) and space (x) derivatives.

1t sufficos to define % = (/2m, ¢ —1!16m'fa’, 2 = Z(Bma)!, § = «?/16m*
and y = 2D,

Recently, HYMAN and NICOLAENEO [42] have cartied out an extensive
numerieal study of eq. {8.2) with # = 0, which corresponds to large values
of m, much larger than unity, the critical value for the onset of gteady cellular
convection, They have aleo taken y = 1, which corresponds to D = 3. A
comprehengive picture of their findings in given in fig. 2. We seo that at first,
a8 expected, there is & pitchfork hifurcation into a unimodal steady cellular
state. Then at the socond bifurcation point a travelling wave appears. Later
on this state undergoes & Hopf bifureation into an invariant circle. This first
sequence does not lead to further bifureations and transition to chaos. Rather
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a bit later it undurgoos a reverse homoclinic bifureation and so on. Al these

calculations wero dotie with an orror tolerance of 10-* por unit time etep.
What is remarkablo and indicates some universal propertics of the K-V

oquation (56.2) ia that CriserTo and Rusio [43, 44] have found quite an
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Fig. 2. - Bifureation picture of the Kuramoto-Velarde equation for interfacial inata-
bilities in microgravity using alpha as the bifurcation parameter.

jdentical cascade of bifurcations for the evolution of the temperature profile
in Bénard-Rayleigh buoyancy-driven convection.

6. —~ A glimpse at oscillatory Bénard-Marangoni convection or how to sustain
gravity-capiliary waves in a liquid layer under microgravity.

In the previous sections we have focused our attention only to the kind
of inatabilities leading to the classical Bénard convective collg, i.e. those which
arise aa stationary super- or suberitical bifureations with vanishing imaginary
part of tho ecigenvalue. However, tho liquid layer could be destabilized via
oscillatory modes that in the case of an open boundary may appear as surface
waves, thus providing a mechanism to pustain capillary-gravity waves in the
layer.

To simplify the calculations let us conkider the simplest model problem:
an infinitely deop liquid layer subjected to & linvar gradient of temporature,
covered by an infinitely high air layer of negligible density and dynamic viscosity
with a Newton heat transfer law at the interface. Furthor we assume negligible
thermal liquid expansion (ne buoyancy, Ra = 0) and temperature-depondent
surface tension ¢ = o(t), 0c/dT s 0. Then, the dispersion relation for capillury-
gravity waves is obtained by solving the linear disturbance approximation
to the continuity, Navier-Stokes and energy balance equations, eqs. (1.24)-
(1.26), with the appropriate boundary conditions at the interface, eqs. {1.31)-
(1.33). We also aasume that all disturbances decay to zero at the bottom of the
liquid layer.

For an adiabatic air-liquid interface (i.e. for & locally constant heat transfer
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flux, Bi* = 0), the dispersion relation is

6.1) .Q(;%+z)’ % g+°£)m,c‘

da fkt [g + aﬁ']g wmixr —1 k mir —1280  ymfer —1 {4

+ 37 979[ vis (’v;’x’il '"F)] +, vl D RV g il
whero E is the Fourier wave number, § is the vertical temporature gradient,
{2 is the eigenvalue (frequency factor), whose real part determines stability,
m = (B + Q) and r = (P4 Qfxp.

Note that, when the interfacial tension is constant, eq. (6.1) reduces to
the well-known dispetsion relation for capillary-gravity waves [45]). Generally,
Re 2 is negative due to the viscous damping of the liquid. However, when
the purface tonsion changes with the temperature along the interface, the fourth
torm in eq. (6.1) affecta this damping and under suitable conditions ¢an induce
a change of sign of Re £ thus amplifying an initia) disturbance in the form
of a surface wave.

For convenience in the discussion we now use (6.1) in dimensionless form.
Using the capillary length, I, == (o/pg)}, a8 tho space scale, Iy ag the time seale
and introducing a = Qfvk?, | = ki, togothor with the Prandtl, capillary and
Marangoni numbers, eq. (6.1) becomes

(6.2)  ala+ 21— dall + ap + a(l + k)/PCR—

M ke P I
" Pita IlI:Zk' [!"(U ! a”;’l jl Wy P“)d] +
Jlo+ a0+ Poi—1, . P(1+a)Qd+ Pyp—1 ] ,
T P P -

This dispersion relation can be solved exactly with a computer. However,
one can procoed analytically to the end by juat recalling that (6.2) with M = ¢
possesges solutions for Iarge values of Im « doseribing damped travelling waves,
i.e. capillary-gravity waves. Then we look for high-frequency (Ima=w 3> 1)
solutions of eq. {6.2) at marginal states, Rea = 0. Then an approximate
solution to (8.2) can easily be obtained. For such a purpose an estimate of
the values of the different parameters of the problem must be made. One such
choice iz O(w-?), M= O(w!) and P = O{w*) = 0(1). Then we obtain

U
6.3 ' =
(©.34) ot pu(zz) o
; 14 ke
(6.3b) wh— Pt'k* ~u,
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which yield M(k) and w(k). It clearly appears that the lowest valus of the
Marangoni number capable of sustaining capillary-gravity waves is M =
=~ T.93(P[C)! st k, = +/B/5 and ! = 6vE/PO. Noto that the critical Ma-
rangeni number appears negalive, thus showing that for standard liquids,
i.6. lignide whose surface tonsion decreases with increasing temperature, the
heating must be from the air, t0 have sustained oscillations as described by
Linpke [8]. Thero are liquids [46] that show a minimum in their surface tension
a5 a function of temperature. For these liquids there ig & poesibility of sustaining
capillary-gravity waves by heating the layer from the liquid side.

The solution of the problem also provides an explanation of the phenomena
to be soen in an experiment. When the air is hotter than the liquid, the surfaco
tension gradient along the interface produces convective motion in the liguid
{Marangoni effect) that brings cold fluid from below. The effect at the inter-
face is a motion in the direction of propagation of the wave and thus sustains
the oacillatory state, provided the thermal gradient is large enough to overconic
the viscous and heat diffusion damping. This result agrecs with the experi-
mental indings of LiNDE [8]. In the opposite case, i.e. when the liquid is tho
hotter, the Marangeni effect brings warmer and warmer liquid and the offect
at the interface opposos the propagation of the wave thus leading to a dynamic
equilibrium in the form of steady cellular convection. The latter is a novel
approach to understand the Marangoni effect in Bénard convection with a
deformable air-liquid interface. Indeed, although cellular Bénard convection
can appear oven if we assume a negligible interfacial deformation, it is
known [33, 34] that with a deformable air-liquid interface we neod & higher
Marangoni number for the onset of steady convective instability than in the
cado of & level surface.

Figure 3 shows the dependence of 8, = (M, k,, w ) from the gravitational
aceoloration. Asymptotically, 3, ~ ¢! a8 g vanishes. Thus under microgravity
conditions capillary-gravity waves and so oscillatory convection can be sus-

it
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thermat gradient (Kfem)8,

o
0y g 1wy w'g 0’ 0"
gravitationat acceleration(g,value on farth}

Fig. 3. — Critical thermal gradient for oscillatory convection as a function of gravity:
- - water, — -~ ~ mereury; asymptotic bohaviour gh,
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tained evon for infinitosimal valucs of the thermal gradient. Table I provides
egtimatos of tho oseillution frequoncy for various liquids and two values of
the gravitational acceleralion to oxplicitly show the relevance of our finding
for microgravity experiments.

TaBLe 1. — Typical values for the relevant quaniities in oscillulory instability.

Wator Mercury Tin NaNQ,
B, (K/em} 1.9-10° .85 441 1.39 55 1.8  6.2-100 16.54
pertod (8)  0.14 143 0.12 119.5 0.17 146  0.14 137.8

penetration
depth {cwn) 1.5-10-* 0.48  0.5-10 0.16 6-10-* 0.18 1.8-10-* 0.58

gravi-
tational
acceleration ¢ 10-i¢ ¢ g ¢ 10g ¢ 10-4g

N, B, For standard liguids the heatiog is from abdove.

For the case of double diffusion [47], i.e. the cage of a binary liquid mix-
ture with or without Boret effect, the threshold values are

i6.4) Mo+ M, Let = — 7.03(P/C)
and
(6.5) Mo+ M, Let/(1 4 Leb) = — 7.093(P)U)Y,

respectively. Here M, denotes the (thormal) Marangoni number and M,
by analogy, the solutal Marangoni or elasticity number. All other threshold
values (wavolength, oscillation frequency) are the same. Thus, according to
the signs of M, and M,, both Marangoni eifects either competo or co-operate
to sustain the waves at the opon surface. For instance, an interesting experi-
mental case i8 that of a8 bonzene-methanol mixture whose Horot coefficient
and thus its elasticity {(solutal Marangoni) number changes sign according to
tho value of the benzene concentration. Thore are olher cuses similar to this [48),

Note that the oscillatory metion here deseribed demands a diverging Ma-
rangoni number a8 the capillary number, i.e. the interfucial deformation van-
ishes. Other oscillatory motions ean be triggered in & two-component Bénard
layer even whon C vanishes provided there is competition of hoth Marangeni
numbers ag pointed out a long time agoe {49, 50]. Morcover, for two-layer
liquids with a common underformable interface, soveral authors [11-13] also
pointed out another possibility of oscillatory motion provided the upper phase
transfers matter and/or heat acrose the interfuce to tho lower phaso.

Finally, when we compare these results with the analysis devoloped in
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the previous sections wo soe that what remaina to he done now is the study
loading to the nonlincar equation albeit with a second-ordor time derivative
whogo linear oscillatory behaviour is described by ea. {6.1) or (6.2,

(*)Already done,it is dealt with in PART B of these Trieste ICTP Space
Physics Workshop Notes.

{. — Lonciuson.

In these notes we have illustrated the ueo of singular porturbation mothods
to obtfain ovolution oquations for the liquid-air interfacial deformation in
Bénard-Marangoni convection. One of the crucial assumptions in our analyais
is the nonrero albeit small value assumed for the heat transfer Biot number
at the bottom of the liquid layer. We have used this Biot number as a small-
ness paramotor in our problem for ut vanishingly small Biot numbera the onset
of conveective instability is with rather large cellular wavelengths and this
drastieally simplifies the problem.

AR a by-product of our study we have rederived various linear atability
prodictions already known in the literature.

We havo also shown how Bénard-Marangoni convection can sustain gravity-
capiilary waves,

Finally, in all cagrs wo have shown the expected predictions for micro-
gravity conditions. The latter are of importance nowadays due to the avail-
ability of the Bpacelab and other laboratery facilities aboard spacecraft.
The fleld of interfacial instabilitics ia at presont gaining momentum due to those
facilitles and the fushion of rescarch in space. Besides, interfacial phenomena
sre of importance in many realms of science and industry.
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