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A - . . )
-l'lﬂmu[:!:o]:‘ﬂ:;:: “:h:ol:: are detived for y:nmvern and longitudinal waves appearing at Lhe
opnM wirabia Al wprovnded_ here, i ’-dmr;m" are the values of the elasticity solute

1. INTRODUCTION

dx:'ne‘s c::o ; ]:..:)qu:: Surface” is lpe title 9[’ Chapter X1 in the Physicochemica) Hydro-
Jynamies boc y the late Ben Levich. Se.cuons 120-122 specifically deal with the damping
cffect ofsur bc; ::1:::: :;bs;::es::e Section 120 he starts recalling that the ancient Greeks
ecorde ] T, w “‘the eflect of a surface acti by :
motion™, in “'calming the fury of waves b i the surface of the sean
i ; y means of oil red "
o n poured on the surface of th .
L \;1:::‘ tg;csh(:nlh\\i:ﬂ;:::xn::n;s to o;uppon his hydrodynamic theory of the ‘:lampinge :fefaecl
: paper, modest way, we closely follow Ben's i f th
asymptolic analysis in order 1o substantiate a h i o ot oubiming
ydrodynamic theory that helps sustaini
;::'ncst:iysmeans of 'solnlcs. Thus, we explore a parallel path to that foliowed b?sl..euvicl:r::csl
wrom this perspective our study may represent one or two sections that Ben could h.
wcn ad he had the time for revising and updating his PCH book e
. :; o::lsr;:fr tu;o iypes of wave motigns. On the one hand 1ransverse, capillary-gravity
ave ;he equiyllj ;:1 ated torthe fiegormnbllny of the open surface of a liquid. They originate
\ um surface is disturbed, gets deformed and th cndi
" qu i irbed, | en forces tending t.
:'ud c:;l:c u;npnal state :rfppur in l_he hquid. Cgp:!lary forces (Laplace over prcss?l?-c)ol:::;l::
o s nwg " surface. Besides, when liquid is in a gravitational field the disturbance
S s 1o gravitational _l'oru_: that tend to return the surface to its original equi-
D s e lli:;nmmdm .:!;m:;uu. however, the liquid particles overshoot their original
e X nscquence, transverse waves develop along the liquid

The ot i .

o s surf::: ::'Vjcvcm:otllons that we consider are longitudinal oscillations of the concentration
sidering that & sts ute along the liquid surface. Their existence is nat surprising con-
stretched elastic m ;:i malt')l;;‘!yme is expecied between 2 monolayer-covered surface and o
or by spreading, gives eli::: coverage with a solute cithet by adsorption from solution
surface “pm‘i;m o ¢ properties to a liquid surface so that it can sustsin the periodic
motions as well lhec"mpmssmn, which accompanies longitudinal wave motion. These

as transverse waves may be induced by the Marangoni eﬂ'ecl,‘i.e by
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the variation of the surface tension with the solute concentration along the surface (Sterniing
& Scriven, 1959 ; Scriven & Sternling, 1960).

Generally, these waves or oscillatory motions are eventually damped, albeit differently,
by the viscotity of the liquid (Cini et al., 1987; De Voeght & Joos, 1984, Hansen & Ahmad,
1971 ; Linde &1 al., 1979 Lucassen, 1968 ; Lucassen-Reynders & Lucassen, 1969 ; Van den
Tempel & Van de Riet, 1965). For instance, fot a frequency of oscillation (1 of a transverse
wave and kinematic viscosity v, the viscous penetration length of the disturbance is of order
(v/f))""2, Thus, for deep enough liquid layers this viscous penetration is rather small with
respect to the liquid depth, This is the case we consider here, thus limiting our analysis to
a high enough frequency range such that £ » v/h%, where A is the depth of the liquid layer,
For both types of wave we allow A to reach infinity.

Transverse capillary waves or rippies cannot be explained unless we introduce the surface
tension and thus, they have been called after Laplace. Longitudinal waves, on the other
hand, can only be explained by introducing surface tension variation along the liquid
surface. The inhomogeneity may be due to gradients of solute concentration or of lempera-
\ure. Here we restrict consideration to solutes acting under isothermal conditions. We show
that transverse and longitudinal waves can be sustained, rather than damped if using the
Marangoni effect we maintain large enough gradients of solute in the liguid. Thus, the
problem we address is that of stability of a quiescent liquid layer open to the air, subjected
1o Marangoni stress at the surface. We provide threshold values, in terms of the solute
Marangoni number, and dispersion relations for transverse and longitudinal waves. Need-
Jess 10 say, the latter incorporate the resulis given in Ben Levich's book, while the former,
is the genuine extension provided here.

The paper is organized as follows. Section 2 deals with the disturbance evolution
equations, boundary conditions and definition of the relevant dimensionless groups entering
the problem. o Section 3 we show the straightforward, albeit drastically simplified solution
of the problem in two extreme approximations. We provide, however, the correct dispersion
relations for both transverse and longitudinal waves. Section 4 accounts for numerical
results obtained with the computer. In Section 5 we provide the analytical approach to the
general case and compare with the numerical results from Section 4. Section 6 is devoted
to some concluding remarks.

2. DISTURBANCE EQUATIONS

The linearized equations that disturbances upon the quiescent state obey are (Levich,
1962; Miller & Neogs, 1985):

dive=0 Q@b
pldvjory = —grad p+uvie 22
(3K/[31)~ Po(dw[D2) = DVIK. 2.3

These disturbances also obey the following linearized boundary conditions (b.c.) at the
open surface equilibrium position located at z = 0:

(3¢/21) = w (kinematic condition) 2.4
(80100 )Vyy 4+ u(Vow+dufdz) = 0 2.5
p-peE+o.ViE+2udw/dz) =0 (2.6)

(y/3n+Tq div gug — D Viy+ D(@K/22) = ] @n
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y = k'(K= B, ' (2.8)

where v denotes velocity (components u, v, w); g, density ; p, pressure; K, concentration of
the solute; p, the dynamic viscosity (u = pv, with v kinematic viscosity); D, mass
diffusivity of the solute ; ¢ deformation of the open surface ; o, air-Jiquid inerfacial tension
(o, denotes a suitable reference value); g, gravitational acceleration; T, excess soaute
concentration (T is a suitable reference value) ; y, disturbance upon T:k' = (76K g is
Langmuir's adsorption constant {Davies & Rideal, 1963) ; 85 = (9K[D2),, the solute gradient
in the liquid ; and the subscript I accounts for differentials along the open surface. (z, y)
account for horizontal coordinates and 2 is the vertical one.

With equation (2.4) we assume that a fiuid particle follows the air-liquid interface in a
way that there is no cavitation. Equation (2.5) accounts for the Marangoni stresses ab the
surface and it corresponds to the tangential stress balance. Equation (2.6) is the normal
stress balance where we see the role played by the deformation of the surface both in the
hydrostatic pressure and the Laplace over-pressure. Equation {2.7) accounts for the sclute
adsorption and diffusion to and along the surface. Equation {2.8) describes Langmoir's
adsorption law in the lincar approximation.

Now for universality in the presentation we change units and rescale all quantities, thus
rendering them dimensionless. The capillary length:

1= (aolog)" 29
is chosen as the unit of tength. Then v/i, I*fv, pv}i, Bol and T, are, respectively, the new
units for velocity, time, pressure, solute concentration and excess solule concentration at

the sutface. Using bars over the quantities in the dimensionless form equations (2.1)2.8)
become :

divi=0 (2.10)
(95/07) = —grad g+ V¥ Q.10
oKp)—-w=5"'VK @12
@fan = w @.13)
(HEIH,SYVif+ (P —-9Y8i 1w =0 2.14)
F=(Bo/SCY+ SOV E+ 2(dwf07) =10 12.15)
HSU37/80) +div gy — St 'Vi7]+ (K07 = 0 (2.16)
F= —(HSHR=D)ls. 217

where we have used the following dimensionless groups:
S = +/D Schmidt number 2.18)
Sy = v/Dy surface Schmidt number (2.19)
C = uDjls, capillary number (2.20)
Bo = pgl’/as Bond number. 2.21)

Note that Be equal lo unity defines the capillary length.
E = —(30/d)s(k' Bol*/uD) clasticity solute Marangoni number (2.22)
H = [[foff surface excess solute number (2.23)
H, = k'l Langmuir adsorption number. 2.24)

..

™

As no confusion is now expected, in the following we disregard the bar over the quantities
keeping in mind that all of them arc dimensionless. Then, for the linear evolution problem
(2.10)-(2.17) a general solution lor waves of small amplitude has the form (sec Levich,
1962, equations 121, 1-3):

w = (Ae™+ Be™) exp (iax + 1) ' 0225

u = (idet -+ imBe™) exp (iox+11) (2.26)
p = —(AAe={a) exp (lax+ i) 227
K= {Ae” {1+ [SBIMS— 1)) & + Fe*} exp (iax+41) (2.28)

with m = (@’+1)'? and ¢ = (@’ +SN)". a= al+a? is the Fourier wave aumber and
x = (x, ). 1is the time constant whose real part determines stability and whose imaginary
part {fm 1 = w) accounts for overstability, i.e. for oxcillatory disturbances. A, Band F are
arbitrary constants left undetermined at the linear approximation. In fact Fcan bc-oblamed
from A and B. Our notation is slightly different from that used by Ben Levich.

The solutions must satisfy the b.c. Then from the normal stress batance (2.15) we get:

A{Bo+a* +ASC(2a + ifa)]+ BlBo+a’ +2mSCl] = 0. (2.29)
From the tangential stress balance (2.14)
22' A+ B{m’ +a* + Ea*[AS(S - 1)+ FEa'|S=0. 230
From the excess solute balance condition (2.16)
Alaj\— HSa)+ BIH,S(A+ 2SS —-1)—HSm+ mSiA(S-1]
+F[H S(1+a"S:)+q] =0 .3

3. TWO EXTREME CASES

At this point we note that setting 8 = 0 in the Fourier modes amounts {0 ru'tricling
consideration to the potential (ideal) part of the expected flow ficld. The oppositc case
is A = 0, which corresponds to the purely viscous and rotational approximation to the
solution.

If we set B = 0 and Further use the high frequency approximation, w » a?, we get

(Bo+a*a—w'SC = 0. G.bh

Fquation (3.1) describes the dispersion relation for ransverse (Laplace) capillary gravity
waves. Going back to dimensional quantities and using then £ = wv/? and k = ajl, we get
o1t = pgk 4 ook’ @32
with 0 in s~! and k in cm~". Equation (3.2) is indeed the standard expression for the
oscillation frequency in capiflary gravity waves (Levich, 1962).
In the opposite extreme case A =0 and assurming that H « I, H, « 1 and for the large
wavelengths @ » a’, we find
Ea'4’S¥ = 0. (2.3)

Let us now use the surface clasticity modulus, &, introduced by Lucassen and other
authors (Lucassen, 1968 ; Hansen & Ahmad, 1971 ; Sanfeld et al., 1979)
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.a = da/d In £ = —(EuD/pIMZ(0K/IL), (3.4)
where the surface area I is such that:
E(IK/OL) = B*/(k? + iwfv)'". ) 3.5)

Note that & is indeed a measure of the fesistance to stretching of the surface. In the absence
of adsorption and appreciable volume-to-surface transport ¢ oc —dg/d In I, Using (3.5):

& = — EpD{P(k? +iwfv)'?. (3.6)
Thus equation (3.3) becomes :

itk? = u(v/ DYDY, 3.7
which incorporates, as a particular case, Lucassen’s dispersion relation for longitudinal
waves at the liquid surface (Lucassen, 1968). '

in the next section we numerically solve the problem and derive the results in better

quantitative terms. Moreover in Section 5 we again treat the general problem in analytical
terms, thus completing the picture.

4. SUSTAINED WAVES AT THE OPEN SURFACE OF THE LIQUID:COMPUTER RESULTS

Lzt us now see whether or not we have the possibility of overstability in our problem.
This would mean that equations (2.29) and (2.30) have a non-trivial solution when Re 1 = 0
and fm 1 = w % 0. As the system of cquations is homogencous, we just need to set the
determinant of the coefficients of A, B and F equal to zero. This gives:

Ea'lS-I;H. (4-1)
with

1, = [H,S(A+a*[50) +ql{(Bo+a*)A+ (ASC/a)(2a® + 1)* —4a* LSCm] 4.2)
and

I; ® (Bo+a )[(mS—q)}{MS—1)—afi+ HS(a—m)] )
+(ASCla)(m* +a*)[(mS— g){A(§ — 1)~ HSm] —2mSCa(l —- HSA). (4.3)

Now, in equation (4.1) we set Re 4 = Dand Jm A = w, and scarch for solutions. For negative
values of E, Fig. | shows typical (E, w) overstability curves. The minima of the two curves
correspond to different frequencies and thus, generally different wavcliengths. One of the
minima corresponds to the capillary length whereas the other cortesponds to much larger
values. Nole that between these two curves there is a crossover at a value w,. As we change
the capillary number C (Fig. 2) the first curve does indeed change shape and, in particular,
in the limit of a flat surface when C vanishes the (critical) elasticity number corresponding
1o the above mentioned minimum diverges to infinity with the power law | Ef| oc C™ ¥,
This implies that as expected, no transverse wave can be excited in an underformable liguid
surface.

The minimum of the second curve, however, is rather unaffected by the capillary number,
i.c. by the surface deformation. Its minimum corresponds to the onset of overstability in
the form of longitudinal waves as discovered years ago by Lucassen (1968). This type of
overstable motion is drastically affected by the Langmuir adsorption number H, as can be
scen in Fig. 3. On the onc hand large values of H, favor the appearance of longitudinal
waves, i.¢. increasing H, is a destabilizing factor. On the other hand, if H, vanishes the

e
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' » w L
Fig. |. Oversuabality (— E, w) lines. Note that the vertical axis corresponds upside-down 1o negalive values
of the elasticily solute Marangoni aumber. w is the dimensioniess frequency. Solid lines correspond to

wransverse waves, and dotted lines to longitudinal oacillstions (Section-4). Broken lines provid p
results {Section 5). For illustration we havechosen C= 10°"  Bow | M, = 10", H = ~10"", 5 = {0’ and
S =107

1 W W' o
Fig. 2. Influence of capillary number, i.c. surface deformation upon overstability. C really aflects transverse
owcillations. All other parameter values sre as in Fig. 1.

W

i ¥ v %
Fig. 3. Influence of Langmuir adsorption upon oversiabilily. M, really affects longitudinai oscillations. Al
other parameter values as in Fig. 1.
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Fig. 4. nfluence of surface excess solule number upon oversuability. M really affects losgitudinal oscitlations.
All other parameter values as in Fig. |.
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critical elasticity number | E¢| diverges to infinity with the law | E%| ec H; % Note that for
the transverse waves EL does not appreciably vary with H,. Thus, we are faced with two
different types of cxcitation as aiready indicated in Section 3 and extensively discussed by
Lucassen (1968).

Note that as illustrated in Figs 1-3, above a certain frequency no oscillation is expected
10 be sustained. Thus cut-off frequency, w,, decreases with increasing H (Fig. 4). High
frequency excitations are casy to damp out when there is a film of accumulated solute zt
the liquid surface. The Schmidt number affects both transverse and longitudinai waves
with, however, different power laws: | EL| «« §¥* and | E5{ ac V2. Transverse motions are
essentially potential and thus, have an easier tendency to be sustained at low values of §
(inertia dominates over dissipation). Longitudinal waves demand dissipation and are
favored when § is large.

Finalty, all the above results correspond to negative values of the elasticity soluze
Marangoni number. When this number is positive, i.c. when the mass transfer is from the
liquid to the air it is known that, as in the case of heating a layer from the liquid side, the
liquid tends to be destabilized through steady modes of. convection (Bénard cells). However,
some time ago Velarde e al. (1987) discovered that in the adsorptionless case there is zn
overstability branch for positive Marangoni numbers. Figure 5 shows how, for a deformable
surface, this overstable mode appears when £ is positive, in our case with solute adsorption.
However, the wave is not of the standard Laplace type and moreover, for an infinitely
cxtended layer, has no chance of appearance, as the cellular convection has a zero critical
value at zero wave number. Thus, in the case of a finite layer, overstability may have a
fower critical Marangoni number than cellular convection provided the capillary number,
i.e. the surface deformation, is suitably chosen.

5. ANALYTICAL RESULTS CONCERNING TRANSVERSE AND LONGITUDINAL WAVES

Estimates of the various parameters entering the problem can be given for a standard
tiquid layer. Some of them depend on the actval value of the gravitational acceleration and
thus, for illustration we consider two cases : the ground condition where g is about 10° CGS
units, and a reduced gravity spacecraft condition where the gravitational acceleration,
compensated with the spacecraft centrifugal acccleration, reduces the actual acceleration
10, say, one tenth of its normal ground value. Table | illustrates the parameter values chosen
for g = 10° and 10~' CGS units, respectively. Then for an asymptotic analysis we can teke
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0 T & 8 8
Fig. 5. Neutral stability lines (E, a) for pasitive Marangoni numbers. Solid and dotted lines correspond to

ins1abili bilit i i hose Frequency is also

sead lity and y. respectively. The latier is B transverse motion wl

dvenyin the figure {w, a). Note that as we approach the neutrally steady I:nnch the value of w goes 10 zera,

as expected. For illustration we have chosen o = LC=10 ", 5= 107" Sy = Wand ¥ = H, = 0. When
the latter two quantities are 1aken to be non-vanishing there is no qualitative change.

23 & smailness parameter § = S~ ' = 1077, With O(%) denoting order of § we can also use
Se=0("") 1= 0", C=0(5"), H= O(8)and H, = oY),
5.1. Transverse waves

In the high [requency approximation we can safely Fake w=0{ "N and a= 0.
Then to the leading term in powers of §, equation {4.1) yields:

Ed'[S = {(f1 [y}’ ~H, i f1{w'$)'2"*) - 4aw5CS2 ;s
+if|U:f,+H.f.l(2w’S)”‘+4aCf;S"‘!wl}!(f§—mw’m (5.1
with
f, = Bo+a*—w’SCfa 5.
f2 = a(Bo+a%)(@’S)"* ¢33

Table 1. Parameter values for & standard liquid layer
for ground based and 3p L based per
Al quantities are in CGS units when spplicable

Ground based Spacecraft based

experiments experiments
z " 10!
i ([ 10
c 10! 10-*
H 10t 10"
M - 10-*
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and ‘
fi= 1+ H (@S2 =) (5.4)

Neutral stability, and real values of the frequency w, require that the imaginary part of
equation (5.1) vanishes. Then f, = 0, and cquation (5.1) reduces-to:

Eal|S m —4Cw’ S2wSY(1 +H (oS} (Bo+a™) = —4aw(2w8)'?. (5.5

Equation (5.5) is the encrgy balance between viscous d_iuipuion an_d surface tension
work that, together with f, = 0, detcrmines the neutral !lﬂbll'l.l_y locus (Fig. 1) .

The necessary condition for minimum in the neutral stability curve, dEjda =0, yiFl‘ds
the threshold to sustain ransverse waves at the open liquid surface in terms of the elasticity
solute Marangoni number. We obtain:

EL = ~1.931(S/C)** ) (5.60)
and

a, = /55 = 0.4472 (5.6b%
together with the oscillation frequency

w, = 0.7326/(SC)'2. (5.6c)

These resuits agree with the numerical estimates abtained in Section 4 and ate just the sams
as those obtained in the case of temperature gradients, provided we replace § by the Prandil
number, P (Garcia-Ybamra & Velarde, 1987). Moreover, as in lhe_ latter case .lhe mu_lu
reported here in the presenl paper have a direct relevance to exp_enmcnts in microgravity
conditions. Indeed, using (2.18) and (2.201(2.22), with Bo =1 1t follows that the actual
solute gradient corresponding to (5.6a) scales with g** as g goes 10 ZK10. This shows that e
lower the effective gravity level is the lower is the gradient needed to excite and eventual .y
sustain the oscillatory motion.

Finally, the actual solutions in the high (requency approximation are:

wr = 4 exp (i, x+ia,y+ if) (5.Ta)
ug = A exp (g x+ia,y + U+ nf2) {5.T0)
& = (Ajw) exp (la x+ia,y+ At —=xf2) (5.7¢)
and
Ky » (Ajw) exp (ia,x +ia, y+ Ar—3x/4) (5.5d)

thus showing that the solute concentration at the surface is phase s.hifu:d x with respect to
the surface horizontal velocity. The Marangoni effect is doing posiuve wcu:k. The &/2 phase
shift between wy and £ indicates how potential and kinematic energy are interchanged.

5.2. Longitudinal waves

The results obtained by eaclier authors {(Lucassen, 1968 ; Sanfeid eral., 19‘{9 H Henncnh:rrg
et al., 1979} help to guide us in the asymptotic approximation. Thus, choosing @ = O(3¥*}
and a = O(3%) equation (4.1) becomes:

Eat/S = —w?S" + e’ $/2)}(H 8" —a(1 +1/5'™)} (5.8)

Again, as in the case of transverse motions we sct the imaginary part of (5.8) to z==ro0.
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Then the elasticity solute Marangoni number or critical Marangoni number sufficient to
sustain longitudinal waves is:

Et = —w'SYa? (5.9a)
with dispersion relation : '
ac = HwkS". (5.9b)
Combining (5.9a) and (5.9b) we get
E: =z ~S"YH, (5.10)

which is the computer result reported in Section 4.
In this case within the long wave length approximation l.he solutions are:

{Ow/dz)y = Bm exp (ig,x+ia,y+ 10) (5.1ta)
ug = (Bmja) exp (ia,x+ ia,y+M+x/2) (5.11b)

and
K; = (BmS|Ea®) exp (ia,x+ia,y+ At —3n/4) .11}

thus showing that duc to the phase shift between u; and K, the surface tension work is
positive and the oscillatory motion can be sustained.

6. CONCLUSION

Summing up the results found we can say that:

(i) Oscillatory motions either capillary gravity (Laplace) waves or longitudinal (Maran-
goni-Lucassen) waves can be excited and eventually sustained at the open surface of a liguid,
provided there is transfer of a solute from the air to the liquid with solute accumulation at
the open surface thus leading o Marangoni stresses there. The latter originate in the
variation of surface tension with the concentration of the solute.

(i) To sustain either type of wave we must go beyond a certain threshoid in the efasticity
solute Marangoni number. For transverse (Laplace) waves the threshold is approximately :

EL = —7931(S/O)", (6.1)
whereas for longitudinal (Marangoni-Lucassen) waves it is:
ELt= —SVHE (6.2)

Both thresholds are affected by the Schmidt number, §, which is the ratio of inertia to
dissipation in the liquid (at vanishing 5 inertia dominates, whereas at large enough values
of § inertia is rather irrelevant and dissipation dominates). For a given Schmidt number,
the deformability of the open surface of the liquid is what matters for transverse waves,
and this is accounted by the C-dependence in equation (6.1). However, as shown in equation
(6.2), longitudinal waves are not affected by C. Rather, for a given Schmidt number it is
the Langmuir's adsorption coefficient H, that matters in longitudinal waves.

(iii) Having shown that for solute transfer from air 10 the liquid both types of oscillatory
motion may arise at the open surface of a liquid, the question now is which of them does
really appear, i.c. what type of disturbance is sustained with the lower Marangoni threshold.
The results obtained yield the lollowing criterion. For:
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ongitudinal

> 1 1
S{ <} C* (1931 H])" we have { \ransvetse } waves first.

{iv) Finally, let us note for the record and without further discussion that, when the
transport of solutc is from the liquid to the air there is yet another oscillatory type of
behavior of the open surfacemits dispersion relation does not cortespond to the standard
transverse wave, though it is related to the deformation of the open surface. Besides, it
appears in a paramcter region where steady cellular motions are also expected very much
like in thermal Bénard conveclion, as already reported by Velarde et al. (1987).

In conclusion, we can say that our theory substantiates the claim made in the Intro-
duction : in parailel with scctions dealing with the damping effect of solutes at the open
surface of s liquid we now have sections illustrating how this damping can be overcome
and how waves are eventually susiained, provided we take advantage of the Marangoni
effect, i.e. of the variation of the air-liquid surface lension with the concentration of a
solute along the open surface of the liquid. Sustained transversc oF longitudinal waves arsc
in our case, nothing more than the result of instability, overstability of a liquid layer open
to the ambient air and subjected to solute transport from the air 1o the liquid, to the
existence of a gradient of solute concentration in the liquid and to the eventual adsorption
at the open surface thus leading to Marangoni stresses there.
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Sustuined rransverse (Laplace i d b be
A (Laplace) pravily-capillary wavey at a ﬂqui liquid interlace are described as the harmane nvoiflate
q (11}

of the interface s vanishin, n vl L r Y al ae ven i e Yl an tc-
shing damp s ~hreshold el othe i ¢ Ly} clas
hol | nd televant predictions ace gi m terms of the suitactant etast

. Let us consider the deformalie interface separat-
ing two liguids of Jifferent densities, viscosities and
mags du_r"uswilics and assuine the preolem o he two-
dfmcnuunal 1.e., will: horizortal and vertical coor-
dmal.eﬁ xand z. respectively. I the iiguid below is
labelicd ure the evolutiun of infinit:simal Jisturb-
ances upon the mationicss stare on cither side of the
hquu! -liquid intecface is given by il e following di-
mensionless equations [ [-5]

‘:'L_‘;-p%;i:o (i=m1,2}, ()
f%l__,‘-l,,.lsvich 12a)
Qg:"l..w,.%v’c‘,. 20
%’-’;‘-._%‘:l-i-v’w.. (da}
N,%;l;-’- = '%"zl +N, ¥y, (3b)

with V1w d/8x24+92/32 and where C, (im1, 2)
<enotes solutal or surfactant concentsation in ;nch
volu_me. w, (fm [, 2) is the vertical elocity along z
u, (im l.ll) is the horizontal velocit along x and ;;
(im], Zl) is the pressure, Sw 1,/ D, (Schmidt numb:
ver) w.“h tfand D the kinematic v scosity and the
mass diffusivity respectively. Np=0,/0,, N,=p./p,
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and N,=ny /i, with g=pp the dynamic viscosity,
Note _lhal wu have introduced only one ol the tu-n
Schmidt numbers.

i {3 I'rgm either side we atlow fur surlactam adsorp-
tion without considering hawever the suriactant n-
cumulation al the interface and call V. the ratio r-»l'
ljh]ct;m';c]:po"‘di“s Langmuir adsurption slupes [1-

e {ollowin it
2] i follo zxa:boundary conditions {b.c. ) must be

W =W, (4)
G _ I
FPF P (3}

a1g
*»

d o dw
BE- 52 4 S =) = 2081, = 1) 5 =0, ()

Ea’(cl-f:) J! gt
S axt - 51_3_5;5)(1\"“‘,—-51'.):0, (7

96 9G
dz az ' L
Cl-c-Nl‘Cl-‘)n 1)
where we flllo consider thal the interlaciat lensien
changes with the surlaciant conventration.

dn §,17

E=~ T
a¢, j by

UI75.90010 /BR/S U350 © Elsevier Science P'uldishers $.V
{ North-Holland Physics Publishing Division }
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i the‘elmicily Marangoni number and ! is & given
space scale in the problem. This could be the capil-
lary length but needs not to be s0. Bwmgl*(p, -} oy
is the Bond number with g, a reference value for the
interfacial tension and g 1he gravilational accelera-
tion, C=mp,/ayl in the capillary number. Jusi for
reference nole that the capillary length s given by
P may/g{p,—py) which corresponds to Bond num-
ber equal to unity. 8, (im 1, 2) is the surfactant gra-
dient in phase *™,

Solutions of the problem can be sought in the form
11-7)

wimd e+ B o™, (16)

WizA 6" ¢ Bye— (L)

n.--)‘:'e". (123

p,;-i‘%’{!e-n‘ (13)
4 sgi

C = g gy Y e

y=Fet 4 i +“S_”c ' (14)
A SNL'R

CeFiemypllg-my V6 T oy

1=e +4le +4I(SN5'—N,N,")e '

(15)

with

mi=d+a’, mimN,N;'U+al ,
qi=514a’, ql=SN;'d+al,

Note that to simplify the notation we have omitted
inegs. {10)-(i$) a common factor expiux+dr),
where a is the horizontal Fourier wavenumber and
4dis the time constant whose real part determines sia-
bitity. For purely oscillatory mations Amiw with w
the dimensionless frequency.

Obviously egs. (3a) and {Ib) must be valid at the
deformable interface z={(x, 1). Adding these 1wo
equalions and denoting by w the liquid velocity a1
‘nterface points, we obtain

i)
“+N,] ;‘;.... .‘?(p_'a‘:.ﬂl_)_ +v1w' +N..V’W,.(I6)

Usiug now (6) and (7). eq. {16) beco nes
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3¢ Bia?
(I1+N,) E7 + *—-C-,F-ae
aw atw
=2a(N,-1) 3; ~2a’ws2N, =2
E 2
-5 16-0, (17

where we have used at the interface w= a8/ dt (ki-
nematic condilion ).

For the evaluation of all terms in the r.h.s. of ¢q.
(I7) we must solve for 4, 8, and F, using the equa-
tions and b.c. given shove. Then after using for sin-
plicity the high frequency approximation o g7 aml
the fact that for most practical purposes the Schmnadi
number is much larger than unity, after some ¢le-
mentary atheit lengthy caleulus, eq. (17) finally
becomes

a3 D+ql
(1+N,) 5I—f+ -E:—uc
u Fft?:
* AT,:TEN.,' T
gl 142 -1
(-——-—f"-;“—N%i‘..—),——l) % 118y
WSHEEN N 0 ar

Nole that interfacial disturbances in a real liquid
penetrate about { #/e)' ' and s for (/i)' 7 e |
the > g’ assumption is jusiified.

Eq. (18) is the harinonic oscillator equation [or
transverse motions, {(x, 1), of the deformable lig-
uid-liquid interface due 10 the Marangoni effeet. Ina
demping cocfTicient vanishes with g suitable volur of
£. Then the dispersion refation is given by

+ H
;a. (o)

U+N, )t E

Using now the expression for No D C. S, axik and
wull*fv, eq. (19) yields

(pi+p1) 2 = (py ~py)uk+ m,k? (2

which is the standard dispersion relation relation for
gravity-capillary waves o1 a liguid-liguied interface.
For the air-liquid interface Mm=D, huy pi4p, s
Pr=pPrxp,=p. Note that 2 and k have, respeciively,
the vnits of s~' and cm -,
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For the damping coefficient in eq. (18) to vanish

Ky s tuve

%'_‘,9__5_‘_1‘_‘_1:";:’”5'-’[.{?.))0 ' (21)
e, oo '
siga(£)=uiga(1-NY?/N,). a2)

Generally the uign of the Marangoni number is
given by the sign of the volume gradient of the sur-
factant g, say, Then if B, is positive, i.c., the mass
flux is from liquid one 10 liquid two (5; has aiways
the same sign as §,) eq. (22) demands

i =JD:/Dy >0 (D, §,>0). (23
If, however the gradient is negat.ve we rather have

min =/ DifD, <0 (p, 0«0}, (24)

"Then denoting by "f” and “I" the iransport di-
rection from phase /10 phase ¢ we see that (23) and
(24) are just the same condition

D/ B, > {nysn)? (25)

irrespective of the sign of the gradients, Condition
(23} is the necessary condition 19 have sustained os-
cillations a1 the liquid-liquid interface. This is
achieved when ihe Marangoni number reaches the
critical value, i.e., the minimum value that produces
a vanishing damping coefMicient in eq. {18). This
value is

ASN)(L+N 7' N 54811

B TN, (NEToN (26
for a frequency
2 BJM
- 7
Se=JscaTa, )
and a wavenumber
d.-ﬁ . (28)
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Muote Lhat when B= 1, i.c., when we take the capiltary
length as thellength unit, eqs. (27) and (28) reduce
o

2
%-73—(.‘% and a. =1

respeclively,

These are the dimensionlcss vaives of the param-
eters that correspond 10 the onset of erersialnfity at
the defurmable liguid-liquid interlace and consu-
tule a generalization of particular results known in
the literature [1,5-8].

This research has been sponsured by the CAICY T
(Spain). X.-L. Chu wishes to express his gratitude
to the Spanish Scicace Policy General Directorare
for a lellowship that enabled hiw (o varry oul the
work at UNED. Boili authors acknowledge cunsiruc-
tive remark< by an anonymous releree thag permil-
led clarilication of the resulla.
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DISSIPATIVE HYDRODYNAMIC OSCILLATORS. I. MARANGONT EFFECT AND
SUSTAINED LONGITUDINAL WAVES AT THE INTERFACE OF TWO LIQUIDS.

Manuel G. VELARDE and Xiao-Lin CHU
Departamento de Fisica Fundamental, UN.E.D.,
Apartado 60.141, Madrid 28
SPAIN

ABSTRACT

The oscillatory motion of a Bquid-tiquid interface induced by the Marangoni effect,
i.c., by the variation of surface tension with the concentration of a surfactant, is
described as the harmonic oscillation of the surfactant concentration at the
interface. Then, at vanishing damping, threshold values and parameter regions for
sustained longitudinal (Marangoni-Lucassen) waves are given in 1erms of the
ransport coefficients of the two liquids.

1. INTRODUCTION

Capillary waves -or ripples- and gravity waves have been well studied since Stokes
(1-4). Their properties -their dispersion relation and damping coefficient- were shown to be
compietely determined by the stress conditions at the liquid surface. Specially the major influence
of the boundary condition for normal stress to the surface has been emphasized [1,2,5]. While
ripples and gravity waves are rather transverse motions due to the deformability of the surface
[1-4] there is yet another type of wave discovered years ago by Lucassen [5]. Tt refers 1o mostly
longitudinal (or elastic) motions along the surface, in the limit along a flat surface, Their existence
is not surprising considering that a strong anslogy is expected between & monolayer-covered
surface and a strectched elastic membrane. The coverage with a surfactant monolayer-cither by
adsorption from solution or by spreading-gives indeed elastic properties to a surface so that it
tends to resist the periodic surface expansion and compression which accompanies wave motion.
The longitudinal wave, has received much less attention than the other type of motion since under
most conditions occurring in practice they are damped out much more rapidly than are
gravity-capillary waves. On the other hand the latter are also possible in ideal, viscous-free
liquids (potential flow) while the longitudinal waves necessarily demand dissipation and viscosity
[5].

Lucassen [5] showed that longitudinal waves are to a major extent related to the
boundary condition for tangential stress with a frequency that depends on the liquid viscosity and
the variation of surface tension with the concentration of the adsorbed surfactant, i.e. on the
clasticity Marangoni number of the liquid surface. Gravity-capillary waves have a frequency that
depends on graviry and on surface tension (Laplace overpressure) and not on viscosity. The latter
cocfficient only appears in the damping factor of the dispersion relation should the liquid
considered be a viscous one. For these reasons gravity-capillary waves may be called after
Laplace whereas the longitudinal ones should be called after Marangoni and Lucassen.

In the present note following the pioneering analysis given by Lucassen and other
authors [5-10] we consider the role of the Marangoni effect, i.¢., the variation of surface tension
with the concentration: of a surfactant on a liquid surface and we provide the dispersion relation of
longitudinal {(Marangoni-Lucassen) waves iogether with the dissipation threshold sufficient to
sustain these oscillatory motions. Moreover we also provide here the parameter regions (in terms
of viscosity and mass diffusivity) where they can be observed.



2. DISTURBANCE EQUATIONS.

Let us consider two liquid layers at rest with an interface between them located atz = 0;

z is the vertical coordinae say. Letn, v (1= pv), D and p denole the commesponding dynamic
viscosity, kinematic viscosity, mass diffusivity and density in each liquid. we shall derote with
subscript "one” the lower liquid. Let us assume that a surface aclive component (surfectant) is
distributed in each bulk phase with a given volume gradient and that it may be adsorbed at the
interface according 1o Langmuir's law [1]. Then if we consider disturbances at the intexface that
may eventually be amplified thus leading to interfacial instability the expected evolution of such
disturbances is governed by equations valid on each side of the inserface and at the interface itself.
For the simplest two-dimensional problem in dimensionless fonm we have [1]

div v, = divy, =0 (2.1)

@v A1) + grad p, - vy = N, @v/d 1) +grdp, - N, Vv, = 0 (2.2)
and

@K, P1)-w, -5 V'K, = @K,@1)-w,-S'N VK, = 0 2.3)

where v, (i = 1.2) = (u;, w;) with u and w the horizontal and vertical velocity components of the
disturbance velocity ficld. p denotes pressure. S = v /D (Schmidt number). Np = D/D,,

N,'= n,Mm,. Np = p,/p,. x accoums for the horizontal coordinate. K iy the volume
concentration of the surfactant.

Let E = - (90/9K,) 5,121‘1, D, be the clasticity (solural) Marangoni number with ¢ the

liquid-liquid interfacial tension. E is indeed a dimensionless measure of the variation of surface

tension with the concentration of the surfactant. B is the volume concentration gradient of the
surfactant. | is a characteristic length in the problem that may very well be the capillary length

but need not to be 0. The capillary length is givenby 2= oy (p,- p,)g with a, areference

value. B = (p,- p,)g 1?2 /o, is the Bond number. C = D,v,p, /o] is the capillary number.

Then when surface deformation and surface accumulation of the surfactant can be neglected the

disturbance evolution equations (1) - (3) for longitudinal motions obey the following boundary
conditions (b.c.)atzmQ [i]

Wy ew, =0 (2.9)

@w,f07) = (dw,dz) @s)
E 3 Pw, dtw,

(§)-§’-‘-i-l(l + N (-'-—-azz -3 0 2.6)

I'S @K fa1) = 3 (K; - K)oz Qn

K, = NK, 2.8

where T is the dimensionless Langmuir adsorption number [11], i.c., the slope of the Langrmuir
adsorption law at the interface per unit length | {in the iwo-dimensional problem). N is the ratio

of I, 1o I"l when T™ is evaluated from either side of the interface.

Due to the linearity of the problem we may seek disturbances of the form
wy =By (-e* +exp (m2)

(2.9)
wy =B, (e + exp (-myz)) (2.10)
P, =B (NMa) e 2.11)
P, =-ByN, (Ma} e (2.12)
K| =R, exp(q,2) - (B;/A ) e* + [B,S/A(5-1)] exp (m,z} (2.13)
and
K;=R,exp (-q,z)-(BzfA.)c"' + (stNDﬂ.(SND-I - NPN,l‘l)) exp (-myz) (2.14)

where "a" denotes a Fouricr mode and A a complex quantity whose imaginary part is o

dimensionless frequency. m 2 @A +2% m? = NPN“" A+ a? g2 = Si+a? and

q,2 = SANp + a2, The quantities B,. By, R, and R, are the arbitrary disturbance amplitudes



one of them is left undetermined in & linear theory.
Now let us take the time derivatve of Eq. (7). We have

IS @K% = 3K, - K,¥oz (2.15)

On the other hand taking the z-derivative jn Eq. (3) we can estimate the right hand side

of Eq. (15). However we must estimate terms like av’xi(i=|.z);a; For such purpose we use
the relationships given earlier. For instance, using (5) we get

B, =-(m, -2) B/ (m, - a) (2.16)
while using (6) and (7)
R, =- [B,/AS-1)] - AS/EaD){1 + N, (m,-2)/(m,-a)]B, 217
and using (8)
-t
(m,-))N N .
R, = e m N T g, (218)
(m,-a)A(SN; -N N') ' NEa Pmy-a
P

3. RESULTS.

We are not interested in the evolution of monotic disturbances but rather in oscillatory

motions. For this reason we now set & = ia, thus making & purcly imaginary. Using (2.3),
(2.16), (2.18), afier some lengthy, albeit straightforward calculus, Eq. (2.15) becomes

2
112,112, olf? 1 ] 1N 172 | Ea K,
(e NENTS o Koy + oy [+ N! Nn””NmN“;T?nl] +

&

v
+m[(|+N“)(I+N—¢;T;‘-)+-SEI?F MK =0 G0

with

6
n,- fgl'_'a 1 3.2)

n
ad T, = Np2-1 ek )

Equation (3.1) is the simplest harmonic oscillator description of the longitudinal
oscillations of the surfactant concentration along the interface. Thus increasing the value of the
elasticity Marangoni number when the damping coefficient vanishes in Eq. (3.1) we have the
possibility of sustained interfacial oscillations.

When the damping coefTicient is set to zero we have the following two relationships

a+N" N0 +;)+-'-5‘-2- m=0 (3.4)
P NPN ST
and
2
Ex _ Hr BT Y] 15
a[(l+N“)(l+ — )+-—-—S::I'Iz]-m(l+Np N“)FS (3.9)
b ("
To be satisfied, Eq. (22) demands that
E <0 (3.62)
c.g.
12,2
N ND
=- - (3.6b)
sgn (E) sun(Nm_l )
n

that together with sgn (E) = sgn ( [!l) yields the following consequence: To have oscillatory

behavior we must have

D) > (v, V) 3.1

where “f* and "1" stand for "from"” and "to", a way of indicating how the surfactant is being



transported from and {g the volume. Condition (3.7) ia a condition for overswbility in
Murangoni convection obtained some time ago by Sanfeld and collabarators, [9]. However,
contary to their findings and due here to role of surfactam adsorption at the interface this
condition Is a necessary, albeit not sufficleat condidon for oversuabllity. Purther constraints must
be satisficd and they are specified below.

Years ago Lucassen [5] inroduced & complex elasticity modulus, &, which is related
10 our elasticity Marangoni number by the following relationship
el viomy ' efaow)'”
n, D "D,

(.8}

witha= kland @@= % v,. The quantity k can be assumed to be smaller than the inverse of

the viscous penctration length. Then using these new variables, Eq. (3.4), reduces to

0 +eapm) 1L NE DY 0 09)
(v,Dpv,D)'" -1 '

emk’ +in, Qm’ (v,

withmZ=k% + iy, = iy, Eq. (3.9) is a gencralization of the particular case discussed by
Lucassen [5] (see also Eq. (40.2) in Ref. [7])

Then using both Egs. (3.4) and (3.5) we get

112 12, 102 R I T S
c=_I(ND +N (NN *-1) 2 !mN Ny )S FURRL IS 10
STt 1, n, (I |
and the dispersion relation
(N:)ﬂ + N“) (N:ﬂ N;]Iﬂ - 1)

m=
[ ac

(3.11)
1
strnn,
The value E_ is the minimal value of the elasticity Marangoni number necded 10 sustain

longitudinal interfacial convective oscillations of frequency .. Using the fact that both @ and a

must be positive numbers we get from (3.11) that the following relationship must be satisfied

("(V.) <1 (3.12)
in order 1o have oscillations.

Thus putting togather Eqs. (3.7) and (3.12) we have the sufficient conditdons w0 sustain
the longitudinal waves [5). Our results generalize Lucassen’s carlier finding as he only
considered damped motions. Here we see that eventually with strong enough dissipation i.c. for
Marangoni numbers larger than E,_ these longiudinal oscillations can be sustained along the
interface even if it is not deformed. On the other hand our results delineate a more restricted
domain of (surfactant-induced) imerfacial oscillations than the domains reported by earlier authors
[9.10]
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NONLINEAR TRANSVERSE OSCILLATORY MOTIONS AT THE
OPEN SURFACE OF A LIQUID LAYER SUBJECTED TO THE
MARANGONI EFFECT

Xiao Lin Chu and Manuel G, Velarde
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ABSTRACT

The simplest nonlinear description of sustained capillary-gravity waves ot
the open surface of a liquid layer heated from above ar below (according 1a the liguid
used) is here provided. Resulis are given for specific values of the parameters
involved in the probiem (Marangoni, capitlary and Prandil numbers) as well as the
discussion of an experiment that under microgravity conditions aboard a spacecrall
can in clear-cut way test the validity of our predictions.

c&v 2

Disturbances at an aic-liquid interface can develop in various ways. Either as a steady
convective patiern like In Bénard convection! or In the form of oscillatory motions (standing waves,
travelling waves, ctc.). The latter could be tranaverse capillary-gravily waves or longitudinal
motions, e.g., oscillatory variations of the conceniration of a surfaciant along the air-liquid imerface
that practically remains level. We shall restrict consideration here to the former case.

Recently , the onset of overstability and the possibility of sustalning ransverse oscillations in a
Bénard layer has been exploced by one of the suthons2. A similar problem for a liquid-liquid
interface when the interface can acommodate a surfactant has been studied by the present avthors3.
Both studies correspond to a linear stability analysis of the problem and already in Rel. 2 it was
pointed out the relevance of the findings to experiments under microlow-gravity conditions.
However, in order to assess the eventual saturation of the oscillatory instability predicted in Refs. 2
and 3 we must explore the nonlinear evolution of the oscillation. Thus in the present nole we
concentrate on the simplest nonlinear approach to the description of the transverse motions induced
by the thermal Marangoni effect in a Bénard layer.

For the two-dimensional geomelry considere q'n i:f, 2, i.e., a Bénard layer heated from
above I we start from a motionless sieady state the nonlinear thermohydrodynamie evolution of the
liquid layer is given by the following disturbance equations

dw . dw ow @dp

ettt W w TP Loy )
at u6x+ az Bz+v ?

du du du_ dp

FTRAr Tihd Tl P )

(0
+

» \F
e

and
ae ot

— Y et W o™ + v’ 3)

together with the following boundary conditions

AT ] 4 4

—a-—i- w-ua—x- ()
Bo UL P 2 . 3w du OwadE du dt,

p'ﬁ!*’ﬁ(ﬁ'? ®- E”_— _-(az (dz+6x)—7 ax(ﬂ”

(5

Az )
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M oa@e-0 L0008

du dw € awOE
Flex tazox! " N“az -G T 5 ®
and
a0
LA m

where according to (7) we have prescribed the heat flux at the open surface, The following symbols

and dimensionless groups have been introduced: (u,w), horizontal and vertical velocity
disturbances; p, pressure disturbance; E, interfacial deformation with respect io the level position;

T, temperature; : temperamre disturbance; B, temperature gradient;
0f 2
N 1+ 'Hi

M=(-3o/0T)BL¥xv, thermat Marangoni number; C=(pvi/of), capillary number; Prv/, Prandtl
number, Bo={pgl’a), Bond number; p, density; o, air-liquid interfacial tension; g, gravitalional

acceleration; [, a suil@cun length scale (this may be taken as the capillary length but need not

to be so); v, kinematic viscosity and x, thermometric conductivity.

The air is assumed 1o be passive and weightless with respect (o the liquid,

The simplest approach to the above posed nonlinear problem is the single-mode analysis which
is expected to be a usclul description in a small enough neighborhood of the onset of overstability,
Moreover, the more we mdve into low gravity the larger the capillary length becames thus providing
greater relevance to the single mode approximation. On the other hand, tansverse inlerfacial
disturbances are expected to pencirate litile in the liquid; the penetration depth depends indeed on the
wavelength and frequency excited and on the viscosity of the liquid. The latter assumption gives

f ce to the "potential’ flow approximation 1o the time-dependent convection or in other Ierms to

Wlloa of the study to the high-frequency motions only. Thus for an arbitrary disturbance

flx,z,1) we set ﬂx.z,(v:)z,:) expliax) and w;2={Bo+a?)a/CP. The latter is Laplace law (potential

flow). These two assumptions are based on the analysis given in Ref. 2. Using them Eq. (4)
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On the other hand Eq.(1) at z=¢ &

aw _ Bo+12/N l+l( Jow 2af
r.TEn PC E"';—N-—-(o UIE 2 n ——-u(l 5w
"’(l--i—l-a£ . ')
2

.

ond

Notc that neglecting the nonlinear lerl)!rﬁing the high frequency approximation, wy»a?, Eq.(9)

yiclds, as expected, the {Laplace) harmonic oscillator cqualion (for zero damping)
2

%,  Bo+a
Pt IRl (10)

The zeroth-order (linear) disubances are, £,

- 0L az

wo _Ot_ e ( I I)

and
az 1 9E ,/ Pw 2z
Bug e+ 2 (=2 0 (12)
2P W
(]

where w, denotes the harmonic frequency in (10} and the subscript "zero' describes the linear
solutions.

Consideration now of the nonlinear terms in Eqs. (8) and () up to cubic terms leads to

T vU+ak) (13)

and



reduces to r— { - ot L.C.
! 4y _ d{, d{
Nmﬁw "_C.+A.‘1.c_+ - Ism-—-.c(__).yci__ (an
X  odlladw dv _Q!JC/L v P dr "4 dr
. wH;r: 4~Bfw,, a=3a¥2CPu,2, B-16a¥u, and Y~6a%w,. Thus Eq.(17) is the simplest equation
L e
\ A é 1 describing the limit cycle osciliations of the air-liquid intezface. We have checked that indecd
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dt cr Pw . f2Pw :
] ]
34
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which aller reduction to a single difTerential equation become

8 d dE, 2, dE
;l—swmiﬂwz-wu(b-h’)lE--wo’at’ﬂ(-a?) *‘5"‘"‘3,“'“’5”*"5

o d 3
Wt a’a%ff»f-'z—'-’em- 4ax i'c'li- 0D+ 16’ G et (s

where

Ma' ]

5= +4a (16)
ﬁ(l’mo)’"

At & =0 we have overstability from the linear analysis. Positive { respectively, negative) vajues of 5

account (or subcritical (respectively, supercritical) motions.

For universality in the presentation it is useful 1o rescale both space and time. Thus, with L=af

and 1 = w,t, and using the high-frequency timit (here w @ ith_w; P, Eq. (15)
[, o ol

Eq.(15) as well as Eq.(17) possess a fimit cycie solutlon. This has been done both whh the
computer and using the time-derivative (singular perturbation) expansion procedured,

The time-derivative expansion procedure? pPermits ta obtain In & perturbative scherme both the
amplitude and the pericd of the oscillation in terms of the initial condition and thus to assess the

stability of the limit cycle. On the one hand it can be shown that the limit cycle bifercates

C&v &

supercritically for A {or 5) negative, ie,wehavea supercritical Hopf bifurcation, and on the other
hand one obiaing the amplitude,

28
ti..";:; (18)

we compare the (exact) computer (numerical) result using Eq.(17) and the second-order perturhative
result usingthe Hme derivative expansion pmoedme with again Eq.(17).

The major interest in our work comes from recent impetus In experiments conducted aboard
spacecrafiaS- 10, For an effecrive gravitational acceleration of say |04 8, with g the vaiue on the
earth the predicted periods of oscillation according to Eq.(10) are in the order of the minute or two

and according 1o Eq.(16} the temperature gndl;nl at overstability of the order of one to ten °K/cm
for mercury and other liquids, including water, open 1o air. Already these valyes agree wetl with
experimental data extracted from transient solidification experiments done by Walter!? win
Selenium doped {nSh aboand Skyiab,

Aboard » spacecraft ina Iow/micmguvily environment the crucial test of our predictions can
be obtained by making an experiment with a water-alcohol solution around the minimum of surface
tension versus temperature! 1 The suggested experiment is Bénard convection, f.e., heating the
layer from the liquid side before and past the surface tension minimum. Before the mimimum is
reached one expects steady polygonal cells (Bénard cells) whereas pasi the minimum, i.c.in the

tegion where the surface tension of the liquid solution Increases with increasing temperature,

osclllations are here predicted, As A (or 5) contains the Marangoni number the suggested

experiment defines a clear.cu teat of our theory. Further details about this work will be given
elsewhere12,
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CHU-VELARDE

FIGURE CAPTIONS

Fig.l. Limit cycle obiained from Eq.(15) for an initial condition cither inside or outside

the cycle. 3«-10. A similar curve is obtained for all (not 100 large) values of -5 greater than zero.

Fig.2. Log-log plot of the oscillation amplitude versus bifurcation parameter as we
proceed into the supercritical region. Results comrespond to the direct numerical integration (num.)

and the singular perturbation analysis (ana.) of Eq.(17).
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