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1. INTRODUCTION

For any system consisting of two phases immiscible there is an
interface layer of small thickness whose properties may
markedly differ from those of the adjacent bulk phases and
wherein the action of short range forces between the molecules
of the two phases is predominant.

The study of interface layers from the molecular point of view is
deait with by other lectures. Here we consider the Macroscopic
point of view.

Up to few years ago the treatment of the thermodynamics and
dynamics of interface layers hinged on rather strong simplifying
hypothesis which were justified, 1o a certain extend, by the very
nature of problems addressed.

In thermodynamics studies, the bulk phases assumed to be
homogeneous, uniform, quiescent, steady, and in equilibrium
with the layer.

A key role was played by the concept of "dividing surface"
introduced by Gibbs. The interface layer is replaced by a surface
(referred to as Gibbs' surface) and the bulk phases are assumed
to extend, with their uniform properties, up to it.

The equivalence between the model and the layer is restored by
assigning to the dividing surface the masses resulting from the
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difference between the model and actual layer (referred 10 as
"excess" masses). The excess guantities depend on the location of
Gibbs' surface within the layer. The surface is given a free
energy which depend on its area and on “excess” masses,

For a simple component system (a tiquid and its vapor) the
location of Gibbs' surface in chosen as to make the exCess mass
zero. Hence its free energy depends only on the area, the free
energy per unit area being interpreted as a surface tension.

For multicomponent sysiems the degree of freedom in the
location of the surface can be used to reduce to zero the excess
mass of only one component. Those of the other components,
divided by the area of ihe surface, are uswally referred 1o as
adsorption coefficients.

The further assumption of first order homogenity of the surface
free energy, coupled with the hypothesis of thermodynamic
equilibrium between layer and buljk phases, leads 1o a relation
known as Gibbs' adsorption equation.

This equation has been later generalized to apply to charged
and/or polarized layers.

Studies of the dynamics of interfaces had been mainly concerned
with so-called capitlary phenomena associated with the surface
tension. They become significant when either the curvature of
the interfacial surface is very large or the surface tension is not
uniform over the surface.

A partial list of problems in which surface tension plays an
important role is: surface waves; decay of cylindrical jets,
capillary waves on the surface of a drop; Marangoni flow (i.e.
motions induced by 1angentia) gradients of surface tension):
motion in thin liquid fiims; bubbles and drops dynamics;
hydrodynamic stability of moving interfaces; instabilities due to
the Marangoni effects.

In these hydrodynamic studies the interface layer is again
replaced by a surface but, in general, insufficient attention s
given to its thermodynamic properties. The effect of surface-
tension on the dynamical evolution of the bulk-phases is
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modeled through a balance of forces acting on the surface. This
balance, in turn, is taken as the boundary conditions to be
satisfied by the field equations for the two bulk phases.
Electromechanical studies of coupling at interfaces and of the
effect of interface electric stresses were carried out with the
same approach. The coupling between surface and bulk-phase
phenomena is modeled through the jump form of the
hydrodynamic and Maxwell's equation (taken as boundary
conditions for the volume field equations) and the interface is
considered devoid of any thermodynamic property beside the
surface tension.

These rather naive modelling of thermodynamics and dynamics
of interfaces resulted often justified by the nature of ihe
problems considered.

The inadequacy of the modelling was at times acknowledged but
there was no real stimulus of its further refinement also because
its potentialities have not been fully explored and much
numerical work and experimental investigations still have to be
carried out for the complete mastery of the problems for which
this simple modelling is adequate, :

The prospect of materials processing in space and of space
manufacturing have changed the prevailing scenario for a
number of reasons. On one hand, in a low or micro-gravitational
environment surface tension driven phenomena acquire a much
more relevant role in many more situations than in the normal
gravitational environment, Thus, for instance, it has clearly
appeared that mastering surface driven convection phenomena
is microgravitational environmemt is an absolute prerequisite for
designing meaningful crystal-growth experiments in space and,
later on, for the successful achievement of materials processing
in space.

Hence the need soon arose for a better and more realistic
modelling of both the thermodynamics and the dynamics od
interfaces.

e
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Thus, for instance, numerical investigations of thermally induced
Marangoni flows in a floating zone (a problem intimately
connected with one of the possible schemes for crystal-growth)
require “thermal” boundary conditions on the free surface of the
zone. The proper formulation of these boundary conditions
canitot be achieved, as customary with the previously mentioned
"hydrodynamic” approach, by simply writing a jump form of the
internal energy balance equations. By thus doing, equilibrium
and non equilibrium thermodynamic properties of the surface
are unduly ignored and the results have no physical relevance.
What is needed is a surface balance equation which, in tura,
presupposes an adequate modelling of the thermodynamics of
the surface itself.
On the other hand, the availability of space laboratories has
provided a strong stimulus for decper studies of complex
interface phenomena for their own scientific interest in addition
to their relevance in application to material sciences.
This being the present scenario, it is clear that a coherent,
unitarian and rigorous macroscopic  modelling of the
thermodynamics and dynamics of interfaces is both an absolute
prerequisite for meaningful numerical simulations and a useful
Support to experimental investigations.
Atm of these lectures is to present the latest results in the
macroscopic modeling of the thermodynamics and dynamics of
interfaces which accounts for the following general aspects not
all considered in the simpler models:
i} The bulk phase and the interface layer may not be uniform
and quiescent;
i) The interface layer may not be in equilibrium with the
adjacent bulk-phases:
ii) The field may be unsteady.
Non-uniformity and non equilibrium refer to any couple of
encrgy conjugate extensive and intensive properties.

It will be briefly discussed here in terms of the mass Mi of a
constituent and of the chemical potential M., its intensive
parameter conjugated with respects 1o the energy.

Conditions of wuniformity and mutual equilibruim bhetween
interface layer and bulk phases are schematically shown in the

fipure. ; .
(e &
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The chemical potential A, is constant both in the bulk phases and
across the layer. Thus, if superscripts I, 2, £ denote, respectively,
values for the two bulk phases and the layer, it is:

/‘m /tm /um

and this common value is the same throughout. The
concentration ¢ m / m, (where M is the total mass) has a
profile which is independent of the station along the layer. The
concentration is constant in the (wo bulk phases and varies
continuously across the layer from its value in one bulk phase to
its value in the other bulk phase.
In the Gibbs model the layer of thickness t: & ¢+ E" (see
figure) is replaced by the dividing surface ¥

ey Lz
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The total volume V occupied by the bulk-phase and the layer is
subdivided as . .

V: V4 V' and the subvotume V™' (i 1, 2) is filled by the
J-th uniform bulk phase. The total mass of the i-th component
present in the actul system is:

ut 1] 1)
'm; Moamem

and, in the modei: ) ) it
T i
m. Vet v.m

uh o ) T
where £, is the mass density in the j-th bulk phase and m s
the mass associated with the dividing surface. The’ adsorption
coefficient r: is defined by:

) w9 [T .Y
w”om [V 2] A

where A is the area of the surface. It clearly depends on the
location of Z_ within the layer (characterizing the partition
V-v" Vm and can be positive, negative or null).
It is to be pointed out that, even in this case, another aiternative
is possible. One can indeed associate to the surface Z not the
previously defined excess mass Mi, but rather the actual mass

'Tn‘“ present in the layer. One is thus lead to define a surface

densil'y f of the (i-th) component by letting:
t 1l

m -7 A

The surface density thus defined is independent of the actual
location of 2 within the layer. This has obvious advantages.
However some uncertanty permains since the thickness of the
layer (and hence the quantity Mi needs to be defined (The
same conceptual difficulty is present in the Gibbs' model).

Non uniformities can be present in directions either tangential to
the interface or normal to i1, and both in the layer and in the
bulk phases. Conditions of non uniformity in the volume phases
are schematically shown in figure. :

The gradient olf) M. normal to the interface is no longer zero, but
e

it is still /-l_‘ = M =/U._m where, now, the bulk phase values are
evaluated at the edges of the layer (Recall that, in the skecth, the
dimensions are much enlarged to adequately represent the
layer).

Non uniformities in tangential directions imply that the profiles
shown in figure may now change from one station to another.
Both types of non-uniformities induce (irreversible) mass
diffusion fluxes. The normal gradients at the outer edges of the
layer induce exchange of mass of the i-th component between
the layer and the bulk phase. Tangential non uniformities within
the layer induce mass diffusion within the layer.

For both reasons the layer, as a whole, is no longer in condition
of thermodynamic equilibrium and no further modelling is
possible if the shifting equitibrium hypothesis is not valid. When
such is insteady the case, a local formulation of thermodynamics
can be resorted to. In these situations the motion of excess
quantities is much less helpful and that of surface densities
seems more appropriate.

A further siep away from global equilibruim occurs when the
chemical potentials at the edges of the interface layer are not
equal.

In this case, one can still mggel the layer as a surface phase but
must ass.ign to it a value /J'; of the chemical potential different
from fll and /J:-" .

The layer is not in cquilibrium with the adjacent volume phases
with respect to exchange of mass of the i-th constituent. In the
conditions depicted in figure, the layer will receive mass from
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the volume phase (1) ( /u;‘ 7 /L. ) and will give mass to the
volume phase (2) ( }1 ? ‘:' ). This exchange will be
referred to as normal exchange between the layer and the bulk-
phases.

Finally, for stronger normal non-uniformities of intensive
paramcters within the layer one would have to model also
diffusion, in the normal direction, within the layer.

What so far said for scalar exiensive properties applies to
momentum (a vectorial extensive property) when the velocity
field is not uniform (recall that the velocity is the intensive
parameter conjugated to the momentum with respect to the
energy).

To account for the above described phenomenology, the interface
layer and the adjacemt bulk-phases are modelled as a surface
phase in contact with two volume phases.

The surface phase is characterized by its geometry and by its
thermodynamic properties. Position and shape of the surface are,
in general, function of the time. The shifting equilibrium
hypothesis is assumed to hold for both the volume and (he
surface phases so that a local formulation of thermodynamics
applies. It is here supposed that the reader i1s familiar with the
motivations, implications and limits of the macroscopic local

formulations as applied to the thermodynamics and dynamics of
continous media.

No a priori assumption is made as to the equilibrium  with
respect to any extensive property.

The study of the surface phase will deal with its cquilibrium and
non-cquilibrium thermodynamics and with its dynamics
described by a complete set of surface balance equations. The
latter ones reduce to the known jump form of the volume phase
balance equations when the surface 2. is devoid of any
thermodynamic property.

The outline of the lectures is as follows.

The geometry and simple kinematics of the surface and the local
formulation of its equilibrium thermodynamics are first dealt
with in general terms.

Subsequently, the surface phase balance equations for arbitrary
scalar and vectorial properties are derived and discussed.

The following topics will be considered: equilibrium
thermodynamics description and properties of the surface-
phase; formulation and discussion of the pertinent set of surface
balance equations; derivation of the expression for the surface
entropy production density with ensuing identification of
generalized forces and fluxes; discussion of the surface
phenomenclogical relations within the framework of linear
irreversible thermodynamics; analysis of the complete set of
cquations and comparison with results of simpler theories.

In the next chapters the non-dimensional balance equations for
the bulk and surface phases are presented and an order of
magnitude analysis is performed.



2. GEOMETRY AND KINEMATICS OF SURFACE-PHASE
2.1 lmrociuclion

The choise of an appropriate class of coordinate system is a
necessary condition for the proper formulation of the volume
and surface phases balance equations and of their meaningfull,
of the non-dimensional forms, needed, in turn, for a correct non
dimensional analysis which should lead, among other things, to
information concerning the nature and occurrence of several
possible regimes suitably and properly expressed in a-priori
forms, that is in terms of problem's geometrical and physical
data.

The main requisite determining this choise is the possibility of
singling out and evidencing the particular role played-by the
direction field represented by the unit normal n to the surface S
which models the interface. The most general class of coordinate
system satisfyng these requirements is the parallel surface
coordinate system (p.s.c.s.) in which one family of coordinate
system is constituted by the family of surfaces parallel to § and
a coordinate is the Euclidean distance (n} from S.

Thus the position vector r(P) of a point P in the Euclidean space
E3, measured from an arbitrary but fixed origin 0, is given, on
considering for simplicity the case in which S is fixed in E3 (a
limitation that will be later removed) by

HT) big) e mnig) (2.4

where "r {here and throughout the latin suffices and/or indices
will run from one to three, whereas greeck ones will run from
one to two) are arbitrary coordinates on the surface S, n= 3? is
the Euclidean distance of P( %) from S and ro(Ps) is the position
vector of the point Ps(f)= P(fo), projection of P{ 1‘) on 8. The
coordinate surfaces n= const ~ n*, paralle]l to S, are two-

dimensional Riemannian varieties Va(n) with V3(0) =S.

10

This section will thus be devoted to the study of the geometry of
the surface §:

ad -

tig.e) < B (])
This study needs to be a thorough one in view also of the fact
that, in general, position and form of $ may not be known a-

priori but will be one of the result of the analysis.
We shall thus have to consider definitions and properties of

° covarianl[il ,contravariant  (dual) {S‘} basis vectors

The two fundamental tensors {i,, (unit tensor on S) andlg
(curvature tensor of §), the three fundamental forms of S,
Crystoffel symbols

Covariant and contravariant derivation on S and such related
notions as parallel transport.

® Geodesics of §
First and second order differential operators

® Compatibility (or integrability) conditions leading to the
equations of Gauss and Codazzi

Rieman tensor

Whenever appropriate we shall specialize the general results to
the particular case in which the surface coordinates I‘f} are
orthogonal and discuss, for instance, the conditions in which they
be taken to coincide with the geodesics of §.
We shall then discuss the properties of parallel surface
coordinate systems. As it easily argued, many of the results
found for the Riemanian variety S=V32(0) are readily extended to
the Riemanian  varieties Va(n) parallel 1o S.



However there are a number of additional questions to be
adressed, we shall point them out during the development. The
crucial ones we believe is the proof that all operators, algebraic
or differential, of interest in the present context, can (and will
be) cxpressed in terms of the first two fundamental tensors of S
( Uy and K ) or, equivalently, in terms of the coefficients of its
two fundamental forms.

Once this is accomplished, we have at hand all the tools
necessary to formulate, in subsequent chapters, the different
form (global, local, jump, dimensional and non dimensional) of
the balance equations for scalar and vectorial extensive
variables for the volume and surface phases.

12

2.2 Notations

Cartesian coordinate system.
Origin:0

Coordinates ‘j" (i=1,2,3)
Unit vectors < : (_.'
A vector (tensor) having no components in the direction n
normal to § will be denoted with the suffix (s) and, by
definition, it is:

frmo TaomT.o
The two dimensional nabla operator on S will be called
surface gradient and denoted by ¢ . Thus:

V.2

- DT
and, by definition i

The three dimensional unit tensor in E3 will be denoted by
and decomposed as

4!.5 ’u;gn-"l

where Al; is the two dimensional unit tensor on S
r

The unit tensor ‘-!u acts as a projection operator so that, for an
arbitrary vector F defined on S its surface projection Fg is
given by

R F i,

Similarly for a second order tensor T one has

13
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® Kronecker symbols:

S 5 Sl SL

° Einstein summalion convention is assumed with latin indices
running from 1 to 3, and greek indices running from 1 to 2.

14

2.3 Geometry of surface §
2.3.1 Representations and covariant basis vectors

The position vector of running point Pg( ‘)is
& 1

wiR)e 6y ny)
where the functions:
L 4 :
1: 7 (%)

and their inverse

.

EENLY

are assumed to be at least of class C3,

The elementary absolute vector lying in the plane tangent to S in
Pg

< .
&1_5 s G:q, d'l z ‘_-' J'j.
define the coordinate basis covariant vectors
g-. s ")“ - E C.
Ay AP
The vector G, is in the tangent plane of S in Pg and is tangent to
the coordinate line 1 =const.

2.3.2 First fundamental form

The squared length J.i:' of the absolute elementary vector
gives the first fundamental form q;(S) of S:

Qs de dede g g dy 1)

where:

15
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§ 4 G6p s N 3!. %
B - - ’5;:- r)tl

are referred to as coefficients of the metrics.

q1(8} is symmetric and positive definite;

‘]‘f * Sh .
bRy 3" 1,1' i'., = ¢ dstﬁ‘g‘.} 0

when § .0 the families of curvilinear coordinates are orthogonal.
h
Properties of S expressed in terms of the coefficients of the first

fundamenta! form (metrics coefficents) are said to be intrinsec:
they are invariant with respect of bending of § in E3,

2.3.3 First fundamental tensor,

The bidimensional unit tensor q,, ., the surface gradient of the
position vector rg, is the first fundamental tensor of § :

Uls: Y"-_y: ’Jt?.s(

3 R
= /5‘;;' e
where . . _
¢. 9 : ¢ O
It - 4'7'

is the contravariant basis vector, normaI" to the coordirate line
'z =const.

The covartant components of us are the metrics coefficients 3,,’ '

the mixed components are 5 and the contravariant components

are defined by:
4P « f
© 5.8

or equivalently, by:

so that: .
9 : dn (47 ?)
<«p 3 4!)
j T . g‘l J&l’. (3 : !
; ]

The surface gradient V is expressed in terms of the dual basis
vectors as:

T T 0w

2.3.4 Curvature tensor. Second fundamental form.

V_.::)-G"Q

The unit normal n to S at Pg is defined by:
N J
e SAb Loy ’)’o (Gag)
v 0 sy o5p Y
: I M b ,
The elementary vector dn lyies in the tangent plane of § at Pg

G'.clu.-o Gﬂ- deco

The surface gradient of n is the second fundamental tensor of §
also referred to as {normal} curvature tensor K

Kega. O .6 % ()
) 2 ’DT‘

L]

|

iy

The tensor l,( is symmetric:

od
§ % . Jn g

F oy

17



and non definite.

Its covari;ml components K3 define the second fundamental
form q2(5) of § which is the scalar invariant of the two
elementary vectors dn  and drg < b
Q8+ dp-da s dn D2 detdy - (2.4)
L - I 01. '
R LR IR
The two principal invariants of |.< , denoted by K and Kt

respectively | are: .

K- T‘(l'(} : K
G A (K)

2K is the mean (normal) curvature of 5 at Ps and KT is the total,
or Gaussian, curvature of $ at Py .

The total curvature Kt can be expressed in terms of only the
coefficients of the metrics and their derivatives (Theorema
egregium of Gauss). It is thus an intrinsec property invariant
with respect to bending of S.

Upon the symmetry of K there foltows that{can be put in a
diagonal form. )

At each regular point Pg of S there exist at least two orthogonal
directions with respect to which the curvature tensor is diagonal.
These directions are called principal directions of K . The
corresponding cigenvalues are called principal curvatures and
lines whose tangem vector coincide with a principal direction are
called lines of curvature,

18

2.3.5 Covariant derivation on S.

The surface gradient 5 of a surface vector Fg is not a tangential
tensor as it has non zero right normal component.
Indeed, from F .4 :0 it follows that:

0- Y {ha): (6) 2 5 .¥n
so that on account of eqn (1.3 ):

(96)-2: B 03]

Hence:

V,E : (‘ZE) 94 -HK

where the first contribution on the r.h.s. is a surface tensor.

It is similarly proved that the surface gradient VT, of a surface
tensor 1_: is not a tangential (third order) tensor and one has:

VT - (V) b - kT om (95),-¥Tn
where }; is the transposed of 1: .
The simplified notation for (§ ), has been used since § T,  has no
left normal component ( 4. ¢, =0). )
The usual derivatives of surface vectors (tensors) or of their
scalar componemts do not have tensorial character in view of the
fact that:

a) the coordinate base vectors are not constant;

b) their surface gradients do not have tensorial character.

19
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The covariam derivatives denoted with a slant ovviates these
shortcomings. Loosely speaking, the basis vectors behave as
"constant” vector with respect to covariant differentiation and
the covariant derivatives have tensorial character,

Thus, one has, for the surface pant of the surface gradient of Fg:

d ’
N T A

2 -
where ky  and My, are the mixed and covariant components of (V,F,')J

defined by:

4 ’ e P
ﬁ&',?—fl"Frh.
- - ¢
(O
) B
E/¢=%JF"?)-'Q%("?‘-;)

As this latter equation shows, the "non-tensorial” character of JF

is "balanced” by the * non-tensorial character” of F")S'_n .
o
2.3.6 Surface gradient of basis vectors. Crystoffel symbols.

According to eqn (25 ) it is:

VG- (96 - &

"
a

where: 'l

(96 (8 05 ) 4 ¢ 0 o' L g

"STi : 07’
The quantities defined by:

20

3 ’) ¢
Lo - 25 Lo, D
- > . € A
4p 2 gt Y
P g2 . ,5? "
are called, respectively, Crystoffel symbols of the second and
first type.

They are not the components of a third order tensor, and their
transformation formula under a change of coordinate
is readily deduced by their definition, written, for instance, as:

Y - Yo Du
"

The Crystoffel symbols are symmetric with tespect to the indices
and can be expressed in terms of detivatives of the metric

coefficients as: ga‘h 9 '39‘
rulp%[;;-!—,'*q—{f"??%‘]
. €
rq : ﬂ r‘a-‘-

so that are intrinsec properties of S.

Components of derivatives of contravariamt base veclors are
given by: 3 " <
G [y b’

= . &8 = -
CELAN “

4 £ d IE
/)(‘.— .6 - - J j
R (4]
b
2.3.7 Normal and geodesic curvatures

Let f[l:) be an arbitrary regular curve on S,
4 |
TofW kelny

is parametric representation, 3 its tangent unit vector and ds its
elementary arc length.

21



The rate of change in the direction of the unit vcctor}

(directional derivative) is given by:
4

d A% <) 2

T ]
The surface gradient of the unit vector _X is given, according to
equation (§5) by:

Ghe (G3) 4 -y

Let N (1) be the principal normal to f[t) and (1/R) its curvature,
positive if flt) is convex. Then:

SN A g () - bk
o ds T ) ) 20T

Thus, in general, the principal normal of the surface curve ftt) at
Ps has tangential component. It follows that the osculating plane
of fit at Ps is normal to the tangent plane of S at Pg but does not
contain, in general, the unit normal n.
Let 3 be the angle between the osculating plane and the normal
plane so that:

s 3R} = N(R). n(3)

The normal and tangential projections of (-N/R) are called,
respectively, normal (Kp) and geodesic (Kg) curvatures of
They are given by:

K-n= Cﬂgg XK
R AR

t -

The normal curvature Ky is equal to the inverse ratio of the first
two fundamental forms of §:

< H ] ]
Ky -3 K3 o M)V - dy gy dy .
: g

Kep d td b

3 dr iy
if K;and K; denote the two principal curvatures of § at Pg it
is(unless inessential change of suffixes):

! ¢ |Kn| ¢ |Kz\

23
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2.5 Examples
2.4 Kinematicsof surface phase

. . To further elaborate about the geometry and kinematics of we
The velocity W of a point on § s defined by: shall consider two examples that are typical of situations of
W . 3‘9('{,%) 2 ‘) interest for the present lectures insofar as they are related to

- AT ) axisymmetric floating zones and drops.

We adopt the synthetic notation:

T.’ H [ Il| EJ, Z)] r. F: [Ffi F;J Ep]

and its cartesian components by:

Y.
Ws’ : ;":_‘- o represent the cartesian component of L and of any ve ctor F.
Notice that the algebraic representation of §  defines only the E le ]
normal componet of the velocity W. Indeed from the differential The parametric equation:
of equation F{'io,“*) 20 § ‘ . X
1
W.9F+ .0 (AR [R(?,t—) oy R(,le)sﬂ?’. 1117'”] (14)
ooy T
and the definition of the unit normal where R and f are real functions, represents, at all times t, a
", VF/]VF[ surface of revolution with ax, 4.
- Its algebraic representation is:
— t L4
one obtains: Flae)- 208 - R (9880 [y
W { JF t . . . L
w.m. _ ___ JF (1. 1) where M= 3(2,t) s the inverse of the function 2, - f”' k).
WH Jt The surface is bounded by the two circles:

?n"'%l-R‘[:Mt),t] (%)
gt Al wY

where the values in parenthesis apply if the floating zone is
anchored, at the two extremities, to two discs of arbitrary radius

Ro and Qf. respectively. The shape of the floating zone in
the meridian plane is given by the curve:

we R o Pe]  vaeRIgfae)]
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We denote with dots partial derivation with respect to time and
with an apex partial derivation with respect to 7
The coordinate vectors are given by:

G.' ’[-R’J-Ju'[' R‘Q‘{‘O]: ?i:_
[R m'l' Q :q.)'f'J_ ?_g__

so that the cocfflcn:nts of the metrics are: 7
1 3 t t 1
3u=R':2"° ‘ 3l;=° ' 3““?*[“:&0
Hence the coordinate curves are orthogonal.
The unit normal p = { @ A f{;)/ (R R:o)
To determine the coefficients of the second fundamental form
one needs the second derivatives of . They are:

-[f'fcu "- P‘iin ) o
1, Pony -] =

% [Lay g o]R

ST T

gl_f__j_ . t_)f:'_ - [- 3.'1;-2" caul" 0} )
7
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R P ' fats ¢

Thus the coordinate curves are lines of curvature ( ﬂlt . LI!:

The principal curvatures are:

K|-"l’_"_: ——-—-—‘f

i,
) Rl ‘ ) R.P. R.?.-
LA P [ (1
K = ___..__..-i K, RP"‘!’

The velocity Wois:
W: %_E’_g [R(cjcl Ri..-nz fJ

and its normal component is:

W W . SEFR

Consider now the algebraic rebresemalion
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i t 1
F(L"l:’ . _3:___ ' __2%_ 4 _g.:_. V=0 (!.n)
It is: Awm By Cie)
YFE . 1 [ 2, - QR' ’)9] When thc.following incquality is imposed:
Y ! ‘ 5T,
E) 3 Son .
_E:-IR,[R*Q}] el)/f{&) ol 7 comst 4y
at
, . V! the surface ( 3.1 ) is part of an ellipsoid bounded by the ellips
IVF‘ IR [l; ( R ?L) ] obtained from (28 ) for Z,:z,, or, in parametric form, from ( 3.1 )
i o for C{;)le 2, and (aJ-z » Vi (4 /e“,)
o ———
Wh, - (R*Rj)/ V'tlﬂgjl;) For A = B = C the surface is spherical.
[t is readily checked that the expression of the normal Proceeding as before, one ob:a::s fortth.e ‘n:elncs&co:f'ﬁcwnts:
component Wy of W as computed from equation ( 2. * ) coincides *3" + (o 'z ( A hom 1¢ B (avl)
with the expression given by equation ( 2. 10 ) when one

accounts for the fact that A‘_ BIJ sim tYL J;“!?‘ /l.
-y(?z'; ' l-' (?L'/ ¢ L "_l, s ¢
) '2 g > gu’ (A {o) m ¢ B le.-l)iu7 » O Ca}?.‘l

The unit normal is given by

&

—_— ; j’ ) f_
91, f f n- 4 [ Be (0:"2&4-01 z' ; Ae (a:f;.‘,‘l'l- ;_42_13_ JJqIY’J
FY

. . Finally, the coefficients of the second fundamental form are
The parametric equation:

given by: 11
s b, = - ACd oy
with A, B, C real function describes, for all time t, an ellipsoid

5 bo
with semi-axes A, B, C as evidenced by the corresponding V'j_ L
algebraic equation: 1t

= [A[L)cos'-l,' Cos{ ; Blt)f"iz&bn{‘- (ie) ’“'iJ (2u)
0

(i3

- AEI} Cos‘zt
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The coordipate curves are not orthogonal ( 3., 7’ O ) unless
A(t) = B(t) {ellipsoids of revolution with axis zy ). When they are,
they are also lines of curvature since the seccnd fundamental
form is” always diagonal.

The normal curvatures in the direction of the coordinate curves
are: ' A Bf’ m
Y
(AN by . ABC @y’

3
The total curvatare is computcd from the relauon Kr- ¥/3 . The
mean curvature ( K/3 ) from the definition of K.
The results are:

vlao4,
K - ABE iy
gl

«. ABC oy [“’:fﬂu*il
Vi 4,

For spherical surfaces (A = B = C = R) one recovers the well
known expression K, R - t
The velocity W is !

W: [ A Ccuv[' conl‘ ; B m?l,ml' : é"‘“ﬂ
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3. SURFACES EQUILIBRIUM THERMODYNAMICS

3.1 Energy fundametal relation. Euler, Gibbs and Gibbs-Duhem
equations

We assume that a local formulation of the surface-phase
equilibrium thermedynamics applies.

There is evidence of the applicability of this assumption in many
instances but s true range of validity still needs (o be
accurately characterized and adequately defined.

The development of a theory based on the local formulation and
comparison of its results with either experimental finding or
results from statistical approaches will help assessing this,

We shall follow a poswlatory approach quite analogous to the
one well established for volume phases.

We postulate that an equilibrium thermodynamic state of the

surface phase is defined by the set of extensive variables {Ifﬂ X’j

where § is the entropy, [l the area and X:  are all other
variables needed to uniquely characterize it. The question of the
number and nature of the X: will be taken up later on, when
dealing with specific cases. Suffice here to mention that they
may be wmasses, entropies, electric polarization vectors. We
further postulate the existence of an energy fundametal relation:

M='u’(£ﬂ‘ X..) (3.”

expressing the internal energy U. as a first order homogeneous
and at least twice differentiable function of the basic set of
extensive variables.

Let:
Wooe W g oy
S TR
31
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-~
where T is the absolute temperature, [~ the (equilibrium)
surface tension and ¥ denotes the intensive parameter
conjugated to X in the energy representation (3.4 ).

Extensive quantities per unit of surface (surface densities) will
be denoted with the corresponding tilded low case latters. Low
casc letters with a bar will denote quantities per unit mass
{referred to as specific quantities). The only exception to this
notation is for the mass surface density which will be denoted
by ¢ - The area per unit mass is ) and the following
relations hold:

?;) 2| ' ;.- Ed ? ;;
The couples { "1."" PO { ¢ @ ) ‘I , '8 ) will referred to
as couples conjugated with respect to the energy representation.
From the postulated first order homogenity of the energy
fundamental relation there follow the Euler, Gibbs and Gibb-
Duhem relations:

41.- f‘,f+G'.Q + ?:Q:X.
M. Fafeedl e 2T (-4)

0- f&f+ﬂi€' ,ZY. ‘15:

wherein, if X) denote the mass of the j-th constituent and ™M the
total mass of the surface phase it is:

m.—‘jle' ; 1:}2:)_5- ; F-JZ.;{; (3.5)

Analogous relations are readily established in terms of surface
densities or specific quantities.

In the absence of phase changes, the number of intensive
degrees of freedom equals (upon the Gibbs-Duhem equation)

32

that of specific degrees of freedom. The equilibrium
thermodynamic description of the surface is completely
characterized by the energy fundamental relation (or by the
fundamental relation in terms of other thermodynamic
potentials, see later on) or by as many independent equations of
state as it is the number of thermodynamic degrees of freedom
{equilibrium constitutive equations).

i3



3.2 Thermodynamic Stability

When the thermodynamic state of the surface-phase can be
described in terms of local variables associated with the surface-
phase alone one may speak of its (intrinsec) thermodynamic
stability. -

This, in turn, can be related to the condition that d @ 2?0 in the
absence of phase changes -within the layer.

Thus thermodynamic stability implies that the Hessian of the
function @ = & (3, 9,%) be positive definite. As known, this is
equivalent to the two following stability rules:

[} The derivation of any intensive parameter with tespect to its
conjugate (specific) extensive variable is certainly positive if
no combination of conjugated variables is held constant

11} For thermodynamic derivatives of the above type replacing
an extensive parameter held constant with its conjugated
intensive parametér never increases the (posivite) value of
the derivative.

As detailed when dealing with specific cases, stability with
respect to entropy variations leads to the notion of surface
specific heat coefficients, stability with respect to area variations
leads to the notion of surface compressibility coefficients and so
on, for the other types of stability. The second stability rule
established important incqualities within the sets of the above
mentioned coefficients,
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3.3 Thermodynamic potentials

Thermodynamics potentials are defined as partial Legendre
transforms of the internal energy.

Their natural variables include a number of intensive
parameters and thus they are first order homogeneous functions
only of the remaining extensive variables.

Stability conditions are sufficient conditions for the admissibility
of the Legendre transforms.

To simplify the notation, the internal energy is represented as

u, Z 'ﬂ‘ (Y{J (3. 6)

(where the X, now include § and ) ).
The partial Legendre transform of M, with respect to its first
variables is the thermodynamic potential ?‘I whose natural

variables are the set - -
(4, %, e 1)

Upon the properties of the chcndre lransforms it follows that:

P U . Z:j)( Z‘:I,

[ £]]

(3.9

d.P - _Z X(dj &Z. :f d,Y
In the first equation, the first equality defines ﬁ and the second
equality gives the Euler representation of F; . The second
equation is the Gibbs equation for —I} . The Gibbs-Duhem equation
is clearly the same.
The possibility of expressing P‘] as functions of its intensive
natural variables relies on the possibility of solving for ( x,

X ! ) the (L) equations of state:
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As known, this is possible when the Jacobian of the ¥ with
respect to X,-(lsjn) is different from zero. Hence, as anticipated,
thermodynamic stability (which ensures that this Jacobian is
positive) is a sufficient condition for the definition of E

Three noteworthy examples of ihermodynamic potentials will
now be given:

1} The Helmotz free energy F

F is the first order Legendre transform of AL with respect lnj

and one has:

F, M.TY. o) JZEiXFTOY)
aF. T vcd 254X

It follows that, when the state of the surface is sufficiently
characterized only by 3 and {1 , one has F» & {1 , i.e. the
surface tension can be interpreted as the Helmotz free energy
per unil area (see later on for the more general definition of
as a thermodynamic potential}.

2) The surface enthalpy H

It is a first order Legendre transform of Al  with respect to
the surface area (), .

Thus: H- u_gf),:?jufi’r;-'””.’“-')

C\.”rfif-ﬂ,c’.ﬁ' +Z§:6th' 6.9

The potential H plays, in surface thermodynamics, the same
role played by the enthalpy (hence the name} in volume
thermodynamics.

3) The grand potential 1

It is the t1otal Legendre transform of LL with respect to all
variables other than {7},
Thus:

36

(3.8)

at
of ot o
g':' u - Tf‘- Z'i,x;. CQ_. g(T‘QJg) ( ;
. - - 31
d¥. a7 L) L Zx 4
Hence, in the general case, the surface tension can be interpreted
as the surface density of the grand potential. Obviously, this

defintion reduces 1o the one previously given since, in that case,
the grand potential coincides with the Helmotz free energy.
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4.UNCHARGED AND UNPOLARIZED LAYERS

The internal energy natural variables are the entropy, the area
and the masses of the constituents. . -
The comresponding surface densities are denoted by 4 Jnd ;’ .
respectively.

The specific quantities by 3 , & and ¢ respectively. .
The surface density of total mass is denoted by f s ( for fr-) :

f- 26, Ffoa ; 5.¢F
b o ) .1
gj 'ch ‘- (J"wg ; J_Zﬁj:'l

The ser of intensive parameters conjugated to the set (3-,1:. C:}
will be denoted as  { T, &, A where T is the_absolute
temperature, G the equilibrium surface tension and /'; the
chemical potential per unit mass of species j. The tilde denotes
values pertaining 1o the surface phase which do not necessarily
coincide with the values of the adjacent volume phases. The
encrgy fundamental relation is, in terms of quantities per unit
mass:

4 il e c) 4.2

and the corresponding Euler, Gibbs and Gibbs-Duhem equations
read:

&

T5 60, ZEG
di: Tdjocdd o2 dg %.3)
J
Idf§ wd6 *Z—C;J.:
J

L=
.
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with 2. 4 .0

In lermrf of surface densities the Gibbs-Duhem relation reads:
d.c‘.-aJ.T-JijaLh (4.4

This relation can be looked upon as a generalization of the Gibbs
adsorption equation if the surface densities are interpreted as
"excess" values.

Surface thermodynamic potentials may be defined as described
in paragraph(},3).

Of particular interest in fluid problems is, as known, the
enthalpy. We shall thus introduce a surface specific enthalpy
defined by:

LlGegaca.Fi 245 o)

-

where the last equality provides the Euler _felation for £ and in
the first equality the natural variabies of £ are shown.
The Gibbs' relation for £ reads:

. Th. S TR )

Thermodynamic stability entails the positive definite character
of the Hessian of the specific internal energy u.

In particular, the frozen specific heat and "compressibility”
coefficients are essentially positive quantities defined by:

i H (i.) N i F3 :)—]:_.)
3 o ! 17 7 Jec
“ w5 ¢ SR
ks l‘.) S (X
& \Nakg ! &\ Té

+

w
where  C, ((g) is the surface specific heat coefficient at constant
area (lension) and I(J (l(,.) is the isentropic (isotherm) surface
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compressibility coefficient. The specific heat coefficients have
the dimengion of a surface tension.
Gibbs' definition of an elasticity coefficient £ s usually reported

as given by: E ({C
T e & D J.C
an’ g

where {1 s the total area of the surface,
Clearly this way of writing is formally incorrect because it does
not specify the parameters held constant. Apparently, what is
held constant is the temperature and the composition of the
surface phase. Hence, upon the first order homogenity of the
internal energy [, it follows that [, K,

Upon the second stability rute it follows that:

Ce 7 Cu poKeek (s-%)

Those inequalities are analogous to those holding in volume
phases ( (¢ is the surface equivalent of the specific heat at
constant pressure and (, is the surface equivalent of the
specific heat at constant volume).

Other relevant stability inequalities are:

( E_J_) 7 0 (45)
596

Notice finally, that additional specific heat and compressibility
coefficients can be defined other than those %21} for "frozen"
composition.

For instance, when surface chemical reactions occur, coefficients
defined for one or more affinities held constant are relevant in
the study of the dynamical evolution,
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5. THERMODYNAMIC. MODELS

Macroscopic thermodynamics defines and describes  the
propertics of the fundamental relations andfor state equations.
Their explicit form has to be derived on the basis of statistical
thermodynamics or of experiments or through a combination of
both. Such explicit forms can also be referred to as
thermodynamic models of the surface.

One such model (the simplest one) is the one applyng to the
Gibbs surface for single component systems. In this case the
location of the dividing surface is such that the €XCESS mass is
zero, Then the excess internal energy is function only of the
€xcess entropy and the area. In terms of surface densities the
Euler, Gibbs and Gibbs-Duhem equations read:

G,: -F;i- E'
di - T dJ (51
0 H ;J,‘Frdﬁ"

The surface has only one specific degree of freedom so that a
thermodynamic model s complctély characterized (unless
inessential constants) when the explicit form of an equation of
state is given,

The simplest model mentioned above is defined by a linear
dependence of € upon T . Thus the equation of state reads:

€. 6. c(T-Ty (59

where the subscript (r) denotes a reference state and c is a
constant whose thermodynamic meaning is readily derived from
the Gibbs-Duhem equation, '
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Indeed: subsequently, upon equations ls.l)’ and [S.'.'.)

ds . ¢

a7
Hence (€=« ;‘ is the entropy density in the reference state. The*
expression for the internal energy can be obtained from the
Euler equation (8.1},  and one gets accounting for  { §. t)

i+ T, 4 + &

Hence also the excess density of internal energy is costant.
It appears that this model is somewhat degeneratc in so far as
the fundamental relation 4 » ﬂ.{:) reduces to U - ll‘ 4{d) = const
and therefore the Gibbs equation in the specific  energetic
representation is identically satisfied. The degeneracy is also
evident from the fact that the specific heat coefficient vanishes
(see later on} (neutral stability). Hence the simple model in whik  is
locally expressed as a linear function of T must be handled with
some care.
Rewriting the (§}) as:

A.BT

we can say that, since the constant entropy and energy would be
positive, it is necessary that A must be positive and B negative.
Then the surface tension must be a monitonically decreasing
function of the temperature.

Consitring that the specific enthalpy must be positive one gels
the same conclusion ( B3c<o )

The temperature 'l' is a primitive variable tha cannot be defined
as Jw
TT

- The thermodynamic stability conditions for the same reason
(u = constant) must be expressed in terms of non constant
potentials, like the specific enthalpy. In a way quite analogous
to the model of perfect gas (enthalpy linear functions of T and
constant specific heal a constant pressure) the constant B can

42

be interpreted as specific (for uvnit of area) heat at constant
surface, tension.

For the thermodynamic stability this specific heat must be
positive, therefore we can conclude that B must pecessary be
negative.

- Being U constant the specific (in this model the surface phase
has no mass) heat at constant area vanishes (this is , in
essence, the degenerate aspect of the model).

- The second stability rule (specific heat at constani surface
tension greater or equal than specific heat at constan area} is
consequently satisfied (and also this implies that must be B <
0).

In conclusion, assummg a thermodyaamic model in which the

surface tension d'f)cnds linearly only on the temperature

{system with only one degrec of freedom) the thermodynamic

stability of such model implies that the surface tension decreases

with temperature,

This brings 10 two consideration of the greatest importance:

- To assume, for this model, that surface tension may increase
increasing the temperature, is equivalent to consider that the
surface phase is thermodynamically instable.

- One may ask himself if the thermodynamic stability can be
garanteed by a non linear dependence of o from '.I";
pratically, the answer is negative because, as indicated by

R#). .7 de
(¥) i

generally (id est for every explicit expression of & ( T )

-

Cs = - E-T‘L_?:
d7 47
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and it is irrealistic to suppose that Cg  is positive in a finite
range of temperatures (it would be necessary that d.%s'/;l.i‘"
was negative and greater, in module, than L. 46 y

- All these conclusions are not in conlradd;;:lion with many
experimental rcsu!’ls that show for G{'f‘) a non monoto ic
dependence from T with a minimum.

The fundamental point is that, in these cases, the G isn't
function of the temperature alone but also of concentrations,
Therefore, if one wants to study these cases, he must postulate a
surface phase model with more degrees of freedom, adding,
among the state parameters the concentrations of the species,
The problem is more complex because it is necessary to consider
also the case of absence of chemical equilibrium between the
interface and the volume phases.
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6. SURFACE BALANCE EQUATIONS

Surface balance equations have been derived, for particular
cases, by Prudhomme (1971), Bedaux et al. (1976) and
Napolitano (1977b, 1978a). The derivation presented here
clarifies a number of important points and validates and/or
generalizes the results obtained in the above mentioned works.
Let S(t) be an arbitrary surface bounded by the closed curve
C(1). Consider as control colume Vc(t) the volume generated, at
¢ach imstant t, by the parallel displacement of the bounded
surface 5(1) by amounts { 2 £ ). Vc is delimited by the surface At
distant { 3£ ) from S and by the lateral surface Al passing
through C(1) and no'{mal to the parallel surface S.'A: . The
outward unit normal 4, to ALis a function of both § and 4 and
can be expressed in terms of the unit normal a, on C and of the
components of the curvature tensor K (Napolitano 1978b).

For a scalar extensive property X, if x , R . denote its volume-
density, total flux and production, the balance equation relative

to the control volume Ve, reads:
"

Al

. L[)jt H[")nlh)dg

dit ”;HH&«JJS*}”;‘ - y%«)d-]o\uj,b_.&..).u . (64
Sk

) %
where H@xt+a K+ Mlur" ﬁm);,zun} I’( l
and ) unit vector tangent to C
A a - .
W is the velocity field of the surface bounding Vc. This equation
can be used to derive a number of different approximations to

the balance equations for thin films, If Kmax is the largest value
of the principal curvature of S, fo'r £ Kmax<<l it is :
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Y
H(n)*1; fin)*1 and, similarly, M, = M P . Hence by taking the

limit of eqn 6.1 for & —» O&Iettingz *%
T R 1 ; 6.2
?i.z'&*-J""“,q"J ‘fudk ; rET %O'M'( )
ivo Y ‘1 t2 0 -5

and denoting by

I D O AR (" w207, )
Ped -l fy i maohe)- 0" w0,

he jump of a property f across S one gets:

dd;l(jas fiﬂm {8.- ‘l”;—)ac'ﬁ{i‘)[a.é"-gf J-k}es-06

This is the integral form of the balance equation of a scalar
extensive property X for an arbitrary surface $(t) bounded by
the closed curve C(1), when it is_possible to define, on 8, a surface
density ( X ), a production ¥ per unit area and time and a flux
( f‘ ) per unit length. If the normal flux of X across S and x are
continuous, the jump term disappears. If the surface S() is
closed the line integral over C disappears, and, as before, the
equation holds for ( £ KM «qi )

The local form of the balance equation is obtained by
transforming the first two terms of eqn .3 into integrals over
S5(t)

Substitute these eqns into eqn 6.3, and set the resulting integral
equal to zero (upon the arbitrariness of S(t) and the assumed
absence of line discontinuities on it) to get:

:g%' + 9, '[‘E_' 1‘(’”"?;)*?.‘ 'ﬂ,\;] 4‘5[5. .(fk- Lbu)]: i;(g.lo)

As writlen, eqns { ) and ( ) apply to both scalar and vectorial
properties. In the latter case surface and volume fluxes are
second order tensors. ,

From the above equations the following wuseful relations are
readily deduced:

. In (s -

= J";J’% N:Jsm[ﬁ Hoelen s
o | 8V 2| {5, [Enlo B S )] S
E20 Jvey Sie)

The diffusive flux ;l.. of X in the volume phases is defined by:

‘fw:!n +I‘ (¢.5)
where V is the corresponding mass velocity. An analogous
separation between convective and diffucive fluxes is made for
the surface total flux:

(6.¢)

- ~ e
fo =¥ J,
The actual definition of the convective flux (¥ % ) must be done
consistently within the framework of the whole theory. Indeed
from the thermodynamic point of view the partition 6. b implies,
for imstance, that the diffusive flux of a scalar property is the
only part of the total flux contributing to the surface production
of entropy. Hence, in principle, one should leave v undefined,
proceed to the derivation of the expression for s, impose the
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conditions ensuring that it be always non negative and check
whether, and to what extent, these requirements determine v.
However, it seems appropriate to assume that the surface
dissipative fluxes are the limits for of the corresponding
dissipative fluxes in the volume phases. The validity of this
assumption, as that of the entire theory based on the shifting
equilibrium hypothesis (Napolitano 1971) underlying the local
formulation of equilibrium thermodynamics, can only be
verified, a posteriori, on the basis of the results it leads to, as
known and as stressed by Bedaux et al. (1976). From eqns ¢. §

and ¢, £, formally:

’:ix- & (’”‘?u)‘y‘:*‘j; 'f‘(’l"‘i@) =¥’:“-ju (61)

and thus the above mentioned assumption amounts to define i

as; "

™ ogoe L

Substituting this definition of i, into eqn ¢, ) and accounting for
eqns 6.2 and §.% yields:
+ & it

Yo 2 -‘-—E"'“JRYJM: &[&Mjryaok(ga)
T A By

R Er0

£ f

where the second equality follows from the dcfinition .
Hence the assumplion § . § suffices to define only the tangential
component v, , of v. According to eqn 6.9, v, is the tangential
mass velocity of the surface phase. The component vn will be
left for the moment unspecified. It will be later shown that the

-t

above mentioned requirements for S lead to the definition Vo = W,
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o | T afeT) e (6.4)

For scalar properties the balance equations involve only
tangential fluxes. Hence there is no need 1o impose the vanishing
of normal diffusive surface fluxes because jx is "automatically” a
surface vertor. For vectorial properties with symmetric diffusive
fluxes in the volume phases assumption § & implies that jy is a
surface tensor (M. . ".5 : @ ). For a non-symmetric diffusive
tensorial flux Ix the left normal vectorial componenl‘b + jx (normal
flux of the tangential component of X} still vanishes
automatically. The right normal component jx - p (tangential Flux
of the normal component of X) does not vanish and,
consequently, ix is not a surface tensor.

With the definition 6, § and ¢.F egn 6. & becomes:
73-[;—,: + 9".[&;‘_5;]‘ 5[2. M. L]= i'~W~iL K (6- LO)
(2.2 (V-¥)f

where the last terms in the r.h.s. follows from the vectorial
identity @y -(w.Km) - w, XK.

This equation describes the balance of X in the area element dA
of the surface S. The local time rate of change is due to the
interaction between tha area element and its environment and
1o the production of X on dA. The environment of dA is
constituted by adjacent surface and volume elements.
[nteraction with contiguous surface elemens takes place through
the surface curve bounding dA and is described by the surface
divergence term. Interaction with the adjacent volume elements
takes place through the positive and negative faces of dA and is
described by the jump term. The first term on the r.hs. of eqn
6 .10 describes the "physical” production and vanishes for
conservative properties. The second one is also 1o be interpreted
as a production term. It is related to the rate of area change per
unit area (o, K ) due to lecal warping of the surface "geometrical”
production. The component !v; does not appear explicitly in eqn
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6.10. This implies that the question of whether or not wy = Vs
(material surface assumption) is irrelevant for the local form of
the balance equation so that the more general validity of the
equation derived by Prud’homme (1971) under this assumption
is proved.

6.1 Continuity equation. Alternate forms of balance equations
For X = M , the 10tal mass, J,, and j. vanish identically upon the

definition of V and vs; X = 0 upon the principle of mass
conservation, and eqn §.|§ yields the surface conlinuity equation:

;.g* 94'!'0? + J(e.\r]:- W-\.?K (Cll)

A surface substantial derivative is defined as:

d

a -.3... + Y/
dt )8 W (6.12 )

From eqns 610, 611, 6.1 );

%—f{ +§Y4-y4 + “[8“)']" - waf K

¥?

d Yy 9,0 sS[2n-e%) e m. T o2
dt Josdfan-gR ]
(6.13)

from which the surface balance €quation in terms of specific
quantities X ( %z n =?fﬂ‘f= dR - » Jf' ) follows
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Notice that only the "physical” production appears in this form of
the balance equation.

The continuity equation can be formulated also in terms of the
area per unit mass W . From eqn 6.4} one gets (?J:f:) fdﬁ: - Sdf):

f 5”? - S[a"‘f‘;] =9y, sw K (6.15)

As cxpectable, the diffusive flux of area vanishes. The terms
(VY,.voa Jand W, K  can be interpreted as the "physical” and
“geometrical” production of surface area.

6.2 Momentum equation

From the general expression §.| k one gets, for the momentum
equation:

?’%‘% -g,-Eo(‘[ZAt’(y-!)'ﬁ"L:]= Fg (G.lé)

where ! and _E are the surface and volume stress tensors, and
£ is the gravitaﬁonal vector. It is assumed that both volume
phases are non-micro polar, non elastic fluids. In this case, I is
Symmetric, F_ consequently is a two-dimensional surface tensor,
and:

/ Lf“/ﬂa*z: [G-”'J

L=-p&-T
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where p is the thermodynamic pressure (or mean non-
dissipative normal stress). U and U,are the volume and surface
unit tensors, Lis the viscous stress tensor and, as it will appear
later, 2 is the dissipative part of .

The surface total derivative of the unit normal n is, upon eqns

4.ir

‘iﬁ—':y,-K-V

At 3 7 LY

With the help of this equation one obtains the expression for the
normal and tangential components of the acceleration a:

Ve = 4_5-!1-%? z dwa + ¥y YAWA.—M,._S'Y‘.

o X

Ve -V gowh » Q.A(%%I Ag)

The corresponding normal and tangential projections of the
momentum equations & | § read, on account of eqns 614F:

fomreKeggadftagin-n)op -%.T.n] = Fa.

75 S fe, ) ftlen) - )] - 5y, (1)
The first equation generalizes, to the present case, the Laplace
formula €K + 8p 2 0 |

As for volume phases, the surface particle acceleration can also
be cxpressed in terms of the curl of v through eqn 6.\

as W Ll r (Ghay)ay
2t 2

from which, upon using Gibbs equation in terms of the surface

enthalpy, the following equivalen expression of the momentum
equation is obtained:

:_ﬁ: v Gl s(RavayTurfgn .

9', s ﬂdA(Q-A@}'-o‘
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where:
o " RS
{.I‘,:a&'%g <Y a:-—g"f‘

can be referred to as the specific surface total emhalpy. Equation
6. 19 together with the energy conservation equation, to be
derived in the next paragraph, constitue the starting point for
the study of Ffluid-dynamic properties of the surface phase
analogous to those expressed, for volume phases, by Bernoulli's
and Crocco theorems.

6.3 Energy equation

The specific total surface energy e is given by:

- 1
é’,A, +1U:+'r'

where 'Y‘ is the potential energy. Balance equations for ".f' and 44
are formulated according to the definition of f ( 1 =-Y1") and to
the general expression 6\l and read, on account of eqn §12:

Fé‘%r = -F;_-! ?’# . Y"‘Q‘,.‘ 5[3—-(“-3’74)*:'-.5,.]“’5
(6.20)

where, in the first equation, account has been taken of the fact
that, contrary to A and ¥ ,Tis also function of n.
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The balance equation for the kinetic energy is obtained from the
momentum equation §.16 upon scalar muttiplication by v and
reads:

R

The surface total energy conservation equation reads, upon eqn

616
?3__0-» +Y,.~jc4§[2“[e-gé)+;h-l'e]= 0 (C:.ZZ.)

T

where the diffusion flux Je and the total energy density e in the
volume phase are given by (De Groot and Mazur, 1962):

E R
S A T (S SR GY
Adding eqns €20, 6.2%. accounting for eqns €23 and comparing the
result with eqn €22 lead to

Je = j. --n.ua (624,

ZL TGy - d[Eag(Vovl by g..:;.(y_,)] (.25)
2

The first equation is the surface equivalent of eqn ¢.13. The
internal energy production contains, in addition to the power
density associated with the deformation of the surface particle,
jump terms from velocity differences between surface and
volume phases.

The energy conservation ¢quation can be formulated in terms of
the total specific enthalpy s and, on account of eqns 645 6.0}

and 27 through g1} reads: )
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]
where H = h + r[ % + T] is the total enthalpy density in the
volume phases.

6.4 Surface entropy production

The surface entropy balance equation reads, upon eqn &4

~ = . - -~

769(‘F‘5+9g-‘);S[&a(s-gs%e‘-_I,]:s (6‘?.7-)
]

The entropy density (s) and diffusive flux (15) in the volume

phase satisfy the Euler and diffusive flux relations (De Groot and

Mazur, 1962):

,“_._:TS—P + 3:)(; " J&'= T-J;#—j.'g:' ((.26)

A summation with respect to the index (i) is implied in eqns 6_]4.
The range of values for (i) is taken to be the same for the surface
and the two volume phases with xj (resp. xj) and yi (resp. yi)
formally equal to zero for the property which does not enter the
thermodynamic description of the volume (resp. surface) phase.
From the surface Gibbs equation ( ) one gets:

~_;~ ?-4- d_“?f/\:‘_‘__)_tl'
o o §[Tds . ed2 g [Ge23)
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Substitute inlo this equation the surface substantial derivatives
obtained from the balance eqns €L). €I5), ¥z and P, account for
the ((‘u)z o -

e Tyedy (€30)

- 594

Ti.T:eqv.c(guag)-d&-5.9

f-
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Equation ({30} is the surface equivalent of eqn (1) and could have
been written a priori since it follows necessarily from the Euler
expression (43) (Napolitano 1971) on account of the vanishing of
the area diffusive flux.

The expression for the entropy production must be further
transformed to bring forth the independent generalized forces.
Decompose f as (Napolitane 1977):

[V mbymsnbata,

"o

with t and Ts surface vector and tensor, respectively, and
account for eqn I} to get:

T:%r-s(%y en k) S y)) 2. s

ey [ K S (e )3 [ae b
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(6.3)

Positivity of the surface entropy production cannot be imposed if
the number of generalized forces exceeds that of generalized
fluxes. From eqns (3) and €3l) it follows then that, necessarily,
¥n = Wn. No further restriction arises from the equations and,
therefore, the assumed definition of vs appears to be innerly
consistent,

6.5 Phenomenological relations

From the expression for § obtained by combining eqns ( {€31)and
" (C31) ) one deduces the following set of generalized force-flux
couples:

PRV PR IRTN

[-¥ots- )} {loa-o), mys); [} 4/l
(o8, (0w )i]s [T (- 7)) (2} gaid])

where ( )' denotes volume phases values for n = o, respectively,
I=(Cq-c) U+ &  with Ca the mean surface normal stress and
.Z,the traceless part of :Z i (% _V]: denotes the traceless symmetric part
of { ¥, v ), B is equal to the cocfficient of Z, in eqn ¢y, less the
P, ) '.!', . g-]_'l : L 3-:[; ; j; denotes lhg set of independent
progress variables for the surface productions %, and the Aj are
the corresponding affinities.
Linear phenomenological laws are established in the standard
manoer upon accounting for the tensorial order of the above
three set of force-flux couples, the isotropy of the surface and
volume phases and Curie's principle {(De Groot and Mazur, 1962;
Bedaux et al., 1976). The first set leads to (Bedaux et al., 1976;:
Napolitano, 1977):

£33)
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where ‘1’ is the surface shear viscosily coefficient and the
inequality follows from the positivity of entropy production.

For the second set, let (k) be the number of couples, and F, f
denote the k-dimensional column matrices of generalized fluxes
and forces. Then the linear phenomenological relations are
formaily expressed by:

F.L.f

with L the k-dimensional matrix of kinetic coefficients. The
independent set of forces, provided the fluxes are also suitable
transformed, can be transformed into another independent set.
if t‘ = A . [ is the column matrix of the new set of fo'rces,r with A a
regular ‘matrix, the new set of fluxes Fisgiven by F w(A”)"F

(where the superscript (T) denotes transportation} and the new
matrix of kinetic coefficient is given by Is: - (4")" k- ,:\" . With
the help of these transformation formulae the entropy diffusive
flux may be eliminated on favor of the diffusive flux of internal
cnergy (by means of eqn (()0)) and the new set of generalized
forces can be readily found. As with volume phases, there is no
unique definition of surface heat flux ), if the j; are different
from zero. Common choices are by o _1_. " and J_" ' i"* but others
may be given, )

Besides the usual cross- coupling effects between the surface
diffusion of entropy and scalar extensive properties 7; there is a
coupling between these surface diffusions and the exchange of
tangential momentum between the surface and the volume
phases.

Onsager relations among the cross-coupling coefficients are
readily established when account is taken of the behaviour of
generalized forces under Lime reversal (De Groot and Mazur,
1962; Bedaux et al., 1976). Likewise, inequalities following from
the positivity of the entropy preduction are readily formulated.
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An  analogous development can be made for the
phenomenological relations among the third set of scalar force-
flux couples in (.4). Thus, for instance, the surface dissipative
diffusion of normal momentum ( Gy -6 ) is coupled with the
cxchanges of normal momentum, entropy and properties
between surface and volume phases as well as with the surface
productions.

As seen, phenomenological relations for he surfac.c phase need to
be formulated also for the normal fluxes t:, t-'. ];', ]:;'. which are
described, in the volume phases, by other phenomenological
relations (much simpler, in general, because of the smaller
number of coupling effects). The values yielded by these couples
of phenomenological relations on each of the faces of the surface
must be equal. This obvious requirement yields additional
interface boundary conditions for the volume phase field
equations (Bedaux et al., 1976).
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7. FIELD EQUATIONS AND THEIR NON-DIMENTIONAL FORM

7.1 Volume Phases

It is assumed that volume phases are constitued by non-elastic,
non-micropolar Newtonian fluids with negligible bulk viscosity,
that the motion is steady, that the Boussinesqu and constant
transport properties approximations apply and that radiation
effects are negligible.

With these hypotesis, the closed set of field equations for the
volume phases reads:

§=5.(1- fo(T-7)  wev=o

Ip =§3 SR (7.4)
Q

where:

oLz )\/go(v ;T - ‘(ax.‘g/QT)'.- can b
v R, (# = Z(YY;’(Y \_")o

M and ) are the coefficient of viscosity and heat conduction, the
subscript {(0) denotes values in a reference state and all other
symbol have their usual meanings,
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For pas phases the energy equation involves the further
approximation that potential energy is negligible with respect to
internal energy.

The formulation of surface-phase field equations and a correct
order of magnitude analysis of surface-driven flows require the
use of a coordinate system in which components tangent and
normal to the interface S of vectors, tensors and differential
operators appears separately in the field equation.

a1
The coordinates (f,f,3) of such a system, referred to a parallel
surfac‘c coordinate system, are arbitrary curvilinear coordinates
(i',i) on the surface S and the Euclidean distance from S.

Properties of this system were developed in chapter. (2)

[n the paralle! surface coordinate system equation (7.1} read:

Continuity:

VeVo o vC=0 (3.2
3

Normal Momentum:

VuQ_V: Ve BV - Ve &Y s

¥

=§‘:9~'V?t'@e (7.3)

bl
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Tangential Momentum:

Ve 1V

C =% is rne

const.

3

+ yc'(Yc\[e)t*K Y, - C

Symmetric curvature tensor of coordinate surfacc}:

( its trace and q,. ﬂqare the components of {1 = _VA v
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7.2Surface phase

The surface phase is assumed to be a thermodynamic system
with only one intensive degree of freedom in thermal and
dynamic equilibrium with the two volume phases.

The surface tension will be taken 1o vary linearly with the
absolute temperature and surface irreversibility will be
neglected.

The above thermodinamic model implies that the surface has no
bending or warping elasticity (the equilibrium surface stress
tensor is isotropic) and that:

= (1- 6 (-7,
Sn
AT = Toly

— Pt
ﬂ'-e =T-’T= TG,-

L -

where & is the surface or interfacial tension, G its value in the
reference  state, T, 5, and h are the surface internal energy,
entropy and enthalpy per unit area, respectively, and:

c.,.:-g,% s cmvta,t o

(2.¢)

In this model surface internal energy and entropy per unit area
are uniform.

With these assumptions, the surface phase fiel equations are

¢ K +S[P+2/4.Y¢-‘!c]= 0 (71)

P ]l el
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where:

§9

i

P38 3:0t)-1(2' 5 3:0)

denotes the jump of a properties f across S; K is the curvature
tensor of S, K/2 its mean curvature and the subscript (s) denotes
values forj = 0 (surface values).

Equation (7.7) are the surface balance equations for normal and
tangential momentum and for internal energy. The first of egs.
(7.8) expresses the condition that § is a stream surface. The
other two follow from the assumed thermodynamic equilibrium
between surface and volume phases,
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7.3 Non-dimensiona! Form

A non-dimensional form of the field equations is meaningfull if
and only if non-dimensional coordinates and non-dimensional
flow field variables as well as their derivatives are all at most of
order one. To meet this requirement the definition of non
dimensional quantities must involve a number of non-
dimensional scale factors, as indicated below:

3:/\:{.“; 5;,_ Z‘.Lt ((..-4|1)'~ LM=4CEQ-L,'L£=£¢L

E‘Q/LC ; £-=§/Lb ’ L¢,=£¢£¢L

YA NBPTE

Yo = ;

‘\-’e=vm‘."b; Va = LV VL

258" ; s=667, T Tx £ AT )0 (7.9)

P-F° : F"‘" r”‘ } QL “:L * P’Le'r J'. gt =-..V-‘—' @‘; 'R“l'!‘:

. £l
=( Vo ' :.LYi‘ . ¥ ¥
qs(cL,)T'Y‘ Lt YT *‘551@

Flow field length scales L, and L, in the directions tangential
and normal to the interface may have different orders of
magnitude in different regions and, in addition, are not
necessarely of the same order as the geometrical length L
characteristic of the problem considered. The scale factors & =

( Lt ¢/ L) and ¢ = L ILﬁl_/(‘L account for this fact and,
consequently, are essential only when not of order one. Thus for
instance, an appropriate choice of the scale factor will ensure
that the non-dimensional tangential coordinates and the
corresponding space derivatives of flow variables be at most of
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order one in regions whose tangentiai extension is either much
smaller (e.g. regions in the neighbourhood of confluence between
solid boundaries and interfaces, c.“f) or much larger (e.g far
fields,{®4 ) than L. Similarly, an appropiate choice of | ensures
that 3 and non-dimensional normal derivatives of flow variables
be at most of order one in thin dissipative layers adjacent to the
interface., Upon the continuity equation, | is also the ratio of the
scales for normal and tangential velocities.

In three dimensional problems when the two length scales in
directions tangential to the interface are of different order of
magnitude, L stands for the smallest one of the two scales and
their ratio will appear in the expression for Y:.

The length scale L normalizes the curvature tensors K and c
and is of the same order as the smallest ptincipal radius of
Curvature R, of S since (I/R¢) is the upper bound for their
components. The curvature scale factor |, = L¢/ Ly is at most of
order onc and its presence accounts for the fact that the
tangential variation of the normal n in the direction
corresponding to R , may be much larger than that in the
direction corresponding to Le. Thus 1 = 1 unless R/ Ly<<1in
which case | = R/ L‘<< 1. In practice, R _ can be taken equal to the
smallest radius of curvature of the hydrostatic shape of §. The
underlying assumption that the motion does not change the
orders of magnitude of the curvatures of S appears indeed
Plausible as long as the motion does not cause a breacking up of
the interface.

Pressures and’ temperatures are measured from their values
(Py, T,) in a reference state, which depends on the problem
considered. The relative pressure (P - P, ) is split into
"hydrostatic” pressure F, and "dynamic” pressure Py. Their scales
(P‘n) and (P‘) may be of different orders of magnitude,
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The role of pressure and temperature scale factors (lr. 1) is the

same as that of the length scale factors. When there is no

imposed pressure gradient lp is irrilevant and can be taken equal

10 one. When P, and T, are determined from problem's data, Ip
and | are to be used to analyse regions where the pressure and

lemperature scales are, locally, of order of magnitude different

than those given by imposed pressure and temperalure

differences.

The reference quantities Bwr (L) Vroand (Iy 4T) are the same for
both volume phases. The two latter conditions follow from egs.
(7.8) and hence are correct only when the surface-phase is in
thermodynamic equilibrium with both volume phases. The scale
factor 1 and the dynamic reference pressure (P, ) may be
different in the two volume phases,

Quantities that are not expressable in terms of problem's daia
cannot be prescribed a-priori and must be determined from (he
order of magnitude analysis of the field equations,

7.3.1 Volume field equations
Substitution of €qs. (7.9) into eqns. (7.5) leads to the following

non-dimensional form for the fields equations for each volume
phase:

W
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The Reynolds, Grashoff, Peclet and Prandi] numbers, the
hydrostatic and dynamic Eckert numbers, the number F and the
kinetic number N are defined by:

Ror b G fly R Rk B R g

YV,
3 Splg Ve B g- =fr(AT)~; N = V*/%(AT)A,
(2.12)

When needed, a subscript (i) will be used to identify numbers
and properties of the i-th fluid.

7.3.2 Surface field equations

Surface balance equations involve scale factors and transport
properties of both volume phases The properties of fluid
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labelled one are used to put the balance equations in non-
dimensional form.

Characterization of fluid labelled (1) depends on the problem

considered and must be determined from the order of
magnitude analysis.

The non-dimensional form of the surface balance cquations are:

LU Coe 0 Q2w J) B S5 4y ¢, )

Ha, £, 6970, - -S[Lp M]M-w k)0 *.13)
€ pu Il e

J{‘%’ %‘ %%1:[4'?(_4_)1 £ Bg] Em]_)lﬂh ﬁ;, M( L, ..VL' Y

The Marangom number (Ma,), the crispation number {(Cr,), t
hydrosiatic (Wh) and dynamic (W) Weber numbers and lhe
number C_ are defined by:

Ko, = &% (AT)‘L 5 C.,,' = élV‘l. ; @{‘ = &‘L /6;

)'4 V\, 6‘0

W, = Po: L/'“—' (= ".-3—)/' Ce = Gr(AT); /e,
(1.14)

where the subscript one indicates that the number is defined in
terms of properties of fluid one.

The non-dimensional form of the remaining surface field
cquations reads simply:
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n(w:0')c0; Swez0 ; §9-0  (3.15)

No meaning can be as yet ascribed 1o the non-dimensional
numbers defined by egs. (7.12) and (7.14).

The reason is two-fold. Firstly they involve, with the exception
of Cg, still undetermined reference quantities (Vr, Py, , P )
Secondly they are always combined, in the field equations, with
one or more scale factors (I, P lp, 1) equally still undetermined.

Not all above numbers are indipendent since the following
equalities hoid:

% :REG ;G Mar: Ce (% 1¢)

Eliminating Vr among the numbers 6:; and id-a.- yields:

éﬂ‘- = _F_i_ﬁi‘- =) ah’ = p 6 =(~——L°l&
Mol & (AT fa: B &lT) \das)
where: (?"H')

go = ngg /6',

The number on the right side of eq. (7.17)2 depends only on
fluid properties. The grouping of numbers on the Lhs. is thus

independent of geometrical factors, imposed temperature
gradients and gravitational levels.

68

~

7.4 HYDROSTATIC FIELD EQUATIONS

The hydrostatic field equations yield a  uscful example .for
the proper application of a corrent o.m. analysis and, in addiuoln,
can be conveniently used to climinate the hydrostatic
coniribution from the field equations,

Whensettingy « 0 ; @ = 0 ;K = O  equations (L10) and
(%13 ) reduce, on account of the definitions ($41 ) and (14 ) to

Oy - Pn%QLt i.@ . __P:_E_L_':-%‘ﬂ

O Pan - fun -

Vetly: Sate § (3.18)
PLw -

- kh . L(_ Pl.n. S“l..

S

where Ki, is the mean curvawre of S. The last equation indicates
that the proper reference pressure:

Pn = S5 | @)

is to be defined in terms of L. which, as said, is of the order of
the smallest principal radius of curvature of the interface.

Muitiply eq. (1), by # /3, add it 10 eq. (118 ), account for th.e
last equation (3.3 ) and integrate to obtain, on account of eq. (113
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Hy -t = dlrle (7 _2) (}.Zo)

where Z  js the non-dimensional coordinate in the direction of
(—’3‘\ ) and Z,_ a suvitable reference leved where Ry =,

If

z,- F (44" G.21)

is the equation of the interface in the coordinate system ( Z , *('_,ql).
ststituting the jump of eq. (+.20) on S into eq. (7.18 ), and
accounting for eq. (1.13) lead to the non-dimensional and properly
normalized form of the Laplace equation:

Kee S, = € Bo 3, (#.22)

where

E,_,: Za- Z"l.t } La: ﬂna{flzﬁ—z‘;\\.u

(+.23)

Lalefor &
Boy = _i_j_'sa___

SE°=BOKS—33‘ ;

ok

and the subscript (k) denotes quantities pertaining 1o the
heavier fluid.

Eq. (123 )4 gives the only correct definition of the hydrostatic Bond
number, measuring the relative importance of leading
“capillarity” and hydrostatic pressures. This definition properly
accounts for the vectorial character of the force responsible for.
the variations of hydrostatic pressure. The length L,
characterizes the extension of the interface in the direction of E'L
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[{ To on interface) or its maximum distance from the
equipotantial surface z = Zo (Zo not on interface and S"ho = )],
Le characterizes the smaifest principal radius of curvature of the
interface which, in general, is in a direction different from that
of Lg.
Eq. (1.25 ),explains the hydrostatic zero-g simulations by means of
Plateau configurations ($p,=0 =>Seo=0 ).
A thorough discussion of the solutions of the Laplace equation
{ ¥.2Z ) requires the formulation of appropriate  boundary
conditions and is outside the scope of the present paper. In the
form derived here it does provide however a simple yet
significant example of the kind of a-priori information that one
can obtain from a correct application of order of magnitude
analyses and of the role played by the length scate factors. To
deduce a-priori information Lg and L must be expressed in
terms of a known geometrical length L of the problem by means
of scale factors: L = lg L; Lg = I L. Denote by gﬁm_ the jump of
the Bond number based on L. Then:

$80« §Bou 840, (%.24)

with S_Bm_ known a-priori. When Sﬁm_ << 1, Ig and 1. are itrelevant
and can be taken ~* equal to one: gravitational effects are
negligable and the mean curvature of the interface is constant.
When SQ\o._ = 0 (1), Ig and I can be used to further normalize the
Laplace equation by taking Sdo = 1;ie.

’f\L%LcS'?o L

Ua

(Upon modifymg the reference pressure by letting S”L,., A
the Laplace equation can be fully normalized to read K,t1: 2,
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a form which leads itself to interesting “similarity”
consideration).

When 3$“>> 1 eq. (T.21) yields, formally, the solution '?'.., = 0 (the
interface is an equipotential surface). This solution either makes
no sense or, when it does (as in plane problems), iz not
uniformely valid. in both cases Ig and Ic cannot be both of order
one but must be determined from the condition $%¢ = 58, Gs .=
1 (which, in plane problems, characterizes the extension of
regions near solid boundaries where gravitational and capillarity
pressure effects balance out).

A proper formulation of the o.m. analysis provides therefore the
following important a-priori information. The product Lg L of
the length characterizing the geometry of the interface {(L¢) and
its maximum extension in the direction of the gravity field can at
most be of the same order of magnitude as ( L;’ fon / § fo )
where Ly = Y o3 / Cox 9 is the Bond characteristic length (also
known as capillary constant) of the heavier fluid, (This maximum
o.m., being based on equilibrium considerations only, may be
further limited by stability considerations].

This criterion provides a-priori estimates for the maximum
extension Ly of the interface in the direction of the pravity field
when L: is either known (c.g.: sessile drops menisci in pipes,

having drops floaling zones) or isfthe same order of Ly (c.p. wall
menisci).

Next paragraphs will show the wealth of similar a-priori
information that the correct application of o.m. analysis can yield
in flow problems.

When static contributions are eliminated from the field

equations the body force terms must be replaced by the.
buoyancy terms:
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t 3 =

LI LG O%n , WU GB35 (v

in the normal and tangential volume momentum eguations,
respectively, The hydrostatic jump term in the surface normal
momentum equation must be replaced by ( - Kh } which,
according to equation ( F.2L ), is eiher constant or function of the
coordinate "fn in the ( - '!S ) direction. ,

In this laiter case the jump ~ § H ;.("l" 4') ata point Q (‘f 1 ') of
the "dynamic" interface is equal to the jump across the
hydrostatic interface at the point Q' having the same
coordinate €, as @ . Thus, if Z,* denotes the value of the Z,
coordinate of kh - Kk, (2_. - 2:’ ) .
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8. ORDER OF MAGNITUDE ANALYSIS
8.1 Introduction

Convection in the absence of imposed velocities or pressure

gradients in fluid systems with interfaces may be classified as

natural, Marangoni or combined free convection according to
whether the motion is caused by buoyant forces, Marangoni
stresses or both.

An order of magnitude analysis, if done properly, will provide all

information a priori, i.e. in terms only of data of the problem, on

the the type of convection prevailing, the nature of flow regimes,
the coupling of the wwo fields, the order of mafnitude of the
velocity, and so on.

In this chapter we propose a general order of magnitude

analysis, 1o investigate the general case in wich the interfacing

fluids, the gravity level g, the imposed temperature difference
and the extension of the interface are arbitrary. Two main
interrelated objectives are set forth:

i} To idemify and classify systematically all possible flow
regimes occuring in natural, Marangoni and combined
convection

ii) To formulate the criteria that make is possible to determine a
priori, in each specific case, which situation will prevail.

Space limitation impose a number of restrictions to the
generality aimed at in the present work. Thus it is assumed that
the geometrical lengths are all of the same order and that the
flow regions near fluid solid interface do not influence, in terms
of orders of magnitude, the analysis herein carried out.

n

8.2 Mathematical formulation

We shall only be concerned with the determination of the
reference velocity Vr, and of the two scale factors 1; defining the
length scalestL in the dircction notmal to the interface, where L is
a geometrical length characteristic of the problem considered.
Determination of scale factors f, defining fength scates £,/ in the
direction parallel to the interfaces (relevant for instance, when
considering simultaneously fluid-fluid and fluid-solid interfaces)
of reference pressures and of the influence of motion on the
shape of fluid-fluid interfaces will not be considered. The
interface will be modeled as a massless surface phase with only
one intensive thermodynamic degree of freedom; surface
irreversibility will be neglected and the smaller radius of
curvature will be assumed to be of the same order as L. The
motion is steady, volume phase linear phenomenological
relations and Boussinesq approximations are used.

The balance equations to be analysed are those of:

tangential momentum for the two volume phases and for the
surface phase;

internal energy for the two volume phases.

The general criteria that must be used for the determination of Y
where discussed in [1] and are further elaborated in whai
follows:

1) The non dimensional mcasures of the leading diffusion terms
must be set equal to one to ensure proper applicability of
boundary conditions. In the volume phases the leading
diffusion terms are those due 1o normal gradients of normal
fluxes. In the surface phase tangential momentum equation
the leading viscous term is not known a priori since the
measure of the relative importance of the two tangential
viscous stresses T, acting on the interface involves also the a
priori unknown scale facors I;,



2) The measure of the largest driving action must be set equal
1o one, In the subject case there are three driving actions: the
buoyant forces in each fluid and the Marangoni stress. There

are (wo measures of the Marangoni stress, one in terms of *Ci

and the other in terms of T;. The appropriate one is the
smaller of the two, comesponding to the Iargcslc,'nol unknown
a priori.

Both measures must therefore be introduced and the
identification, in each case, of the appropriate one must
follows from the order of magnitude analysis.

3} The measures of all other terms entering the balance
cquations must be at most of order one. Each contribution to
a non dimensional balance equation is the product of two
facors: one contains dimensionless field variables and their
derivatives and the other is a nondimensional number. If the
nondimensional process was done properly the first factor is
at most of order one and the nondimensional number yield
consequently an upper bound 1o the measure of the relative
importance of the considered contribution. These numbers
will be referred as measure numbers, Imposing that they be
at most of order one is a sufficient condition to ensure that
no contribution to the balance equation is of order higher
than that of the leading diffusion term.

4) The scale factors ,P.‘ must have the largest value compatible
with the constrainis deriving from the formulation of the
preceding criteria, This will ensure the largest domain of
uniform validity for the corresponding forms of the field
equations.

The measure numbers to be considered in the subject case
are those for tangential convection of momentum Cwm; and
internal energy." for the buoyant forces B: for the iwo
measures M; of the Marangoni stress and for the ratio 2§ of the
two  viscous sliresses aClil';g on the interface (momentum

resistivity ratio). Other measure numbers appearing in the
balance equations herein considered are either to be used in
the determination of reference pressures  or are
automatically at most of order one in the subject problem.

Let o~ be the interfacial tension,

Ap -‘--f,ﬁrAT; Ae =~ oz AT

where the subscript zero denotes values in the reference state
T=To and B, 67 arc constant; M the viscosity coefficients; ¥, d.the
momentum and energy diffusion coefficients and let the
subseript f.((:!,z)denole the i-th
fluid, fluid one being the more viscous fluid. The pertinent
measures numbers are given by:
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The subscript star indicates that characteristic numbers
(Reynolds, Peclet, Grashoff and Marangoni) appearing in these
cquations arc defined in terms of the still unspecified reference
velocity V.

On  account of the previcously mentioned criteria, the
determination ofV, 0, {,for a given set of problems dala can be
formulated as the solution of the following constrained
maximum problem:
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The maximum problem can be alternatively and conveniently
formulated in terms of either characteristic speeds or
characteristic lengths.

The definition of the starred characteristic numbers led, in an
almost obvious manner to the identification of two sets of
characteristic speeds depending only on problem's data:
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The four speeds of the first set are the well known momentum
and energy diffusion speeds. Those of the second will be
referred as driving speeds: the first two are buoyant speeds, the
second two are the Marangoni speeds.

The cquations‘ashow that there are six independem characteristic
lenpths. Their choice is not unique: they must be referred to a
characteristic speed idpendent of L and there are several
alternatives available (e.g. the two Marangoni speeds; any of the
combined specds!ﬂ? -obtained upon elimination of L between the
diffusion and bunyant speeds). We choose to define
characteristic lengths i terms of the Marangoni speeds \{“ of the
more viscous fluid. Thus:
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The first four are diffusion characteristic lengths, the other two
will be referred to as  dynamic Bond lengths. They are related to
the hydrostatic Bond length
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This ratio is independent of the gravity level g, the imposed
temperature difference AT and the length L

In terms of characteristic speeds problem the constrained
maximum problem reads
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and in terms of characteristic lengths
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Each solution V,.pnfl correspond to a cerain range of orders of
magnitude of appropriate combination of problem’s data. Such a
range will be referred o0 as feasible range of the given solution.



8.3 Flow regimes

The o.m. of the convection numbers and of the scale factors
determine the differem regimes for the wvelocity and the
temperature fields. The following terminology will be used.

1) Diffusive regimes (lj=l3=1)

2} Dissipative layer regimes (at least one |i<0(l)) characterized
by the presence of at least one dissipative layer adjacent to
the interface.

8.4 Conditional characteristic numbers

The starred characteristic numbers*are defined in terms of a yet

unspecified reference velocity V, and can obviously be
cxpressed in terms of the characieristic speeds 8.3 :

R by --V-"- ; &‘u' = —\‘;‘- ;
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This form evidences the different roles of diffusion and driving
speeds with respect to the reference velocity (see the
formulation of the max problem in terms of the characteristic
speeds) and shows that the following products "or ratios are

independent of V,: 3
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They are all equal to ratios of characteristic speeds: the first four
involve a driving and a diffusion speed, the last one a buoyant
and a Marangoni speed.

To clarify the notion of characteristic conditional numbers,
consider a number X* defined in terms of a reference
velocity V; and a characieristic speed Vy measuring in diffusive
regimes the relative importance (A/B) of two phenomena A and
B and suppose that X=V./V:. When V: is equal to an imposed
velocity V, the characteristic number Xo=Vo /Vy will be called
‘absolute” as it gives a measure of the two phenomena A and B
independently of that of other phenomena.When there is no
imposed velocity, V: is a fortiori equal to another characteristic
speed Vy. The number X, 2X (4% - WWwill then be called a conditional
characteristic number as it yields the measure of the relative
importance of the two phenomena A and B given that the
measure of two other phenomena (say C and D )is equal to one.
As with the all conditional measures, a duality is involved. Let Y*
be the characteristic aumber measuring the relative importance
of the phenomena C and D. If Y=Vy/V, then )(Y’:ZszIV, and
Xy=XV=Vy)a Y =YIV,=V,)=Z. That is; the number Z can be
equivalently interpreted as the conditional characteristic
number Xy (measure of A/B given that C and D have the same
importance). Similarly, if Y=(V//Vy) then the number Z=X7Y"is
equal 1o either Xy or 1/Yy. Notice that for V,=V, whereas it is
still true that Z=XYZX,Y,, the number Z cannot be considered a
conditional pumber since X, and Yo . being absolute numbers,
have well defined values which are, in general, not equal to one.
The same remarks obviously apply to Z'
Conditional characteristic numbers will be denoled with a
subscript indicating which measure is equal to one. Thus, for
instance, with reference to the numbers {2.9) we have.
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and the implication of the duality is evident. This conditional
measure can be considered as the conditional Peclet number
defined i terms of the Marangoni speed (measure of the relativer
importance between convection and diffusion of energy given
that the Marangoni stress is of the same order of magnitude as

1wy = Ha.{ Py



the viscous tangential stress) or as the conditional Marangoni
number defined in terms of the energy diffusion speed (measure
of the relative importance between Marangoni and tangential
viscous stzess given that energy convection is of the same order
as energy diffusion in the bulk fluid).

8.5 Analysis

An inequality will be called controlling when it implies another
inequality of the same type. The controlling convection
inequality in the ith fluid is determined by the largest
convection measure which zill be denoted by Ci, and comesponds
to the smailest of the two diffusion coefficients ¥-and o; . To unify
the treatment, we shall denots by Di the smallest diffusion
coefficient and by Vd;, X' the corresponding diffusion velocity
and starred transport number. The ratio (D2/D)= Vd/Vd; will
be denoted by Dy,

In the subject case, the scale factors are determined,
independently of the value of Vi by the controlling convection
inequalities. Two alternative are possible for each ). The value of
L; is equal to its absolute maximum (lij=1} provided thai Ci<=0(1),
or otherwise determined by

the condition that the controlling canvection measure be kept at
its maximum allowable value (Ci=1) so that

L= (/) <o),
The four combinations of the two possible alternatives for each
scale factor determine four classes of solutions of the max
problem2which are listed in table 1. The first class correspond to
diffusive regimes, the other three lo dissipative layer regimes
with the L giving, when of order less than one, the order of
magnitude of the nondimensional thickness of the layers. These
thickness vary always as the inverse sqare root of the
appropriate starred transport number (Reynolds or Peclet).

When two dissipative layers are present (class ) the ratio of
the two thickness is independent of V, and is always equal 1o
the square root of the diffusivity ratio D7y. This generalizes a
well known result holding for classical boundary layers.

The number of different solutions pertaining to each of the
above four classes depend on the possible values of Vr as
determined by the largest driving action. For Ia=1, the last of
eqns {I.f) shows that the appropriate measure of the Marangoni
stress is always M pftycmksinee 1) <=Q(1) and upon the chosen
characterization of the fluid one. There are thus three different
solutions, corresponding to Bi=1 (i=1 or 2) and M)=I1, for classes I
and Il and four (B;=1, Mi=1) for classes I1 and 1V, for a total of
14,

They are listed in table 2. For dissipative layer regimes the first
column gives the expression of Vi in terms of driving speeds and
of scale factors, the second and third columns gives the
expression for Iy and 13 and the last column gives the final
expression for Vr. Dissipative layers will be called buoyant or
Marangoni tayers according to whether the leading driving
action is due 10 buoyant forces or to Marangoni stress,
respectively.

Table 2 evidences a number of important points that are worth
stressing.

1) In diffusive regimes the reference velocity V, is always
equal to a driving characteristic speed.

2) The law of variation of dissipative layers thickness with (he
inverse of the appropriate conditional transport number may
be the well known one-fourth law (buoyant layers), the one-
third law ( Marangoni layers) or also the classical one-half
law .

The present approach to the analysis of dissipative layers
provides a clear physical explanation for these different laws.
As atready pointed out, diséipative layers always vary as the



3)

4)

5)

inverse square root of starred transport numbers, defined in
terms of the reference velocity V.. The classical one-half law
prevails when V, is cither equal to an imposed velocity
(classical dissipative layers) or to a driving characteristic
speed (buoyant or Marangoni layers only on one side of the
interface). The other laws prevail when V; is smaller than a
driving characteristic speed. The second cplumn of table 2
shows that in these cases V, is equal to Vrk' where Vy is a
driving characteristic speed and the exponent p depends on
its nature, For V¢ equal to a buoyant speed p=2 and the one-
fourth law is obtained; for V§ equal to a Marangoni speed p=1
and the one-third law is obtained.

The 172 power law prevails if there is only one dissipative
layer on one side of the interface while the driving action is
due to the fluid on the- other side of it

As a consequence, the dissipative layers behaves as any
shear layers caused by an imposed velocity on one of its
borders and thus the 1/2 power law holds.

A necessary condition for V, 1o differ from a driving speed
Vi is that at least one dissipative layer be present. V; is then
smaller than V¢ and equal to V¢ divided by the square root
(buoyant layers) or the cubic root (Marangoni layers) of the
appropriate conditional transport number. V, can also be
expressed as a the weighed geometrical mean between a
driving and a diffusion speed. For buoyant layers both
weights are equal to one-half, for Marangoni layers, the
weight of the Marangoni speed is two thirds and that of the
diffusion speed is one third .

The driving and diffusion speeds characterizing the
cxpression of conditional ftransport numbers pertain to a
same fluid for layers following the 1/4 or 1/3 power law and
the two different fluids for layers following the 1/2 power

law. In this latter case only three of the possible four
transpart numbers are involved since, as already mentioned,
for l2=1 the appropriate measure of the Marangoni stress is
M| and consequently, V; can never be equal to V3.

The numbers Xig, will be referred to as the (conditional}
Grashoff or Rayleigh numbers, as appropriate.

The more coherent terminology will be used for the other
numbers which will be called conditional Reynolds and Peclet
numbers, as appropriate. When needed, the speeds entering
their definition will be mentioned explicitely. For ease in writing
the numbers XMt will be simple denoted by Rem or Pey as
appropriate and, likewise, the numbers Xigi will be denoted by
Gii or R;;.

8.6 Feasible ranges

The problem's data are: the temperature difference AT, the length
L (in the present particular case the other geometrical lengihs
are supposed 1o be of the same order of magnitude as L and thus
are not relevant for the o.m. analysis), the gravity level gigg
where go is the heart gravity, the physical properties of the 1wo
fluids and of their interface. The feasible ranges for the sets of
solutions listed in tables 2 are expressed in terms of the orders
of magnitude of appropriate combinations of these problem’s
dala, hereinafter referred to as parameters.

For lj=l2=1 (diffusive regimes} the feasible range is determined
by the condition that the largest driving speed Vp be at most of
the same order as the smallest diffusion speed Vd since
equalions(u], reduce 1o Vi=Vp<=Vyq.

As the measure numbers coincide with the starred characteristic
numbers, the relevant parameters are given by the seven
independent ratios that can be formed with the cight
characteristic speeds given by eqns (83 ) .

Five of them, involving only the properties of the fluids, are:

Ty -
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where fij=fi/fj and Pr is the Prandtl number.

The other two parameters involve alse L, 2. AT.

Several choices are possible and we shall find useful to use the
following one:
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which coincides with two of the combinations of starred
numbers given by eqns (J 9).

The properties of the fluid identify the smallest diffusion speed
(denoted as V41) and the largest buoyant speed (denoted as
vek). Vy¢ is determened by the o.m. of the Prandil numbers (D,
=Y; for Prj<=0O(1) and Di=el; for Pri>0(1) ) and of the diffusivity
ratio Day. Vg is determined by the o.m. of the parameter Gz;. To
determine the largest driving speed and to evaluate the
inequality (Vp<=Vy4) also the other problem's data must be
prescribed. Vp is equal to either VYak of V1. The alternative
depends on the o.m. of the first parameter (8,(4)a fact which
justifies having called Ly; the dynamic Bond 1 =ngth. For Le<Lpi
buoyant effects are negligible (Vgr<<Vyy; Vi=Vp), for L>>Lpk
Marangoni effects are negligible ( Vek>>Vmy; V.--ng) and for
L=Lpx both effects are equally importamt (VgkXV
V=V 2Vpy).

The inequality Vpc=Vy readsth'mlo'l)\',.f"“)according to whether
VD-ng of Vp=V 1 and together with those leading to the
identification of Vp and V4. determine the feasible ranges of the
three different solutions for diffusive regimes (Vi=Vygy, Vg2 or
Vmi)

For the other regimes (at least one li different from one) the
measure numbers(&‘{} must be considered, Elimination of Vq,p“ﬂ from
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cqns (l.f} yields five independent ratios that arc conveniently
chosen to be given by the set:
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Three additional useful relations are obtained upon elimination
of Vi and I} f{orn among the Bi's Ci's M;'s
Coo by Brog gl Mg 229 (3.49)
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Only one of them is independent, the other two following from
equations 312. Equationstf2and $4¢ show that:

1) Obviously, the smallest diffusion speed is still determined by
the fluid properties only,

2) The necessary conditions for the validity of solutions
pertaining to classes 11l and 1V are D21>0(1) and D2,<0(1),
respectively.

3) The appropriate measure of the Marangoni force and the
controlling  buoyancy inequality are almost always
determined by (he fluid properties only. However the

relevant parameters are now A1/ 0, omd G Pag -

The situation as deduced from eqns“for class H |, and from cqnsﬁﬂ),',

and €4 for classes IIT and IV, is summarized in Table 3 wherein
class I has also be included, for ready comparison.When both Bi
or both M; appear it means that the controlling buoyancy
inequality or the appropriate measure of the Marangoni stress
do not depend on fluid properties only. This occurs in three cases
pertaining to classes 11l and IV. As in diffusive regimes, the



other problem’s data are then needed for the final determination
of the largest driving force.

Table 3 suggest a conveniemt method for a compact
representation of all possible solutions and of their feasible
ranges. As seen, there are seven independent parameters, five of
which depend only on the properties of the fluid. It is possible
therefore to partition all possible couples of fluids into a number
of classes defined by the appropriate combinations of the orders
of magnitude of the fluid parameters. To each such class there
corresponds a subset of the solutions lisied in table 2 , identified
by the orders of magnitude of the remaining two parameters,
which define a plane. The feasible ranges corresponding to these
solutions span this plane and thus provide a compact
represeniation of all possible solutions pertaining to any couple
of fluids belonging to the class considered.

The five parameters depending only on fluid properties are
A2 PJ!“ / D?f amel ¢3.‘.

By definition of fluid one, Aayis always<wO(1). The four relevant
combinations of the o.m. of the Prandil numbers identify, as
seen, the four possible expressions for the ratio D2y, between the
smallest diffusivity coefficients of each fluid. As to the two
parameters D3| and Gi,, is not sufficient to consider only two
alternatives for their order of magnitude (<=0(1) and >0(1} )
since the classes 11, 11} and IV are also affecled by the om. of

the parameters 4, , / ﬂ_); Qe G2y D¢ .

Since:
D pakolt) and D,20(0) imply ey, B 40(4);
i) D2 001) and G BEOU) imply €, <0(4);

i) 02010 and g, 0y4”0U) imply Gy > 0(4)

it follows that for each parameter D;; and G21 three alternatives
need 1o be considered. '

oA

The number of classes in which the possibles couples of fluids
must be partitioned is thus 9 if one convenes that couples of
fluid with the same o.m. of D2t belong 1o a same class whichever
is the actual expression for Djy, i.e. uﬁchever is the o.m. of the
Prandtl numbers of the two fluids.

It proves convenient to express orders of magnitude in terms of
powers of a small parameter € <<1 whose degree of smaliness
characterizes the separation between consecutive orders of
magnitude. We thus let:

; P4
/(A-": E‘“,' Du" £ f} /“1;/;5'" 4 f,‘

8.15)
3!

/T A 4 i »
Gt Db, [.‘{f/""g“} g% B

The nine fluid classes correspond 1o the different relevant
alternatives as to the signs of dzy, g2y, d and g. They are listed in
Table 4 together with the subset of solutions belonging to each
class,
A given couple of fluids can, in principle, belong to any one of
the above nine classes. To get an idea of the situation prevailing
with fluids of potential interest in microgravity applications, the
following classes have been considered: liquid metals, organic
liquids, molten saits, silicon oils, water {pure and contaminated),
typical natural wax, typical molien glass. Ranges of orders of
magnitude of the different relevant parameter for liquid-air
systems are listed in Table 4b.
The other two parameters entering the definition of feasible
ranges are chosen to be the speed ratios:
!L‘L:-—L—;X”,.Z .‘.'"; ._\‘_/E-: ;AH:E,‘; (3‘{()
Vio L4 Vit

They are two conditional characteristic numbers. The first one is
either Rem or Pem according to whether Pry<=0(1) or Pri>0(1).
The product of the numbers{8.16) is correspondingly the conditional
Grashoff or Rayleigh number of the more viscous fluid.



The feasible ranges for the solutions lisied in table 2 are readily

found by sobstituting the given expressions for Ve, &, , 4,

in the inequalities (3.2} and by expressing them in terms of the

exponents defined by equations(§.65)and(8.1¢).

Results are summarized in table 5 which gives, for each case:

- the considered solutions, as identified by the numbers used in
table 2 and by those used in Figs.2 ;

- the unitary measure identifying the largest driving forcc;

= the inequalities (controlling or not corresponding to the other
measure numbcrs;

= the scale factors I; and the reference velocity Vi,

For each of the solutions I11, IV1, [12, and IV2, pertaining 1o
natural or combined convection, there are also shown the two
ranges corresponding to the two different measures (M or M3)
of the Marangoni stress and thus identifying the targest shear
stress acting on the interface,

Table 1. Classes of solutions [or scale factors
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Table 2. List of the 14 different solutions for (Vr, I, L)
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Tabte 3. Table 4(b). Orders of magnitude of relevant paramelers for liquid-air systems
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Fig. 1. Properties of 8,, m,, plane.
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Fig. 2(a). Schematic representation of solutions: case A, of Table I.
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Fig. 2(b). Continued: case A, of Tabie .
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Fig. 2(d). Continued: case B, of Table 1.
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Fig. 2(e}. Continued: case B, of Table 1.
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Fig. 2(f). Continued: case B, of Table I.
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Fig. 2{g). Continued: case C, of Table 1.
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Fig. 2(h). Continued: case C, of Table I.
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