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Mot solid-state devices ulilize properties of crystals obnmed throu;ll the controlled introduction into the host lattice of impurities
(" dopants”) or deviations from stoichi y. This dj is typically made during the growth of the solid from its
nutrient (melt, vapor or solution). Since the y:eld snd perkmnmee ol devices depends strongly on their compositional uniformity, &
detailed undersianding of the fluid dynamics of nutrient phases and at solid- nulnml inlerfaces is important. Rigorous modeling of
heat and mass transler in multicomponent (crystal growth) fluids for realistic b y condi is typically unwicidy. Hence, Lhe

motivation for simplification is grest. N simplifying models have been used in the materials preparation literature. Though
well justified for some special cases, these concepts have been indiscriminately generalized, causing much confusion. In this
presentation we take the opposite route. Based on the generally valid transport equations and the sppropriate dimensionless groups of
fluid propertics, we point oul (a} limitations of the most commonly used mass transfer modelu, md (b) phyucany justifisble analogies

between mass, heal and momentum transfer. From these considerations one can get v semi id:

for the

1 »

laborstory practice in many situations that currently defy rigofous trestment.

1. Introduction

Most solid-state devices utilize properties of
solids obtained through the controlled introduc-
tion into a host lattice of impurities (“dopants™) or
deviations from stoichiometry. The performance
of such devices depends often strongly on the
compositional homogeneity obtained. For in-
stance, in modern microcircuitry, compositional
variations of a few percent down to a submicron
length scale can seriously jeopardize production
yields. The compositional adjustment in solid com-
ponents {crystals) is often made during their growth
from the nutrient (melt, vapor or solution). Hence,
a detailed understanding of the dynamics of mass
transfer in nutrients at growing interfaces has be-
come importiant.

Systems in which the solid possesses exactly the
same composition as the nutrient from which it
grows, i.c. congruently growing materials, arc rela-

tively rare. In most systems the property-determin-
ing component is either partly rejected by the
advancing solid-nutrient interface, or the compo-
nent becomes enriched in the solid. This can be
described in terms of a segregation (distribution)
coefficient, k= C}/CJ, where C* and C* stand
for the concentration of the dopant or incongruent
host component in the solid and nutrient, respec-
tively. The subscript zero refers to values taken at
the location of the interface, x = 0, Note that k,
can only be equivalent to the equilibrium or ther-
modynamic segregation coefficient k* if the inter-
facial growth and segregation kinetics is rapid as
compared to the transport kinetics in the contact-
ing bulk phases. This is not always the case.

Al low growth rates and, hence, low interfacial
segregation rates, the dopant concentration in the
nutrient will be close to uniform, as schematically
indicated in fig. 1a for a host-dopant combination
with k; < 1. At practically feasible growth rates,
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Fig. 1. Segregation at the solid-nutrient interface of a binary
stion profiles for with segregation

hed . ¥
coefficient k,, <1 for (a} very small and (b) higher growih rate.

"

however, G becomes larger than the bulk value
C® (fig. 1b). In terms of a segregation coefficient
that is defined with respect to the more or less
uniform concentration in the bulk nutrient, k =
C2/C2, one can cxpress this increase as kg < Ky
«< 1. The actual value of k  depends in a complex
manner on the mass and heat transfer conditions
at the interface and on the coupled growth rate.

This dynamic nature of Cj, per se, does not
pose any problem in the control of doping levels.
However, the transport conditions (diffusive—con-
vective fluxes) are rarely uniform across the whole
interface. For instance, convection at parts of a
crystal that are close to a container wall is often
less significant than at * more exposed” parts. Thus
the composition becomes non-uniform parallel 10
the interface. Furthermore, any non-stcady trans-
port conditions, as they modify C', can lead 1o
non-uniformities in the crysial composition nor-
mal to the interface, that are superimposed on the
steady-state inhomogeneities. Even for perfectly
stable external boundary conditions (e.g. furnace
temperature), non-steady transport conditions can
arise from time-dependent, buoyancy- or surface
tension-driven convection in a nutrient. Therefore
the materials science communily has developed
great interest in the low-gravity conditions ob-
tainable in space crafts, that allow for a minimiza-
tion of the buoyancy-driven convection and better
defined studies of nutrient motion due lo surface
tension gradients.

Besides their influence on the segregation dy-

namics, concentration and temperature profiles at
interfaces govern zlso the morphological stability
of a growing crystal. This, again, is 8 complex
topic. But in general, onc can say that the proba-
bility for a solid-nutrient interface 1o loose its
shape stability increases with increasing interfacial
concentration gradients. Interfacial temperature
gradients, dT/dx > 0, on the other hand, tend to
stabilize interfaces.

From these introductory considerations it
should be obvious that for both, the attainment of
homogeneous solids as well as the achievement of
high, stable growth rates, a quantitative descrip-
tion of the fluid dynamics of nuirients under
physical and chemical conditions relevant to
materials preparation is of great importance.

2. The governing equations

Rigorous modeling of heat and mass transfer in
multicomponent {crystal growth} fuids requires
the simwlraneous solution of the conservation equa-
tions {1] for:

- momentum {Navier-Stokes equation, Newton's
second law),

dJ

i ~[o-poe] - vp —[v 7]
raie of changs convection pmn ;'lmo'r
of momentum

+ 8 (1)
gravity ov other
body forces
— mass (continuity equation),
)

2P ==V pv; (2)

o

- species (e.g., binary diffusion equation), with
i=A, B,

d
Ep‘ '_ -9-po=-
rate of gain
of mass

—[V'P,U-V'pDAl V'y‘]p (3)

convection diffusion
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~ energy
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conduction prruwu
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=

| for typically rather complicated boundary condi-

lions. (A list of nomenclature is given at the end of
the papet.) We ziso have to consider the thermal
equation of state p = p(p,. T}, the caloric equation
of state u=u(p, T). Then we need cxpressions
for the viscous momentum flux @ -t and the
conductive heat flux g in terms of their driving
gradients and transport cocfficients. For sysiems
with large disparities in the molecular weight of
species, Soret diffusion must be added 1o the con-
centration diffusion term in (3). Chemical reac-
tions introduce additional conditions. Radiative
heat transfer, ofien dominant in materials process-
ing, nceds 1o be included in (4). Also, when strong
component (interdiffusion) fluxes exist, (4) must
be supplemented with a “diffusion-thermo” or
Dufour flux term. This complete description then
determines the concentration, velocity and temper-
ature distributions as a function of the spatial
coordinates and time.

Such a general formulation of transport is un-
wieldy and has been solved to date only for & few
idealized (crystal growth) situations. Hence, the
motivation for simplification is greal. Numerous
simplifying models have been used in the materials
preparation literature. Though well justified for
some special cases, these concepts have been indis-
criminately generalized, causing much confusion.
In the following we will take the opposite route.
Based on the generally valid equations and the
approptiate dimensionless groups of fluid proper-
ties and boundary conditions we will discuss the
limitations of the most commonly used mass trans-
fer models. Beyond that we will draw physically
justifiable analogies to similar heat and momen-
tum (ransport situations. Since these are experi-

mentally more readily accessible than concentra-
tion distributions, valuable guidance for labora-
tory practice can be obtained from such analogies.
Since our emphasis is on a comparison of different
classes of nutrients, we will limit the discussion
mostly to one-dimensional models.

3. Steady transport st interfaces
1. Diffusive-advective mass fransport

The formal treatment of so-called purely diffu-
sive transport is among the most controversial
topics in the materials preparation literature. First,
it is often overlooked that the specific form of (3)
is based on the mass average velocity v and the
mass [raction W, If other concentration coordi-
nates {mole [raction, eic.) and for reference veloci-
lies (mole average velocity, etc.) are used, other
factors (than p) appear in the “Fick's first law™
term of (3) {see e.g. refs. {2, 3)). This has been an
inexhaustable source of errors — and of more or
less clearly presented tutorials.

A second, closely related difficulty stems from a
widespread misunderstanding of the definition of
diffusive fluxes. Diffusion is in general understood
as the component flux with respect 1o an average
velocity of the system. Therefore the total mass
flux of, say, component A in a binary system is

Ho = pa0s = Pa0 + POy VW, (5)

where the two terms on the rhs represent the
convective and diffusive mass flux coniributions,
and the mass average velocity,

o=2Lom ()

was chosen as average velocity. For other choices
of the average velocity and the resulting different
formulations of the diffusive flux term, sec refs.
[2,3]. In the absence of free or forced conveotion it
has become customary to set ihe convective term
in (5) equal to zero. On segregation at an interface,
however, the mass average velocity, even in the
absence of “conventional” convection, is typically
nonzero. For instance, for a two component sys-
1em in solution growth, assuming that the solvent
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B is quantitatively rejected at the interface (consid-
ered stalionary), in the one-dimensional treatment
v = 0. Thus, one obtains from (6) v= W,v, and
for the “convective™ term in (§)

At = g Won, = n W, {n

As the term “convective” is suggestive of free or
forced Mlow we prefer lo denote the diffusion-
induced bulk flow (7) as advective. Note that the
mass average velocity in the governing equations
(1)-(4) contains both the externally caused bult
flow and the advective flow velocity contributions.
Substitution of (7) into (5) vields for the * purely
diffusive” component (diffusive—advective) mass
flux towards a growing crystal

Py AW,
"ACToW, dx ' (8)

rather than the widely used
n,=pD,y AW, /dx. {9

From (8) we see that the advective flux term (7)
“set up by diffusion” and thus the difference
between (8) and (9) is significant whenever the
concentration of the diffusant A is not 100 low.
Consequently (%) forms sn excellent approxima-
tion in many melt segregation problems with low
dopant levels. Indiscriminate applications of (9) to
high concentration solution growth or vapor
growth, however, has lcad to some rather amusing
conclusions. The relation for mole fluxes corre-
sponding o (8) was already clearly undersiood by
Stefan in 1882 {4). Consequently, advective flow
velocities associated with diffusion are frequently
referred to as Stefan velocities. Detailed discus-
sions of this topic can be found in refs. [3,5,6).

3.2. Diffusive—convective mass transport

For g discussion of the relative weight of diffu-
sive and convective (including sdvective) mass
transfer and a comparison with energy and
momentum transport, it is advantageous Lo rewrite
(3) in terms of dimensionless parameters. In doing
so0, one refers to characteristic magniludes of the
variables. Based upon a characteristic (forced or
free flow) velocity U, (or U,)) and a characteristic

length L one introduces the dimensionless ratios
for

velocity Uw=v/U; {10a)
lengths X=x/L, Y=y/L,Z=z/L. (10b}

For uniform mass density (p = const.), ¢.g. for low
dopant or solute concentrations, or similar molec-
ular weight of all components in the nutrient, (3)
can be simplified. With wp =0, from(2) v -o= 0.
Hence V- -po=0:-Vp,+p,V -0=90-Vp,. Sub-
stilution of the dimensionless ratios (10) into the
thus simplified form of (3) and using p,/p = W,
results in

U- oW, == v, o
[

where N, = U,L/D,, is the dimensionless Peclet
number which signifies the relative weight of con-
vective and diffusive mass Mux.

Let us apply the Peclet number concept to the
diffusive-convective transport at and across an
interface. For this purpose we set the characteristic
length L equal 10 the width & of the interfacial
nutrient zong of significant concentration changes
(see fig. 1b). Depending on the convective stirring
conditions in the bulk nutrient, 8, may range from
a narrow layer at the interface (a * boundary layer™)
to a characteristic dimension of the nulrient con-
tainer. The choice of a characteristic velocity in
this concentration transition region takes some
careful consideration. In general, as schematically
indicated in fig. 2 for a binary system, the compo-
nent fluxes and, thus, v can have any direction

SOLID NUTRIENT

%//// AN

4\6 *oa V" {» nglO)

D x
Fig. 2. Componemt fluxes in diffusive-convective mass trans-
port near planar crysial-nutrient interface in stationary inter-
face frame.
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with respect to the interface. On the interface,
however, we know that due 1o the no-slip condi-
tion, rangential velocily components vanish. Hence,
we will simplify the situation and consider for this
semi-quantitative discussion only velocity compo-
nents normal to the (slationary) interface. The
characteristic velocity in Ny, is then the sum of the
advective velocily u,(x) and the normal compo-
nent v, (x) of the {forced or free) convection veloc-
ity. The magnitude of both contributions depends
in general on the distance x from the interface.
(For example, for the “purely diffusive” case,
where v, = v, we see from (6) that v, is propor-
tional to the weight fraction W, (x).) For not too
large variation of W,(x) in the interfacial region,
however, we can approximaie v,(x) with its value
on the interface, v (0). Then

v =y, {0) +v,(x) '(0} V+u(x). {12)
The v, (0} is correlated in (12) to the lincar growth
rate ¥* via the density of the crystal p* and the
total density of the Muid at the interface p'(0),
irrespective of the magnitude of segregation (e.g.
solution growth, etc.) (see ref. [3), p. 282). But (12)
still contains the x-dependent convective velocity
u,1 To circurmvent this difficulty, o,(x) in (12) is
traditionally ignored and only the interfacial low
velocity v(0) taken into account. This has its his-
toric root in work by Nernst (1904) [7] who (be-
sides ignoring the 1/(1 — W, ) term in (8)) belicved
in the existence of an “ unstirred layer" of macro-
scopic dimensions at solid-liquid interfaces, This,
of course, violates fundamental fluid dynamic
principles. On the other hand one may be tempted
to argue for a v, = 0 in the interfacial region since
“close to an interface diffusion is the dominant
mass transfer mode”. There is nothing wrong with
this qualitative statement. Yet, how clase to the
interface must onc go 10 make the above claim
valid? This can be estimated based on the Peclet
number

Vclac + U,.a,:

Npg= .
P DA. DAI,

(13)

where we have uscd the abbreviation F%'/p'(0) =
¥, for the interfacial flow velocity v{0), called

crytallization flow by Wilcox [5]. The first term ¢
the rhs represents the relative strength of the ac
vective and diffusive fluxes towards the interfac
the second term is the ratio of the exiernal
caused convective flux to the diffusive flux. Fro.
(13) one sees that the key parameter for the dec
sion of whether ignoring v, is physically realistic|
the characteristic diffusion distance ¥’ = D, ./ Iq;
and not simply the condition v, « V. The |
characterizes the distance over whlch dl!fuﬂon “F
propagate the concentration perturbation from if:
terfacial segregation,against-the sdvective inflo
of bulk nutrient due to the interfacial flow.
Y = §, then diffusion—advection dominates withi
the concentration transition zone 8§, and the n
glect of (the typically unknown) v, is of litt
consequences,

1f, however, ¥’ > 8, then the concentration pry
file a1 the interface is governed by diffusive~(force:
convective fluxes. In such cases one may still d
cide, for mathematical convenience, 1o ignore y
ie 1o replace the actual dilfusivc—oonvectii
situation by a “diffusion-only” model within [
“diffusion boundary layer” or “stagnant layer'-
Obviously the width 8’ of this fictituous layer mu?
be smaller than the actwal 8 so that 7
diffusive—advective fluxes in the model can resu
in the same transport rate as the diffusive-conve
tive mechanism in the real sysiem. Unfortunatel
the great convenience of this model has caus
many workers to confuse it with * the real thing
Though stagnant layer models give, through ti
definition of the layer thickness, the correct inte
facial fluxes, one cannot expect that they yie
realislic concentration profiles for § < Y a1
consequently 8] < &, ‘

In table 1 we have evaluated characteristic di
fusion distances for representative numml—pcwi_

Table 1 :
Characteristic diffusion distances ¥'=D,p/F, lor typi
prowth rates and diffusion coellicients in vanous nulrienis

Nuwrient Dy, v .74 ) ¢
(cm’/8) (em/h}  p'(0)  (cm)
Melt 10°* 1-10 1 0.4-0.04 b
Solution 107! 0.04 k| 0.3
Vapor 2x107"  0.04 10? 2
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ate combinations. From these samples it becomes
lear that convection cannot be ignored in interfa-
ial transport fux descriptions if the concentration
ransition zones found in a system are equal to or
srower than a few mm for melts and solutions,
ind several cm in vapors, respectively.

In many real systems 8, < Y, ie convective
nass transport within the distance ¥’ from the
ntetlace is significant. Then results for the “diffu-
ion boundary layer width” oblained in scgrega-
ion studies, for instance, from the Burton-

Prim-Slichier (BPS) rplapiqy [8]

- ko
kg +(1— ko) exp( —8V'/Day)

(14}

nust be understood as the entities they were con-
eived to be: as fitting parameters that give the
sorrect numerical result for k_, in a mathemati-
:ally more tractable model in which convective
nass transfer close to the interface is ignored.
ieveral authors have oblained more rigorous solu-
ions to scgregation problems [9-12]. They have
wolved the diffusion equation (3) together with the
Navier-Stokes equation (1) for (rotating disc) in-
erfaces. 11 must be pointed out, however, that
»nly the apparently little known work by Sparrow
ind Gregg [9] covers the whole Schmidt number
Ny ) range (see eq. (21)). The more recently ob-
ained solutions [10-12] are limited to Ng > 1,
vhich, as we will see below, limits them to liquid
jystems with marginal applicability 1o silicon.
These results have shed considerable light on the
actual meaning of 8, and 8. Yet, it is often ignored
‘hat these solutions (including eq. (14)) are based
an p = constant, i.e. on low concentrations of the
solute. This restricts them to the impurity-in-melt
:ase or extremely low solute concentration solu-
sion growth. With p = const. the formal treatment
implifies for several reasons: (s} the
Vavier-Stokes equations can be solved indepen-
iently of the actual species distribution; {b) the
wdvective flux contribution to the convective field
:an be ignored, i.e. (9) can be used instead of (3),
and, as a consequence {c) the convective velocities
n the diffusion equation are those independently
sbtained in (a).

With the rapid development of high speed com-

puters and efficient numerical algorithms, the g
= () restriction will soon become unnecessary even
for realistic geometrics. Thus, solutions to the
segregation problem in high concentration systems
should become tractable in the near future.

Fortunately, considerable insight on concentra-
tion distributions of specific problems can be ob-
tained from analogies to the corresponding veloc-
ity and temperature fields. These are experimen-
tally more readily accessible and have been treated
more extensively in the transport literature.

3.3. Similarities between momentum and species
transport

For a comparison of momentum and concenira-
tion transport at interfaces we will now *“non-di-
mensionalize” the Navier-Stokes equation (1) in
the same manner as the diffusion equation (3) in
section 3.2. In addition to the dimensionless veloc-
ity and length ratios (10) we use a characteristic
pressure p, lo express a dimensionless pressure as

P=p/py. (15)

Substitution of (10) and (15) into the sieady-state
form of (1) for negligible body forces yields

Po 1
U-vU="2 9P+ — v,
U2 Nrn (16)

where Np, = U, L/v is the dimensionless Reynolds
number. In most (crystal growth) flow configura-
tions the first term on the right-hand side of eq.
{16) can be ignored. Hence, we recognize Ny, as
the ratio of inertial to viscous forces in a given
flow.

Nole the similarity of the simplified (16) with
the non-dimensional convective-diffusion equa-
tion (11). From this similarity we can expect that
in a given configuration with similar boundary
geometry for velocity and concentralion, solutions
to the species distribution can be obtained by
scaling through Ny, and Np,. We will illustrate this
with three configurations relevant to crystal
growth, in which the bulk fiow is directed paraliel
to the interface and undergocs momentum and
specits exchange with that lateral boundary.

Flow neat a rotating disk is encountered, for
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Fip. 3. Flow pear a disk rotating in & fluid at rest. After ref.
1131

instance, in pulling from the melt. As shown in fig.
3, a layer near the rotating disk is carried by it
through friction and is thrown outward due to the
centrifugal forces acting upon it. This outward
flow is balanced by an axial flow towards the disk
10 be in turn carried and ejected centrifugally. The
solution of (1) for this problem [14] reveals that
the widih of the transition zone in which the axial
velocity attains its bulk value is independent of the
distance from the rotation axis. For instance, 9%
of the limiting bulk value are reached within a
distance 8, from the disc, frequently called
“ momentum boundary layer”, that is given by

8,-4(-/«1)”1. (17)

Another example of an exactly solved flow con-
figuration is the flow parallel to a flat plate that is,

Ua 1}

Y —--'"L;g;—-r-4

P = 8,(x)
- — ulx, )

x

f—=—

Fig. 4. Development of velocity boundary layer on a fist plate
in paraiel flow at zero incidence. After ref. [13].

for instance, found in epitaxial growth reactors.
Fig. 4 illusirates that the width of the zone over
which the viscous interaction with the plate causes
the fow velocity to change significantly increases
with distance [rom the leading edge, x. A solution
of the problem 13] yields for this velocity boundary
layer width

8, =5 u/U,,)w. (18)

As & last example for a configuration that also
occurs frequently in crystal growth, et us look at
the steady flow of & viscous fuid in a conduit of
constant cross-section, often referred lo as a
Poiseuille flow. Fig. 5 shows that in the entrance
region of the conduil a velocity boundary layer
develops and eventually reaches the center of the
pipe from where the velocity profile becomes inde-
pendent of x. The distance over which this transi-
tion to fully developed Poiscuille flow is accom-
plished, i.c., the entry length [ is found to be {15]

I=Cyv, (19)

where C depends on the free Mlow velocity Uy and
the cross-section (radius) of the tube.

These examples well identify the kinematic
viscosity of the fluid as the governing parameter
for momentum transport. The higher » the farther
into the bulk fluid propagates (diffuses) the per-
(urbation from a momentum boundary. This is in
strict analogy to the diffusion of species that is
governed by Dy, From this we can conclude that
scaling of the coupled velocity and concentration
ficlds can be based on a one-to-one correlation of
g, and Np,. This has been confirmed by numer-
ous rigorous solutions to specific systems. With
respect to the for us most interesting transition
zones (*boundary layers™) we find that for similar

length | in Poisenil)

Fig. 5. Definition skeich for the
flow.
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boundary conditions, constant fluid properties and
laminar flow

8, » " Np. "
E-CI(FA:) ‘Cl(Nh) . {20)
For the geometrical constant C, and exponent
onc can expect, from the above solutions 1o
momentum transfer problems, values of order unity
and around 1/2, respectively. Rigorous solutions
show that » is weakly dependent on »/D, with
12nz1/3 for 0 »/x < 00 [9,16,17). The simi-
larity implied here requires, e.g., in the parallel
flow case that the plane is a momentum boundary
and a surface of fixed concentration, and the free
flowing fluid must possess some other fixed bulk
concentration.

From the above we see that the dimensionless
ratio of Peclet number and Reynolds number,

known as the Schmidt number
N, UL » _r
Ny === 2
= Mn~ Dua UL~ Day’ @)

well approximates the relative weight of momen-
tum and mass diffusion. By inserting typical val-
ues for » and D, , into {21) we obtain a character-
istic difference between gases and liquids, see table
2. Whereas Ng's for gases range between 0.1-1,
with the majority around unity, most liquids
possess Schmidt numbers of 10 and higher. Thus,
as schematically indicated in fig 6a, in gases the
concentration and velocity profiles extend about
the same distance into the bulk nutrient, indepen-
dent of the free stream velocity. In liguids, how-

7 e

o

w

Fig. o. i b ation and veloc-
ity distributions a¢ whd— fluid interfaces for fMuids of small and
large Schmidi numbers: (a) Ny, <1 (gasesd; (b} Ny =1
(liquids).

ever, 8, exceeds 8, considerably (fig. 6b). Thus, in
regions of major concentration change at the inter-
face the flow velocity is reduced to refatively small
values.

The practical implications of {ig. 6 are numer-
ous. For instance, it is obviously meaningless to
discuss interfacial mass transport in vapor crystal
growth in terms of *diffusion-only” models unless
one is fully aware of the fictiticus nature of that
approach. This was already anticipated in the dis-
cussion of the effective diffusion length {table 1).
Also, one can expect that changes in the convec-
tion behavior (and, hence, in the interfacial veloc-
ity profile} in vapor growth arc particularly prone
1o lead to compositional inhomogeneities.

3.4. Similarities between energy and speciex transy-
port

For a comparison between interfacial heat,
species and momentum transfer we will (ollow the

Table I
Approximale vakwes [3] of kinematic viscosities, diffusion coefficients and resulting Schmidt numbers for various fluids
Fluid Temnp P ’ Dan N, =r/Dyy

(Lo (Torr) (cm? /) (cm'/8)

{diffusant)

Hydrogen 1000 760 12 ~18(C0,) 0.7
Air 0 %0 0.13 0.2(H,0) 06
Water 25 102 1.6 1072 (NaCl) 6x107
KBe 780 1x10-! 49x107%(Ag*) =10?
Ga N Ixio* 2 xi0°* 15
Si 1420 4x107? 1 x107* 5.7
GaAs 1240 Ix10-? 1.2x107* 25
Al,0, 2100 03 22x104 1400
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above “recipe” and non-dimensionalize the energy
transport equation (4). With some reasonable sim-
plifications we obtain

/B vr-i,vzr. (22)
Ne,

where NI = U,L/x is the thermal Peclet number,
that characterizes the relative weight of convective
and conductive (diffusive) heat fluxes. The “gener-
alized diffusion coefficient” for heat is the thermal
diffusivity x = k/pC,.

From the similarity of (22) to the dimensionless
transport equation for momentum (16) we can
expect that a relation belween a thermal transition
zone width 8, and 8, can be written as

% - Cz C:( u ) (23)
where C; is aboul unity. The exponent n depends
again only weakly on »/x, approaching n=1/3
for »/x>»1 and n—1 for »/x = 0. Thus, the
ralio »/x, known as Prandtl number, Ny, signifies
the relative strength of heat and momentum fux,

In evaluating (23) for specific fluids, one finds
that one cannot simply distinguish again between
liquids and gases; see table 3. As schematically
indicated in fig. 7a, in liquid metals and semicon-
ductors the thermal boundary layer 3, usually ex-
tends three times further into the melt than the
velocity transition region. However, in molien
oxides and aqueous solutions 8, is somewhat wider
than 5,. In gases, on the other hand with a typical
Np, =07, § and 8, must have comparable values.
Similarly one can conclude that in gas flows (CVD
reactors) the thermal and velocity entrance lengths

<=

G S

F

i i 1

L & . &
Fig. 7. Sch i ison b docity and t:mp
ture distribution &1 solid-fluid inter{aces lar different 4

groups: (a) Ny, « 1 (liquid metals, semiconduciors); (b) Nn
1 {aqueous solutions, molten oxides).

must be aboul equal. Thereby one assumes,-
course, thal the momentum boundary is alst®
constant (high) temperature surface, which o~
not be the case in actual CVD reactors {18},

At Jast, comparing interfacial mass and h
transfer, we deduce from (11) and (22) that si
larly to (23)

%" A{ag) ( ) G

where the ratio of heat and mass flux streny
Np /NE = Ng. /Ny, is often seferred 1o as the Le
number, N.,. Here we can consider gases &
liquids again as distinctly differently behav:
fluids. With gases, where representative valucs|-
x and D, are both arcund 0.7 cm?/s, tempera\ ®
and concentration profiles extend over comparz ~

. distances from a solid—vapor interface into
" nutrient (fig. 8a). This, of course, is in excell

accord with kinetic gas theory which yields
same value for the self-diffusion coefficient .

t

Table 3
Approxi values of ki , thermal diffusivitics and resuliing Prandil nusbers for various Muids (alter ref. [3])
Fluid Temperature » "] Npy=»/x
(°C) {cm’/4) (cm'/%)

Hydrogen 1000 16 169 .64 :
Aie 0 0.18 0.26 en V.
Water 0 18x107? -10"? 13 b

0 55x107? =)p? 6
Zinc 420 4ax107? 0.2 22x10°?
Silicon 1430 0.3 003 ax10-?
Al,Qy 2070 035 =103 -4
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C OIS -0

&8 . L8 L *

Fig. 8. Schematic comparison between concentration and tem-
perature distribution at solid-fluid interfaces for Muids of small
and lasge Lewis number: {a) ¥, =1 {gases); {b) Ny, >»1]
(liquids).

the thermal diffusivity of an ideal gas. At
liquid-solid interfaces, however, 8, will always be
wider than 4. In molten oxides their ratio is
smaller than in liquid metals where, due to the
high k, 8, may extend 10 times as far into the Muid
as §_.

The relations (23) and (24) are particularly use-
Tul since they allow for estimates of concentration
and velocity profiles a1 interfaces from the typi-
cally much easier to measure temperature profile.
Yet is must be emphasized once more that this
correlation is based on the full correspondence
between the simplified energy transport equation
(22) and the species (mass) transport equation {11)
for systems with uniform mass density and fluid
properties.

This analogy is, of course, also observed in
situations with vanishing bulk flow (including ad-
vective flow), Formally, this is reflected in the
mathematical equivaience of Fick's second law
3C, /3t = D37 *C, and the heat conduction equa-
tion 3T /3¢ = k¥ *T. This mathematical correspon-
dence has led to the custom of deducing solutions
10 mass transfer problems from solutions to “anal-
ogous” heat transfer conligurations found in the
extensive heat transfer literature. This can be a
very efficient approach. Yet in drawing such anal-
ogies one must not lose sight of the fundamental
dilference between diffusive heat and mass trans-
fer. As heat diffuses, neglecting self diffusion, the
molepules remain “around” their time-averaged
coordinales. Hence the mass-connected reference
frame, with respect to which the conductive heat
flux is expressed, remains stationary, unless, of

course, a convective motion is imposed by external
means. As mass diffuses, however, under most
circumstances the (same) mass-centered reference
frame with respect to which the diffusive mass flux
is expressed is moving itsell merely due to the
diffusive mass flux. This diffusion-induced advec-
tive flux (see section 3.2) restricts analogies be-
tween “diffusion-only” heat and mass transfer to
low solute concentrations in the nutrient.

The reader will have noticed that we have rarely
used the popular term “boundary layer” in the
foregoing discussion. *Interfacial zone of signifi-
cant concentration change” is admittedly less con-
cise. Yet the term boundary layer has a specific
connotation in fluid dynamics that is often not
met in a crystal growth system. For instance, for §,
to represent a true boundary layer, the Np, =
UpL/v “of the system™ (i.e. with L typical for the
nutrient extent) must be much larger than unity.
Then the flow in the bulk nutrient has only small
velocity gradients and, consequently, can be freated
as il it were inviscid and one can neglect the
viscous term in {1). Al the interface, however, the
velocity changes rapidly over a layer that is narrow
as compared to L. For this boundary layer (b-1)
region, (1) can again be drastically simplified since
only velocity gradients normal to the interface are
important. Note that for instance (18) was ob-
tained as a solution to this b-] equation [13] and,
thus, holds only for &, 3 L, where the only intrin-
sic length scale L is given by the distance x from
the leading edge (x = 0), Corresponding simplified
b-1 forms of the mass and heat transport equa-
tions can be used il the corresponding dimension-
less groups Np, = Uy L/Dyp and N§, = UpL/x, te-
spectively, are » 1. In crystal growth, this is often
not the case and Np, = Np. = 1 and thereforc 5, =~
8, = L (see also the use of ¥’ in section 3.2). 1f we
materials preparation workers are interested in
“talking sense” with the fluid dynamics commun-
ity we should respect their well-cstablished
terminclogy.

4. Non-steady transport in nutrients

Time-dependent crysial growth rates lead, via
segregalion, to compositional non-uniformities in
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the solid. The post-growth diffusive dispersion of
such inhomogeneities is only practical if the char-
acteristic diffusion time

r.=d?/Dyy (2%)

in the solid is reasonable. Assuming a typical
spacing for dopant “striations” of =10 pm and
D,y=10"" cm?/s (ie. D,, in Si (800°C), ref.
[19]), we obtain 7> 10® k! In other words, if
D,a €107 cm? /5 and, thus, 7,2 102 h, the pre-
vention of non-steady growth becomes crucial.

Let us assume that the externally imposed
boundary conditions in a crystal growth process
are perfectly stable. Then non-steady growth and
segregation can have their origin only in time-de-
pendent convection in the nutrient, or in oscilla-
tory interfacial kinetics [20-23]. Time-dependent
Iree convection, in turn, may arise from surface
tension gradients or buoyancy. Our quantitative
understanding of oscillatory convection in general
and of time-dependent surface lension-driven flow
in particular is currently very limited. Hence, we
will here only touch on a few practically important
trends associated with buoyancy-driven flow in the
varicus groups of nutrients.

The buoyancy-driven convective state of a
monocomponent fluid is governed by the thermal
Rayleigh number

Ny, = Bgh’AT /v, (26)
the Prandil number, and the geometry and physi-
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Fig. 9. Regime dingram for expansive (thermal) convection
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cal properties of the boundaries. Fig. 9 presents
the various flow regimes encountered in a Bénard’
system with rigid (no-slip) and conducting
boundaries. Convection can be sustained when
Np, exceeds a critical value Ng,, around 1700 for
the above boundary conditions, independent of
the specific fluid considered. On the other hand,
from (26} and materials parameters of table 3,
with typical B-values it follows that the AT needed
for a specific Ny, in liquid metals, gases, and
mollen oxides, respectively, is approximately 20,
500 and 1000 times thal in water.

From fig. 9 we see that the condition for onset
of oscillatory convection, i.e. Ngv depends strongly
on the fluid's N,,. For oxide melts, for instance,
with N, = 40, the destabilising temperature gradi-
ent can be increased 10 more than 30 times the
threshold value (corresponding to N§,) belore
oscillations set in. In contrast, in semiconductor
and metal melts, a slight increase beyond Ny,
drives the system into oscillations!

Lateral boundaries, as long as they are not
associated with horizontal temperature gradients,
act convectively stabilizing. The regimes of the
various convection states are shifted to higher
Ng.'s. Most recent results indicate that, in addi-
tion, the regime diagram becomes a great deal
more complex. In fig. 10 we have assembled a
semi-quantitative convection regime diagram for
bottom heated, cylindrical columns of fluid with a
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Fig. 10. Convection regime diagram for poitom heated vertical
circular and “conducting” cylinder of sspect ratio 10. Semi-
quantitative; see lext.
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height to radius (aspect) ratio of approximately 10.
Whereas fig. 9 is based on well defined experi-
ments with numerous different fuids, fig. 10 is
based on results for InSh, gases and water only,
obtained either for not too well defined thermal
boundary conditions or somewhat different aspect
ratio. (For a closer evaluation the reader is urged
to refer 1o the oniginal papers [25-29)) Fig. 10
strongly suggests a close spacing of Ny, and N{T
for low Ny, nutrients and a large difference at high
N,,'s also in the presence of lateral confines. Be-
yond these features that are in common with the
Benard geometry, well reproducible torbulent and
steady flow regimes have been observed within the
oscillatory domain. Of course, the data are yet too
limited to atiempt any assignments of these new
features 10 groups of Np,'s.

Considerable efforts have been made to under-
stand the origin of oscillatory transport. For a
recent review see refl, [30]. At this point it appears
that N, =5 forms the borderline between two
different mechanisms. For high N, fluids we have
scen in fig. 7b that the momentum (transition zone
is wider than 8. Consequently, s convection sets
in, the lincar temperature profile of a conduction
stale is more readily deformed by the flow than in
fluids with Np <« 1. This wrend is schematically
indicated in fig. 11 for, say , the temperature
profile in the vertical center plane of an individual
convection roll. For N, > 1, the temperature
gradient in the “core” of the roll is thus sizeably
reduced. That causes; in turn the convective
streamlines 10 be more concentrated adjacent to

Fig. 11. Schematic temperature and velocity profiles (heavy and
light curves, respectively) in the vertical center plane of s
convection roll between horizoatal planes. (a) Ny, > 1, (b)
Ny, = 1. Dashed lines represent iemperature peofile from con-
duction only,

the (“convection-sustaining') horizontal planes.
The flow becomes increasingly confined to the
boundary regions. For fluids with N, = 1 (figs. 7a
and 11b} quite different behavior can be expected.
Since convection contribules to a lesser extent to
heat transfer in these flows the lincar temperature
profile is less deformed upon onset of convection.
Consequently, more of the original gradient can
remain active for driving the flow over a greater
volume of the fluid. Even with further increase in
Ny, (or 4T, for that maiter) the flow maintains
more of a bulk circulatory characier.

As a consequence of this different flow behav-
jor, (oscitlatory) instabilities originate in different
regions of the fMlow. In high-Np, fluids it is &
gravitational boundary layer instability that leads
to oscillations. Buoyant fluid accumulaies at the
heating boundary and grows until a local critical
Np, is exceeded, (The same argument applics, of
course, to the cooling upper boundary.} Then
“thermals™ or * plumes” break away and rise, or
sink, respectively. The period after breakaway un-
til & new thermal begins to form is observed to be
short as compared to the “growth time”. Hence
the periodicity will essentially be governed by the
thermal diffusion time

1, =d*/x, 27

where d is comparable to the thermal boundary
layer width.

For law N,, fluids one expects from the above
that oscillatory instabilities result from a “bulk
mechanism” rather than a boundary layer instabil-
ity. Nonlincar analysis confirms this expectation
[30] and yields periods of the order of the viscous
diffusion time

1, =d%/v. (28)

Evaluation of (27) and (28) in their respective
regimes yiclds frequencies of the order of s 1o min
for both mechanisms. A distinguishing feature,
however, is the proportionality beiween the square
of the frequency and Ny, for the bulk meachnisms,
which can be used for identification. This is con-
venient since low N, fluids are in general not
wransparent and defy visual observalion of ‘the
flow pauern.
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Finally, let us apply dimensionless analysis (o &
distinction of the flow velocities expecied for the
two groups of fuids with Ny > 1 and N, <« 1.
We know that conveclion sets in at the same Ny,
independent of Ny,. We can rewrite the Ny, of
(26), however, as a product of Ny, and the Grashof
number,

gh'aT
Nau= Ny, No, = 2 BT, (29)

where Ng, represents the dimensionless product of
the ratios of buoyant to viscous forces and inertial
to viscous forces,

Nor= FoFu/(Fu). (30)

From this we can deduce that for very low N, the
Ng;, must be much higher than for Ny, > 1, to get
the same Np,. Higher N scales with a higher
intertial term and, thus, higher flow velocities. This
qualitative expectation is well confirmed by ex-
perimental results. Up to two orders of magnitude
higher flow velocities can be expected in, say,
liquid metals as compared to molten oxides for the
same N,

The difference in flow pattems and velocities of
the low and high N, groups of fluids has various
practical implications. For instance, the resulting
mixing behavior in melts can be expected 1o be
quite different. Also, the surface roughness of a
conlainer {presence of crystallites, eic.) will have a
quite different influence on the convective stability
of the fluid. Surface roughness can be important
for high-N,, fluids where the flow is concentraled
in a boundary layer. For low-Np, fluids, however,
where the flow is more distributed throughout the
bulk, surface roughness will be of little influence.

5. Swamary

Rigorous modeling of heat and mass transfer in
multicomponent crystal growth fluids is ofien un-
wicldy, Consequently, numerous simplifying mod-
cls have been used in the materials preparation
literature. Though well justified for certain special
cases, indiscriminate application of these simplifi-
cations has caused much confusion. In particular,

boundary layer concepts fall into this category. Or
the other hand, scaling based on dimensionles
groups of fluid properties and characteristic di
mensions can give practically valuable insight os
concentration and temperalure distributions is-
crystal growth arrangements. Such a parametri
comparnison facilitates the exploitation of simila.n'i
ties in the Muid dynamic behavior of seemingl:-
disparate nutrients. ‘
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Nomenclature

¢ Dopant molar concentration in solid nea;
interface

Cg Dopant molar concentration in nutrient nea
interface

Cs Dopant concentration in the bulk nutrient

C,  Specific heat at constant pressure

D,y Binary diffusivity

g Acceleration of gravity

k Thermal conductivity

kg,  Interfacial segregation coefficient, G} /Cg h

ks Elfective segregation coefficient, C3/C2

L Characteristic dislance

n, Total (diffusive + convective) componen
mass flux

P Hydrostatic pressure

¢  Conductive heat Mux

u Internal energy density

U Dimensionless mass average velocity

U, Characteristic velocity

v

v

W,

-

Mass average velocity
Component velocity
Mass fraction of component i, p,/p
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x Coordinate normal 1o interface into Nuid

I} Thermal expansion coefficient,
(1/¥,) av/eT

] Viscosity

x Thermal diffusivity, X /oC,

r Kinematic viscosity, n/p

p Total mass density

p,  Component mass density

T Stress tensor

w  Angular velocity
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