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The area of digital image processing is of increasing importance and .
interest due to the impressive advances and innovations in digital methods
and technology. In particular one may outline the following aspects: definition
of new and efficient algorithms to perform linear and nonlinear operations
with great application flexibility and adaptivity; production of fast new image
digitizing systems and high-resolution displays; efficient software or hardware
implementation capabilities due to the large expansion and evolution of
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142 V. CAPPELLINI

afray-processors, Microprocessors, and
high-integration digital circuits (LS, VLSI), availablc at a decreasing vost.
Digital image processing methods and techniques are being increasingly
applied in several important ficlds such as communications, radar-sonar
systems, remote sensing, biomedicine, office automation, moving-obi:ct re-
cognition, and robotics.
High-interest digital operations, which can be performed for image
processing, are the following: two-dimensional (2D) digital transformitions,
2D digita! filtering, local space processing, data reduction or com pressiti, and
patiern recognition. Digital transformations, digital filtering, and local space
operators can be used to perform smoothing, enhancement, noise redtiction,
and edge extraction. Data compression operations permit one to reduce a
large amount of data representing the images in digital form, solving
transmission or storage problems, Pattern recognition is used to extrac' uscful
configurations from images for final interpretation and utilization.

In this article 2D digital filtering and data compression operations are
mainly described, pointing out their crucial importance for image processing,
in particular the joint usc of these two digital operations to increase the overall
efficiency of image processing is presented. Local space operalors afrc also
described as simpler 2D digital filters defined only in the space domain (while
the more complex digital filters are defined and designed both in the space and
frequency domains).

After a synthetic review summarizing the separate digital operations (2D
digital filters, local space operators, data compression) and the presentation of
their joint use, some examples of applications to important fields such as
communications, remote sensing, biomedicine, and robotics are described.

standard computers, minicomputers,

11. Two-DIMENSIONAL DIGITAL FILTERS

The following aspects regarding 2D digital filters are presented: filter
definition and general properties, stability, and designing methods.

A. Definition of Two-Dimensional Digital Filters and General Properties

Linear shift-invariant 2D digital filters are defined by 2D difference
equations of the type {Cappellini et al., 1978)
glny.nz) = E;‘Za(kl,kz)f(n. ~ ky,ny — K3}

—Zszb(kl’kz)g(ﬂl — ky.ny — k) ()
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h .
:mc‘:_tf(;:t.an:::re l[hempu:‘data{samplcs of the input image), g(n, ,n,) are the
ut samples of the output image), and a(k, .k ;7 k ;
) \ . Al * " !k L
::E:Iil;cdls:ms which define the 2D digital filter, R, and 5 1arezs)uil.;blle s:::sd::h::l::
v ﬁlrc;as of lhe’ SUmMS can vary t‘o_specil'y diffcrent classes of filters ’
e et Os <tmp0<rthnt clalss of 2D digital filters is obtained when R, is (icﬁned as
£m < ~1L0<n, <N, - i i i
borasms ((') 25 N; — land §, is the void set. In this case
( ) Ni—-1N;-1I
gin, ,ny) =
1.1 h:ohz—-:oa(k“kz)f(nl — kg n; — ky) 2
Z:\[(Ticieﬁ‘nes the .clas's of FIR (finite impulse response) 2D digital filters. The
o co:%i;qt:altor is now a convolution between the input-data matri;( and
nt matrix, and no feedback of previ i
| previous otitput data is present.
n the (z,,2,) plane the filier of Eq. (2) is defined by the lransfcf function

H( ) Ni ] NE 2
2,.2;) = aik,, [zt
Lol (ky. k)2 *r 23" (3)
which can be obtained b i
y applying the 2D z transform to both si
and has the form of a bivariate polynomial. thoidesof Eq. (2
availll;tl):a: fhllo:qFlR casfe, assuming that the entire matrix to be processed is
2 uence of computation is in principle irrel iti
a matter of computational convenie Prtrary. i the semerm o
‘ . nce. On the contrary, in the gener.
:oh;n S, is not the void set and some samples gin,,n,) are iscd ?chl?:
indes;tian:lsgr:)f (thv.;:urrem l(I)ulpul sample, the sequence of computation is
ant, because the output samples 1o be used i
avatlable (that is, previous| he initi) condiiomy
\ y computed or part of the initi iti
Moreover, the sequence of ' o the sormtons)
\ , computation has to be such that th i
linear system is stable. The echosen in a suttapie
. refore, the set S, has.to be ch i i
and a set of initial conditions for th utati o be defimed i ot
e computation have to be defined i
ar insuch a
aty to compute any output sample as a function of the previously computed
ou ﬁut sarr!pfcs or of the initial conditions. P
comp(;ctzll'tii(:r':gc alrcl) l::ehai:ucweTcl:Jnsick:ralions, several different sequences of
chosen. The most common one is th i
the so-called quadrant recursi his vase pne Py 1o
cursive causal filter. In this case
m<Oand n, <0,if f(n,,n,) = . )t
: <0, 1 M)=0forn, <0andn, <0 i -
equation can now be written in the form ’ - The input-output

( Ni-1N;-1

gng,n,) = t.2=o hzo atk, k) f(n, — ky,ny — ky)
Mi-1M;-1

= .ZO .EO biky. ky)gtny — ky,ny — k,) )

1=
+ky 20

1
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By means of this equation, it is possible to compute every output sample from
the previously computed ones and from the initial conditions. The recursion
can be performed both along the rows and the columns of the array.

In this case the 2D digital filter is described in the (z.2;) plane by the

transfer function
Ny~ 1 Nz-1 . x
-kl »— %2
a(k,, ka)zy ' 22 _ Azy.23)

H(Z|g22)=.\: (l’:ll:*oi ——B (5)
bk, ko)zib 2yt BewE)
..Zo u?:lo (ky k2)2y " 22

which is the ratio of two bivariate polynomials. The matrix {b(n,,n;)}, which
defines the recursive part of the filter, is different from zero onty in the region
n,>0and ny = 0.1t is normaliy called a first guadrant sequence and can be
indicated with the symbol {* * b(n,, n,)}. Inthe same wayitis possible to define
filters whose recursive part corresponds to matrices different from zero on the
second, third, and fourth quadrants.

The quadrant filters are not the only form which allows the choice of sets
R, and §, and of initial condilions to obtain recursive implementations of Eq.
(1) {Mersereau and Dudgeon, 1975). Another choice corresponds to the
unsymmetrical half-planc filters, whose coefficient matrices are defined on

half-planes.
B. Two-Dimensional Digital Filter Stability

Among the different definitions of stability, the most commonly used is
based on the BIBO (bounded-input bounded-output) criterion (Cappellini et
al., 1978). This corresponds to saying that a filter is stable if its response o a
limited input is also limited. 1t 1s possible to show that, for causal linear shift-
invariant filters, this corresponds to the condition

Y Y ki, n)| < 0 (6)
=0 =0
where {h{n,,n,)} is the impulse response of the filter.

The above definition allows the first very important observation that the
stability criterion is always verified, if the number of terms in the impulse
response is finite, as it is the case with FIR digital filters.

Obviously, the condition of Eq. (6) does not provide a viable method to test
the stability of 1IR (infinite impulse response) digital filters. In the one-
dimensional {1D) case, it is passible to relate the BIBO stability condition to
the positions of the singulatities of the z transfer function (poles), and itis
possible to test the stability by finding the zeros of the denominator
polynomial. A similar theorem, which establishes a relation between the
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z;anbli;i:lgo z:'ltl'llelﬁ(ljtell' aqd l'l:e zeros of the denominator bivariate polynomial
ulated also in the 2D case. For causal quadrant filte i ’

: rs, this th
(Shanks et al., 1972) states that, if B(z,,z,)in Eq.(5)is a polynomial in :?:::

zZ,, the expansion of 1/B(z,,z,) in :
absolutely if and only if (2y,2,) in negative powers of z, and z, converges

B(z,,2;) # 0, for|z,| 2 L)z;] = | (7)

::(;T, ::gspgnding seq;enccs are defined as minimum-phase causal quadrant
. Correspondingly, maximum-phase and mixed-
quadrant sequences are defined. P " mixed-phase noncausal
Unlortunately, in the 2D case the formulati i
Y, ulation of the stability conditio
:lbol\lre d.oes not directly prpduce anefficient stability test, as in the ID casen;::
o the lack of an appropriate factorization theorem of algebra. ,
" An approach to the_ solution of the stability problem in the 2D case can be
|9‘; 5ust: ;)f the propertics of the complex cepstrum (Oppenheim and Shafer
¢ }Io causal minimum phase sequences and noncausal sequences The:
mplex cepstrum of a sequence { f(n,,n,)} is defined as .

fing,nz) = Z7 ' [InLZ( S (ry, )] @)

fm# it exists if: (1) the Fourier transform of the sequence is not equal to zero or
:rl:r ::ltgyha; any frequt_ancy; 1(,2; any linear phase component has been eliminated
n appropriate shift of the original sequence (Dud
conditions are, for example, satisfied i i e e o hese
i \ \ if the coefficient matrix is th i
matnx of a squared-magnitude transfe i i the poa
r function. Further, if th

cepstrum of a quadrant causal filter i ; Corresoond.
; quadra s quadrant causal, then the correspond-
mg sequence 1s mintmum phase and the filter is stable. The samepzon-
siderations can also be extended 1o the half-plane filters.

C. Design Methods of Two-Dimensional Digital Filters

andl\:l&n)l/ des:gn methods _havc been defined for 2D digital filters of the FIR
and ype ome more important methods are presented in the followin

1 spegul rcfcrepcc to those combining a good efficiency with a reaso blg’
complexity of designing and implementation for image processing e

1. Design af Two-Dimensional FIR Digital Filters

0 ::v';“gg:‘:‘;‘l“lplmperl{ of 2D FIR digital filters is that they can be designed
. etely real or completely imaginary i

modified by a linear phase it suite ¥ lrequency responses,
impulse response. P term, if suitable symmetries are preseat in the

-
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As an example, by considering a 2D linear digital filter having N, and N,
odd in its noncausal form, the frequency response of this filter can be written in
the form [starting from Eq. (3), with z, = e 1 X and z, = e”#**, assuming
the space-sampling interval X = 11

Ny~ A2 N2 102
H(e*, &) = z Z a(k, ,kz)cos(kxwljcos(kzwz) ]

Lo M=0
il the filter impulse response {h(n,,n;)} has the following symmetries
h("l’"l) = h(”lo _nl} = h(-nli _nl) = h(‘"ll"l) (]0)

which correspond to symmetries with respect to the origin of the axes and also
with respect to the axes (circularly symmetric filters can be obtained in this
way).

The frequency response of Eq. (9}is symmetric with respect to the axes, as
can be verified with a sign change of ©, and w,. The frequency response of the
causal filter is then obtained by multiplying Eq. (9) by the linear phase term
which corresponds to the shift of the impulse response, that is,

exp{ —j([{N; — 1)/2)o; + [(N; — 1y/2]e)}.

The design problem consists in the evaluation of the coefficient matrix
{a(n,,n,)} in such a way to meet a sct of given specifications in the space or
frequency domain. Several different methods have been proposed and defined,
some of which are a direct generalization of their 1D counterparts.

A relatively simpte design method is the so-called window method
(Cappetlini et al,, 1978). It is based on the consideration that, the 2D frequency
response being periodic, it is possible to represent it as a Fourier seties, whose
coefficients, according to the 2D sampling theorem, are proportional to the
samples of the impulse response of the filter. Therefore, it is possible to obtain,
analytically or using an approximation method based on the inverse discrete
Fourier transform (IDFT), the sampled impulse response, starting from the
frequency domain specifications. The problem is that the resulting impulse
response is, in general, of infinite order and has to be truncated to obtain a
practically usable digital filter. However, if the truncation is performed using a
rectangular or circular window function, with an abrupt transition between
the value equal to onc in the zone where the impulse response has to be
retained and equal to zero in the truncation region, quite a large error in the
frequency response is obtained. Therefore, the goal is to be able to truncate the
impulse response, introducing the minimum error in the frequency response.
To this purpose, the obtained values of the sampled impulse response hin,,n,)
are multiplied by the samples w(n,,n,) of a window function, whose Fourier
transform presents a suitable trade-off between the width of the main lobe and
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the area under the side lobes; that is

a(ny,ny) = hiny, ny}win, ,n,)

" | | an
Fo Bnge\suifn:‘dow fun_cuons have been defined to desipn filters in the 1D case
gn, extensions to the 2D domain are in general used. In parlicular-

a . L
2D window, having circular symmetry properties, can be defined starting

from a w(t) window as
wix, y) = w{/x* + y?) (12)

Three useful window function

¢ use tions are: the Lanczos i i
(Cappethpl window 1), the Kaiser window, and the W-:l’::?tsmn WlndO\.N
mation window (Cappellini window 2). YPe approxt

The Lanczos-extension window w{t) has the 1D continuous form

sin[ (mt)/] ™
W (1) = atje | for Ml<t

0 for Jt| >+

(13)

wh . -
mcc?:a'; is ;:[ pg:ltwe parameler, controlling the correction performance that i
€0 tween the obtained width of the transition band and ll::

The Kaiser window has the form {Kaiser, 1966)

w(t) = ot /T = @)

To(@2d) (14

where I, is the modified Bessel function of the first kind and zero order and w

1s a positive number, which control
0 ber, s the tradeofl betw i
transition bandwidth and the maximum in-band error een the widih of the

fun;?:n“‘;;t:z;-lypc approximation window is a close representation of a
modifed fomm ( ].gll_:';: a minimum value of the uncertainty product in a
modified | ilberg and Rothe, 1971). The obtained expression of the

2(t), as a third-order polynomial approximation, is the following

(defined in the time interval 0- 1.5)

wity=at® + b +ct +d
0<:<075 075<r<15

1.783724 a= 0041165 (15)
— 1604044 b= 1502131

0.076450 c = —4.591678

2243434 d= 3651582

a0 oo
nmn nw



148 V. CAPPELLINI

The windows wy(t) and w,{t) represent indeed ‘near-op_limum windows,

giving high-efficiency digital filters; however, the simple window w,(t) also
i od-elficiency filters.
glvsisg(; typical exaymple, Fig. | shows the spatial'-frequengy response (o‘n::l
quadrant) of a circular 2D low-pass digital filter, using thc_: window w,(t) wit
m= 16, for N, = N, = 16 and w,/w. = 4 (o, ;—- sampling angular spatial
. w. = cutoff angular spatial frequency). - _

frcqll:e;c;(‘)ss:ble to dcsigng2D FIR optimal digital filters by using tht-: linear
programming approach (Hu and Rabiner, 1972) and some modiﬁcah_ons of
the ascent algorithm (multiple exchange ascent algon}hm) (Harris a:nd
Mersereau, 1977). The main problem with these melhod.s is the computation
time. This practically limits the maximum length of the |mpu_lse responses of
the obtained filters to about 9 x 9 in the lincar programming case apd to
about 15 x 15 in the multiple exchange ascent case, which is more efficient.

Fii. |. Spatialdrequency ri:zjinse (one quadrant) of a circular 2D low-pass digital filler,
using the window w,(1).
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The design problem can be made more tractable by reducing the number
of variables in the linear programming through the frequency-sampling
approach (Hu and Rabiner, 1972). In this case a grid of points in the frequency
domain is chosen, and most of the frequency sample values are fixed through a
direct translation of the filter specifications. A linear programming problem
can be set up using constraint relations for the interpolated frequency
response, where the variables are the frequency samples in the transition
bands. As a typical example, Fig. 2 shows the spatial-frequency response (one
quadrant} of a 2D digital filter, having near-circular symmetry, designed
through this last procedure for N, = N, = 16 (Calzini et al., 1975).

Another suboptimum design method is based on the transformation of the
frequency response of a 1D filter into the frequency response of a 2D filter
{McClelan, 1973). Let us consider, for instance, a linear-phase 1D digital filter
with N odd: Its frequency response, dropping the linear phase term, can be

Fi. 2. Spatial-frequency response {one quadrant) of a 2D digital filer, designed by the
frequency ggmpling procedure,
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written in the form

IN-1)2
He) = Y a(k)cos(kw) (16)
k=0
where a(k) are the coefficients defining the frequency response. If a trans-
formation of variables of the form

cosm = Acosw, + Beosw, + Ccosw,; COSw, +D {17

is carried out in Eq. (16), using the properties of the Chebychev polvnomials
and of the trigonometric functions, it is possible to obtain a 2D functon of the

type
(N-IWTIN - L2
Hie'™, ei?) = alk,, ky)cos(k, ) costky ) (18)
=0 k=0

which is formally identical 1o the frequency responsc of alinear-phase 2D FIR
digital filter [sec Eq.(9)]. With the choice A = B = C = —D = },the mapping
contours in 2D are approximately circular, at lcast for small values of w, and
w, . This design procedure can also be generalized to the use of transformation
relations more complex than the simple relation of Eq.{17} (Mersereau et al.,
1976), and some eflicient implementation structures exist for the obtained
filters (Mecklenbrauker and Mersereau, 1976).

2. Design of Two-Dimensional 1R Digital Filters

In this case the coefficients {a(n,,n,)} and {b(n,, n,)} have to be chosen to
approximate the desired frequency response with a stable recursive im-
plementation [see Eqs. (4) and (5)]. The stability is indeed a specific and
important problem of recursive structures, as already shown in Section I11,B.

To design 2D digital filters of the IR type is a more difficult task than to
design 1IR 1D filters. In fact, the 1D techniques normally rely on the
factorability of one-variable polynomials, which result in very simple
algorithms for the stability test and for the stabilization of unstable filters;
these technigues are unfortunately not directly generalizable to the 2D case
(Cappellini ef al.,, 1978).

Two main classes of design methods have been defined. The first one is
based on spectral transformations from 1D to 2D and the second one on
parameler optimization, using some filter structures, as the second-order filter
section cascade, where stability cantrol is easily introduced into the approxi-
mation algorithm (Maria and Fahmy, 1974).

A general design procedure (Ekstrom, 1980} uses a nonlinear optimization
to minimize an error expression, where the distance from an ideal frequency
response and the distance from a stable implementation, obtained by means of
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t.ho: cepstrum decomposition, are present. In this case, it is possible to obtain
simgl!ancous control of the frequency domain approximation and of th
stability .of-the filter, with a proccdure which is indeed general but rathc‘:
complc'x in |_mplcmcntalion; further, some knowledge of the general nonline
approximation problems, when an acceptable error minimum i : o
matically reached, is required. > ot st
. A Proposed ficsign techinique (Shanks et ul., 1972) consists of mapping 1D
filters into 21D fiters, with a rotation operation. If a 1D continuous ﬁllger is

given in its factored form, its transfer functi i
ctor s on can be view
filter that varies in one direction only towed as that of & 2D

H(sy,s;) = Hy(s;) = Ho(i[[l(sz - ‘h)/f[i(sz - Pi)) {19}

where 51, 87 are the .Laplace variables and g,, p; are the zeros and poles
respectively. A rotation of the {s,,s;) axes through an angle § can be
performed by means of the transformations

5, =5 cosf + s3sinf
5; = ~s;sinf + sycos f @
A filter whose frequency res i i

. ponse is now a function of 5, and 5, and

f}?r‘rﬁpﬁl?ds to zla)erol.';iuon by an angle —f§ of Eq. (19) is obt;incd Tzhen a

igital filter can be defined through the application of the bili :

to both the continuous variables, © bilinear s transform

T!1e above approach,_which in direct implementation suffers from the
warping eflects of the bilinear z transform, has been used to obtain simple
roldlc‘fl blocks, which can be combined to define circularly symmetric
recursive ﬁl?c_rs (Costa and Venetsanopoulos, 1974), where also the conditions
for the stability of the rotated sections have been proved.

) Another mclhogl (Bcrnabb_et al., 1976) is based on the transformation of
: ¢ squared magmtude function of a 1D digital fiter to the 2D domain
;cllolwed by a §unablc decomposition of the resulting filter. With reference l(;
o :l::nn ILA, g(llyen a first-quadrant flter (causal filter), it is possible to define

orresponding second-, third-, and fourth-quad i
the cormespe quadrant filters, according to

hl(”ls"z) = hz("h —ny) = h;(—ﬂn —n;) = hy(--ny, n,;) (2h
with transfer functions
Hy(zy,2;) = Hzleszil) = Hy{z, Tz, )= H4(zl_1922) (22)

The cascade of the four filters is a zero igi
: ero-phase digital hlter, whose freque
response is defincd by the coefficients p(k,.k;) and gk, k;), dete?mi:\fg
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Fig. 3. Spatial-frequency response of a 2D IIR digital filter.

through the convolution of the coefficients of the four filters, and has the
following form [{(see also Eq. (5)]

Nzl Nzl p(k,,k;)cos(k,w,)cos(k,wz)
Gle'™, 1) = Y1t (23)
) Zoq(kl,kz)COS{klwi)COS(kzwz)
ky=0kz=
Such a 2D frequency response can be obtaincfi through the 1ransformat|9tn gf
Eq.(17)applied to the numerator and denom_malor of the squargd magl.n ur e
function of a 1D 1R digital filter. The obtained sq'uarec! rpagmludc frans lf.:l'
function has to be factorized to get stable recursive dlgllal filters :nd ihe
cepstrum decomposition [see Eq. (8)] can be'used.. In particular, to reduce the
error connected to the truncation of lhlti' 1;1ﬁmte cepstrum, windows (se¢
i 1) can be used to reduce oscillations. '

Secg?:ulr::!g:!slzows an example of a 2D 1R digital ﬁller,' designed accmdmgd to
the above procedure: The squared magnitude [u'ncuon of a foprth-or e';
Chebychev low-pass filter, having a 27, in-band ripple, a mrn1‘al|Zt:;;il cut':)
space frequency 0.25,and a — 20-dB space frequency 0:35, is used ,.lhe ter has
a numerator and a denominator with 6 x 6 coefﬁcncqls. obt_amed using 1a
Kaiser window [Eq. (14)] with w, = 3. The filter maximum in-band ripple
turns out 1o be 0.022 and the transition band, defined as the difference between
the normalized space frequencies, where th_e amphlude_of the fre_qucncg:
response is, respectively, 907 and 107 of the in-band nominal value, is equa

to 0.0937.

1il. LocAL SPACE OPERATORS

Local space operators cap be considered as §impler 2D digila_l filters
defined only in the space domain (see Section I), \\Chlle the abqve described ar;
more complex 2D digitals filters defined and designed both in the space an

frequency domains.
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Indeed local space operators have in general low complexity: small blocks
of data (image samples) are processed in the space domain. The interest of this
approach is connected to the resulting economic implementation and very fast
processing capabilities, characteristics which are very important when large
amount of data (image samples) have to be processed or when real-time
operators are Lo be performed. Further local space operators of the nonlincar
lype can be defined, solving difficult image processing problems {as noise
reduction} in a fast and efficient way.

Some very simple local space operators are that ones used to perform
sampling or quantization variations. Through sample repetition or inter-
polation a zooming effect can be obtained in order to change the sampling rate
or to present particulars of the observed scenes. Through quantization
variation, scale expansion or compression can be obtained to perform image
enhancement or smoothing, respectively. In particular a useful image enhance-
ment can be accomplished, by evaluating the amplitude distribution or
histogram on the entire analyzed image and changing the scale in such a way
to shift the minimum amplitude to zero and the maximum amplitude to the full
scale value (image stretching).

The other local space operators can be classified into two main groups:
operators performing image smoothing or enhancement (low-pass or high-
pass filtering) and operators performing edge extraction (derivative filtering).

A. Local Space Operators for Image Smoothing and Enhancement

One simple local operator of this type is the average operator, which can be
used to reduce variations in the grey levels, for instance reducing noise
components in the image. As an example, the arithmetic average of 9 samples
(pixel values) can be performed: The obtained result is then substituted for the
central pixel of the 3 x 3 sample matrix used according to the relation

}
glng ,n,) = 9 z Z Sfiny — ku"lz - k) (24)

ky=—1kz=-1}
where f(n,,n,)}are the image samples. The operation is then iterated for all the
points of the image, correponding obviously to a sliding convolution (FIR
filtering). Indeed, operators of this type are equivalent to low-pass filters,
reducing variations between adjacent pixels of the image. Their importance, as
already ohserved, lies in the fact that very fast implementations result, because

no multiplications need to be performed.
On the other hand, another class of operators exists to emphasize the
differences between adjacent pixels. This is obviously the opposite of the
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previously considered operation, and its purpose is to enhance the vasiations,
oultlining the contours of the objects in the image.

Along this line, very simple separable algorithms can be defined ©on a row
and/or column basis. As an example, let us consider the followine simple
procedure: the differences d between the corresponding pixels (same - olumn)
of two adjacent rows are computed; then, if d >0 the maximum lu:ninance
value {white level) is substituted for the sample; if d < 0 the black value is
chosen as the sample value; and if 4 = 0 an intermediate value is selected.
Obviously, this procedure enhances the transitions between the rows, that is
along the columns of the image. However, the procedure can be repeated
along the rows, considering the differences between the columns.

Another approach is based on the computation of the differences between
a pixel and the average value of the 8 adjacent values according to the relation

|
grn) = form)—3 3 Y fon—kum—k) 29

ky=-1kz=-1

The above two operators correspond to high-pass filtering algorithms, of
which the first is separable.

Of increasing interest are local space operators performing nonlinear
filtering (Cappellini, 1983). One interesting example is represented by the
following nonlinear smoother of noisy images, which is especially useful before
edge detection. By considering a block of 3 x 3 samples, the smoother is
defined by the relation

§
Q(":-"z)=";fzf("| — ky,ny — ky) {26)

where S = { f:|f(ny — k,,ny — ky) — f(ny.ny)) < ¢} and ki ky = -1,0,1
with k, + k; # 0. By means of this smoother, the value of each pixel is
replaced by the average of its neighborhood values, except those which have
level differences greater than a fixed value {¢,) in absolute value. In this way,
small-amplitude noise is removed, while no degradation results for edges and
boundaries present in the processed image regions (a smoothing of the pixel
values on either side of the edge is performed without any damage for the edge
itself, as would happen with linear smoothing). Further, this nonlinear filtering
procedure can be iterated to obtain a greater noise reduction; two iterations
are in gencral sufficient.

Another interesting example of nonlinear operators is represented by the
following nonlinear filters, very useful in reducing noise spikes or scintillation
pulses essentially represented by high noise levels concentrated in one or two
pixels (due to image sensors such as TV cameras, photodetectors, ir detectors,
ultrasonic transducers, or to the analog-to-digital conversion).
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Let us evaluate the average value f,(n,,n,)of three grey levels of the pixels
ina 3 x 3 block [excluding the central f(n,.n;)] as expressed by the double
addition in Eq. (25): if ali 8 pixels, around f{n,,n;), have a grey level differing
from f(n,,n;) less than a suitable threshold T and f(n,,n,) differs from
fu(n,,n;)more than T + A(with A > 0), the value of f{n, ,n;)is setequal to the
average f.(n,,n,); otherwise the central pixel maintains its original value
f(n,,n;). By adjusting the two parameters T and A, noise spikes of a different
level in more or less flat image regions can be eliminated.

For a binary image, as obtained after edge detection, a nonlinear operator
analogous to the preceding one can be defined through the following relations
(Cappellini, 1983)

1 t
[f(n,,nz) =0, if ) Y fny —ky,ny — k) <np

ky=-t1ky=-1

iff("..ﬂ;):O ki +h#0 (27)

Lf'(ny,ny) = 1, otherwise
i

1
J(ny,n) =0, if t:E:A“‘Z:'lf("’l—"1-"2—"2)<"o

irf("l.nz)—-—- 1 Ii|+l1#0 (28)

‘(ny.ng) =1, otherwise
1+7%2

where f’(n,,n,) is the updated value regarding the central pixel ftn,,n;}and
in generaln, = 7and ny = 2 or n, = 8 and ny = | (the last case means that a
central pixel of value O is changed to  if all the & near pixels are | and a central
pixel of value 1is changed to 0 if all the 8 ncar pixels are 0).

B. Edge Detectors

A very important class of 2D local space operators is represented by edge
detectors, which extract edges or boundaries in the processed image. Most of
these operators perform a kind of derivative filtering, evaluating the gradient
through a test on a given image pixel and its close ones. Once the gradient has
been estimated (magnitude and angle), it is compared with a threshold: If its
value (in particular the magnitude) is greater than the threshold, the pixel is
considered as a part of an edge, whose direction is orthogonal to the gradient
direction. These operators can be divided in two groups: To the first group
belong the operators which evaluate the two orihogonal components of the
gradient; the second group is based on gradient detection by means of asetof
templates or masks of different orientation (Pratt, 1978; Cappellini, 1979b).

In the first group, two orthogonal components D, and D, of the gradient in
each pixel are evaluated, and then its magnitude is obtained by means of the
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retation
D= /Dl + D} (29
while its direction is evaluated as
Y = arctan{(D,/D,) (30)

The two components D, and D, can be evaluated by several methods, by
using diflerent weights on a given number of values near the tested pixel. By
considering the (n,, n,) pixel, the simplest way to obtain the iwo components
D, and D, corresponds to evaluating the differences between the adjacent
pixels, that is,

D, = fin,my + 1) — flny.ny)
Dy = f("ns"z) - f("l + 1,"2)
This is the same as using the coefficient matrices or masks

-t 1 t o
D’=[ 0 0] D’z[—l 0] 2

in a nonrecursive digital filter implementation (performing the addition of the
products of the values of the masks and the underlying values of the image
pixels}). :

Another method to find the gradient components D, and D, is the
following (Roberts method)

D, = f(ny,ny + 1) — fln; + L,ny)
D, = f(ny,n) — fln, + Liny + 1)

with the corresponding masks

1
S I T

which gives two orthogonal components rotated n/4 with respect to the image
axes.

A more accurate estimation of the gradient can be obtained by using 3 x 3
coefficient matrices. Some of these matrices or masks are reported in the
following

(31)

(33)

(1) smoothed gradiént

-1 01 1 1 1
D,=|-1 0 1], D= O 0 0 (35)
-1 0 1 -1 -1 -1
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{2) Sobel gradient

-1 0 1 12 1
p,=|-2 02|, b= 0 0o o (36)
-1 01 -1 =2 -

(3) isotropic gradient

-1 0 1 1 V2 1
D,={-J2 0 J2|, D,=| O 0 0 (371
-1 0 1 -1 -2 -1
The expressions related to the previous masks are of the form
D= f(n, — Ln, + )+ wfin,,nyg + )+ f(n, + Lny + 1)
—fn, —Lng—=1)—wfiny,n; — 1)~ f(n, + 1,0, — 1)
Dy =f(ﬂ| - l,”z - l) + Wf("] - 1,"2) +f(n1 b ],"1 + l)
—f(n, + Lng =D —wfin, + L,n;) — f(n, + 1,ny + 1}
where the weight w assumes the values 1, 2, /2 for the three masks,
respectively.

The second group of operators for the estimation of the gradient and then
for the identification of edges is based on gradient detection by means of a set
of templates or masks of different orientation, searching sequentially at each
pixel for the best match among the image subarea and the masks. Every mask
of the set is superimposed on each pixel of the image, and the additions of
products between the mask cocfficients and the underlying pixels of the image
are performed just as in the previous group of local operators. The gradient is
assumed (o be detected by the mask which gives the greatest value of the
addition of the products: lts direction is assumed according to the direction of
the mask. Each set of masks.is composed of eight different 3 x 3 masks, each
of which is obtained from the previous one through a circular permutation of

its elements around the central one. Thus, il we assume that the first mask of a
given sct is

(38)

A B C
D EF (39)
G H 1

the second and the third mask will be

B C F C
A E 1
D G H A

(40)

-]
omm
O I -

and so on.
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The sets of masks more frequently used are obtained throuz™ a per-
mutation of the following masks (Cappellini, 1979b)
(1) Prewitt mask

(1 1]
| ) 1 41
-1 -1 -1
(2) Kirsch mask
(s 5 5]
-3 0 -3 (42)
-3 -3 -3
(3) Robinson masks
] 1 1 1 2 1
6o 0o 0 0O 0 0 (43)
-1 =1 =1 -1 =2 -1

There are also other approaches to edge detection, in particular to increase
the processing speed or 1o process noise images. An inter'csting example 1s
represented by the following operator (Cappellini and 0donco._l98 11. A block
of 3 x 3 pixels is considered: To each of the 8 pixels surrounding the central
one a binary value is given according to the difference among the p;:«f:l value
and the central value. In this way a binary image is obtained ha«ing 256
possible configurations (taking the central pixel at a constant reference va_lue
of 0 or 1): these configurations are divided into 5 classes, having a decregsmg
probability that the central pixel is a part of an edge or a contour. By setting a
threshold, separating these classes into two groups, it is finally esllmatefi
whether the central pixel is or not a part of an edge. Interesting aspects of this
operator are the following ones: adaptive criteria can be used t’qr t_he fibove
separation into two groups, depending on the noise characteristics in the
processed image; high-speed implementation is obtained, due to !he fact that
to estimate whether a pixel is or not a part of an edge, after the binary v?llues
were obtained, it is practically sufficient to compare the actual binary
configuration with a memorized decision table.

IV. DatA COMPRESSION

Data compression is a digital operation or transformation Qerformcd lp
reduce the amount of redundant data (redundancy reduction) and is
particularly useful for image processing, due to the large number of sampled

DIGITAL FILTERS AND DATA COMPRESSION 159

data representing cach image. In the following some general considerations on
source coding and several data compression methods and techniques are
presented, outlining the more important for image processing.

A. Source Coding

Let us consider an information source S emitting the information symbols
51.52,-..,5,. These discrete symbols could be, for instance, the different grey
levels of a samplcd image. Let us assume that each symbol is emitted with a
specific probability: p(s;) is the probability of s, (in practice, as is wetl known,
this probability could be estimated as the ratio between the number of times
that s, appears and the overall number of observed or recorded symbols).

The information quantity given by the symbol s, is assumed to be
proportional to the inverse of its probability p(s;} through a logarithmic
function; that is,

1
l5) = kologa (44)
where k is a constant and a is the logarithmic base. In general the following
values are assumed: ko = 1, a = 2. In this way, the information quantity
connected to a symbol having probability 4 (equal probability in the case of
only two symbols) results to be unitary value, that is 1 bit (binary unit).
Once having defined the information quantity of a symbol s, it is possible
to define the mean information guantity or entropy of a source S =
{51,5,....5,] of the above type, also called zero-memory source due to the
fact that the emission of one symbol is independent by the emission of the
other near symbols. The entropy of the zero-memeory source, H(S), is defined
as (Shannon and Weather, 1949)

]
HE) = 3. pis)lons (45)
which measures the average number of bits per symbol. It is easy to prove that
the entropy function H(S) has the maximum value when the symbols s, are
equiprobable, that is when p(s;) = 1/g; in this case H(5) = log, q.

One zero-memory source of particular interest is represented by the binary
source, having only two symbols s, = 0 and s, = 1. Denoting p = p(0), it
results that p(i) = p = | — p. The entropy function H (S} has the expression

1 _ 1
Hy(8) = PIOSz’—, + PIOSZE (46)
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This function, also denoted H{p), is often called the entropy function and has a
maximum value H(p) = lforp=p = 1.

A slightly more complex information source is represented by the nth
extension of the zero-memory source, in which blocks of n symbols s; are
considered (as the words representing the image samples). The symbols g, of
this extended source " are ¢" and the entropy is

1
HS = 3. plologa =~ = nH(S) )

A more general and complex information source is represented by the
Markov source or source with memory, in which the emission of any symbol s;
is done with a conditional probability p(s,/s;,.5;,»- .-+ 5;a); that s, this emission
is now connected to a specific group of preceding symbols 5,55, -+ 5jm- The
Markov source is called of m order (m denotes the memory extension). The
above conditional probabilities are ¢™*', because there are g™ possible
configurations or states of the source, corresponding to the different possible
dispositions with repetition of the m symbols, and from each one of this state
can appear any one of the g source symbols. The representation of the Markov
sources can be done through the state diagrams, in which the different source
states are reported as points and the possibie connections among the states are
outlined by conjunction lines (Abramson, 1963).

Let us now consider the source coding. By considering, for instance, a zero-
memory source S = {$;,53,...,5,} with symbol probabilities p(s,), p(sa)s.. .,
p(s,) as above, each symbol s; can be transformed or mapped into a fixed
sequence of I, symbols taken from a finite alphabet X = {x,,X3,...,x,}. This
corresponds to encoding each symbol s, into a code word X, belonging to the
set {X,,X1.....X,}; X is called the code alphabet.

Source codes can be classified according to the code-word structure: codes
using a variable-length encoding, in which the code words X, have a variable
length; codes with a fixed length of the code words. Further, the source codes
can be distinguished according to the following properties:

(1) nonsingular codes, having all different code words;

(2) codes which can be univocally decoded, for which the nth code
extension is nonsingular for any finite value of n;

(3) comma codes, having a specific symbol to separate a code word from
the near ones;

(4) instantaneous codes, for which any code word can be decoded into a
source symbol without the necessity of considering or knowing the following
symbols.

An important example of a source code is represented by the usual binary
code, used to represent an image sample (Quantized grey level) in a digital form.
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This binary code, having in general a constant word length, is a simple
example of a nonsingular code, which can be univocally decoded.

A very important property of source codes is connected to the economy or
compactness of representation of the information symbols. To make this
concepl precise, the average code word length can be defined as

L= ‘-_‘il p(s‘)l, (48)

This parameter L is very useful to measurc the economy of each source code.
For instance, a source code having an average word length L less than or equal
1o that of all other codes using the same code alphabet for the same
infermation source is called a compact code. It is clear now that a fundamental
problem of the source coding consists in the search and definition of compact
codes for the different information sources.

A general theoretical solution to the above problem is given by the first
Information Theory Theorem or first Shannon theorem for source coding
(Shannon and Weather, 1949; Shannon, 1959). Substantially this theorem
establishes a general bound for the average word length L in relation to the

information source entropy. In simplified form this bound is expressed by the
following relation

H(S) <L (49)

where 11.(S) is the source entropy, measured with a logarithm in base r. The
bound can also be set as

H(S)< L,/n (50

where L, represents the average word length of the ath extension of the
information source with the following limit

lim, . .. (L./n) = H(S) (31

In general the price which is paid to reduce L or L,/n is represented by the
complexity of the source coding.

The above fundamental theorem permits us now to also define in a
rigorous way the efficiency of each source code [according to Eq. 49]

n = HAS)/L (52)
and the redundancy of the source code as
I —n=[L-H(S)/L (53)

The above Egs. (52) and (53) permit one to compare different codes for the
same jpformation source, selecting that which has the higher efficiency (higher
value of ) or less redundancy.

oy S

Ly W
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An example of compact or optimum codes is represenled by the Huffman
encoding procedure, in which the length [, of each code word is ifiversely
related to the value of the probability p(s;). In this way the more probatle and
therefore the more frequent words are encoded in shorter sequences cotpared
with the less probable ones (Abramson, 1963).

B. Data Compression Methods and Techniques

Many methods and techniques of source coding or data compressi.'n have
been studied, defined, and applied to image processing (for local processing,
image transmission or storage).

According to the first Shannon theorem (see Section 1V,A), the different
data compression methods can be divided into two main classes:

(1) reversibie methods, which permit—at least in principle—recovering
through decompression (source decoding or inverse transformation) all the
original source information amount;

{2) irreversible methods, which do not permit recovering all the riginal
data and which introduce therefore some information loss or distortt:n.

The reversible methods obey and respect the source coding bound of
Eq. (50), while the irreversible methods do not. - _

Among the reversible methods, some important ones for image processing
are:

(1) adaptive sampling and quantization

{2) prediction interpolation (adaptive and nonadaptive)

{3) variable word-length coding (as the Huffman code)

{4) digital filtering (maintaining a useful spectrum extension)

(5 use of transformations (Fourier, Walsh-Hadamard, Haar, Karhu-

nen-Loeve)

while some irreversible methods are:

{1} thresholding

(2) parameter extraction

{3) power spectrum

(4) digital filtering (with spectrum extension reduction)
(5) probability functions.

To evaluate the performance of data compression methods, distortion
functions and distortion measures can be used (Berger, 1971). In practice, three
measurements are evaluated: the compression ratio C,; the peak error e,; the
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fms error ¢,. The compression ratio C, is dcfined as (Benelli et al., 1980)
C, = Lg/L (54

where Lg is the mean source word length [in gencral equal to the entropy
H(S)] and L is the mean word length data compression. If the source messages
(image samples) are represented in the standard binary form, the compression
ratio C, can be obtained by the ratio

C, = Ng/N¢ (55)

where Ng represented the number of bits (0 and 1 values) of the source words
(representing the image samples), and N represents the corresponding
number of bits of the code words after compression.

The peak error e, represents the peak or maximum error resulting between
the input message (image samples) and the corresponding reconstructed
message after decoding or decompression, while the rms error ¢, represents the
root-mean-square error between the input and reconstructed messages
evaluated on a suitable block of data (number of irnage sampies, in particular
on the image samples overall),

Itis clear that in gencral data compression methods of the irreversible type
give higher values of the compression ratio C,, with the penalty however of
higher ¢, and ¢, errors. Furthermore, reversible methods can also become
irreversible, if some parameters (as threshold values, sampling frequency,
amplitude tolerances, etc.) are changed in such a way as to obtain higher
compression ratios (consequently introducing higher error values).

In practice, the efficiency of the different data compression methods
depends on the nature of the information source (different types of images), and
each method can result in being more efficient for some information sources
(particular type of image} than for other ones. In this regard, it is very
important te perform a suitable analysis of the information source (image to
be processed) before the application of any data compression method:

(1) space analysis

(2) space-frequency analysis (amplitude and phase spectrum)

(3) statistical analysis (statistical average, amplitude distribution, auto-
correlation, power spectral density),

1. Adaptive Sampling and Quantization

Adaptive sampling methods are based on the use of the minimum
sampling frequency for any processed image; the minimum sampling fre-
quency, as is well known (from the sampling theorem), is equal to double the
maximum space frequency. Adaptivity can in particular be obtained by
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changing the sampling frequency for some sub-block of the processed image;
for instance, sample sub-blocks of 32 x 32, 64 x 64, or 128 x 128 are
considered, and the sampling frequency is locally adjusted in each image sub-
block according to the local maximum space frequencies. The maximum space
frequency in the image or image sub-blocks can be practically found through
the 2D FFT (fast Fourier transform). By means of the above procedures, a
reduction of sample number is obtained, in comparison with the use of a fixed
sampling frequency.

Also, the quantization level (number of bits representing the image
samples) can be changed in an adaptive way from one image to another or in
image sub-blocks, taking into account the actual grey-level range (for instance,
low grey-level ranges require a lower number of bits). The grey-level range can
be easily found through the amplitude distribution (grey-level histogram).

In practice, the change of sampling frequency or quantization law from
one image to another or in image sub-blocks can be identified through a
special word expressing the particular sampling frequency or quantization
level locally used.

2. Prediction and Interpolation

Data compression methods with prediction or interpolation are inter-
esting, due 1o their relatively simple structure and reasonably good efficiency
(Benelli et al., 1980). Let us consider 1D algorithms, which can be applied to
image processing line by line (for instance, processing the sequence of image
samples along the rows).

In prediction methods a priori knowledge of some previous samples (image
samples along a row) is used, while in interpolation methods a priori
knowledge both of previous and future samples is utilized. In both types of
operations the most widely applied technique consists in comparing the
predicted or interpolated sample with the actual sample: If the difference is less
than a fixed error or amplitude tolerance, the actual sample is not maintained,
otherwise the actual sample is maintained, Figure 4 shows a block diagram of
a typical data compression system with prediction or interpolation: The
nonredundant samples (i.c., the samples for which the prediction or inter-
polation fails) are fed into a buffer 1o be reorganized at constant space intervals
with the space position identification (synchronization), necessary for the
reconstruction of the original data from the compressed samples. The
important role of the buffer is therefore to store the incoming samples
remaining after the gate, so that they can be reorganized at uniform sampling
rate. In this way, while at the input of the buffer we have only bit compression,
at its output we also have bandwidth compression (sampling rate reduction).
In the following, the symbols C,, and C,, indicate the average compression

DIGITAL FILTERS AND DATA COMPRESSION 165
GATE BUFFER |Sompreszed
output

>
PREDICTOR synchronization
INTERPOL.

o COMPARATOR GATE
input

FiG. 4. Biock-diagram of a data compression sysiem with prediction or interpolation.

ratios, respectively, with and without including the bits added for the space
identification or synchronization.

Prediction algorithms are utilized, according to the following difference
equation

S =fln—=1)+ Af(n— D+Afn—bB+--+Aa%n-1) (56)

where f,(n) = predicted sample at space position nX (X being the space
sampling interval along the image rows and columns);, f(n — 1} = sample
value at the previous space position (n — 1)X; Af(n— )= f(n—~1)—
fn—2),..., A¥(n—1)=A""Y(n—1)— A¥"}f(n — 2). The value of N
corresponds to the order of the prediction algorithm: with N = 0 we obtain
the zero-order predictor (ZOP) and with N =1 the first-order predictor
(FOP).
For the ZOP algorithm, several procedures can be followed:

(1) ZOP with fixed aperture, in which the dynamic range of the data is
divided into a set of fixed tolerance bands with a width of 26;if f(n — t}is the
last remaining sample, f(n) is not maintained when it lies in the same tolerance
band;

{2) ZOP with floating aperture, where a tolerance band +4 is placed
about the last remaining sample; if the following sample lies in this band, it is
not maintained (in this case the next samples are compared again with the
value of the last remaining sample 6 and so on);

(3) ZOP with offset aperture, in which the predicted sample is f,(n) =
fin— 1) + &, where d is a prefixed quantity and the sign + is used if the last
remaining sample is out of tolerance in the positive direction and vice versa.

In the FOP algorithm with floating aperture the first iwo samples are
maintained and a straight line is drawn through them, placing an aperture 14
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about that line: If the actual sample f{(n) is within this aperture, it wili not be
maintained and the line will be extrapolated for a following space interval X
and so on.

Data compression algorithms using interpolation differ from th: corre-
sponding ones with prediction, due to the fact that with interpolatich both
previous and following samples are used to decide whether or not the actual
sample is redundant. The more interesting algorithms, based on low-order
interpolation, are zero-order interpolator (ZO1) and first-order interpolator
(FOI).

Adaptive data compression methods with prediction or interpolation
represent an improvement on the preceding ones of the nonadaptive type,
especially when there are input images to be processed having high activity
(variation of the space and frequency behavior from one image parl to the
other). These methods can be divided into linear and nonlinear ones
depending on the specific procedure used for the adaptivity implementation.
Of high interest is the adaptive-linear prediction (ALP) method, in which the
predicted sample f,(n) is evaluated by a linear weighting of M previous
samples (Benelli et al., 1980)

M
fyny= 3. fuftn~ K (57)

where f, are suitable weighting coefficients. If the prediction error falls within
a given threshold value y, the actual sample is not maintained 1f the
considered process is a stationary Gaussian series with zero mean, the
coefficients ff, can be determined in such a way as to minimize the mean-
square prediction error given by

N M 2
6’(M,N)=#Z(I(n—f1— Zﬂt(M-N)f("-f“k)) (58)
i ¥

M being the number of the preceding samples for the prediction and N the
number of samples which the predictor uses to learn the image sample’s
evolution (line by line). The method turns out to be advantageous as long as
the statistical characteristics of the image are maintained on suitable extended
regions. In practice a counter can be used to measure the number of
consecutive predictions affected by error; when this number exceeds a prefixed
value T, a new set of M coefficients is again computed and the algorithm goes
with the new coefficients.

3. Differential Pulse-Code Modulation and Delta Modulation

The general block diagram of differential pulse-code modulation {DPCM)
is shown in Fig. 5. A predicted sample fy(n) is evaluated through a linear
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Fi. 5. Block diagram of a DPCM system.

weighting of the M previous samples (Benelli ez al., 1980)
M

Solm) = t):l a(k)f(n — k) (59)
The predicted sampiles can be obtained using any of the prediction algorithms
as ZOP, FOP, ALP,... . The difference e, between the actual sample and the
predicted one is quantized with quantization intervals of amplitude A and
encoded in a code word L, bits long. If the image samples have high
correlation and the weighting coefficients are correctly chosen, DPCM
generally offers a higher efficiency with respect to the usual binary coding; with
an equal number of bits, DPCM assures an higher signal-to-quantization-
noise ratio (SNR), or with an equal SNR it requires a lower number of bits.

Many adaptive DPCM methods (ADPCM) have also been studied and
defined. In general the A value is varied, becoming smaller when the grey level
is quiescent and vice versa or the length of the prediction interval (M) is
changed, according to the signs and values of some previous differences
between the predicted and the actual samples.

A special data compression method, which can be considered as a DPCM
with 1-digit code, is represented by delta modulation (DM). In the DM
method, the changes in the grey level between consecutive samples are
substituted for the absolute grey-level values. These changes are represented in
the form of binary pulses, whose sign (+ or —) depends on the sign of the
amplitude change. Fig. 6a shows the block diagram of a DM system, while Fig.
6b outlines the main wave forms at different points of the system.

In the classical DM a single binary pulse is obtained at each sampling
interval instead of a complete code word; the output pulse is in this case
synchronous with the input word stream, yielding a constant comptession
ratio. Errors in the reconstructed data can, however, appear due to two effects:
the approximation of the input wave form (grey-ievel variation) to a siep
function (granular or quantization noise); and quick variations of the input
wave form, which cannot be followed with accuracy. Regarding this last
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FiG. 6. DM sysiem: {a) block diagram; {b) main wave forms in the different points.

aspect, input variations cannot be followed for which the gradient of the
sampled data exceeds the limit

g =4ar (60)

where A is the change in amplitude of a DM pulse and r is the rate of the pulses
(puise space frequency for the processed image). The distortion due to this
aspecl is also known as slope-overload distortion.

Many studies have been developed to analyze the efficiency of the classical
DM and to increase the efficiency (Benelli et al., 1980). A first method is based
an the change of the step amplitude, according 1o the wave-form variations:
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The step amplitude is increased when a given number Ny of consecutive
samples have the same binary value and it is decreased in the contrary case
(high information delta modulation, HIDM). Another interesting modifica-
tion of the classical DM is basic asynchronous delta modulation (BADM),
in which the sampling rate is increased during intervals of high activity (rapid
dynamic range variations) and it is decreased in lower aclivity intervals.
A special technique, called operational asynchronous delta modulation
(OADM), avoids the errors corresponding to rapid amplitude variations in the
following way: When the difference between the input and the reconstructed
samples cxceeds a prefixed tolerance value, the algorithm goes back m samples
and inverts the A value, adjusting the sampling interval appropriately.

4. Use of Digital Filtering

The use of digital filtering (1D and 2D) is a very useful approach for data
compression, for several reasons (see also Section V). First, if the useful
information is concentrated in a limited frequency band, digital filtering can
extract this band, in particular through low-pass or bandpass filtering; indeed,
a lower number of data are required to represent the extracted limited band (in
comparison with the overall spectral extension} and hence a data compression
result is obtained.

Further low-pass digital filtering is useful in preprocessing before the
application of particular data compression methods, because the smoothed
data can be more efficiently compressed by specific compression algorithms.

The joint use of digital filtering and data compression methods is
presented in detail in Section V.

5. Use of Transformations

Orthogonal transformations, such as Fourier, Hadamard-Walsh, Haar,
K arhunen-Loeve, elc., in particular in discrete or digital form, can be used for
data compression, due to the fact that in general they represent a more
compact representation of image data. This means that the transformed data
become defined and exist in a smaller region or domain than the original data;
a lower number of significant transformed data then result.

The 2D discrete Fourier transform (DFT) is defined as in Pratt (1978)

N-1 N1
Fik,,k;) = Zo Z f(n.,n,}cxp(——(k n o+ kznz)) (61)
m ur=0
while the inverse discrete Fourier transform (IDFT) is expressed as
] NoiN-

f("l-";)"‘ ~3 Z Z Fik,,k )exp(“'(knﬂl'*'kz"z)) (62)

ki =0k2=0

e W
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where the k, . k, indices correspond to frequencies (v, = k, Av, v, =k Av, Av
being a constant-space-frequency interval).

With suitable symmetry properties, the discrete cosine transform and sine
transform (DCT and DST, respectively) can be used. The DCT transform can
be expressed in the following way

Fiky ky) =2 Nz—:l fo(nl -"2)COS(M("| + %))COS(%(M + 5)) (63)
)

m=0n;= N

The Hadamard transform is based on the properties of the Hadamard
matrix (square form with elementsequal to + 1, having orthogonality beiween
the rows and columns). A normalized Hadamard matrix, of N x N size,
satisfies the relation

HH" =1 (64)

The orthonormal Hadamard matrix of lowest order is the 2 x 2 Hadamard

matrix
1jl |
- 65
ﬂ”ﬁ[l _1] (6

The above transform is also known in the litearture as a Walsh transform
(WT). A frequency interpretation of the above Hadamard matrix is indeed
possible: the number of sign changes along any Hadamard matrix row,
divided by 2, is called the sequence of the row. The rows of a Hadamard matrix
of order N can also be considered as samples of rectangular functions having a
subperiod equal to 1/N; these functions are called Walsh functions (Pratt,
1978).

The Haar transform is based on the Haar matrix, which contains elements
equal to +1and 0.

One of the most efficient transforms is represented by the Karhunen-
Loeve transform {(KLT), which can be defined in the following way

N-1N-1

F(ky,k;) = Z zof("l-"zM("n"z;khkz) (66)

m=0mn=
where the A(n,,ny; k,, k;) kernels satisfy the relation

N-1N-1
Ak, kdAlny naiky ky) = Z Zoc(nls"z;"'1;"'1)'4("];"'2;":"‘1) (67

wy=0ay=
where C(n,,ny;n},n3) denote the covariance function of image data and
A(k,, k,) are constants (eigenvalues of covariance functions) for fixed values of
k, and k.
The above-considered discrete transforms can in general be evaluaiedina
fast form; the computing operation is divided in a sequence of subsequent
computing steps in such a way that the results of the first compuling steps
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{partial results) can be utilized repetitively in subsequent steps. Efficient
software packages are available for Fast Fourier Transforms (FFT} and Fast
Walsh Transforms (FWT). For instance, the number of operations required to
evaluate 1D FFT becomes N log, N instead of N* for DFT, and to evaluate
ID FWT, N tog, N instead of N2 for DWT (the difference beiween DFT-FFT
and DWT-FWT is that for the first type of transform the operations are
complex multiplications and additions, while for the second the operations are
additions and subtractions).

As already outlined above, the transformed data constitute a compact
representation of the original image data; the number of significant trans-
formed data is appreciably smaller than the number of original image data.
For instance, an image constituted by a regular smoothed variation of grey
levels will be represented by few Fourier components (few FFT data), while an
image containing sudden variations in the grey leve! (nearly rectangular grey-
level variations along the rows and columns) will be represented by few Walsh
components (few FWT data).

Further, the transformed data can be compressed in a stronger way by
applying simple algorithms such as thresholding (for instance, setting to zero
the values under a small threshold such as a few percent) or prediction
interpolation. The block diagram of a system applying this last approach, in
particular to verify the efficiency of thresholding or the ZOP algorithm also
through suitable displays, is shown in Fig. 7.

Variable-word-length coding can also be used for different transformed
data blocks. In practice, the transformed data are divided into several squares
and a minimum word length (a bit number sufficient to represent the
maximum absolute amplitude value in the square plus 1 bit for the sign) is
employed for each of them. In the actual storing or transmission of the
processed image data, an additional fixed-length word is inserted before each
square data, in order to specify the number of bits to represent the square
coefficients.

With reference to 2D FWT, if N = 2", with n an integer, is the number of
rows and columns of the sampled image anc L is the number of grey levels, the
maximum value which the transform will assume (corresponding 1o the
addition of all the image samples) will be N2L. If g is the quantization value for
the transformed data, the number of bits required to specify the word length
used in a square will be

n, = log,[log,(N?L/q + 1)] {68)

where the algorithms are rounded to the next highest integer.

A modification of the above method for image data compression by means
of 2D FET or FWT consists in applying the same procedure of variable-word-
length coding of the transformed data in a limited number of transformed
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image subareas. In particular no value can be maintained for those subareas,

INPUT DATA

—1 where the addition of 1he absolute values of the transformed data is below a
s given threshold.
RO~ S S From a computational viewpoint, we can further outline the following
‘g g 5_: comparison considerations:
a £ () 2D FFT is in general more efficient for images having continuous
T g . . reguiar or smoothed variations (sine-wave type) in the grey level;
o (2) 2D FWT is more efficient for images having sudden variations {of a
. - & rectangular type) in the grey level;
o . N r e (3) Karhunen-Loeve transform is the most efficient, but it is much more
E ™ E e complex than the others, and no fast computing routine is available for its use.
~ w )]
> £ ,
T % V. JOINT Ust OF Two-DIMENSIONAL DIGITAL FILTERS AND
] DATA COMPRESSION
' ~ =
s Z F
& Ll % e The above-considered 2D digital filtering and data compression opera-
g x 2 el tions can be joined together with significant advantages for digital image-
g e 2 § processing efficiency. The two operations are in general performed in cascade,
= E one after the other.
T T T T 1 i Most parts of images indeed require some kind of filtering to smooth the
o = E data or to perform space-frequency corrections and obtain enhancement, in
- 2 E 2 general with the goal of reducing the n_oise: or disturbances gnd of obta‘ining
s = ﬁ 2 ‘E‘» higher-quality images. Data compression is, as already outlined, a desirable
e a2 g operation after filtering to reduce the amount of data, which is becoming a
- -z 2 tremendous problem for the practical use of images in many application areas.
e — 3 = Further, the combination of the two operations can be attractive to
K increase the compression efficiency (see Section 1V,B,4);, smoothed data after
a E low-pass filtering can surely be more efficiently compressed by the different
. ~ g data compression algorithms, because they now operate on 2D data having
™™ 3 ™ lower space-frequency values.
- % In the following some typical connections of the two digital operations are
o - first presented; then a special new system, based on digital filtering and data
j ¢ reduction, is described for digital comparison and correlation of digital images
= -t having different space resolutions,
w 2 z
§ :-; = . e A. Some Typical Connections of the Two Digital Operations
& - -
o
E E z Lacal space operators, 2D digital filters, and data compression can be

4 9
1

connected in different yseful ways to obtain some specific results on the

processed itnage.
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(1) Low-pass filtering (by means of a local space smoother or 21) digital
filtering) and thresholding: high space-frequency components can be educed
due to the noise and disturbances, and hence a binary image can be ¢htained,
where the more useful data are maintained (by selecting suitable ¢ :reshold
valucs).

(2) High-pass filtering (by means of local differential operato!» or 2D
digital filtering) and thresholding: image enhancement is performe. giving
higher contrast to image structures {grey-level variations), and hence 2 binary
imagg is obtained, where some useful structures and patterns can be extracted
(by selecting suitable threshold values).

(3) Low-pass filtering [as in(1)] and compression by means of prediction
interpolation, DPCM, DM, or variable-word-length coding: high space-
frequency noise is reduced, and in the meantime smoothed data are more
efficiently compressed.

(4) Low-pass filtering [as in (1)] followed by edge detection and hence
spike elimination (by means of nonlinear operators as in Section [11.A): high
space-frequency noise is reduced (for instance, random noise), useful edges and
boundaries are extracted (representing a compressed form of the image), and
further high-amplitude spikes or scintillation noise are eliminated.

(5) Low-pass filtering [as in (1)] and compression by means of digital
transformations (2D FFT or FWT): the same result as in (3) can be obtained.

{6) Use of 2D FFT to perform filtering and compression: oncc the 2D
FFT has been evaluated, high space-frequency components can be discarded
to obtain a filtering eflect (smoothing with noise reduction); hence the
remaining 2D FFT components can be reduced with thresholding or variable-
word-length coding (see Section 1V ,B,5).

B. Processing System for Digital Comparison and Correlation of
Images Having Different Space Resolution

In many application areas, such as remote sensing, biomedicine, and
robotics, an important practical problem is represented by the availability of
several images given by different sensors or equipment and regarding the same
scene (land region, body organ, mechanical object,. . ). In general these images
are taken from diflerent view points and have different space resolution.
Increasingly often a processing goal is to obtain integrated images or maps,
where the data from the different images pertaining the same observed scene
are suitably correlated (for instance, through a simple addition difference or
specific weighting of one image’s data by the other images’ data).

To solve the above problems, there are two types of digital processing to be
performed:
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(1) geometrical corrections and rotations with a change of viewpoint (lo
refer the different images to the same viewpoint or to the point at infinite
distance and orthogonal position producing orthoimages);

(2) space resolution variations in such 1 way finally to have images with
the same space resolution, which can be aclually infegrated.

While for point {1) there are several georv:etrical transformations available
using trigonometric functions, for point ¢2) there are few approximation
procedures. In the following a rigorous method is presented, based on 2D
digital filtering and data reduction (Cappellini et al., 1984a).

Let us consider two images f,(n,,n;)and fy(n,,n,)in digital form, the first
with high space-frequency resolution or definition and a space-sampling
interval X,, the second with lower space-frequency resolution and a sampling
interval X, > X,. Practically, if m =(X,/X,), to one pixel of the image
f1(ny ., n,) corresponds m? pixels of the image fi{n,,ny).

Several approaches can be used to obtain from a high-definition image
fi(n,,n;) an image g,(n,,n,), having a space-sampling interval X, equal to
that of the lower-definition image [g,(n;,n;) is a compressed form of
fl{nl ’ "2)]-

One simple technique corresponds to evaluating g,(n,,n,) data as the
usual average of f,(n,,n,)data [see also Eq. (24)]; that is (with m odd),

| m-1y2 tm- 112
giin . n)=— Z Z filny _k1s"2_k2) {69)
B = —tm-1)2k=—(m - )2

The g,(n,.n,) image obtained in this way re;:resents a rough smoothed version
of the original high-resolution image fi(n; n,).

A second, more refined approach consists in evaluating g, (n, ,n;)dataasa
weighted average of f,(n,,n;) data; that is,

m— 1)2 tm - 1)/2
gi(ny,ny) = Y Y waky, k) filn — ko ny — ky) (70)
ki=~(m-1)2ky= ~(m~-1}2

The weights w,{k,.k;) in the above relation define the form of smoothing
operation which is performed on the fi(n_.n,) data; it 1s easy to verily, for
instance, that with w,(k, . k;) = (1/m?) Eq.{70) is equivalent to Eq.{69). It can
appear reasonable to give, in general, greater weight to the central pixels of the
m x m subimage of the f,(n,,n,) image with respect to the peripheral ones.
For this purpose one solution corresponds to using a lincar weighting
resulting in a conical (or pyramidal) function in the 2D domain; another
solution consists in using a Gaussian weighting function (the 2D function can
be easily obtained through the circular rot:tion of a 1D Gaussian function).
The above-described techniques perfo..n a smoothing operation on the
high-resolution image f,(n,,n;) in a heuristic way to obtain the image
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g((ny,n;) to be compared and correlated with the lower-resolution image
f2(n,.n;). A more rigorous and precise system is based on the use of a 2D
digital filter of the low-pass type with circular symmetry {se¢ Section 11). The
precise steps of this system are the following:

(1) 10 perform a low-pass, circular symmetry, 2D digital filtering with a
cutoff frequency w,/2n = 1/2X,, obtaining the filicred image g,(2,.n,);

{2) to reduce or “decimaic” the obtained data g,(n,,n,) up to a space-
sampling interval equal to X, that is, 1o obtain the image (in digital form)
ga(ny.ny) =g,(n, X;,n3X;).

The above digital operations indeed remove from the 2D spectrum of the high-
resolution image f,{n,,n,) the space-frequency components greater than
w,/2n, giving therefore an image which is directly comparable—for that
which regards the space resolution—to the lower-resolution image f(n,,n;).
The two digital images g,(n,,n,) and f3(ny, n,) now result to have grey-level
variations in the different space directions with the same maximum space
frequency.

It is interesting to observe that the 2D digital filter used in this last rigor-
ous system includes, as particular cases, the approaches defined by Egs. (69)
and (70). The first is obtained by seiting the coefficients of the 2D digital fil-
ter atk,, k) = (1/m?) [see Eqs. (2) and (9) for the FIR case]; the second results

by Setling a(kl,kz) = w.(kl,kz).

V1. APPLICATIONS

In the following some examples of applications of 2D digital filters, local
space operators, and data compression to such important fields as communi-
cations, remote sensing, biomedicine, and robotics are presented.

A. Applications 10 Communications

In a communications system a message is transmitted from one place Lo
another through different physical communication channels (lines, cables,
satellite links, optical fibers, etc.). If the transmitted message is a signal s(r)
{Fig. 8), the receiver produces an estimate s.(t) of the original source message,
trying to reduce the noise and degradation introduced by the channel.

Often many messages of the same or different type have to be sent in
parallel to utilize the communications medium in a more efficient way.
Multiplex commusticglion systems are used for this purpose. Two important
types of multiplex systems ar¢ represgnted by frequency division multiplex
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FiG. 8. General block diagram of a communication system.

(FDM) and time division multiplex (TDM). In the first the single messages are
set in adjacent frequency domain, while in the second the messages are
organized in subsequent time intervals, in general by sending one sample of
each message after the other in a cycle or frame and sending one frame after the
other. By representing each sample in the TDM system in digital form (a word
of a given number of bits) a pulse-code-modulation (PCM) multiplex system is
obtained.

Digital communications of the PCM type have expanded recently in an
exponential manner, due to the main aspects outlined in the Introduction
(Section 1). In digital communications it is easy to apply digital operations
such as previously described (digital filtering, local space operalors, data
compression).

By considering the transmission of images, these are in general converted
into a video signal through a scanning procedure and then this signal is
sampled and set in digital form. Digital operations described in the previous
Sections can be usefully applied to this digital signal both in transmission and
reception, according to the general block diagram in Fig. 9.

In transmission 1D digital filtering can be performed to reduce high-
frequency noise components and exactly define the bandwidth. 2D digital
filtering and local space operators can also be applied, if a suitable memory or
buffer is available, processing image data in such a way as to reduce high
space-frequency components (image smoothing) or to obtain image enhance-
ment. Hence data compression can be performed to maintain the more
significant data. By means of filtering and compression, a bandwidth
reduction or bandwidth compression is achieved, which is a very important
result to increase the efficiency of the digital communication system (the same
image dala can be transmitted by usinga smaller bandwidth, or other datacan
be transmitted with the image by using the same bandwidth). A channel coder
can be added after compression to protect the remaining important data
against channel noise and disturbances (Benelli et al., 1977, 1984).

In receplion, after the eventual channel decoder for error detection and
correctiun, the image data are reconstructed (decompression) also utilizing
synchruiization data (given by a sequence detector) and hence digita! filtering
is performgd (1D and 2D type) to reduce remaining channel noise or to
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increase image quality. With reference to this tast filtering processing, 1D and
2D digital filters can indeed be applied in the following way:

(1) 1D digital filtering can reduce channel noise and degradation (such
as multipath and Doppler effects) through vhannel equalization (fixed and
adaptive type) and matched filtering (Cappellini et al., 1978);

(2) 2D digital filtering can reduce spac:-frequency components due to
noise and perform image restoration (inverse filtering) and enhancement.

Let us now consider in mote detail the dig.. ! transmission of time-varying
images (television) and of time-fixed or static .raages.

In the first case, for good reproduction of .novement, image sequences are
required at a sufficient rate. In European TV standards for instance, 25
images/s are used. By using 625 lines/image :nd 8 bits/sample, transmission
rates of 50 Mbits/s are obtained. To reduce this high value, the analysis of two
subsequent images can be performed in such  way as to take into account, for
instance, only the actually moved parts in the transition from one image to the
subsequent one (interframe techniques). [*CM techniques (see Section
1V,B,3) can be used for this purpose; throu : variable-word-length coding,
mean word lengths of 2-2.5 bits/sample a.. obtained, reducing the trans-
mission rate to 10-20 Mbits/s. A suitabl. encoding, as with prediction
interpolation or—more efficiently -—with diy. :al transformations (see Section
IV,B), can also be performed in each single image (intraframe technigues).
Combining interframe and intraframe tecnniques, lower bit rates (2-10
Mbits/s) are obtained, at the expense of higher complexity and cost.

An interesting approach to reduce the redundancy in TV images, by means
of inter—intraframe coding, is based on move nent compensation: The coding
consists essentially in determining for each pixel the prediction model (spatial,
temporal) and transmitting, when necessary, the quantized difference and the
prediction model changes (Brofferio et al., 1975).

In the case of videotelephone or teleconf:rence s; stems, due to the lower
number of images points in movement fro:: one image to another, and by
using DPCM techniques with variable-word “zngth coding, 0.9-1 bits/sample
are sufficient. If information about image moving objects or parts is suitably
used, values of 0.4-0.5 bits/sample are reacned. For instance, for an object
translation, the shift and direction values can be sent to the receiver, which will
also reconstruct grey levels of moved image parts. Transmission rates on the
order of a few Mbits/s are thus obtained.

In the second case of static images, .wo practical situations can be
considered: transmission of written documents and sheets, and transmission

of photos (telephoto).
Regarding documents and sheets, let us consider a standard A4 sheet

(29.6 x 20.8 cm). To describe the written information and transmit it to the
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receiver (as in facsimile), an efficient method can be represented by the use of
an optical reader of the written characters. If the sheet contains 30 lines, each
with 70 characters, there are 2100 characters in a sheet. If, for instance, 7 bits
are utilized for the transmission of the characters, 14,700 bits are required for
the representation of the sheet. I, however, variable-word-length coding is
used, taking into account the character probabilities (see Section 1V,A), a
lower number of bits is required (as an example, for the English language, a
mean word length—equal to the source entropy—4.2 bits/character is
resulting, with 8800 bits required to represent the sheet).

A more economic system can scan the sheet (assumed to be black
characters on a white background) with 1200 lines (at least 4 lines/mm are
required) and represent each line by 800 equidistant space samples (points).
Each sample being of a binary value, there are 960 000 bits required to
represent the whole sheet (an amount much greater than the previous one). A
little more efficient coding is obtained through the representation of the
lengths of black or white point sequences by means of variable-word-length
coding: Mean values of 0.3-04 bits/point are sufficient. By using the
variations of the above sequences line by line (comparing one line with the
following one) and suitable encoding of these variations, mean values of 0.1~
0.2 bits/point are obtained (with 96,000~ 180,000 bits required to represent the
whole sheet).

For what concerns the representation and transmission of black and white
photos, the number of data required is much higher. Let us consider a
telephoto of 13 x 18 cm. To have sufficient space resolution, 8.6 lines/mm are
required, and therefore 1500 lines with 1100 samples/line result. The overall
amount of data, by representing the grey level of each sample by 7 bits, is
therefore 11.5 Mbits (by using transmission with 4800 bits/s, 40 minutes are
required for the transmission of a complete photo). By means of data
compression techniques, such as DPCM with variable-word-length coding
{sce Section 1V,B,3) a mean word length of 2-3 bits/sample is obtained, and by
means of digital transformation (see Section 1V,B,5) a value of 1-2 bits/
sample and less can be reached. With reference to this last approach, Fig. 10
shows an example of the application of the discrete cosine transform (DCT,
implemented in a fast way, FCT) 1o a typical photograph of Florence {the Old
Bridge). Thresholding compression of transformed data is used, representing
image square sub-blocks containing N, x N, data (transformed data less than
1% are neglected). Fig. 10a shows the original digitized photo, and Fig. 10b the
reconstruction in the case N, = 16 (mean word length = 0.6 bits/sample,
e, = 16867, and ¢, = 2.13%).

Finally, it is important to observe that all the above data-compression and
data-rate-reduction results can be improved, if 2D digital filtering or local

o {

Fic. 10, Fxample of the application ol the fast cosine transform (FCT) to perform dala
compression on a photograph of the Old Bridge in Flarence: (a) original digitized photo; (b)
reconstrucied photo (with 0.6 bits/sumple).

ry X
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space processing {as of the low-pass filtering type) is pérformed belore the
application of data-compression techniques.

B. Applications to Remote Sensing

Many remote sensing images and maps are currently collected by
platforms aboard aircrafts and satellites. Indeed passive remote sensing
systems, as optical cameras, multispectral scanners (MSS), and microwave
radiometers, or active remote sensing systems, as side-looking radar (SLR)and
laser radar (lidars), give an impressive amount of images and data.

The above images, maps, and data given by remote sensing systems in
general need to be processed to improve their quality (geometric ar. 3 sensor
corrections, noise reduction, enhancement,...) and to oblain fin.! useful
results (extraction of specific regions and land—sea areas as for agriculture
investigation or water resource monitoring). 2D digital filters, local space
operators, and data compression represent indeed very useful digita! opera-
tions to achieve the abave outlined goals.

2D digital filters or local space operators can be applied as a prep: cessing
operation to smooth the image data (by means of low-pass filtering) or to
perform a space-frequency correction or to obtain enhancement (by means of
high-pass or bandpass filtering), also extracting edges and boundaries. In
particular, after enhancement better-quality images can, in general, be
obtained and through edge extraction different earth regions can be rec-
ognized and classified with easy evaluation of the corresponding areas. Data
compression can be applied in general after some type of filtering, to reduce
the amount of data, which is becoming a tremendous problem for the
practical use of satellite data and aircraft photos of large earth areas
(Cappellini, 1980). In the following some typical processing examples are
given, regarding the application of the above digital operations.

Figure 11 shows an example of the application of filtering and edge
extraction to an aircraft photo ( a region south of Florence). In Fig. 11a the
digitized image is shown, while in Fig. 11b the result of processing by means of
the nonlinear filtering operator as defined by Eq. (26) (nonlinear smoother)
foltowed by the isotropic-gradient edge detector [Eq. (37)]. As it appears, the
main different ground regions are isolated; adding the grey-level information,
three classes can easily be obtained: forest (black and high-intensity grey
levels), wine grapes and oil plants (medium-intensity grey levels), and other
ground regions.

Another very simple processing example is shown in Fig 12. A
LANDSAT-C image of the Tirrenic coast (at the bottom the Arno River
appears)is processed first through grey-level expansion (stretching, see Section
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) FiG. 11. Example of the application of nonlincar z:moothing and edge extraction lo an
aircraft photo (region south of Florence): (a) digitized phaoio; (b) processed result.

H1) and then through thresholding. Figure 12. shows the original image, and
Fig. 12b gives the final result, which practical.; corresponds to an estimation
of the water resources in the analyzed region.

Figure 13 shows an example of the application of a 2D FIR digital filter of
the high-pass type [Eq. (2}] toc a LANDSAT-C image. At the right is a part of
the original image (North Africa), while at the teft the filtered image appears.
As is clear, a good enhancement effect results, which can be very useful for
extracting some significant regions; further. through thresholding as in
ng‘g.4] 2b, final estimate regarding these regions could be obtained (Cappellini,
1984).

Figure 14 shows an example of the application of data compression with a
ZOP algorithm and floating tolerance (see Section 1V,B,2) to an ERTS-1
image. At the left the original image is shown, and at the right the
reconstructed one after compression (an average compression ratio C,, = 1.56
is obtained).

Figure 15 gives another example of the application of data compression on
the same ERTS-1 image, using the 2D FWT with variable-word-length coding
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Fic. 12 Example of application of stretching and thresholding Lo a LANDSAT-C image
(Tirrenic coast with the Atno River at the bottom): (a) original image; (b) processed resull.

of transformed data blocks {4 x 4). At the left is the original image, in the
middle the reconstructed one with g/N = 47 [see Eq. (68)] correspondingtoa
compression ratio C,, = 2.14, and at the right the reconstructed one with
g/N = 8% and C,, = 3.84. Higher compression ratios can be obtained by
increasing g/N (Cappellini et al., 1976).

A practical application of the processing system for digital comparison
and correlation of images having different space resolution, presented in
Section VB, is shown in Figs. 16-20. Figure 16 shows a SEASAT-SAR image
(256 x 256) of a coastal region in South ltaly (Sele River in Campania), which
represents the high-resolution image fi(n;,n,). Figure 17 gives a LANDSAT-
C image (256 x 256) of the same region, the image representing the lower-
resolution one fy(n,,n;). Figure 18 shows the result of 2D FIR digital filtering
(low-pass type, circular symmetry) of the SEASAT image. Figure 19 shows the
iwo final images obtained for comparison and correlation. At the left is
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Fii. 13.  Example of the application of a 2D FIR digital filter of the high-pass lype to a

LAN DS_AT-C image (North Africa): at the right is a part of the original image, while al the left the
filtered image is emerging.

lhe_LANDSAT image (a part of the original image suitably rotated to be
registered w!lh the SEASAT image); at the right is the SEASAT filtered image
already decimated [corresponding to g,{n,.n,)]. Figure 20 finally gives a

silm;lalgcsgucgralion test: the addition of the two images in Fig. 19 (Cappellini et
al., a),

C. Applications to Biomedicine

. With recent rapic! .technological evolution, much equipment has been
introduced in hipmedicine to produce different types of biomedical images or
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FiG. 14. Example of the application of data compression with a ZOP algorithm and
floating tolerance to an ERTS-1 image: at the lef the original image is shown, while at the right the
reconstructed one is shown (C,, = 1.56).

bioimages. Some examples of biomedical branches giving bioimages are:
radiography (x-ray), thermography {ir), scintigraphy (nuclear medicine),
ecography (ultrasonics), electrocardiography (ECG maps), electroencepha-
lography (EEG maps), and computer tomography (CT). Other bicimages of
increasing interest are nuclear-magnetic-resonance (NMR) images and
microwave-radiometry smages.

The above bioimages can be processed by 2D digital filters, local space
operators, and data compression 1o obtain several useful results. By means of
low-pass filtering, a smoothing of the bioimage is obtained, reducing high
space-frequency noise components. By using high-pass or bandpass filtering,
enhancement effects result, outlining and extracting useful data and patterns in
other ways nol clearly recognized. By means of inverse filtering (restoration),
noisy bioimages can be processed to obiain higher-quality images for
clinical diagnosis and interpretation. Data-compression techniques can hence
reduce the amount of data, increasing in an impressive way, solving storage
problems (archival systems), and increasing the efficiency of bicimage
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FiG. 15. Example of the application of data compression using a 2D FWT and variable-
word-length coding of transformed data blocks (4 x 4) to an ERTS-1 image: at the left, the
ariginal image; in the middle, the reconstructed image (C,, = 2.14); at the right, the reconstructed
image {C,, = 3.84).

transmission from one place to another ({telemedicine). In the following
some typical examples are reported.

A first example regards ECG or EEG maps. A special hardware system was
recently built in Florence, containing a fast digital processor performing up to
256 1D digital filtering operations on ECG or EEG signals (Cappeltini and
Emiliani, 1983). In particular 16 signals (representing a 4 x 4 micromap) can
be processed in realtime and the filtered data, for instance corresponding to a
components in an EEG, can then be processed by computer systems
performing 2D digital filtering or other compression operations. Indeed the
1D digital filtering performed on the 4 x 4 signals by the hardware system
represents an interesting example of parallel processing of 2D data, extracting
useful frequency components (and in this wuy performing also a sort of data
compression). Figure 21 shows a standard chart recording of paralle] filtering
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of four EEG signals (2 x 2 micromap), obtaining three outputs for any input
signal in the frequency bands 8-10, 10-12, and 12'—14 Hz.

Figure 22 shows an example of processing in infrared thermography. In
Fig. 22a the original digitized image is given, in 22_b the result o( grcy-le\fel
expansion (stretching) is reported in conjunction with edge detection ‘applled
on a limited range of grey levels, outlining the venous traces (Prpspen, 1983).

Figure 23 shows an example of the application of a ZQ FIR dl.gl‘lal ﬁ.lter of
the bandpass type to a nuclear medicine image; at the top is thg original image,
and at the bottom the result of processing. Due to the special enhanpement
effect, a cyst now appears at the left of the image (the small black region).

Figure 24 shows another example of processing a computer tomography
image. In 24a the original image is given, in 24b the result of lincar stretching
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Fi. 17. A LANDSAT-C image of the same region as in Fig. 16 {extended area).

performed in the limited grey-level range 80-190, in 24c the result of a 2D FIR
digital filtering of the parabolic type. As it appears this last filter can indeed be
useful for obtaining special enhancement. It can be proved that a 2D parabolic
filter (having fiexible parameters as the origin and slope) is a good approxi-
mation of inverse or restoration filtering (Cappellini et al., 1978). This example
outlines how in computer tomography, in addition to the standard image
manipulation provided, special eflects can be obtained in particular by means
of 2D digital filtering.

As already observed, 2D digital filtcring can be very useful as preprocess-
ing before data compression (see Section V). Tabie 1 shows some experimental
results, obtained by processing nuclear medicine images before with 2D low-
pass digital filtering and then with data compression using digital trans-
formations (2D FFT and FWT). As it appears, with the same e, and ¢, errors,
the compression ratio C,, is appreciably increased when the 2D digital filter is

=
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A Fii. 20 A simple integration test: addition of the two images obtained in Fig. 19.
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FiG.22. Example of processing in infrared thermography: (a) original digitized image; (b)
result of edge detection applicd on a limited range of grey levels.

used in comparison with the situation with no prefiltering (in l_hf: first case C,
passes from 2.5 to 6, in the second one from 3.5 to 8) (Cappellini, 1979a).

D. Applications to Robotics

In computer vision for robotis, in which one or more scene sensors suqh as
TV cameras take information on mechanical objecis or other systems in a
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FiG. 23.  Example of the application of a 2D FIR digital filter of the bandpass type to a
nuclear medicine image: at the lop is the originat image; at the botiom, the result of processing.

static position or in movement, efficient processing techniques are required to
analyze the images given by the sensors.

In particular, due to environmental noise conditions (light change,
different colors of the objects, movement, ...), preprocessing is required with
fast filtering operations; hence edge detection is useful to extract the object’s
shape before final recognition and classification. In the following some
examples of the application of digital operations described in the previous
sections are given.

py W
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Fiu. 24.  Example of processing a computer tomography image:(a) original image; (b) result
of linear stretching; () result of 2D FIR digital filtering of the parabolic type.

The first example regards the analysis of complex objects, where the goal is
1o process images taken of the objects and to produce an automatic object
decomposition and subpart identification classification. The processing
procedure is outlined in Fig. 25: by usinga TV camera images are acquired in 3
colors (R,G,B—red, green, blue), then prefiltering is performed to reduce the
noise; after boundary extraction, decomposition and syntactical analysis are
performed. Figure 26 shows an example of the application of this procedure:
in 26a an original digitized image (red color presented in black and white) is
given representing a circuit board (acquisition with strong noise); in 26b the
result of decomposition of the circuit board, obtained through a nonlinear

Fi1G. 24b

filter of the type presented in Section II1A, . .n edge detector, and homogeneity
operator applied on the three R,G,B imag: : (Cappellini et al., 1984b).
Another example regards the recognitic-a and tracking of moving objects
asona transporting tape. The processing s.eps are the following: preprocess-
ing with a nonlinear smoother [as in Eq. (20)]; edge detection (i.e., Sobel-type
operator); spike elimination with a nonlincar operator [as in Egs. (27) and
(28)); segmentation; object recognition .y performing the FFT on the
boundary of 1he object (distances of the boandary points from the centroid).
An example of the application of this pro.2dure is given in Fig. 27 on some
mechanical objects. At the left there are wne input digitized images of two



196 V. CAPPELLINI

TABLE |
EXPERIMENTAL RESULTS OBTAINED APPLYING DaTA COMPRESSION USING
Two-DIMENSIONAL FFT AND FWT TRANSFORMATIONS TO NUCLEAR
MEDICINE IMAGES WITH OR WITHOUT A TwoO-DIMENSIONAL Low-Pass
DIGITAL PREALTERING

+ » ; ,
: Compression ratia C,, = 2.5 Compression ratio C,, = 1.5
. ® (C,y = 6 with pre-filtering) {C.. = B wilh pre-filtering)
- | ]
'I & f. e,
FFYT 0.1322 0.0134 0.1581 0.0164
FWT 0.0483 0.0074 0.1088 00160
o - --—m- T T
1 |
| Different color |
: bands acquisition |
I
| i
| |
| |
! Prefiltering |
: algorithm :
AR __
ACQUISITION
P " [ T Ty
| i
} Boundary J
: extraction |
. )
FiG. 24c ) |
i ]
I )
| Decomposition i
: algorithm :
positions; at the right the recognized objects are shown {each identified with a N __
different color, here appearing as a different grey Jevel) with perfect tracking of . SEGMENTATION
their movements (Cappellini and Del Bimbo, 1983). *
With reference also to the above examples, in these robotics applications t ,l )
the preprocessing step is indeed very important (fast and efficient nonlinear 4 'y say'.‘"atl‘;c;i'sc"
filtering operators and edge detectors are required), in such a way as to reduce
the noise and disturbances and extract the significant data in compressed form Fic. 25. Processing procedure for automatic object decomposition and subpart identifica-

(that is limited 1o the really significant ones) for the best performance of the tion classification.
final recognition—classification algorithms and procedures.
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Fic. 26.  Example of the application of the procedure in Fig. 25: (a) original c:ligiuzed image
representing a circuit board; (b) result of decomposition cbtained through a nenlinea: operator,
an edge detector, and a homogeneily operator.
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FiG. 27.  Example of processing images related to : .oving objects: at lefl, the input digitized
images; at right, the recognized objects with movement iracking.

REFERENCES

Abramson, N. (1963). “Information Theory and Coding. - McGraw-Hill, New York.

Benelli, G., Bianciardi, C., Cappellini, V., and Del Re, E. {1977). Proc. EURGCON~Euro Conf.
Electrotech. Venice.

Benelli, G., Cappellini, V., and Lotti, F. (1980). Radio Ei>:i«ron Eng. 50, 29,

Benelli, G., Cappellini, V., and Del Re, E.(1984). IEEE :ciect. Areas Comm_SAC-2, 77.

Berger, T. (1971} “Rate Distortion Theory —A Mathe. ~atical Basis for Data Compression.”
Prentice-Hall, New York.

Bernabé, M., Cappellini, V., and Emiliani, P. L. (1976). ..ectron. Letr. 12, 288.

Broflerio, S., Caflorio, C., Rocca, F., and Ruffino, U. (197%). Proc. Florence Conf. Digital Signal
Process. p. |58.

Calzini, M., Cappellini. V_, and Emiliani, P, L. (1975). A! . Frequenza 44, 747

Cappeliini, V. (19792a). Proc. JUREM A Conf., Zagreb,

Cappellini, V. (£979h). Proc. Int. Warkshop Image Proce: ;. Astron., Trieste p. 258.

Cappellini, V. (1980). Int. Remote Sensing, 1, 175.

Cappellini, V. (1983). Proc. IEEE Int. Symp. Circuits Sysivins, Newport Beach p. 402.

Cappellini, V. (1984). Proc. EARSeL/ESA Symp. Integrate:: spproaches Remote Sensing, Guildford
p. 3125



200 V. CAPPELLINI

Cappellini, V., and Del Bimbo, A. (1983). In “Issues in Acoustic Signal/Image Processing and
Recognition™ {(C. H. Chen, ed.), p. 283, Springer-Verlag, Berlin and New York.

Cappellini, V., and Emiliani, P. L.(1983). Proc. M EDINFO-83, Amsterdam p. 682.

Cappellin, V., and Odorico, L. (1981). Proc. IEEE Int. Conf. Acousl. Speech Signal Process.,
Atlonta p. 1129.

Cappellini, V., Chini, A, and Lotli, F. (1976). Proc. Int. Techn. Scie. Meet. Space, Rome p. 33.

Cappellini, V., Constantinides, A. G., and Emiliani, P. (1978). “Digita! Filters and Their
Applications.” Academic Press, New York.

Cappellini, V., Carli, R., Conese, C, Maracchi, G. P, and Miglietta, F. (1984a). Proc.
EARSeL/ESA Symp. Integrated A pproaches Remate Sensing, Guildford p. 2).

Cappellini, V., Del Bimbo, A., and Mecocci, A. (1984b). Image Vision Comput. 2, 109,

Costa, I. M., and Venetsanopoulos, A. N. (1974). IEEE Trans. Acoust. Speech Signal Process.
ASSP-22, 432

Dudgeon, D. E. {1975). IEEE Trans. Acoust. Speech Signal Signal Process. ASSP-23, 242,

Ekstrom, M. P.(1980). IEEE Trans. Acoust. Speech Signal Process. ASSP-18, 16.

Harris, O. B., and Mersereau, R M. (1977). IEEE Trans. Acoust. Speech Signal Process. ASSP-15,
492

Hilberg, W., and Rothe, P. G. {(1971). Inf. Control 18, 103.

Hu, J. V., and Rabiner, L. R. (1972). 1EEE Trans. Audic Electroacoust. AU-20, 249.

Kaiser, J. F.(1966). In “System Analysis by Digilal Computer” (F. F. Kuo and J. F. Kaiser, eds.), p.
218. Wiley, New York.

McClellan, J. H. (1973). Proc. Annu. Princeton Conf. Inf. Sci. Systems, 7th, p. 247.

Maria, G. A, and Fahmy, M. M. (1974). [EEE Trans. Acousl. Speech Signal Process. ASSP-22, 16,

Mecklenbrauker, W. F. G., and Mersereau, R. M. (1976). 1EEE Trans. Circuits Systems CAS-23,
414

Mersercau, R. M., and Dudgeon, D. E. (1915). 1EEE Proc. 63, 610.

Merscreau, R. M., Mecklenbrauker, W. F.G. and Qualieri, T. F,, Jr.{1976). IEEE Trans. Circuits
Systems CAS-13, 405.

Oppenheim, A, V., and Shafer, R. W. (1975). “Digital Signal Processing.” Prentice-Hall, New
York.

Prati, W. K. (1978). “Digital Image Processing.™ Wiley, New York.

Prosperi, L. (1983). Thesis, Department Electrical Engincering, University of Florence.

Shannon, C. E.(1959). IRE Natl. Conp. Rec. T, 142,

Shannen, C. E., and Weather, W, (1949). “The Mathematical Theory of Communication.” Univ.
of liinois Press. Urbana.

Shanks, J. L., Treitel, S., and Justice, J. H. (1972). I1EEE Trans. Audio Electroacoust. AU-20, 115.

AF-



