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PROCESSING

V. Cappellini

Istituto di €lettronica - Ingegneria and IRDE - C.N.R.
Via Panciatichi, 64
Fiorence, Italy

Abstract

The actual interest of two-dimensional (2-D) digital
systems is pointed out, as resulting from several reasons;
high efficiency for image processing, great application
flexibility, cecreasing cost of software and hardware im-
plementation. Some efficient 2-D non recursive digital fil-
ters of FIR type using suitable windew functions {Cappelli-
ni windows} and fast 2-D recursive digital filters obtained
througr a suitable rotation and stabilization procedure are
presented, ¢-0 local space operators and Kalman filters are
3150 considered. Some applications of the above 2-D systems
to digital image processing in biomedicine, remote sensing,
recognition of moving objects and robotics are finally pre-
sented.

1. INTRODUCTION

2-0 digita’ systems are of increasimg “nterest in se-
vera) application areas such as facsimile-television, so-
nar-radar, remote sensing, underwater acoustics, biomedi-
cine,moving object recognition, robotics. These digital Sy~
stems present indeed attracting aspects in comparison with
analog ones: high efficiency permitting petter image pro-
cessing and analysis; capability of performing non linear
operations, decreasing cost of software or hardware imple-
mentations due to the large expansion and evolution of stan
dard computers, minicomputers, microprocessors and high in-
tegration digital circuits (VLSI); great application fle-
xibility and adaptivity.

Important operations, which can be performed by 2-D
eigital systems, are the following ones: 2-D digital filte-
ring, local space processing, data reduction (compression),
pattern recognition, Digital filtering and local space pro-
cessing operations play a relevant role both in pre-proces-
sing of images performing smoothing, enhancement, nofse re-
duction and in final processing, before pattern recognition,
extracting boundaries and edges. Data compression opera-
tions permit to reduce the large amount of data represen-
ting the images in digital form, solving transmission or
storage problems. Pattern recognition operations permit to
extract the significant information data and configurations
from the images for final interpretation and utilization.

In this paper 2-D digital systems performing digital
filtering and local space processing are essentially consi-
dered, pointing out their crucial importance for image pro-
cessing and analysis. In particular efficient 2-D non re-
cursive digital filters of FIR type, fast 2-D recursive di-
3ital filters of 1IR type, 2-D local space operators and
Kalman filters are presented. Some typical applications of
these 2-D systems to digital image processing in biomedici-
w, remote sensing and recognition of moving objects (robo-
tics) are also shown. In connection with these applications
implementation aspects are considered with particular re-
ference to the use of microprocessor and minicomputer sy-
stems, suitably equipped with input-output units (to digi-
tize input images and present the processed output images).
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2. 2-D NON RECURSIVE DIGITAL FILTERS

A 2-D0 non recursive digital filter can be definedtby
the following relation [1)

1
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where f(n],nz) are the input data, 9("1'"2) are the output
data and a(k].kz) are the coefficients defining the digi-

tal fitter [1] . By using the z-transform, the transfer

function H(11-22) can be obtained and hence,by setting
jw X

Z;=e ]. Z,=e 2 (the case is considered with the space

sampling interval X=1), the 2-D frequency response can be
defined [1]
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Of particular interest for image processing are 1i-
near phase filters, having a symmetric impulse response,
which don't introduce phase distortion in the processed
image,

The problem of designing the digital filter in the
2-D'frequency domain appears clearly connected to the eva-
Tuation of the coefficient matrix °(ki'k2) in such a way

that the obtained frequency response satisfies the regui-
red characteristics. Severa) design techniques have been
proposed for 2-D digital filters, some of which are a di-
rect generalization of their 1-D counterpart.

However direct generalization of multiple exchange
algorithms, as the Reme:z algorithm for the design of opti-
#al (minimax error) 1-D filters, is not possible because
the alternation theorem is not directly generalizable. The
design of 2-D optimal filters is possible by means of the
linear programming approach, but the number of points whe-
re it is necessary to compute the transfer function to ob-
tain constraint relations and the variable number (coeffi-
cient matrix) 15 in general very high. Consequently the ti-
me necessary to design the filter tends to become ver
long, at least using linear programming formulations ¥2][31

A more tractable design technique, from the computa-
tional point of view, can be obtained by reducing the num-
ber of variables in the linear programming problem by
means of the frequency sampling approach [2]. A grid of
samples in the frequency domain ¥s chosen and most of the
samples are fixed as & direct translation of the filter
specifications. A linear programming problem can be indeed
set up using constraint relations for the interpolated
frequency response, where the variables are the freguency



sampies in the transition band,

Another suboptimum design method is based on the fre
quency transformations of 1-D filters to 2-D filters, It~
tan be easily shown [1] that the real part of the fre-
gquency response of a 1-D filter can be transformed to the
Teal part of the frequency response of a 2-D filter by
means of a transformation of variables of the form

oS = Acosaﬁ + Bcos»z + Ccosu]cosa% + D

(3)

This means that the filter can be designed in 1-D and
then mapped in 2-D. With the choice A=B=(=D=1/2, the map-
ping contours are approximately circular, at least for
small values of w, and circularly symmetric filters can be
designed. This design procedure, which can be generalized
to more complex transformaticn relations, is convenient
from the computationa) point of view, even if some care
has to be given in carrying out the transformation, which
is sensitive to numerical errors, when the number of coef-
ficients is becoming very high,

Among the different design techniques, the window de-
sign method is of interest due to the fact that it assures
2 good efficiency with a relatively simpie procedure [1].
In this method we start from an impulse response, which
has to be truncated introducing the minimum error in the
frequency response. To this purpose the obtained values
of the sampled impulse response, h(k1,k2), are muitiplied

by the samples w(k],kz) of a suitable "window” function

having zero value in the region out of the truncation and
high concentration in the frequency domain. The pbtained
frequency response of the finite-impulse-response (FIR)
digital filter is therefore the convolution between
H(u],uh). Fourier transform of h(kl.kzj. and H(u],wz). Fou

rier transform of 'f“1-*2) {in general the discrete form,

DFT, of Fourier transform is considered and in the imple-
mentation the fast form FFT is applied).

Many window functions are known for designing digitat
#ilters in the 1-D case [1] . For the 2-D design, here con
sidered, extensions to 2-D domain are in genera) used. In
particular, as shown by Huang [4], a 2-D window, having
circular symmetry properties, can be defined through a
w{t) 1-D window as

wixay) = wl/xé + y2)

Three window functions of particular interest for
their properties are: lanczos-extension window (Cappellini
window-1]; Kaiser window; Weber-type approximation windows
(Cappellini windows-2,3). The Lanczos-extension window,
"I(t)' is 8 very simple and good window having the expres-

sion in the ¥-D form as {1]

m
w(t) = [sin Sx‘:t}rltz,] (5)

while it is zero for {tl> T, where m {5 a positive parame-
ter, controlling the correction performance [1] . The Kai-
ser window s expressed through Bessel functions (modified)
of the first kind and zero order. The Weber-type approxi-

mations wz(t) and wy(t) are close representations of a win

dow giving a minimum value of the uncertainty product in
38 modified form [1] , having a complicate expression. The
detailed expression of wz(t) as a8 third order polynomial
approximation is reported in {1] . In the follewing the
expression of us(t) is given (defined in the time interval

0-1.5})

{4)

for |tic T

05t<0.75 0.75¢t¢1.5
wylt) = at™btlected  2-1.783726  8--0.041165  (6)
b=-3.604048  b=1,502131
€=0.076450  c=-4.591678
d=2.243834  d<3.651582
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Efficiency comparisons were developed for the FIR
digital filters using the above different windows: a compu
ter program was prepared which measures the maximum rip-
ple in bang Jl, the maximum teve}l of fluctuations out of

the band Jz and the widthaw of the transition band, de-

fined as the region in which the frequency response magni-
tude decreases from 1-J] value to Jz value. From these com

parisons, the following results were obtained: Cappellini
windows W, and wy have very nhear efficiency to that of kai

ser window, the first ones resulting better at lower le-

vels of out-band attenuations, the last one having higher
efficiency at greater levels of out-band attenuation; Cap-
pellini window %, presents good efficiency and is very fle

xible, by changing the value of the parameter m.

3. 2-D RECURSIVE DIGITAL FILTERS

A 2-D causal recursive digital filter can be descri-
bed by the following relation

N -1 N,-1
g(n].nz) = Eg;; 2;;; a(k].kz)f(n]-k],nz~k2) -
1 Fa
1

M1 M,-1
- b(my,m,)g{n,-m,,n,-m,)
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(7)

<

where f(n1,n2) and g(n1,n2) are, respectively, the input
and output data (image samples) and a{kI,kz) and b(m],mz),
defined only for positive values of k],kz,m},mz. are the

coefficients defining the digital filter frequency respon-
se [1] . By using the z-transform, the transfer function
H(z],zz) can be obtained, as already shown for 2-D non re-

cursive digital filters: however now this transfer func-
tion results to be the ratio of two polynomials, having at
numerator the coefficients a(k].kz) and at the denominator

the coefficients b(m].mz). 2-0 recursive digital filters,

as defined by the relation (7), have an infinite impulse
response (IIR).

To design the 2-D IIR digital filter in the fregquency
damain, the coefficients a(kl.kz) and b(ml'mz) have to be

chosen to approximate the desired transfer function with a
stable recursive realization. The stability ts indeed a
specific problem of recursive structures as in (7) and in
the 2-D domain greater difficulties are than in the 1-0
domain, due to the need of factorizing 2-variable transfer
functions {1 .

The design of 2-D IIR filters is a more difficult task
than the design of 1-D IIR filters. In fact the design me-
thods for 1-D 1IR filters normally rely on the factorabili-
ty of one variable polynomials, which result in very sim-
ple algorithms for the analysis of the fiiter behaviour,
for the stability test and for the stabilization of unsta-
ble filters. These techniques are not directly generaliza-
ble to the 2-D case, which makes the 2-D filter design and
analysis less easily tractable,

Two main classes of design methods have been proposed
in the literature. The first one is based on spectral tran
sformations from 1-D to 2-D [1) [3] and the second one on
parameter optimization[]) , using some classes of filter
structures, as the second order section cascade, where the
stability control is easily introduced in the approximation
&lgorithm.

A general design procedure has been recently introdu-



ced [5] , where & non linear optimization is used to mini-
mize an error expression, where the distance from an ideal
frequency response and the distance from a stable imple-
mentation, obtained by means of the “"cepstrum” {defined as
the inverse Fourier Transform of the logarithm of the Fou
rier Transform of a sequence) decomposition, are present.
In this case it is possidle to obtain a contemporary con-
trol of the frequency domain approximation and of the sta
bitity of the filter, with a procedure which is general,”
but which is rather complex in the implementation and re-
quires some knowledge of the general non linear approxi-
mation problems in the case when an acceptable minimum of
The error is not automatically reached.

A method, defined in last years [1][3]{8) is based
on transformations of the squared magnitude function of
1-D digital filter to 2-D domain and uses a suitable de-
compesition in four stable digital filters. At first we
€an observe that the causal digital filter (7}, having an
impulse response h{k‘,kz) different from zero only for

320 anu.kzzo, is often called a “first quadrant filter".

Starting from a first guadrant filter with transfer func-
tion H]{zl,zz) and impulse respose h}(k],kz), it is possi-

ble to defjne the corresponding second, third and fourth
quadrant filters, according to the relations

h~|“‘]vk2) = hz(k'||'k2) = h3('k}-'k2) = ha('k]vkz) (8}
w1th transfer functions as

Hil2y,2,) = hz(z},zé]J = H3(z;1,z51} x H4(z;‘.z2) (9)

The cascade of these four filters is a zero-phase digital
filter, whose frequency response Hs(wl‘“ﬁ) is defined by

coefficients p(k1,k2) and q(mI.mz) determined through the
convolution of the coefficients of the four filters (1}

An important design step in this last method corre-
sponds to tne comsideration that a frequency response as
above considered Hs(w],a%) can be obtained through a tran-

sformation from 1-D domain, avoiding the design in 2-D
which takes 2 great computation time, The squared magnitu-
de frequency response of a 2-D recursive filter can be ob-
tained by means of the McClellan transformation (3) carri-
ed out On the numerator and the denominator of the filter,
The obtained squared magnitude transfer function has to be
factorized to obtain stable recursive filters: the cep-
strum properties can be used. Some approximations have ho-
wever to be introduced to perform the decomposition on the
denoronetor, due to the fact that the cepstrum of the de-
nominator sequence s not in general of finite extent. Win
dows can be applied to smooth the oscillations which are
produced by the truncation of the impulse response of the
filter: some windows of exponential type [1] or Gaussian
type [3] have been proposed.

Several tests have been performed using the squared
magnitude transfer function of a fourth order Chebychev
low-pass filter, having a 2°/4 in band rippie, a normalized
cutoff frequency f=0.25 and a -20 dB frequency fatt-O.SS

[3] . The filter in Fig. } has a numerator and a denomina-
tor with 4 by 4 coefficients obtained using a Gaussian win-
dow: the maximum in band error results to be 0.024 and the
transition band, defined as the difference between the nor-
malized frequencies where the amplitude of the frequency
response is, respectively, 90°/, and 10°/¢ of the in band
nominal value, is equal to 0.125.

iz, ¥ - Fijter frequency response,

4. 2-D LOCAL SPACE OPERATORS

Local space operators correspond in general to low
complexity 2-D digital systems: small blocks of data {image
samples) are processed in the space domain [6) . By evalua-
ting, for instance, the mean vaiue of the block data, a
smocthing is obtained, while by performing the difference
of data along lines or columns enhancement effects are re-
sulting.

A very important class of 2-D lpcal space operators
is represented by “edge operators”, which extract bounda-
ries or edges in the processed image. The most part of the-
se operators are based on the evaluation of the “gradient”
through a test on a given image point (pixel} and its close
values. In fact if the magnitude and the direction of the
gradient in & point are known and if the magnitude is grea-
ter than a given threshold, it is assumed that in that
point there is an edge or contour whose direction is prtho-
gonal to the gradient direction. The used tecmhigues for
this purpose can be divided in two groups: to the first
group belong the operators which evaluate two orthogonal
components of the gradient; the second group is based on
gradient detection by means of a set of "templates” or
"masks" of different orientation [6] ., Well known operators
are: Roberts operator, smocthed gradient operatar, Sobel
operator, isotropic operator, Prewitt operator, Kirsch ope-
rator, Robinson operator, Chen-Frei operator.

Recently a special edge operator was introduced [&
for extracting edges in noisy images. This operator consi-
ders a8 block of 3+3 data: to each one of the 8 pixels sur
rounding the central one 2 binary value is given according
the difference among the pixel valye and the central value.
In this way 256 configurations are resulting: they are di-
vided in 5 classes, havirg a3 decreasing probability that
the central pixel is & part of an edge or contour. Adapti-
ve criteria can be used to estimate if the central pixel
pertains to an edge, depending on the npise characteristics
tn the processed image. Anather advantage of this operator
i$ represented by its speed of implementation: practically
to estimate if a pixel is or not part of an edge, after
the binary values are obtained, it is sufficient to compare
the actual binary configuration with a memorized “decision
table”.

Of increasing interest are 2-D local space operators
performing nor linear filtering operations, assuring very
fast image processing. An interesting example is represen-
ted by the following non linear smoother of noisy images.
If we consider a block of 3+3 data and we denote with P0

the value of the central pixel, while with p\'PE""'PB

the values of the surrounding pixels, the smoother is de-
fined by the following relation

1
Po= & ;1‘ Pi

where S[p:[P.-P |¢ k}

(10)

and i = 0,1,2,...,8

By means of this smoother, the value of each pixel is repla
ced by the average of itself and its neighbourhood values,
except those which have level differences greater than a
fixed threshold in absotute value. In this way small ampli-
tude noise is removed, while no degradation is resulting
for edges or boundaries present in the processed image re-
gions. Therefore this operator is very useful to reduce
small intensity random noise and its application is indeed
zonvenient before the edge extraction through a usual edge
aperator (especially in noisy image processing).

5. KALMAN FILTERING FOR IMAGE PROCESSING

To restore degraded images (the available images are
the output of some system in presence of noise) Kalman fil-
tering can be usefully applied. Recently an efficient me-
thod of applying a 2-D Kalman filter to process noisy de-
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graded images was defined {6] . Its efficient implementa-
tion is achieved by computing the Kalman gains in the z-
-transform domain and by evaluating convolutions through
recursive equations.

Extended tests of this method have shown that it is
very useful in many noisy degraded image processing pro-
blems, especially for Jow signal-to-noise ratics. There-
fore Kalman filtering can be an interesting alternative
soiution to frequency-domain digita) filters of FIR or 1IR
type, a5 above described in image restoration problems.

6. EXAMPLES OF APPLICATION TC DIGITAL IMAGE PROCESSING

In the following some examples of application
of the above described 2-D digital systems are shown in
three mair areas: biomedicine, remcte sensing, recognition
of moving cbjects (robotics).

Fig. Z gives an example of application of a 2-D FIR
digital filter of low-pass type to a 6464 nuclear medi-
¢ine image {scintigrapny): the effect of smoothing, redu-
cing high space frequency components of noise and distur-
bances, is clearly resulting, by comparing the original
image (at left}) and the processed one (at right}, in the
"iso-contour” display (the contours at some gray levels
are presented).

(a) (b

Fig. 2 - Iso-contour display of a nuclear scintigraphy:
(a) original; (b) after a 2-D FIR digital filte
ring of low-pass type.

Fig. 3 shows an example of application to aircfraft
photo of an agriculture zone near Florence: in (a) the
original digitized image is presented; in (b} the edge
extraction {through the isotropic operator applied after
image enhancement) is shown; in (¢} the classification in
forest (at left), winegrape-oil land (in the middle},
other land (at right),

(a)

(b)

Fig, 3 - Example of application to
sing.

aircraft image proces-

The last example of application is related to the re-
tegnition of moving objects., A special processing procedu-
re was recently proposed and defined at [stituto di Elet-
tronica, University of Florence. The main processing steps
performed on a sequence of images taken on the moving ob-
Ject scene are the following ones:

1. Learning phase, including the acquisition and the

modelling of the objects which are to be recognized
(FFT module of the external boundaries of the ob-
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jects are memorized}

. Pre-processing of the images by means of a non 1i-
near smoothing (as given by the relation (10}}, re
ducing low amplitude noise components and distur-
bances.

. Edge detection through a modified Scbel operator.

. Moving object detection: non stationary components

of the image seguence are separated from stationa-

ry ones ("background" filtering), extracting the
useful configurations corresponding to the moving
objects.

Post-processing, performing a non linear filtering

of isplated noise "spikes” or "scintillation pul-

ses”.

. Image segmentation, representing the silhouettes
of the moving cbjects in a two level code {a modi-
fied Freeman code is used}.

. Dbject modelling: only the shape of the silhouettes
of the detected objects are considered {interior
part is ignored}, by performing the FFT of the
boundaries {the FFT is applied to the distances of
the boundary points from the "centropid”).

. Object recognition: a "matching” is performed bet-
ween the memorized FFT modules and those actually
evaluated on the image sequence (FFT modules are
used to obtain “rotational invariance”) by means
of"minimum distance" criteria.

. Tracking of moving objects: subsequent positions
of the objects are followed through the identifi-
cation of the external boundaries and of the cen-
troid (a prediction or estimation of the "near fu-
ture” object centroid position can 3lso be perfor-
med).

4w

The above processing method was implemented in softwa
re and widely tested by using a PDP 11-34 minicomputer sy-
stem with a TY camera, digitizing interface and color di-
splay. An example of application is shown in Fig. 4 for
three moving objects: at left are original digitized images
and at right object recognition and tracking {each object
is visualized through a particular coler). It can be obsar
ved how, in the third movement step, a “disturbing object™
of cylindrical shape is not recognized,

Fig. 4 - Example of application to moving object recogni-
tion,
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