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Introduction

An image can be considered a function f of twe spatial
independent variable x, y. The value of the function is perceived
by our eyes as a grey level which is in general the representation
of any physical gquantity. In remote sensing applications it is
usually a measure of the radiation in a given observation band ,
depending on the characteristics of the sensor.

From a mathematical point of view it is appropriate to assume
that the function f(x,y), representing the image, has a reqular
behavicur. This is necessary when transformations on f{x,y) have
to be applied. We shall alsc assume that:

0 f(x,¥)< M (1)

where M is a positive constant. The assumption is appropriate
since f(x,y) is the representation of a quantity that is related
to the energy coming at the sensor and so positive. It is also
limited by the dynawic range of the sensor itself which introduces
saturation effects when the signal becomes too high.

In the case of natural images, f(x,y) 1is a continuous
function, defined on a continuous domain. Digital image processing
deals, instead, with quantity which have to be represented by a
computer; these quantities have to be defined on a discrete domain
and assume only a limited set of values. This is obtained by
sanpling and quantizing f(x,y). These operations are described in
the following.

We also note that, in remote sensing applications, we often
deal not only with one image of the observed area but also with a
set of images which refer to several observation bands. In this
case, we can think f(x,y) as a vector function. The dimension of
the vector (the number of the components) is given by the number
of bands which are available.

Sampling

Sampling is the operation by which the domain of f(x,y) is
made discrete. The question to be considered is if during this
operation some information present in f(x,y) gets lost. This is a
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good question since we are passing from an infinite set of values
to a finite one: can a finite set of samples maintain the original
information present in f(x,y}? The response is given by the
sampling theorem.

The sampling theorem states that an analog signal f{x,y) can
be recovered by its sampled version f(w,n) if the sampling rate is
"sufficiently" high.

Let F,, and the sampling frequencies along the x and y
directions, respectively. Sufficiently high means that:
F, > 2F ., (2)
F” > 2Fp-;

where F, .  and F o+ are the maximum grey level freguency
variations along the x, y axes respectively.

In an equ1valent way the sampling periods T, = 1/F,, and

T, = 1/F,, have to be sufficiently small:

Tox 2 Topau/2 (3}
Ty < Ty’ 2
where T, = 1/F, and T = 1/F ..

The theorem is due to Shannon and can be found in any text as
for example[1}],[2].

The demonstration also gives a method to reconstruct the
original signal: it is sufficient to process the digital signal
with an analog low-pass filter tuned on the original signal.

Sampling theorem let us work with digital signals without any
trouble; we can act any digital transformation by a computer and
then return to the analog representation when we need.

This is what happens, for example, when we look at a color
display interfaced with a computer; the signal is read from the
memory (or from a graphic board) where it is digitally stored; it
is converted to an analog form by the display controller which
performs the interpclating low-pass filtering.

We also note at this point that operations performed on an
analog signal are very fast, but operations realized on the digital
one are more flexible. We cite only two examples. The former refers
to linear operations which are defined in the following sections:
it is possible to perform perfectly linear operations with a
digital system, This is not true with an analog system,
particularly for images, since there is always some kind of
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distortion introduced by the optice (aberrations and non-
linearities of the lenses).

The latter example refers to the opportunity of storing the
signal after it has been digitized. It is possible to consider
operations in which wvarious samples are involved in various
positions of the stored frame; this is very immediate with the
digital signal and nearly impossible with the analog one.

From a practical point of view, after sampling, the function
f{m,n) can be thought and represented as a matrix of convenient
dimensions.

Just as an example, fig. 1 shows a Landsat thematic Mapper
image whose dimensions are 512x512 pixels (picture elements).
Varying sampling rate have been considered and the effect is
evident. The pixel resolution is 30 m.

Quantization

Quantization is the process by which an image, that originally
asgumes a contlnuous range of values, is reduced to assume a
discrete set of values. The resulting set depends on various
factors, the main being the signal to noise ratio of the sensor.

Practical considerations also 1limit the number of
representation levels. For example, it is particularly convenient
to represent data in a byte-aligned form. In this case, each grey
level is represented with 8 bits and the range of possible values
is [0.255]. In general with N bite the resulting range of values
is (o 2%-13.

Quantization is usually performed in a linear way: the grey-
level interval is divided into 2" steps of fixed amplitude. The
signal is given level 0 when it falls in the firast interval and in
general ix given level 1-1 when it falls in 1™ interval.

This is not the best way to guantize a signal. In fact steps
ghould be finer where the signal values are more likely. However,
this is not taken into account in most acguisition systems and in
particular on satellites. For this reason a-posteriori corrections
are often considered as for example histogram equalization, whose
purpose is to redistribute grey level in a better way.

In fig. 2, as an example, different guantizations have been
considered to the image already presented in fig, 1. The
quantization effect appears and it is perceived as a contrast
variation.

Digital system properties

A digital system can be defined as an operator ( or a filter)
which transforms an input sequence f(m,n} into an output sequence
g(m,n).

g{m,n) = T{f{m,n)] (4}

A digital system is said to be linear if:
T{Af' (m,n)+BEf"(m,n)] = AT[f'(m,n)+BT[(f"(m,n)] = (5)

= Ag'(m,n)+Bg" (®,n)

where A,B are real constants, f'{m,n) and f"(m,n) are input
sequences and g'(m,n) and g"(m,n) are output seguences.

Linear systems are very important because of thelr properties,
as it will be evidentiate in the following. Eq. 5 states that for
linear systems the superposition principle holds.

Impulse response

A linear system is completely characterized by 1its impulse
response; this is the output of the system when an unitary impulse
d(n,m) is applied in input.

1 if m,n =90
d(n,m) = (6)
0 otherwise

For images, the inpulse response is often indicated as Point
Spread Function (PSF) due to the nature of the input source used
for the definition: just a spot of light in the input plane.

Let us consider a linear system whose PSF is h(m,n). Let
f(m,n) the input image. The output image g{m,n) can be expressed
in the following way:

[} o e
g(m,n) = }:| z h(i;j)f(m,i.‘n.j) - 21 I:j f(i,j)h(m,i;n,j) (7)
=00 - -0 —eD

This expression can be simplified if the shift-invariance
property is assumed. Shift invariance is defined by requesting that
aq. 7 becomes:

a

ad
h(i,3)f(m-i,n-3) = £,. £, £(i,})h(m-1,n-3) (8)
—0 -

frg
§ta

g{m,n) = I,
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From a physical point of view, shift-invariance means that the
response g{m,n) of the system to f(m,n) has to be the same, a part
a translation, when f(m,n) is translated in the input plane.
Convolution is often indicated in a concise form:

g(m,n} = f(m,n)*h(m,n) (9)

Correlation

Correlation is formally similar to convolution as it regards
the definition. We wusually refer to autocorrelation when
considering a function correlated with ltself and cross-correlation
when considering two different functions. Correlation is defined
as:

a@ @
Cym,n) = X, I, £(4,3)E(m+i,n+)) (10)
P )

In the particular case that m,n = 0 eq.(10) becomes:

o
Cre(0,0) = £, L(4,3)£(1,9) (11)
-

Eq. (11) expresses the energy of f(m,n).

Cross correlation is defined as:

-] «© O o
Ce(m,n}) = E I, f(i,})g(m+i,n+j) = & £ g(i,3)f(m+i, n+y) (12)
—_  —0 -0 =00

As it can be easily shown C"(m,n) expresses a similarity
measure bhetween f(i,j) and g(i,j). In fact, if our aim is to
measure the difference between f£{i,j) and g{(i,]j}, when the two
images are considered with some shifting, we can evaluate the
square error as a function of the shifting. In the following
formula, m, n are the two shifts,

[-+] -+
Eg(m,n) = I, I(£(i,3) - g(m+i,n+j))? (13)
=00 -0

And squaring the terms:
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-+ an o0 L]
Eg(m,n) = £ I (€(L,30)% + 2, Eigmed,n+d))? +  (14)
-0  — —ea  —0

- 3]‘(1:j)g('*i;n+j)
-3 a0

The error is minimum when eq. (13) assumes the minimum or in
an equivalent way the third term of the second member of eq. (14)
assume its maximum. But this last term is just Cyplm,n}.

The problem of finding corresponding points between images of
the same scene is very common in remote sensing. One way, to solve
it, is to consider Ciplm, 1) and to find its maximum. The position
m', n' of the paximum represents the degree of shifting between the
two images.

Since C, (m,n) depends on the energy of f(i,j) and g(i,Jj) it
is necessary to consider a normalization. The final expression
which can be implemented on a computer is so the following:

&« (]

a0 -2
Cran(m:n} = Cyylm,n) /( I, I, (m.jn’_i. 5 (9(i,3)% )" (s

In this way 0< Cin({m,n) <1 and C; (m,n) = 1 only when £(i,3) is
egqual to pg({i,}), where p is a real constant.

Convolution thecrem
As in the case of continuous signals, Fourier transform can
be defined also for digital signals. The result is a Discrete
Fourier Transform (DFT) whose properties are similar to those
which are defined for analog Fourier transform.
Let f(m,n), g(m,n), h{m,n) the input image, the output imaga,
and the PSF of a linear systenm respectively. Let F(u,v), G(u,v),
H(u,v) the correspondent Fourier transforms.
The convolution thecrems states that the DFT of
g{m,n) = f(n,m)*h(m,n)
is given by:
G(u,v)=F(u,v)H{u,v) (16)

This theorem is very useful since some operations can ba
conveniently realized by considering the DFT of an image by passing
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in the transformed domain, then multiplying it by a suitable
transfer function H(u,v) and fipally returning to the original
spatial domain by an inverse transformation. Besides, an operation
performed in the spatial domain can be analyzed by examining the
Fourier transform of the PSF and of the resulting image.

Separablility
A system is said to be separable if:
H(m,n} = H,(m)H,(n) (17}

This property is very important from an implementation point
of view, In fact, for such systems, two-dimensional convolution is
evaluated by applying two one-dimensional convolutions. The number
of sums and products necessary for the aperation are in this way
proportional to the dimension of the PSF and not to its square.

Statistical properties of images

Some basic concepts of statistics are necessary to analyze
remote sensing data.

Let p(x)} the probability that an event x occurs. The event in
which we are interested is that a point in the image assumes a
given grey level, or, if we are dealing with multispectral data,
that in band,,...,band,, the grey levels are i,,...,i,.

We will associate a probability to this event; p(i) in the
former case and p(i,,...,1i,) in the latter.

An estiwmation of p(i) is obtained by counting the number of
times, n(i), that a grey level appears in an image:

p(i) = n(i}/N, (18)
where N’ indicates the total number of pixels of the image and:

L

I, pii) =1 (19)

o

where L-2"-1 represents the number of grey level in the range
[0 L] and N indicates the number of bits adopted for the
representation. In the same way:

plly,evendy) = niy, ... ) /0, (20)
L L
By --+Ipy Pli,---,4) =1 (21)
0 ]

:]

p(i,,...,1,) 1is called Jjoined probability of the event
1yeeenidy-

p(i) is referred as one-dimensional histogram of grey levels

and is particularly used in the characterization of sensors, and
in image analysis.

p{i,,.-..,1,) is referred as n-dimensional histogram of grey
levels and is particularly used in segmentation and classification
algorithms.

p(i} is formally a probability density function; a Cumulative
Density Function (CDF) can be assoclated to it:
i

c{i) = T, p(l) (22)
0
c(i) estimates the probability that a point in the image
assumes a level which is less or egual than i. In a similar way the
CDF can be defined for a multispectral image.

Often in remote sensing, events are considered whose
probability density function is assumed to be normal; in this case

px) = (2r) 25 'exp(-1/2 (x-m)%/0?) (23)

where m indicates the mean value of x and o 1s its standard
deviation. An estimation of m and ¢ is given by:

q
m=1/q I; X, (24)
1

2 a 2
o = 1/q I, (%,-m) (25)
1

where q is the number of experiments considered.
In the multivariate case eg. (23) can be extended by
considering that x is now a vector of N rows and 1 column. Symbol

()' indicates the transposition operation. Eq. (23) becomes the
following:

pix) = (27) ™| "2exp{-1/2(x-m}'T"" (x-m}) (26)

where

=
i

q
E[(x-m) (x~m)"] = 1/q E, (x,~m) (x;-m)" (27)
1

q
m = 1/q E; x, (28)
1
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and |T| indicates the determinant of r; T 1is indicated as
covariance matrix.
Conditional probability
conditional probability indicates the probability that an

event x occurs conditional upon an other event y. The notation is
p(x|y). If we consider the join probability p{x,y}), we have that:

p(x,y) = p(x{y)p{y) = plylx)p(x) (29)

from which

pix|y) = p(y|x)p(x)/p(Yy} (30)

Eq. {30) expresses the Bayes theorem.

These definitions are extensible also to the multispectral
case in which x and y are vectors.
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