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1. INTRODUCTION

1. Some simple formulae — are they useful?

Almost any textbook in solid state physics contains the formula
_ 2
o = ne“rfm (1.1)

which expresses the electrical conductivity o in the number n of conduction electrons per
volurne, the electron charge e, the scattering time r and the electron mass m. The electricat

resistivity p is
p=1/o (1.2}

Matthiessen's rule is another formula encountered in most textbooks. It saya that the total
electrical resistivity Piot of, e.g., a dilute alloy i3 the sum of two parts referring to the
resistivity "ph of the pure metal {"ep" standa for p limited by the electron—phonon

interaction) and the resistivity Pef Caused by the impurities ("defects");

Piot = Pep + Pimp (1.3)
The Wiedemann—Frans law,
Ky = oL T (1.4)

relatesthe thgermal conductivity ke due to the electrons and the corresponding electrical

conductivity ¢, through the Lorenz number L, and the temperature T. In an ideal model,

L, = (/3)(kp/e)? .5
where kp is Boltzmann's constant and e is the electron charge.

The total thermal conductivity Ko of a metal has a contribution Kol from the conduction
electrong (cf. Eq. 1.4) and a contribution Aoh from phonon transport. In an insulator, only

Koh remains. A standard expression for that term is
Koh = {1/3)Cy,Ct (1.6)

where CV is the phonon heat capacity per volume, C is an average sound velocity and £ is

an average phonon mean free path.

Much of thie lecture series will be devoted to the validity of the relations (1.1) - (1.6). In
particular, we shall see that often these expressions are too approximate in theoretical
calculations for real materiala (which are far from the idealised cases mentioned in
textbooks) or — even worse — the relations are simply not valid because they do not rest on
a physically acceptable model. For ingtance, the concept of 4 mean—free path £ can not be
maintained if the scattering is so atrong that £ of a certain phonon would be shorter than

the wavelength associated with the phonon.

The material in these lecture notes is, to a large extent, covered in depth in a book by
Grimvall (1986). That work and some other general and specialised references are listed at

the end of these notes.



IL. ELECTRICAL CONDUCTIVITY

1. The formula o = ne’r/m

The relaxation time r in (1.1) is very difficult to calculate. We therefore first assume that
somehow 7 is known. It must vary with the electron state (here denoted by its wave vector
k) and as a first approximation we may think of r in (1.1) a8 an average over the Fermi
surface, i.e. r = <r(k)>. If we also know the energies ¢(k) and the velocities v of the
electron states, a linear—response solution of the Boltzmann transport equation leads to the

foliowing expression for the conductivity o:

o = —(2¢2/3V) gvﬁ (k) (52/06,) (2.1)

V is the total crystal volume and f is the Fermi-Dirac statistical factor. The sum is over
all eonduction eleciron states k (the number of states is proportional 10 V so ¢ is
independent of V), but the derivative (&g/ 3:1‘) is strongly peaked at the Fermi level. As a
check on (2.1), let us replace —{81)/d¢,) by a delta—function & e~¢p) at the Fermi level
€p 233Ume & free—electron model and take a constant r. The sum over k is transformed

into an integral by the usual prescription

£ vi2x) 3 I a3k = vz J 4k (dk/de) de (2.2)

Then, after some algebra, we get Eq. (1.1). As 2 modification towards real systems, we use
a0 effective—mass approximation for e(k) at the Fermi level, i.e. de/dk = #?kp/m,, and
explicitly allow r(k) to be anisotropic but retain the assumption of the free—electron model
result kiy = (37°0)!/. Then

o = nel<r{k)>/my ‘ (2.3)

If we allow both v(k) and {k) to be anisotropic but still assume that —{&ﬁ/ dey } can be
replaced by a delta—function 6(ck—¢F), we get

o = (2¢}/3V) r v2 1{k) Hep—ep) (24)

Next, suppose that r{k) in (2.4) can be separated out as multiplicative factor. The

remaining part of ¢ containg

ugls (8xe%/3V) 2 v He~cp) (2.5)
The plasma frequency “’pl i8 a quantity which can be obtained from ordinary band

structure calculations. Then we may write

t:r=(w2

pl/4:r) <> 7 (2.6)

Note that with the familiar free—electron expression ""12)1 = 4:rne2/m. we recover Eq. (1.1}
from (2.6).

2. A variational result for the resistivity
We shall not dwell on details but merely state that there is a variational formulation of the
transport problem (Ziman, 1960) which allows us to write an expression for the electrical

resistivity p which corresponds to Eq. (2.3) for o,

p < (my/ne) <1/r(k)> 27



This should be compared with an "exact" solution p = 1o = (mblne2)/<r(k)>. Cf,
Schwartz's inequality in mathematics which implies that <1/r> > 1/<r>. The reason
for considering <1/r> instead of <7 is that the former quantity expresses a scattering
rate which is directly obtainable from the "Golden Rule" of quantum mechanics. We now
make the following assumptions. The inequality in (2.7) is replaced by an equality and m,
is generalised to the plasma frequency Wy 89 in (2.6). A calculation of <I/r> contains
matrix elements for the scattering of an electron from a state k to a state k'. If the
scattering ia due to phonons, its temperature dependence is governed by Bose—Einstein
factors which are functions of phonon frequencies w. Then it is convenient to replace
scattering probabilities in k—space with a coupling function afrF(u) which ia a function
only of the phonon energy he which is absorbed or emitted, irrespective of the wave vectots
k and k' involved in the scattering event. afrF(w) is called the E’liashberg transport
coupling function. In a simple description it may be thought of as an electron—phonon
coupling a%r(w) (matrix element squared), multiplied by a phonon density of states F(w)
which measures the number of scattering modes involving the phonon frequency w. If

<1/r> is calcutated from o2 F, (2.7) yields
]
p = (trfu,)? JO“‘“ podd F) - e aw  (28)

where Jw = ﬁw/kBT. Although based on several approximations, this expression may be

considered a natural starting point for numerical work or further approximations.

3. The Bloch—Griineisen formula
We assume that the phonons are described by a Debye model, l.e. w = Cq where C is the
sound velocity. Then w,, = Cqp, and F(w)~ o’ ~q®. We also take a model in which

there iz no coupling to Umklapp processes and let o? ----q2 ~w2, 80 that the resulting

azF(w)- WA q4. The expresssion (2.8) takes the form
pg(T) = (¢)/T) j:" -1 - 4 (29)

where y =#Cq/kpT and ¢, is a constant. This is the well-known Bloch—Grlineisen
resistivity formula. We note that it does not give the absolute magnitude of p since c, is
not calculated, but it often gives a very good account of the temperature dependence of p
from, say, T = 0.2, to 1.5}, (6, = Debye temperature = ﬁCqDIkB).

4. The resistivity in an Einstein model

Let us assume an Einstein phonon model, i.e. afrF(w) = cEé(w—wE), where cpiss
constant (depends on the strength of the scattering matrix elements} and wp is the
Einstein frequency. Then, from (2.8),

p(T)/T = ¢}, Cplbu/kgT) (2.10)

Cg is the Einstein heat capacity of phonons and cé is closely related to Cp Thus the
temperature dependence of the phonon—limited p{T)/T and of the heat capacity are
identical in an Einstein phonon model. (This has no deep physical origin but is an
accidental result of how Bose—Einstein and Fermi—Dirac factors enter (2.8}). It is well
known that the temperature dependence of the lattice heat capacity is not very sensitive to
details in the phonon spectrum F(w). Then it is not surprising that also the temperature
dependence of the electrical registivity is insensitive to details in arfrF(w). We may now
understand the empirical correlation, Fig. 1, between the temperature dependence of the
lattice heat capacity and the electrical resistivity that was noted by Grilneisen (Berichte

Deutsche physikal. Ges. 15, 1913, p. 186), long before quantum mechanics would explain



the behaviour of p(T). We also understand why the Bloch—Grilneisen formula Ppg B 80
good. Its original derivation resta on a number of quite crude approximations, but only the
ghape of aErF(w) matters, and that may be modelled by a Debye apectrum. In fact, there is
in general no reason to prefer the Bloch—Griineisen formula Ppg 0 €8, the Einstein
model result pp. In particular this is so because the T behaviour at low T implied by pp

is usually wrong, for various reasons.

5. The high—temperature limit
Consider the high—temperature limit of Eq. (2.8), i.e. ﬂwm << 1 (in practice ﬂwmu L1
will do). Then,

p= (BrszTﬁwgl) My (2.11)

where A is & dimensionless parameter which measures the strength of the electron—

phonon coupling,
Ymax 2
Ap=2 JO o Flw) (dwfw) (2.12)

The parameter ,\“ is closely related to the electron—phonon coupling strength A that
appears, €.g., in the BCS theory of superconductivity and a3 an enhancement factor 1 + A
in the low—temperature electronic heat capacity. (The essential difference betwen A, and A
is the average of a factor 1 — cosf), , where 6, is the scattering angle of the conduction
electron.) For most metallic systems (simple metals and transition metals, as well as
alloys and compounds} '\tr and A lie between 0.15 and 1.5, cf. Table 1.

10

Table I: P.B. Allen (Phys. Rev. B36, 1987, p. 2920} used Eq. (2.11), p from experiments

and “pl from electron band-structure calculations to get semiempirical values for Ay

element Li Al Pb v Nb Mo w Ir Pd
'\tr 0.35 039 148 109 106 0.32 0.26 050 047

6. Calculations for real metals
The Bloch—Grineisen formula or related expressions can give a good account of the
temperature dependence of p, but it remains to find its absolute value. The first attempts
at a calculation of p for real metals are those of Mott and Jones (1936) and Bardeen (1937).
For sodium, they obtained at room tempersture p = 3.1 uflem (Mott and Jones) and 2.6 —
4.7 uflcm (Bardeen), while the experimental value is Pexp = 4.78 pflcm. The most
ambitious calculation for sodium to date is probably that of Shukla and Taylor (J. Phys. F
6, 1976, p. 531) who used a pseudopotential approach and obtained p = 4.63 jQdem. One of
the very few realistic calcutations for transition metals i3 that of Allen et al. (1986), Fig. 2
PHYSICAL REVIEW
From J. Bardeen,
Phys. Rev. 52 (1937), 688.

Conductivity of Monovalent Metals®

J. Rambeent
Harmrd Uniwrrily, Combdridge, Massochuselis

I. INTRODUCTION

THE modern quantum theory of the elec-
trical conductivities of metals has been
very successful in giving & qualitative, and in
some cases a quantitative, explanation of such
experimental results as the following: the
Wiedemann-Franz law, the dependence of con-
ductivity on temperature (in particular, the
infinite conductivity at zero temperature), the
effect of impurities, and the conductivities of
solid solutions. It seems, however, to be very
difficult to make an accurate calculation of the
absolute value of the conductivity of a metal.
The resistance of & pure metal results from the
interaction of the clectron waves with the
lattice vibrations, and little is known about
either the electronic wave functions or the fre-
quency spectrum of the vibrations of most
metallic crvstals.
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Figure 1: In an Einstein phonon model, the quantity p/T has the same temperature

dependence as the heat capacity C_ and the lattice part of the thermal expansion

P
coefficient f. This behaviour is approximately obeyed alao in many metallic elements. The

figure shows data for aluminum. (From Grimvall, 1986).
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Figure 2: In non—transition metals (such ag Na and Al) pseudopotential methods allow 2 to
be calculated with an accuracy of 3 — 10 % at room temperature. A calculation of p in
transition metals ig difficult. The figure shows results from one of the very few realistic
calculations which are available. {Allen et al., Phys. Rev. B 34, 1986, p. 4331).
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. THERMAL CONDUCTIVITY

1. Introduction

Metals are good thermal conductors because heat is carried by the conduction electrons.
Yet the best thermal conductor of any solid at room temperature i not a metal but an
Insulator — diamond. In diamond, a8 in other insulators, the heat i3 carried by the phonons.
However, diamond ia a special case and usually the phonon part "ph in metals and alloys is
negligible compared to the electronic contribution #e)- Heat carried by photons (in semi—
transparent solids) or by spin waves may be of importance in some cases, which are not
considered here. Electrical superconductivity hag no counterpart in thermal transport. In

particular, the conventional superconductors conduct beat better in their normal states.
2. Thermal transport by conduction electrong

The thermal conductivity k) can be written in a form which is the counterpart of the
electronic conductivity ¢ in Eq. (2.3). It reads

Ky = (kGT/my) < [(e—ep) kg TI? kg > (3.1)
Since the Fermi surface average < ...> involves an energy—dependent function (e—cl;‘)2 we

have explicitly written out the dependence of 7 on the electron energy ¢+ If there is no

strong dependence of r on € We can perform the energy integral as
<> = J: ((e~ep) /g T [00°()/8¢) de (3.2)

The integral is equal to :2/3, and we recover K] 88 given by the Wiedemann—Franz law if
we compare with Eqs. (3.1), {2.3) and (1.4). We can also consider the high~temperature
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limit and get
1/ry = (2rmka/Lone2{) Ay (3.3}

3. Deviations from the Wiedemann-Franz law

In a real metal, r{k,¢) has a non—negligible energy dependence for |e-epl < b o
Further, the electron deasity of states N(¢) may have a significant energy dependence near
¢p- Then <...> in (3.2) will vary with T and be different from 12/3. As a consequence, the
Wiedemann—Franz law is not fully obeyed. We can define an apparent Lorenz number L =
(ky/0T) where & and o are experimental values. Fig. 3 shows L as a function of T for Al,
W and an Al alloy. When impurity scattering dominates, r is independent of ¢ {d. Sec.
IV.1). This explains why the Wiedemann—Franz law is better obeyed for impure Systems.

Figure 3.: The apparent Lorenz number L = ("el/ oT) from experimental values of el and ¢
for almost pure Al and W and for an Al alloy. RRR is the residual resistance ratio. (From
Grimvall, 1986). ' v T T T T v

o
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a M
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4. Lattice thermal conductivity
The expression Koh = (1/3)Cy,Ct given in Eq. (1.6) is the result for thermal conduction in
a classical gas. It can be applied also to conduction In a solid since the lattice vibrations

14

can be considered s a gas of phonons (massless bosons). Let (q,A) denote the wave vector
(in the first Brillouin zone) and the mode (longitudinal or transverse; acoustic or optical) of
a phonon of frequency w(q,A). Its group velocity is Cg(q,A) =iV un(q,A}| , the mean free
path is #q,1) and the heat capacity ia ¢(g,A). Then the lattice thermal conductivity can be

written, as a generalisation of the classical gas expression,
Kop =(1/3V) qfi s c(0,A)Cg(a,1)4q,) (3.4)

Under certain assumptions we may replace ¢ by Cg} where 7 is a relaxation time. In
analogy to the case of the electrical conductivity, the theoretical difficulties lie in the
scattering time r or the mean free path £ of the phonons. But there is a major difference
between the two cases. We noted that the temperature dependence of the electrical
conductivity could be well accounted for by simple models such as a Debye or Einstein
phonon spectrum, although the absolute magnitude of the conductivity was more difficult
to calculate. In the case of the lattice conductivity, there is no such simplification. Both
the temperature dependence and the absolute magnitude are quite uncertain (except at low
temperatures — see below). An approximate desctiption of Aoh gives the following result.

High temperatures: Consider Eq. (3.4). The heat capacity per mode, ¢(q,A), has its
classical value kg/2. Neglect the temperature dependence of the group velocity Cg, ie
anharmonic shifts in w(q,A). The phonon mean free path £is limited by scattering against
other phonons. The probability for three—phonon acattering (one phonon scatters into two
phonons, or two phonons scatter into one phonon) depends on Bose~Einstein factors

a(g,A) = [exp(Bugy) - 17, (3:)
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which govern the absorbtion and stimulated emission of bosons. The net result, at high
temperatures, is that £ varies a8 1/T. (In a classical picture, £ would vary inversely with
the number of other gas particles present, i.e. a8 1/n~T in our case). The magnitude of ¢
depends on the phonon—phonon matrix element. That is an anharmonic effect, which is
sometimes crudely modeled by the Grilneisen parameter 1 7hich appears in the lattice
thermal expansion. Under a number of other simplifying approximations, one may finally
arrive at the Leibfried—Schidmann formula (cf. Klemens, in "Thermal conductivity*, 1969)

for the phonon—limited lattice conductivity,
2
Rohph = B2~ [Maw /13T] (3.6)

Here B is a dimensionless constant of the order of 1 (Klemens suggests B = 1.6), M ia the
atomic mass, & is an interatomic distance given by (4:/3)a3 = na where l’la ia the atomic
volume, and wpy = kB QD/‘E ia the Debye frequency. It is obvious that this result can give
little more than a rough estimate. Further, experimentis usually show a more rapid decrease

of *oh~ph than the 1/T dependence in (3.6). Am empirical relation of some value is
Roh-ph = (T /T)7 (3.7)

where £* is a fitted constant, T, i& the melting temperature and 5 typically is 1.3. The
main reason for n# 1 is that thermal expansion (1.e. an effect of anharmonicity) lowers wp-

Intermediate temperatures: As the temperature is lowered through the Debye temperature,
certain scatteting processes of fundamental importance for "ph —ph (Umklapp—processes)
are "frozen out". Then ¢ increases roughly exponentially in fn/T and we may write

" oh—ph = %o exp(—ﬂD/T} (3.8)

16

The prefactor %, 18 difficult to calculate but can be fitted to experiments. The Debye
temperature BD t0 be used in (3.8) may be quite different from the standard iy that is
found from the low—T lattice heat capacity. Thus, Eq. (3.8) is only a crude description of
the dominating temperature dependence in R oh—ph*
Low temperatures: As the temperature decreases further, phonon—phonon scattering
becomes lesa important than the (unavoidable) defect scattering. The number of defects
does not depend on the temperature. Therefore, at low enough T, #q,A) is independent of
T. The only temperature dependence of Ko h Comes from the heat capacities ¢(q,)), which
vary as T at low T. Hence,

Ao = AT® (3.9)
where A is & constant which depends on the defects present.

Figure 4: The thermal conductivity » for some metals and non—metals {from Grimvall,
1986).

x {wm'k)




17

5. Diamond and other materials with high thermal conductivity

It has already been said that diamond has the highest known thermal conductivity of any
material, at room temperature. This can be qualitatively understood as follows. The
frequency of an oscillator is w = yk/M, where k is a force constant and M is the vibrating
mass. Now compare with diamond. Carbon has one of the smallest atomic masses and the
interatomic forces in diamond are exceptionally large. Therefore a typical vibrational
frequency, and hence GD, is very large. In fact, 0D & 2000 K for diamond, which is the
highest Debye temperature known for any solid. At room temperature, Umklapp processes
are almost completely frozen out. If the specimen s very pure, we are in the regime where
u-exp(*ﬂD/T) i very large, cf. Eq. (3.8).

In analogy to the case of diamond, we would expect elements or compounds with strong
(i.e. covalent) interatomic forces and small atomic masses to have a high thermal
conductivity at room temperarture, provided that they do not contain too many defects.
‘This is indeed the case for, e.g., Si and several hard materials such as carbides and nitrides.
This fact is of considerable practical importance. In semiconductors the generated heat is
eﬁiﬁently carried away, which prevents overheating and malfunction in devices. Edges in
cutting tools are made of hard materials which should be good thermal conductorrs to

avoid deterioration due to overheating.

6. Calculations of Rph in real materials

There are at least one hundred more or less accurate calculations of o for real metals.
Alrnost all of those refer to simple (i.e. non—transition) metals such as K and Al. Through
the Wiedemann—Franz law, the results may apply also to the electronic thermal
conductivity ). More detailed work aiming at a direct calculation of %y (i.. not assuming
that L = Lo) has been published for, e.g., K (Leung et al., Phys. Rev. B 16, 1977, p. 4358)
and Zn {Tomlinson, Phys. Rev. B 19, 1979, p. 1893). It may then be surprising to learn

18

that there are only a few calculations of the lattice thermal conductivity for real systems,
which do not invoke a fitting of parameters such as B {Eq. 3.6}, s* (Eq. 3.7) or %, (Eq.
3.8). Not even for a solid like NaCl has much been done. The most ambitious calculation to
date is that of Petterson (J. Phys. C 20, 1987, p. 1047) for the alkali halides. Typically, the
uncertainty in calculations of Koh—ph is almost an order of magnitude larger than in the
best calculations of o for simple metals. A major reason Is the difficuly to find accurately

the matrix element for the anharmonic phonon—phonon interaction.

IV. SCATTERING BY DEFECTS

1. Electrical conductivity
We assume that the conduction electrons are scattered by defecta as well a8 by phonons. A

useful expression for the total scattering rate is the scattering time approximation

Yrig(kg) = 11 (kiy) + 1/ 740(k) (4.1)

The defect scattering is elastic {i.e. the electron does not lose or gain energy) and hence
T4ef k) i8 independent of ¢. The relation (4.1) used in p = (my/ ne2)<l/ftot>' of. Eq.
(2.7), would immediately give Matthiessen's rule, Eq. (1.3). If we now still rely on (4.1)
but use the more correct expression 1/p = o = (nezlrnb)<o> we get p

ll(’ep'de[/(fep + 7401)>. Then there will be deviations from Matthiessen's rule (DMR)
unless rep(k,ck)/ rdef(k) i8 independent of k and ¢, . A significant DMR may occur well
below room temperature (below #p). At high temperatures, we can neglect the ¢
dependence of r(k,ck) and then the DMR is smaller although not always negligible.

For small defect concentrations ¢, Pgef is proportional to c,
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o = x(16%/3)'/% 12 (8 1) (a 25/e%) (5.1)

The prefactor :(16:/3)1/ 3 rg typically is 40. If £is larger than the nearest neighbour
distance, we have t/ao 2,6. This gives an upper limit g 150 pflem from (5.1), in good
qualitative agreement with Mooij's rule. {We may note that the fundamental unit of
registivity ao-h//ez can also be written '53/ (me4).}

Figure 5: The electrical resistivity of metals seems to "saturate” at about 100 — 150 uflem,
(From Grimvall, 1986). :
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Figure 6: In highly resistive metals and alloys, dp/dT may be small or negative. Data for
bulk alloys (+), thin films (o) and amorphous alloys {x). (From Mooij, 1973).
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There is no generally accepted theory for electron transport in the regime where Mooij's
rule applies, although there have been many attempts (cf. Ganimakher et al., Pramana —
J. Phys. 28, 1987, p. 509). The "shunt resistor model" of Wiesmann et al. (Phys. Rev. Lett.
38, 1977, p. 782) often gives a useful phenomenologica! description. Let Pideal(T) be the
registivity if no saturation would take place and Pgq e & parameter characteristic of the
gystem and of the order of 150 uflcm. The total measured resistivity i approximately given
by

llptot(T) = llpidea](T) + Upsat (5.2)

2. Thermal conductivity

In analogy to the case of electrical conduction we expect & breakdown of the simple lattice
thermal conductivity formula based on the Boltzmann equation when the phonon mean
free path {q,A) is a short as the corresponding phonon wavelength 2x/q. Consider Eq. (3.4)
and assume that the heat capcity has its clasical value, kg/2 per phonon mode (g,A).
Replace Cg(q.)\) by & Debye modei sound velacity CD and take a simple cubic lattice with
lattice parameter a 80 that (1 /3V)Eq’ 2 =1 /aa. Let £be at least equal to the nearest—

' neighbour distance a. Then Sob must, be larger than kBCDa/a3 = kBCD/a2. We rewrite

this a3 an expression for a saturation value ("ph}aat‘
2
(Son)sat™ *p(Cpap)/ala s kgup /4a = kg8 /4t (5.3)

where we have ugsed that ap = (612)]/ 3/&. Taking the typical values GD =300 K and a =

321070 m we get (x ~ 0.5 W/m- K. This is an underestimation of (s

ph)sa.t p
have gone to the extreme limit of £ = & for all phonon modes, but it suffices to explain why

h)s at Since we

the thermal conductivity of many strongly disordered materials of quite different kinds
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Pdef = Pief (42)
where o} ; is a resistivity characteristic of the defect and the hoat material. For high
defect concentrations, such as in concentrated alloys, it is very difficult to account

theoretically for the total defect resistivity. Sometimes, Nordheim's rule

Plef = el - C)Péef (4.3)
gives an acceptable description. See, however, Section V on saturation phenomena.

2. Therma! conductivity
We assume, as in the case of the electrical conductivity, that the scattering time

approximation with

Urin(@A) = /1oy _oplah) + 17 ohdef(DA) (4.4)

is valid for the combined scattering of phonons (g,A) by anharmonic phonon—phonon
interactions and by phonon—defect interactions. We now write ¢ = Cgftot in Eq. (3.4). In
analogy to the case of conduction electrons (cf. Section IV.1) there would bea
"Matthieasen's rule” for the lattice ther‘mla.l conductivity only if Toh—ph and 74.c have the
same dependence on {q,A). Only then could we use { = Cg'f.ot. in Eq. (3.4) to get for the
thermal registivities W= 1/«

Wiot = Uk = URgn on *+ Voo ger = Wph—ph + Wphedef (4.5)

However, the necessary condition on Tph——ph(q’)‘)l Toh _geftQ:A} i8 usually not fulfifled. For

the electronic part of thermal conductivity, on the other hand, Matthiessen's rule is often a

good approximation (at not too low T),

Wethor = Wellept (Wer)get (4.6)

V. SATURATION EFFECTS

1. Electrical conductivity

According to the simple theory, Eq. (2.11), p increases linearly with T. As a rule, one
observes a more rapid increase for simple metals. The main reason s that the electron—
phonen coupling contains 1/ u’z(q,A) where w{q,A) are phonon frequencies which decrease
with increasing T, mainly as an indirect effect of thermal expansion. Contrary to this
T-dependence, many transition metals show a p(T) which increases less rapidly than
linearly in T, and sometimes has a pronounced tendency for “gaturation" as in Fig. 5. In
many transition metal alloys with p larger than about 100 ufdcm, dp/dT is experimentally
found to be negative, cf. Fig. 6. This is known as Mooij's rule {Mooij, phys. stat. sol. {a)
17, 1973, p. 521) but like many other rules it is not without exceptions. The effect can be
given a qualitative explanation. The kéy jdea is that the usual formulae for the resistivity
should break down when the electron scattering is so strong that the electron mean free
path £ is of the order of the distance between neighbouring atoma. As an illustration,
congider Eq. (2.6), let { = vp7 and take the free—electron result for woy- {Although the
systems now of interest do not have the Fermi surface of a free electron gas.) We may
express g in the dimensionless parameter 1, which measures the electron concentration
[(4:/3)1-‘2 = 1/n], the ratio {/a  where a  is the Bohr radius ( 0.5 A) and ag‘li/e2 = 0.22
g which is a fundamental unit of resistivity. Then,
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(alloys, ceramics, ionic solids, polymers) seems to saturate at a rather universal valye.
Slack reviewed the field some time ago (Solid State Physics vol. 34, 1979, p- 1) and not
much has been clarified since then.

Finally, we add that very little is known about the electronic contribution to the thermal
conductivity wlien there is "saturation". However, it scems that the Wiedemnann—Franz
law is still valid (Grimvall, Physica 127 B, 1984, p. 165).

VI. ANISOTROPIC CONDUCTIVITY

1. Single—crystal anisotropy

The conductivities o and & are tensors of rank two. If such a tensor has cubic symmetry, it
reduces to & diagonal form with all elements equal to ¢ or 5. This was assumed in the
previous sections. We now consider the important case of hexagonal symmetry. {The same
relations hold for trigonal and tetragonal symmetry.) Let # be the angle between the
current j and the crystallographic c—axis. The resistivity P(M = E(8)/|jl can be written

of) = p; 08?8 + ' sin2d (6.1)

This describes the current flow in, e.g., 8 wire. Next we let the field E have a specified
angle # to the c—axis {e.g., E is applied across a slab). The conductivity o(#) = j(8)/[E] is

o) = o, c06%0 + o_sinf (6.2)

Note that aithough o = lfpl and o) = 1/p,|, one has o(#) # p(#). Often, the anisotropy in

L

the conductivity of hexagonal metals ia rather small, cf. Fig. 7. In hexagonal graphite,

however, the anisotropy is large.

Figure 7: The anisotropy of the electrical resistivity in Zn, Mg and Ru. (From Grimvall,
1986).

1.4 Y

0 100 200 300
T

2. Polycrystalline materials
Let the diagonal elements of the conductivity matrix of & single crystal be Oy 0y 80d 0. A

polycrystalline specimen of this material is quasi—isotropic and we may ask for its effective
conductivity O One can show (Molyneux, J. Math. Phys. 11, 1970, p. 1172) that o, is
bounded by

/o, + 1oy, + llcrc]_1 $ 0y < (13)o, + o + A (6.3)

One knows that a material can be constructed such that the upper bound is attained, so in
this respect this is the best possible bound. Less is known about the lower bound.

In the case of hexagonal symmetry, 0y =0, =0, and o, = o). Then, one may use an
effective-medium result (Bolotin and Moskalenko, J. Appl. Mech. Tech. Phys. 8, 1967, p.

3) which gives the effective conductivity 0, 88 the solution of the equation
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- ) +12x=1] - x> =0 (6.4)

where x = "a/ o, andy = o/ 0, We also note that the bounds in Eq. (6.3) may be quite
close. For instance, in & hexagonal symmetry with o, fo, = 1.2, the upper and lower
bounds in {6.3) differ by less than 1 %.

VIL. MULTIPHASE MATERIALS

1. Introduction

Consider a material made up of a regular or a random arrangement of two phases of
different conductivities ¢; and g, (or % and y}. In a geometry such as in Fig. 8a, it i3
trivial to calculate the resulting conductivity, just by a series or parallel coupling of the
properties of the phases, with their volume fractions f; and f,. The case of & random dilute
suspension of one phase in the other, Fig. 8c, ia also not to difficult to handle. But for a
quasi—isotropic mixture such as that in Fig. 8b, there is no general expression for the

overall effective (and isotropic) conductivity Oy However, one can find useful bounds to g,

Figure 8: Some geometrical phase distributions in inhomogeneous materials.

«©)

The macroscopic transport of electric charge and heat is goverened by the equations j = oE
and q = x(-¥T), respectively. Two other equations, of exactly the same mathematical

structure, are D = ¢E for dielectric and B = xH for magnetic properties, respectively.
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Much of the research on effective transport properties of inhomogeneous sysiems has been
done with dielectric or magnetic applications in mind. Therefore, important results for o
or &, are often to be inferred from work in those two other fields of physics. We also note
that the related question of effective properties for elastic parameters poses a different
mathematical problem, because even for an isotropic material one needs two elastic
parameters in a complete description (e.g., the bulk and the shear moduli, or the

longitudinal and the ' rransverse sound velocities).

2. Wiener and Haghin—Shtrikman bounds

One may show (Wiener, Abh. Math.—Physik. KI. Kdnigl. Sachs. Gea. Wiss. 32, 1912, p.
509) that whatever the geometrical arrangement of the two phases is, the overall
conductivity 7y is bounded by the series and parallel coupling resuits,

-1
[f;/o) + fpfoq) € o, & f10) + fyoy (r.1)
The bounds are attained for geometries such as in Fig. 8a, 80 there can be no better
bounds if any geometrical distribution is to be allowed. But for a random (i.e.
quasi—isotropic) mixture such a8 in Figs. 8b and 8c, there are more narrow bounds, due to
Hashin and Shtrikman (J. Appl. Phys. 33, 1962, p. 3125). They give for ¢,
9, 0, < {(1.2)

where the lower bound o, 18 (labelling chosen such that o, > al)

| :
op =0, +14 [ll(orz—al} + fl/(Sal.)] {1.3)
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and the upper bound ¢, is obtained from (7.3) by interchanging all indices 1 and 2. Fig. 9

shows examples of the Wiener and the Hashin—Shtrikman bounds.

Figure 9: The upper and lower Wiener bounds (sometimes referred to as the Voigt and
Reuss bounds, respectively), their average TVRH = (ov + aR) f2 (sometimes referred to
a8 the Voigi—Reuss—Hill estimate) and the upper and lower Hashin—Shtrikman bounds

oHs- The ratio 02/01 for the conductivities of the pure components is 0. {(From Grimvall,

1986.) 10—y r
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3. Dilute suspensions

Let phase 1 form a dilute suspension in a matrix of phase 2. When the shape of the
inclusions is ellipsoidal, and in the dilute limit fl << 1, there i3 an exact expression for
the effective conductivity LA (cl. Osborn, Phys. Rev. 67, 1945, p. 341 or Stoner, Phil. Mag.
36, 1945, p. 803}. For spherical inclusions the solution was found already in 1892 by
Rayleigh (Phil. Mag. 34, p. 481). One has, for any ratio "2/"1'

0 =0y [1 —3,(0g - 0}/ (20, + o))l (1.4)

4. Effective—medium theories
In the previous section we considered dilute spheres of phase 1 in & matrix 2. If the volume
fraction fl ia not small, we may still use a similar approach but let spheres of phase 1 be

embedded in a medium of conductivity 0, Then
0, =0y —H0,(0p~ al)/(2¢;re +ay) (7.5)

This formula can be derived in a stricter fashion (cf. Landauer, J. Appl. Phys. 23, 1952, p.
779) and also extended o a mixture of N phases i = 1, ..., N, with conductivities 0;. In the

effective—medium approach,

? fi(0g—0)f(0;+20,) = 0 (7.6)

We finally remark that there are various similar resuits which are also referred to as
effective—medium theories. We may also note that the effective—medium result in the
dilute lmit agrees not only with the result for spherical suspensions (Eq. 7.4) but also with
the dilute—limit lower (or upper if 1 and 2 are interchanged) Hashin—Shtrikman bound.
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