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O. Overview
This is quite an expansive topic.
Most creep phenomena are still not well understood.
There is a better understanding of metallic than ceramic creep (more data,too).

For these reasons this presentation will have a limits and emphasis as follows:
* Most illustrations of mechanistics will come from metals and be

extended to ceramics.
Only the better accepted theories of will be presented.
Areas of controversy will be noted.
Experimental observations/correlations and applications will be emphasized.
This presentation will deal with "elevated temperature deformation” only
(Elevated temperature refers to T>0.35Tn, in metals, and T>0.45Ty, for ceramics)

* ¢ & &

A. Fundamentals of Creep and Deformation
Creep Testing.

The simplest method of creep testing is to simply stress a sample in tension (via. a
fixed load, or a load which decreases with strain to approximate constant stress) and
monitor the sample elongation as a function of time. A gage is usually affixed to the
sample for this.
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Figure A. Creep test schematic (From Evans and Wilshire).

Deformation at low and high temperature

Again, This presentation will deal with "elevated temperature deformation”
only. For our purposes, elevated temperature refers to T>0.35T, in metals, and
T>0.45Ty, for ceramics.

Let's Examine why we draw this distinction. This temperature range is
empirically found to be the range in which self diffusion begins to operate at a
significant rate. This changes the both the mechanical response of solids and the
structure which is developed after deformation. Specifically:

A) Metals

Considering the strain-time curve, at low temperatures T<0.4 T, creep rate
continually decreases with strain. This is known as logarithmic creep. Above 04 Ty,
there are often three distinct regions in the time elongation plot:

Primary creep - equivalent to strain hardening,

Steady state creep - hardening and recovery balance,

Tertiary creep - cracks and voids weaken the structure.

+o - - -hme to fracture t, - - - .

Fr‘ac?utq

Primary ' Secandary | Tertary

Stran

secondary creep rate Eg

g/mf—
i

i€

= —Strain to fracture ~ =
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Figure B. Schematics of logarithmic and high temperature creep.

The structures which develop also differ at low vs. high temperature. at low
temperatures "cell formation” dominates. Whereas at elevated temperature “subgrain
formation” typically dominates. Cells are thick and disordered regions of high
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dislocation density. Cell size decreases and dislocation density increases as strain
accumulates. If T>0.4Ty the subgrain size and dislocation density are nearly determinced
by the applied stress only.

! Aem
Subgrain Structure Cell Structure

Figure C. Schematic representation of cell and subgrain microstructures

B) Ceramics

The above comments seem to generally hold for ceramics as well, however 1)
dislocation motion is often very difficult below 0.4Tr, and, 2) it is often very difficult to
propagate slip across grain boundaries. Therefore, in ceramics fracture often hinders the
study of significant plastic deformation of ceramics at relatively low temperatures. But,
primary, steady-state and tertiary creep curves have often been observed in ceramics,
and subgrains have also been observed after dislocation-creep in ceramics.

For reference, the kinds of temperatures required for the onset of creep:

Metal 0.35Tm Ceramic 045Tm
Aluminum 53 C Alumina 772C
Iron 221C Silicon carbide 1126 C
Titanium 238C Diamond 1527 C
Tungsten 919C

Experimental techniques
Test Methods and Advantages

The text by Evans and Wilshire treats the instrumentation for creep testing in
uniaxial compression and tension quite extensively. Here, the test methods available
and correlations between data generated by various test methods will be emphasized.
Generally, in designing a test the experimenter must specify three things:

1) The variable controlled
In all cases either stress or strain must be controlled, while the other is measured. In
creep testing the stress is typically controlled. However, it is perfectly acceptable to use
fix the displacement rate and measure load (as is common in low temperature testing).
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Equivalent data is usually obtained, but it is often difficult to control low rates of
displacement accurately.

2) How that variable is controlled
If stress is controlled in tension it is simplest to apply a fixed load, then the stress will
increase as strain accumulates. However, a number of schemes are available to
approximate constant stress (most notably the Andrade arm). In strain control,
computer-interfaced testing machines can approximate constant true strain rate
conditions. Constant stress, or strain-rate is preferred for theoretical studies but these
conditions are more difficult to obtain.

3) Test specimen geometry and stress state (Experimental Techniques)
A number of testing methods are available. Each with advantages and disadvantages:

* Tensile - most typical, not often applicable to ceramics.
Compression - simple and fundamental, friction problems at high strain.
Torsion - good for work at high plastic strains, strain gradient if solid cylinder.
4-point bending - common in ceramics, somewhat difficult to analyze.
Biaxial tension - pressure under diaphragm, common with superplastic alloys.
Notched tensile - used for studies on damage accumulation in creep.
Impression creep - good for inhomogeneous structure, hard to analyze.

Equivalency of Test Methods

In order to compare results obtained in different stress states, we must accept a
plastic flow law. The two most common are:
1) Tresca Criterion

if Tuppred = Tenscal then plastic flow is initiated, or at yield

=T . .
2 eibal  where Tcrit is one half the uniaxial flow stress.

2) vonMises Criterion

The three principal stresses are defined as o1, 02and 03. oy is the yield strength:
1

G, = "\}"—5_((01 - '32)2 +(0, - 03)2 +(0, - 03)2)

at the onset of plastic flow

First, as an example let's examine these equations in for strain-rate insensitive materials
with a tensile yield stress arbitrarily set at 100 MPa. Consider four loading conditions:

g1 02 g3
Tension applied stress 0 0
Compression 0 0 -(applied stress)
Simple shear applied shear stress 0 — (applied shear stress)
biaxial tension applied stress applied stress 0

The measured yield stresses will be:
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Tresca vonMises
Tensile 6=100 MPa o=100 MPa
Compression 6=100 MPa o=100 MPa
Simple shear =50 MPa 1=57.7 MPa (note yield varies 15%}
Biaxial tension 6=100 MPa o=100 MPa

In creep, defined yield stresses do not exist! Therefore we generalize these ideas to give

effective stresses, U , effective strains, ¥ ,and effective strain rates, . Effective stresses
are developed similarly to the above discussion:

=21

Qql

For Tresca:

o= %((01_ 02)2+ (01_03)2+ (02_03)2)

For vonMises:

also, since plastic work should be independent of definition, (i.e. ), effective strains can
be defined as:

el
Tresca: 2
g [27e2 L o2 g2
vonMises: €7 [3(51 tEyte 3)] (for proportional strain path only!)

Now for any reasonably isotropic material (at fixed structure and temperature) we can

use the above relationships and develop a function: €=£8) . This function is
independent of the geometry of the test, thus the most convenient test can be run and
the results may be applied to another geometry. In uniaxial testing the actual and
effective quantities are the same.

For example in shear, or torsion testing:

Tresca vonMises
(o] 21 ‘\/g T

Y x
- 2 V3
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Figure D. The application of these concepts in testing is illustrated in this figure from
D. A. Hughes and W. D. Nix, Met. Trans., 194, p. 3023 (1988).

These ideas can be extended to determine general strains under general states of stress.
The Levy-vonMises, or Prandi-Reuss Equations treat these kinds of problems. See a text
on continuum mechanics for details.

Experimental results and data presentation
A) Effect of Temperature and Strain Rate

The early works of Zener and Holoman! suggested that increased strain rate and
decreased temperature could be effectively "traded”. In this framework the flow stress of
a plastic solid could be expressed as:

c=de,7)

: AH
where, Z=€ exl{ﬁ)

This concept was supported by data from Tozerra, Sherby and Dorn2 who found that at
the same values of Z, identical stress-strain curves could be obtained in polycrystalline
high purity aluminum.

1 J. Appl. Phys., 15, p.15 (1944).
2 Trans ASM, 49, p. 173 (1957).
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Figure E. Stress strain curves from high purity polycrystalline alumina) Effect of strain
rate at a fixed temperature of 194K b) Effect of Temperature at fixed a fixed strain rate of
0.169 hrs'1 (data from Trozera, Sherby and Dorn).

One may use a similar approach with data obtained from conventional creep tests. This
was illustrated in the review by Sherby and Burke, and is the basis for the Orr, Sherby,

Dorn approach to life prediction.
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Figure F. Creep curves from high purity aluminum tested at a stress of 3000 psi. a) raw

creep data, b) correlated by the parameter O=(t exp(-Q/RT)] where Q=34Kcal/mol. From
Sherby and Burke.

The key concept shown in these two analyses is that decreased strain rate (or increased
available time) is equivalent to increased temperature. This suggests plastic
deformation may be a thermally activated process (similar to chemical reactions). This

will be examined further.
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B) Activation Energies

One way in which the activation energy in the Zener-Holoman parameter can be
evaluated without comparing creep curves is by performing tests in which the
temperature is abruptly changed during a creep test. Thus, strain, stress and
microstructure will be held nearly constant!. Two conclusions have come out of this
kind of work: 1) Q is independent of creep strain and 2) above 0.6Tr Q was independent
of temperature and approximately equal to the activation energy for self diffusion.

In principle, temperature change tests and the technique of correlating stress-
strain or strain-time curves to a particular Zener-Holoman parameter could be used to
determine the activation energies for creep. However, flow under steady-state
conditions has been emphasized by many research teams. Thus, one may extend the
Zener-Holoman approach and say:

. — Qc

Ess=f(o{)exp( RT
Thus, if stress is held constant, the activation energy for plastic deformation may be
obtained in a straightforward way, as illustrated below:

-2
10
..03 Slope =-Q/R
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Figure H. Schematic illustration of the graphical technique for finding the activation
energy for creep.

Using the techniques outlined above one may plot the activation energies for
plastic deformation as a function of temperature. Examples are shown below for pure
polycrystalline aluminum and sodium chloride. These both show that at high
homologous temperature the activation energy becomes approximately equal to that for
self diffusion of aluminum and chlorine ions.

1 see: Landon, Lytton, Shepard and Dorn Trans ASM, 51, 900 (1959), and Conrad ] Metals, July 1964
p. 582.
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T, (%)

L]
L1+

w
a

3

¢, kcal/mole

: ol
] [T} (2] ors g

Figure ]. Activation Energy for creep of ;r;fycrystalline sodium chloride as a function of
temperature (from Sherby and Burke).

C) The stress dependence of creep rate

The traditional method of displaying the relationship between the steady state
creep rate and the applied stress by plotting each quantity on a logarithmic scale. The
relationships are typically linear on these axes. Based on these, the stress exponent, n,
and the strain rate sensitivity exponent, m, are defined as:

These quantities have fundamental meaning an_ﬁhe methods for determining the
are illustrated below.

(Vs

m =/ = O/K,LO‘

s
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Figure K. Typical relationships between applied stress and steady state strain rate for

An Exercise:

Samples for elevated temperature tensile testing were all made from a single
heat of an annealed single phase metal. These samples were tested under
controlled true-strain-rate conditions, at three temperatures and three strain
rates. In all cases, after a few percent strain, a well defined steady state flow
stress was observed. This flow stress as at each temperature and strain rate are

shown below.

Steady State Strain Rate

Dachr. -~ Notes on Creep Deformation; 12

High Const. Temp

Low Const.

102
) Srexsss
104
10
nr=1/m
10°
] 10 100

Applied Stress

creeping solids.

Flow Stress (MPa)

Temperature (°C)

Strain Rate 400 450 500
1E-4 20.3 14.6 11.0
5E-4 34.7 25.0 18.7
1E-3 43.7 314 236

Based on these data what is the equation for steady state creep and the

activation energy for creep in this metal?

Answers: n=3, Q.=75K]/mol

B. Mechanistics of Creep Deformation
In this section we will examine the commonly observed mechanisms for creep in

simple systems. From these somewhat phenomenological models of creep deformatio

1000

n

/
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It will be suggested that the activation energy, stress exponent and transient behavior
can be used to gain fundamental insight to the deformation process.

The Evidence for Diffusional Control in Creep

It is widely accepted that the deformation rates of nearly all solids, above 0.5Tn, is
controlled by self diffusion. The theoretical explanations for this is covered in the
following sections. The Experimental evidence is as follows:
1) Based on tests referenced above, it is found that the activation energy for creep is not
a function of plastic strain.
2) Based on the same kinds of tests, it is found that above 0.6T, there seems to be a
plateau in the activation energy. These plateau activation energies for creep, Qc, can be
compared to the activation energy for self diffusion, Qq, for a number of metals. This is
shown in Figure L. This same kind of correlation is illustrated in Figure M for ceramic
materials. In this case Q. is compared to the activation energy for the slowest moving

Species, T T T T T T T T T T T
160 -
> b oV
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=
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I ]
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[ 20 40 0 WO 00O 120 WO WO

ACTAVATION ENERGY FOR HiGH TEMPERETURE CREEP - Kool/moly
Figure L. Activation Energy for creep at 0,5 Tm, Qc compared to the activation energy for
self diffusion in a number of pure polycrystalline metals. (from Sherby and Burke)

QL w -ty

Figure M. Comparison of Qc and Qp of the slowest moving species for a number of
polycrystalline ceramic materials. (From Langdon and Evans).
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3) The pressure dependence of creep and deformation can both be expressed by an
activation volume concept. Weertman'! has used a similar plot, Figure N, to show that
the activation volumes for creep and self-diffusion are very similar for a number of
metals and compounds. [ -y
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Figure N. Activation volumes for creep and self diffusion for a number of single-phase
solids. (from Weertman)

4) Effects of added solutes often have identical effects on the creep rates and self-
diffusion rate. This is illustrated in Figure O. The same behavior has been observed in

many ceramic systems, as shall be discussed later. Similarly, phase transitions often
produce parallel changes in cr(ge;p rate and diffusion rate.
I

1 1 1 I T I
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Figure O. Effect of carbon content on the self diffusion rate, and creep rate in austenitic

iron at 10000 C. (from Sherby and Burke)

1 Trans. ASM, 61, 681 (1968)
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Diffusional Creep

Creep by purely diffusional mechanisms dominates at relatively low stresses
(0/E<10%) and high temperatures (T>0.9Ty). The mechanistics can be easily understood
by first recognizing that a grain boundary cannot withstand shearing forces at elevated
temperature. Thus, the stress state within each grain is not uniform. Specifically a
tensile stress will act on boundaries perpendicular to the tensile stress axis and vice-
versa. By the convention in Figure O%, the energy barrier to creating a vacancy on "A”
type boundaries will be (Qg-ob3). While on "B" type boundaries the energy barrier will
be (Qs+ob3). Thus, there will be a higher concentration of vacancies on "A" boundaries
than on "B" boundaries, and a vacancy flux will be set up in accord with Fick's laws.

PN
'\

Figure O*. Schematic drawing of a polycrystalline solid under a state of pure shear
stress.

Note that the vacancy flux will travel both through the bulk and along grain boundaries
and these will contribute independently to the strain in the polycrystal. In the case

where bulk diffusion is dominant, Nabarro! and Herring? have determined that the

strain rate of the polycrystal is:
: Db(pY
E=0.7B——|=]0o

kT \ G
Where: G is the grain diameter

B is a geometric constant which is typically between 12 and 40

Coble3 has analyzed the situation in which the flow of vacancies takes place along grain
boundaries. For the case of creep in uniaxial tension, the creep rate was calculated as:

‘ No'B" Drbb(dsbJ b)s
€ =33 4§ T(E o

Here, dgp, is the width of the grain boundary region.

1 F.R.N.Nabarro: Rpt. Conf. Str. Sol., p. 75, The Physical Society, London (1948).
2 C.Herring: ]. Appl. Phys., 21, 437 (1950).
3 R. L. Coble: . Appl. Phys, 34 1679 (1963).

- 15 -
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There is good evidence for the existence of both of these processes, both from
comparison of experiment to theory and metallographic observations.

Notes on diffusional creep:
* Coble and Nabarro-Herring creep are independent processes. Thus, the creep rate of
the solid is equal to the sum of the above equations

* Smaller grain sizes and lower temperatures favor Coble creep over Nabarro-
Herring Creep. This can be understood by consideration of Figure P.

¢ There are a number of morphological features of diffusional creep which are
worthy of note. If the grains are elongated in the tensile direction, the effective
diffusion length for diffusional creep is increased and the creep rate decreases,
Also, diffusional flow changes the shape of individual crystals. If the aggregate
is to fill space, concurrent grain boundary sliding is required.

* The above represent continuum analyses of diffusional flow (i.e. grain
boundaries are perfect sources and sinks for vacanciegl Artz, et. al.l have
shown second-order effects (such as small numbers of sources and sinks, and
solute-limited dislocation mobility) can be important in many crcumstances.

¢ There is another mechanism, Harper-Dorn? creep, which is active at high
homologous temperature and low stress. This also shows strain rate being
proportional to stress, and a creep activation energy approximately equal to that
for lattice self diffusion. However, experimentally it has been shown that creep
rate in H-D creep is independent of grain size. The mechanistics of this process
are still very much in debate?3.

Ac Aisio ¢, tinn o&',‘q,‘-];” 10/
t_S /'hi(/l-t-hﬁ.x’f ‘Z{ !7’,—(_’4(7

! E. Artz, M. F. Ashby and R. A. Verrall: Acta Met, 31, 1977 (1983).

2 ].G. Harper and J. E. Dom: Acta Metall., 5, (1958).

3 For example see: ]. Blacic and J. Weertman: Geophys Res. Lett., 11, 117, (1984), F. A.
Moharmmed and T. ]. Ginter: Acta Metall., 30, (1982) or O. A. Ruano, J. Wadsworth and O.D.
Sherby: Acta Metall., 36, 1117 (1988).

Al -



Dachwn -- Notes on Creep Deformation] 17
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Figure P. Schematic illustration of the effect of temperature and grain size on
diffusion and diffusional creep rates.

Application to Ceramics

Diffusional flow is an important deformation mechanism in ceramic materials.
In order to avoid local compositional differences two or more species must diffuse in a
coupled manner. In these cases the rate of diffusional creep is determined by the
movement of the slowest species along its fastest diffusional path. The review by Evans
and Langdon discusses this in some depth.

Dislocation Based Creep (Pure metals)

At lower temperatures and higher stresses deformation occurs via the movement
of dislocations through the lattice. "Simple” dislocation creep of pure metals is probably
the most commonly observed and theoretically most complicated and debated
phenomenon in creep.

A) Experimental Observations

It is commonly observed that the stress exponent for creep in pure metals is
approximately 5. If the strain rate is normalized to the lattice diffusion coefficient, the
stress v. normalized strain-rate behavior for a single metal will collapse to one curve.
Three regions can be seen (Figure Q): at low stress, diffusional flow will dominate; at
intermediate stress, n=5, power law creep is observed; and at very high stresses, power-
law break down is observed!. This high-stress behavior will not be discussed further.

1 F. Garafolo: Trans ASM-AIME, 227, 351 (1963).

-1?—
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0.6 Ty (From Sherby and Burke).

In the intermediate stress range a relationship can be written:

Cc = S/DL.LK(M)

Here K(M) is some function of the physical properties of the metal. Let's examine this
further by examining K(M) with the other term fixed. Figure R shows the relationship

between flow stress with (€/Dp) set at 107 cm-2 and the elastic modulus.

-

T ot £/0+ 10" cm®, MPo

I

I

DY F] e
E., mPe

Figure R. Relationship between the flow stress (at fixed normalized strain rate) and
elastic modulus. This shows that the flow stress at any strain rate is primarily a function
of elastic modulus, when tested at a temperature at which atom mobility is the same.

(from Sherby and Miller!).

! O.D. Sherby and A. K. Miller: J. Eng. Mat. and Tech., 101, 387 (1979).
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Based on this we can develop a first-order equation for the power-law creep of pure

metals as:
. _1011 o\
.= % D‘-(E)

Note that now we have two temperature dependent terms D and E. This now means
that if the activation energy for creep is to be evaluated, any experiments should be
carried out at a constant normalized stress (i.e. 6/E). If tests are carried out at constant
stress, at various temperatures, an anomalously high modulus will result. The
corrected modulus can be calculated as:

Apparent nRTz(iEw)

Truc
Qc - Qc + E dT
Note that in this expression, the final term is always negative.
Elastic modulus clearly seems to be an important factor in determining a
material's creep resistance, but it is not the only term (there is still significant scatter in
Figure R). Another factor which should be important is stacking fault energy. If

stacking fault energy, v,is high, dislocations will not dissociate and cross-slip will be
relatively easy. Low stacking fault energy materials have widely separated partials, and
cross slip is very difficult. Intuitively, this makes recovery processes more difficult. The
effect normalized stacking fault energy on normalized strain (by modulus and
diffusivity) is shown in Figure S.
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Figure S. Effect of normalized stacking fault energy on normalized creep rate. (Taken
from Evans and Wilshire, data from Mukerjee et.al.l)

Based on this we can improve our first-order equation to take on the form:

)

1" A. K. Mukherjee, ]. E. Bird and J. E. Dorn: Trans. ASM, 62, 155 (1969).
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This has immediate utility in that we can use equations of this type to determine what
materials and alloy additions are good candidates for creep performance. However, one
element may not be satisfying. In diffusional creep we considered that more than one
kind of diffusion path may be active (grain boundaries and the bulk). In real
polycrystalline materials three kinds of paths are available: the bulk, grain boundaries

and dislocation cores. Thus, the "effective diffusion coefficient" should contain terms
relating to each of these three paths:

1
D,=fD, + ApD, + BHD”
In this expression A and B are terms. which relate to the effective widths of dislocation

cores and grain boundaries, respectively. For the case of pipe and bulk diffusion,
empirically it has been determined that:

D, = 100(%)2D,,+DL

The stress squared term follows from the Taylor relationship between dislocation
density and flow stress and is consistent with experimental observations. Using this
approach Luthy et al were able to correlate the steady-state flow stress of pure
polycrystalline aluminum over 21 orders of magnitude, Figure T.
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Figure T. Normalized stress v. strain rate for pure polycrystalline aluminum, using the
effective diffusion coefficient concept (from Luthy, Miller and Sherby).

Following these concepts, at low temperatures, where pipe diffusion controls
deformation, increasing stress increases the diffusion coefficient thus, we expect a strain
rate sensitivity exponent of 7. This transition is observed at higher stresses and lower
temperatures.

Further evidence for this concept comes from measured creep activation energies,

Figure U. Typically the activation energy for pipe diffusion is about 0.6 of that for lattice
self-diffusion.

T H. Luthy, A. K. Miller and O. D. Sherby: Acta Metall, 28, 169 (1980).
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Now, if the subgrain size is fixed, either by a small grain size or dispersoids, it is expected
that this equation will describe deformation. In such a case the flow stress, at fixed strain
rate would take on a form similar to the Hall-Petch relationship. Specifically,

-3

flow = Kl *

The review by Nix and Gibeling! give a clear and fairly complete accounting of how
changing structure, and the kinetics of structural change effect creep.

The other common interpretation of stress-change data? is that individual
dislocations move under the influence of the applied stress, less an internal stress. 1f
sufficiently large stress reductions are applied a stress change can be found at which
there is a period at which there is a zero creep rate following the change. The low stress
level is equated with an internal stress. Researchers with the former point of view
argue that this part of the transient represents anelastic (time-dependent, reversible)
deformation rather than plastic creep, and despite being structure-sensitive, is not
directly relevant to the creep process.
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Figure W. Creep transients following stress changes in pure aluminum. (From Sherby,
Klundt and Miller3)

B) Theory

At the present time, there is no accepted comprehensive theory which treats all of
the aspects of the creep of pure metals listed above. Weertman has noted* that all
models of creep based on edge dislocation climb yield models with a stress exponent of
three, provided that no un-natural assumptions are made. None of the current
theoretical models for creep with exponents above three are fully satisfactory. The
origin of the natural law is presented at the end of the next section.

1 Flow and Fracture at Elevated Temperature, proceedings (see first ref. list)

2 See Evans and Wilshire's book for a survey.

3 Metall. Trans., 8A, 843, (1977).

4 J. Weertman in Rate Processes in Plastic Deformation of Materials, ASM, p. 315, (1975).
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Class I Solid Solutions
A) Experimental Observations

Sherby and Burke noted that solid-solution metallic alloys could often be divided
into two broad categories based on their behavior as follows:

Class ] alloys Class II alloys (pure metal-like behavior)
power-law stress dependence, n=3 power-law stress dependance n=5

no {(or inverse) primary creep large primary creep

SFE, v, does not matter ‘ SFE is important

Subgrains seldom form/not important Subgrians form and are important.

faster than expected creep after stress drop slower than expected creep after a stress drop

Interpretation:
Dislocation glide controlled Dislocation climb controlled

Class 11 behavior is the "pure metal” behavior, discussed previously. The following

figures illustrate the kinds of behavior seen in Class I alloys.
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Figure X. Creep curves for pure nickel and nickel titanium alloys tested at 7000C and a
stress of 5750 psi.l '

1 Trans ASM, 46, 701 (1954).

-2 2 -



Daehn -- Notes on Creep Deformation/ 24

o
: -
3 -
g 55
. PURE M D—IE;
E [
w Eq
5 w8
5 .a‘E§
E
¥

0,000

CREEP STRESS, LB /50 IN

Figure Y. Steady-state creep-rate v. stress for a number of Au-Ni alloys at 960° C. Note
that the pure metals have n~5 and solid solutions have n=3. (from Sherby and Burke).
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Figure Z. Stress change test in an AI-ZWZ'AT;I‘; solid solution at 600K. Note the difference
in behavior compared to the pure Al. (from Sherby and Burke)

Not all solid-solution alloy systems show Class I behavior. Cannon and Sherby! have
empirically noted that Class I systems tend to have large size differences between
slovent and solute and the solvents tend to have low elastic moduli. This classification

system is shown in Figure Aa.

1 W. R. Cannon and O.D. Sherby: Metall Trans, 1, 1030 (1970).
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Figure U. Activation energies for steady state flow for a number of materials (from
Luthy, Miller and Sherby)

Up to this point we have only considered the mechanical response of the
material. Structural changes are also an important part of the creep process. In steady-
state creep, the subgrain size is a function of the applied stress, and essentially
independent of strain. Experimental data (Figure V) shows that the subgrain size is
approximately inversely proportional to the applied stress for a large number of
materials. O —
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Figure V. Measured subgrain size as a function of the steady state flow stress for a
number of materials (From Porier).

So far in this treatment, the mechanical response of the materials to a constant
stress has been considered. Immediately after a stress change, pure metals show a larger
change in stress that would be expected based on the usual stress exponent of 5. There
are two (or more) ways to interpret this. One school of thought (see Sherby, Kludnt and
Miller) argues that on a stress change, the subgrain size is fixed, and a new constitutive
equation should be developed for constant structure conditions. Based on analyses of
the kind shown in Figures V and W, they propose that the equation should take the

form of:
k)
- 10— (2) (2)’
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Figure Aa. size difference and elastic moduli (for the pure slovent) for a number of
solid-solution alloy systems. The brackets give the range of modulus over the testing
temperatures. (From Cannon and Sherby.)

It should be noted that while this classification scheme has great a great deal of
experimental support and is of great practical use, there is often not a black-and-white
classification for some alloys. Poirier's text points out some of the limitations of this
classification scheme.

B) Theory

Again, plastic deformation is produced by the motion of discrete dislocations. In
order for steady-state flow to take place dislocations must move long distances.
However barriers are in place. Thus, both glide is required, and climb (or cross-slip, etc.)
must act for dislocations to surmount barriers, as illustrated in Figure Ab.

cimo | O |
I glide J :
T obsticle

Figure Ab. Schematic diagram of a dislocation gliding to an obstacle.

In the case where solutes exist they may diffuse to the dislocation core. In this case, the
motion of the solute atmosphere surrounding the dislocation core may be the rate
limiting step. This situation was first analyzed by Weertman'!. The key points are as
follows.

E=pvb
2
p=C(%)
v=oD_, .

1 ], Weertman: Trans AIME, 218, 207 (1960).
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: o
Therefore, = D ‘d“‘“(—}::_‘)
The key to this is that climb and glide are sequential processes and therefore, the slower
process will control the deformation rate. The resulting schematic stress v. strain-rate
curve is shown in Figure Ac.

[
o
o Portivin-LeChatlier
= \
9 3
b4 1
% Glide Controf
]
S Climb Control
&
g Diffusional
creep Material Behavior
Log Applied Stress

Figure Ac. Schematic creep curve of a Class I system. Diffusional, climb controlled,
glide controlled and Portivin-LeChatlier creep are all shown. Note that both
independent and sequential processes are represented.

One final point on the creep of solid solutions. The above graph suggests that the
addition of solute will increase the strength of a solid. The previous example of carbon
in austenitic steel shows this is not always the case.

Grain Boundary Sliding

Most of the discussion of grain boundary sliding will be deferred until the section
on superplasticity. However, a few words are appropriate now. By experimental
observation, grain boundary sliding is a mechanism distinct from slip creep and
diffusional flow. For fine grained materials at intermediate temperature, creep may
occur 200 or more times faster than predicted by coble creep, and strain discontinuities
are noted at grain boundaries. Grain boundary sliding must be accommodated by either
diffusional flow or slip in the grains. How accommodation occurs at these rates is still
not fully understood.

Dispersion strengthened materials

When fine dispersions of very small particles (approx. 0.1um inter-particle
spacing) are added to a metal matrix, the creep behavior of the structure changes
significantly. Specifically at low stresses the stress exponent increases significantly
(threshold behavior) the activation energy for creep increases, and the overall strength
of the material increases significantly. This will not be treated in detail here, but many
factors are critically important including the particle size, inerparticle spacing, modulus

Y ¥/
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mismatch between particles and matrix and the interface condition between particles
and matrix. Theoretically, there is currently debate whether dislocations are impeded by
passing by particles (bowing, or climb) or by an attractive interaction between the
particles and the dislocations, after they have passed!.

The Big Picture -- Deformation Mechanism Maps and Phenomenological Equations

There are two basic approaches to understanding creep over wide ranges of stress,
structure, temperature, and even material. One is by use of the Dorn (or Dorn-type)
equations. The Dorn equation is stated:

. b, 5y\"

€ = AD, 17 (1r)
Originally this was intended to describe slip-creep, but the efforts of Sherby and others
have extended this equation by determining activation energies and stress exponents for
a number of other mechanisms. Using this approach one can typically estimate the
creep rates in an unknown system (above 0.6 Tr) within a factor of 100. This correlates
to a prediction of flow stress within a factor of about two and one-half. The dependences
for Qc, n and structure for other processes is shown below:

A Short Catalog of Creep Mechanisms

Mechanism Temp. Stress Structure Conditions

Dependsnce’ Dependence Dependence Where Observed
Diffusional . '
Nabarro-Herring Dy (o/E)! a2 Fine grains, low stress, hi T
Coble Creep Dg (c/E) d-3 Fine grains. low stress, hi T
%?ious Glide Dy (o/EP e2cl Misfitting solutes — Glide controls
(Class I Solid Sol.) creep. Climb and glide are sequential
Weertman's Climb D {o/B)4> M-85 Pure Metals
Model
Lattice Diff. Cont D (6/E)Y5 Stress fixes structure Coarse grains, T>0.6Tm
{Phenomenological)
Pipe diffusion control Dp (c/EY ) As above T= 0.4 to 0.6 Tm
(Phenomenological)

: 3 Constant Structure Tests and

Constant Structure Dy Dy (c/EP A
(Phenomenological) ODS alioys T>0.6 Tm
Constant Structure D, D (c/B)C A3 As above, lower Temp range

(Phenomenological)

1 See For example, D. J. Strolovitz, et al.: Acta Metall, 31, p. 2151 (1983)
E. Artz and Rosler, Acta Metallurgica, 36, pp. 1043 to 1051 and 1053 to 1060.
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Grain Boundary Sliding (Phemomenological)

Lattice Diff. Cont. Dy (6/E)2 a-2 Fine grains, intermed. T and o

Pipe Diff. Cont. D, {o/EY d-2 As abave, but lower T.

G. B. Diff. Cont. Dg (o/ER d- As above, maybe finer G.5.

Others

Harper-Dorn Creep D, (G/Ei - High T, Low o, Coarse Grains
R one - Pooer

Terms

Subscripts Symbols

1- Lattice Diffusion E- Dynamic Elastic Modulus

p- Diffusion along dislocation pipes L- Linear Intercept G. S. (or interparticle size)

gb- Grain Boundary Diffusion d- Grain Diameter =1.76 L
A- L. . Subgrain size

The General Forms: - Fractional size diff. between solvent & solute atoms

+ _ 2 "
Ew=AD,S (E) ¢c- Concentration of solute atoms
Dy=D,+B Dl” +CD, S- Generalized Structure Function
0 -Q x)
D,=D,exp RT

n- Stress exponent (n=(1/m); m-strain rate sensitivity exp)
M- Dislocation Source Density

The other common way to express behavior over wide ranges of stress and
temperature is by deformation mechanism maps, which have been popularized by Frost
and Ashby'. These are usually developed from both experimental data and analytical
relations. An example from that book for polycrystalline nickel is shown below:

TEMPERATURE.(C)
L 20 © 200 400 00  8OC OO0 OO oo

.-;.z*.u_-.:'.uz.sztﬁ*"a = o= pom we PURE NICKEL
d= lmm

[
SHEAR STRESS AT 200K {MN/m3)

NORMALISED SHEAR STRESS. %y

It

L]

:o'°o 0.2 o.4 Ce Q-8 o

HOMOLOGOUS TEMPERATURE . V4.,

1 H.]. Frost and M. F. Ashby: Deformation Mechanism Maps, Pergamon Press (1982).

~2_8,



Duchin - Notes on Creep Deformation 2¥

C. Creep in Specific Systems
Comparison between metallic and ceramic creep

Differences
¢ Several sublattices (fully or partially occupied) exist. Ions of various charge and size
exist on each sublattice.
* Complex point defect chemistry

Charge neutrality

Intrinsic vacancies from thermal activation

Extrinsic vacancies from impurities

For oxides stoichometry is a function of oxygen partial pressure
* Dislocations

Large Burgers’ vectors

Kinks and jogs can be electrically charged

Similarities
Despite the differences listed above the situation is not very different than for metals
(and more data and models exist for metals). Specifically:
 Diffusion still controls rates at elevated temperatures

(slowest species down fastest path)

(impurity and O; pressure must be carefully considered)
* Stress dependence also varies between 1 and 8 typically

(values near 1 are common at low stress, 3 or 5 are common at higher stress)
e Substructure development is essentially the same.

subgrain size is found vary inversely with stress.

dislocation density varies as stress squared.

Superplasticity”
basic principles
The phenomenon which give superplasticity its name is the tremendous tensile

elongations which are available from superplastic materials. This comes about from the

high strain rate sensitivity exponent, m (m=1/n). To understand why a high stress

** Some Reviews of Note:

Padmanbahn and Davies: Superplasticity, Springer-Verlag, (1980).

O. D. Sherby and ]. Wadsworth: "Development and Characterization of Fine-Grain Superplastic
Materials”, Deformation Processing and Structure, G. Krauss, ed., ASM (1984).

B. P. Kashyap, A. Arieli and A. K. Mukherjee: "Review Microstructural Aspects of
Superplasticity”, J. Mat. Sci., 20, p. 2661 (1985).

J. Edington, K Melton and C. Cutler, "Superplasticity”, Progress in Materials Science, 21, 1 (1976).

R. H. Johnson: "Superplasticity”, Metall Rev. Review no. 146, pp. 115-134 (1970).

T. G. Langdon: "The Mechanical Properties of Superplastic Materials”, Metall Trans, 13A, p. 689
(1982).
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exponent enhances ductility consider a tensile bar with a small area with a reduced cross
section. Note that m can be defined as:

dlogo
ms=}——-
6 log €
If the imperfection is to grow, the strain rate there must exceed that in the rest of the
sample. If m is high, there will be a large increase in the local flow stress, resisting the

deformation. Woodford! showed that for a large number of materials tensile
elongation correlates well with m-value as is shown below:

(R R [ Vo, =
E : (1,1 % 0.} =
= —
3 ~ 1
e otk ¢Fe-13% Cr-12% Mo —
g 3 Fe=1.2% Cr—1.2% Mo—~ =
5 = 0.2%Vv z
I - o Ni -
w o CMg—-0.5% 2r -
; Q.01 4Py —=
1 - aPb—5n =
z #Ti-5% Al~2.5% $n =
< oTi=6% Al=40% V -
E *ZIRCALOY -4 -
(5] o sagn [IEREAr . IR . -

Q.001 L
] 10 100 1000 1Q,200

TOTAL ELONGATION (%)
The minimum structural prerequisites for superplasticity are:

1) Small and stable grain size (<10um)
a second phase is often needed to stabilize this small grain size
2) Boundaries can support a tensile stress and retain mobility
3) High angle boundaries are present
4) Strengths of different phases must be comparable {or cavitation)

The usual experimental observations are:
Either
There is a constant m of approximately 0.5 until slip creep is active
or
m varies, reaching a maximum (up to 0.9) at intermediate rates

. Jiso, Ctiérul Fovm
* There is discrete motion across grain boundaries ‘é 7 reoe ‘é
* Grain growth is enhanced by deformation ‘

* Grains rotate ; }'\ je b p
* Grains remain equiaxed &= 4 0"7’ (5 Jx @

* Any initial texture is usually destroyed ]
N~r~3  J~2-3

Mechanistically explanations center on the accommodation of grain boundary sliding
b},: .
* Deformation by lattice diffusion
* Deformation by grain boundary diffusion
Different behavior of the near-boundary region
* GBS accommodation by slip

1 W. B. Morrison: Trans Met Soc AIME, 242, 2221 (1968).
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e GB migration taking an important role in accommodation.

Superplasticity in Zirconia
Recently, Wakai' et al have shown that a completely crystalline ceramic can be
made superplastic in tension. This is shown graphically below:

- -

It is significant to note that as with many of the observations of superplasticity in metals,
this material exhibited a stress exponent of approximately 2. A recent TEM study has
also shown that the grains remain fairly equiaxed up to 100% strain2. Although grain
growth still does occur in this system

Very recently attention has shifted to composites of zirconia and aluminad® with
this two phase system, finer grain sizes should be stabilized, and grain growth should be
inhibited. These approaches hold great promise for new routes for high quality near-net
shape forming of ceramic materials.

D. High Temperature Cavitation and Crack Growth™
In Summary: at elevated temperatures, it is the same fundamental processes
which drive both plastic deformation and fracture. —

Types and Mechanisms of Damage ,
The below figure, taken from Ashby et. al. 4 schematically illustrates the kinds of
damage which accumulate and lead to fracture at elevated temperature.

1 F. Wakai, S. Sakuchi and Y. Matsuno: Adv Ceram Mat, 1, 259 (1986).

2 R. Duclos, J. Crampton and B. Amana: Acta Met., 37, 877 (1989).

3 . Wakai and H. Kato: Adp Ceram Mat, 3, 71 (1988) and T. G. Nich, C. M. McNally and .

Wadsworth: Scripta Met., 23, 457 (1989).

** Qutstanding overviews of elevated temperature fracture are available from Nix and Gibeling
(in Flow and Fracture at Elevated Tempeatures, R. Raj, ed., ASM 1985.) and Perspectives in
Creep Fracture, M. F. Ashby, ed., Permagon Press, 1983. This section is based largely on thesc
presentations.

4, M. F. Ashby, C. Ghandi and D. M. R. Taplin: Acta Met., 27, 699 (1979).
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BOCAD CLASIES OF FRACTURE METHANISM
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The prominent difference between low and high temperature fracture is that self-
diffusion 1) limits work-hardening in the material, yielding power-law creep and 2)
diffusive flow of material is now possible. Thus, at elevated temperatures fracture is
dominated by the growth and linkage of cavities at grain boundaries or second phase
particles.

Nucleation of voids

It can be shown that the stresses required for the thermal activation of
supercritical vacancies are too high to explain the early nucleation of grain boundary
voids observed in metals and ceramics. The figure below taken form Nix and Gibeling
show how a number of microstructural features can lead to nucleation of voids at grain
boundaries. It is important to note that even in very pure metals, steps at grain
boundaries or slip bands can nucleate a void.

N\

SLIP BAND —

CAVITIES -—<

\ GRAIN
BOUNDARY

Growth and interlinking of v/oids ! ’ ! 7 \

It can be inferred both from experimental observations and theoretical treatments
that void growth is closely related to overall plastic deformation. First, Grant and
Monkman have empirically shown that time to creep rupture and creep rate are
inversely related. This can be simply stated as:

aés,t,=CG_M



(<

—

mi“l LY A S'T?’,_Lf}‘ £,;uz.‘

Daehn -- Notes on Creep Deformation/ 33

Here, t; is the time to rupture and Cg.M is the Grant-Monkman constant which is a
material constant. This relationship simply implies that for one material, the amount
of strain expected during steady state creep is a constant. Thus, the rate of plastic flow
and void growth seem to be inter-related. The data of Dennison and Wilshire!, on
nickel with varying impurity content, replotted by Nix and Gibeling, is shown below.
This shows that the Grant-Monkman relation is satisfied over a very wide range of
strain rate and stress and temperature.

From a mechanistic point of view, voids can grow on grain boundaries by a
combination of surface and grain boundary diffusion as was suggested by Hull and
Rimmer2. This is illustrated below. If these cavities grow only on boundaries which
oriented roughly perpendicular to the tensile axis, then the strain associated with the
cavity growth will un-load that boundary, shedding load to other parts of the structure.
If the structure does not creep, the driving force for cavity growth will cease. Thus
plastic deformation is required for this constrained cavity growth process. This
treatment was first suggested by Dyson® and a three-dimensional analysis of the stress-

shedding was recently performed by Anderson and Rice?.
Jlfj-'n?jw 4 _ t 1 ' 0]
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One of the problems in creep rupture which has been troubling has been the
prediction of rupture life under multiaxial states of stress. On a first order, one expects
that as the principal tensile stress, and the hydrostatic part of the stress state increase,
time to rupture will decrease, since void growth has a larger driving force. Quantitative
predictions of fracture lives has proven difficult. Nix et al 5 have used parts of the
analysis of Anderson and Rice to suggest that the “principal facet stress”, the stress seen
on grain boundaries oriented perpendicular to the tensile direction is a very good

1 J. P. Dennison and B. Wlishire: J. Inst Metals, 91, 343 (1962).

2 D. Hull and R. E. Rimmer: Phil Mag, 4, 573 (1959).

3 B.F. Dyson: Metal Sci, 10, 349 (1576).

4 P. M. Anderson and J. R. Rice: Acta Metall., 3, 409 (1985).

5 W. D. Nix, J. C. Earthman, G. Eggeler and B. Iishner: Acte Metall, 37, 1067 (1989).
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correlation parameter for creep under multiaxial loading. The value of the principal
facet stress, of can be expressed as:

6,.=2.24c, - 0.62(c,+0,)
The figures below show the successes of this life estimation parameter. The paper also
discusses some situations in which this correlation approach fails.
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Crack Growth at elevated Temperature
Finally, it is important to note that the stress field in front of a crack in a creeping
material is quite different than that in a linear elastic material!, In a linear elastic

material the stress distribution at the front of a crack tip is characterized the stress
intensity factor K] as:

K
i
c, = f.(6)
"o N2nr 8
In a creeping material a different stress distribution (characterized by C*) is
developed the form of the stress field is:

1
n+

1
*
Cy= ("Cr_) 8.,(6)
where n is the stress exponent. Thus, the stress field in front of the crack tip is
controlled by the creep processes in the material.

1 H. Ridel and J. R. Rice: in Fracture Mechanics: Twelfth Conference, ASTM STP 700, Ed. E. C.
Paris, ASTM, p. 112 (1980). and H. Ridel: ]. Mech Phys Solids, 29, 35 (1981).
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E. Effects of Internal Stresses

In Summary: Isothermal creep behavior is nearly irrelevant in understanding
the actual (temperature changing) behavior of "composites”. In this context, compositcs
are aggregates of different or anisotropic materials. (internal strain mismatches
develop).

Introduction

For a number of years it has been recognized that differences in the
coefficients of thermal expansion in composite materials can have important
and deleterious effects on their mechanical behavior. Many studies have
shown that thermal cycling can induce plastic deformation of the matrix,
dimensional instability), reinforcement damage?.3, and interfacial damage45.
Furthermore, fracture toughness and elastic modulus can be reduced®, and creep
accelerated”-13, With the current strong interest in identifying and developing
high temperature composite materials, it is important that a fundamental and
general understanding of these issues is developed, especially in regard to
elevated temperature deformation. Furthermore, since most commercial high
temperature alloys contain phases which have dissimilar coefficients of thermal
expansion, an understanding on how thermally induced strains and stresses
influence deformation may be useful for improving life prediction with these
materials.

Background
EXPERIMENTAL OBSERVATIONS

It is appropriate to first give some examples of the kinds of phenomena
which have been reported in the deformation of metal matrix composites under
thermal cycling conditions. The elevated temperature deformation of
aluminume-silicon carbide composites has been studied under isothermall> and
thermal cycling8.11.14-17 conditions by a number of researchers. A number of
consistent observations can be found in these works. Figure 1 from Pickard and
Derby15 shows typical creep curves derived from an Al-SiC composite crept
under isothermal and thermal cycling conditions. Examination of these curves
reveals the following:

# Under thermal cycling conditions, primary creep is eliminated, and
strain rate is not a strong function of strain or time.

# Tertiary creep can be greatly delayed. In the present example, the
deformation rate begins to increase after 2-3 percent strain in the isothermal
case, whereas under thermal cycling, stable steady-state creep is obtained at 16%
tensile elongation.

Sherby et. al. 8.9.11 have measured and analyzed the steady state strain rate
in Al-SiC whisker-reinforced composites as a function of stress under thermal
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cycling conditions. Figure 2 is based on this work, carried out in compression®.
This figure shows:

# Thermal cycling can weaken the composite dramatically, as compared
to the isothermal behavior at the highest temperature of the cycle.

# At low applied stresses, under thermal cycling conditions, the
composite shows a very high strain-rate-sensitivity exponent (usually m~1).
This m-value is similar to those seen in superplastic materials, and viscous
liquids (i.e. molten glass or molasses).

Since the material shows a high strain-rate-sensitivity exponent, necking
is inhibited1%. Also since deformation can occur at relatively low applied
stresses, microvoid initiation and coalescence seem to be inhibited. Both of
these factors lead to the extremely large tensile elongations which have been
observed under low stress thermal cycling conditions 81517 Figure 3 shows a
dramatic example of how superplasticity can be induced in an Al-SiC whisker-
reinforced composite20.

The kinds of effects listed above are not restricted to the thermal cycling
of Al-SiC; the effect is somewhat more general. There are several conditions in
which stresses, and plastic strain, may be developed in a material in the absence
of applied load. Three examples of this are:

1) Thermal cycling of aggregates of anisotropic crystals or dissimilar
materials. In the thermal cycling of Al-SiC composites, Al has a
coefficient of thermal expansion approximately 20X10-6¢ C-1 greater than
SiC. Therefore, if the temperature of a stress-free composite changes by
more than about 50° C, plastic deformation will be produced in the
aluminum matrix. As another example, in zinc, the coefficient of
thermal expansion in single crystals is more than twice as great along the
¢ axes as along the @ axes. Thus, when polycrystalline zinc is subjected to
a temperature change, the differing local dimensional changes produce
stresses at the grain boundaries. A sufficiently large temperature change
will therefore induce plastic flow. If the temperature is cycled repeatedly,
internal plastic deformation will continue.

2) Phase transformations. Upon a phase transformation, volume changes
produce misfit strains at the boundaries between transformed and un-
transformed components. If the volume change is large enough, plastic
deformation will accompany each phase change.

3) Radiation swelling. Neutron irradiation also changes the shape of many

individual crystals. For example, upon irradiation a-uranium single
crystals swell along the b axis and contract along the a axis. Again, the
misfit at grain boundaries in a polycrystalline specimen may induce
plastic flow.
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Several studies have been carried out on materials in the above
conditions, often a small stress is imposed on the sample. Regardless of the way
internal plastic deformation is induced, the material behavior in these
conditions is very similar. Specifically, the following effects have been reported
in several systems:

1) Materials are often dimensionally unstable. Large irreversible strains may
occur in the absence of an applied load.13.21,25

2) Materials can flow at stresses far beneath their usual yield stress (even the
yield stress at the highest temperature of the cycle).

3) The strain-rate-sensitivity exponent is very close to one in many
circumstances.

4) Very high tensile ductility has been seen in a number of these systems.
This can be attributed to the low stress exponent!9.

Physically, this enhanced deformation may be explained as follows.
Upon heating, transformation, or swelling, dimensional mismatches develop at
grain boundaries producing internal stress. If the stress becomes large enough,
internal plastic yielding will occur. On the reverse cycle (cooling or reverse
transformation) plastic deformation may again occur. However, there is no
assurance that the shapes of the grains will return to those at the beginning of
the cycle. For random polycrystals, the strains on the cooling usually reverse
those from the heating. However, if an external stress is applied, it influences
the local deformations such that there is a non-reversed strain component in
the direction of the applied stress. Most of the work of deformation, however, is
done by the expansion mismatch. The result of this sequence of events is that
the material exhibits a very low macroscopic flow stress, and the plastic strain
per cycle will be proportional to the applied stress (at low applied stresses). It is
expected, therefore, that whenever a material has plastic deformation induced
internally it may deform more easily than a material that does not.

Experimentally, these effects have been well documented in a large, but
limited, number of systems. The vast majority of experiments involve
deformation concurrent with thermally induced phase transformations. The
deformation behavior of a small number systems which contain internal
thermal expansion mismatches have been studied under thermal cycling (Al-
SiC composites, polycrystalline zinc? and uranium!10). These systems show
dramatic increases in deformation rates at low stresses under thermal cycling
conditions. Recently, Chen and Daehn2?2 have demonstrated that the thermal
cycling of an Al-5i eutectic alloy will produce the same features (drastically
reduced flow stress, and enhanced ductility) under low stress creep. Itis
believed that these effects are also likely to be important in many material
systems currently used at high or variable temperature, since most engineering
materials typically contain at least two phases which have different coefficients
of thermal expansion. But, there has been virtually no experimental
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examination of common engineering materials under thermal cycling
conditions.

GENERALIZED LEVY VONMISES RESULT

Several researchers!”23.24 have pointed out that all of the above effects
are consistent with a continuum model based on the Levy-vonMises flow law.
For a plastically deforming body, this equation relates the deviatoric stress
imposed on the body to the plastic strain increment as:

A simple example of an application of the Levy-vonMises flow law to a
composite deformation under changing temperature is given in Figure 4. For a
hypothetical composite with long fibers, one can assume that: 1) the matrix has
a much larger coefficient of thermal expansion than the matrix, and the
temperature is cycled over a large enough range to induce plastic deformation of
the matrix, 2) there is perfect bonding at the fiber/matrix interface, 3) The fibers
are purely elastic and the matrix is elastic-plastic vonMises material with a

temperature independent flow stress 0o, 4) A shear stress is externally imposed
on the composite and 5) temperature change induces a pure axial stress. Under
these assumptions, the stress state which arieses in the matrix is shown in the
right drawing of Figure 4. When the matrix is deforming plastically, this stress
state can be represented as:

0 1,0 0 1,0
G .
= T,,0,0 T,,—C, 0
0 0 0 0 0O
on cooling on heating

Upon subtracting the hydrostatic component from these stress states, the
deviatoric stress state can be represented as:

[~ 0O, 7 +0, 1
37 Ty 0 37 Ty 0
o ij = + 20, - 20,
Ty 3 0 Toy 3
- o, +0,
0 0 3 | _0 0 3 |
on cooling on heating

Upon a complete thermal cycle, the diagonal terms cancel. Furthermore, since the
fibers and matrix are bonded, their lengths cannot change independently.
Therefore, the matrix axial strain must be fully reversed on heating and cooling.
Thus, the only un-reversed plastic strain will be the shearing between fibers. Based
on these equations, the shear strain per cycle can be calculated as:
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[ Ao(AT - AT, ) ]
‘Y‘_\ = 6 txy

2 2
\/EO— 3T,

AT,riq is the critical temperature change required to induce plastic deformation of
the matrix. If the applied shear stress is much less than the matrix yield stress, this
expression will reduce to:

Ty
Yo = 6A0( AT - ATm)( S )
This simple analysis shows that thermal cycling of a composite with an elastic-
plastic matrix can induce shear strains even if the applied shear stress is far less

than the yield stress of the matrix, and that for small applied shear stresses, the
shear strain per cycle will be proportional to the applied stress.

This analysis can be easily extended to other simple geometries, and the
basic conclusion is always the same: If thermal cycling plastically deforms the
matrix, the material will irreversibly strain under small loads and the strain per
cycle (or strain rate under cyding conditions) will be proportional to the applied
stress. If numerical methods are employed, one can also easily incorporate
realistic material constitutive laws.

It should also be noted that very similar weakening and high strain-rate-
sensitivity behavior have been predicted for systems in which both components
of a fiber reinforced composite deform under thermal cycling!3. The analysis of
these systems is somewhat more complex since the volume fractions and
constitutive behavior of both components have important effects on the
composite's macroscopic behavior.

Recently, Daehn and Gonzalez-Doncel have proposed a model based on a
stress and stain analysis which is equivalent to the Levy-vonMises rule, a
matrix material which obeys thermally activated power law creep, and a time-
stepping numerical solution!”. They have shown that this first-order model
yields predictions which are consistent with experimental observations of the
thermal cycling of Al-SiC whisker reinforced composites. Figures 5 and 6 show
comparisons between the predictions form the model and experimental data.
Figure 5 shows the variation in steady-state strain rate as a function of applied
stress, for a fixed thermal cycling condition. Figure 6 shows the variation in the
steady-state strain rate as a function of the thermal cycle amplitude, with fixed
applied stress. It is important to note that the model contains no curve fitting
factors. All of the input data is obtained from the literature or from the results
of experiments run under isothermal conditions. Fitese-prediciions-are
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ASSUMTPTIONS AND CAVEATS

While the Daehn/Gonzalez-Doncel model is believed to contain the
physical essence of the composite thermal cvcling problem, and has been shown
to be consistent with a the observed thermal cycling behavior of Al-SiC, this
model is based on a number of assumptions which may not be strictly valid.

Most importantly, in order to make the model simple and intuitive a very simple
matrix stress state was assumed. It is not known to what extent these simplifications
affect the results predicted by the model. Further experiments and modeling can shed
light on this issue.

Figures Relating to the Effects of Internal Stresses
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Figure 1. Creep curves obtained from an 1100 aluminum reinforced with 20 volume
percent 5iC particles. The right curve was obtained with isothermal testing at
350°C at an applied stress of 34.5 MPa. The curve on the left was obtained at with
thermal cycling between 150° C and 350° C witha 420 s cycle period. Note that
thermal cycling eliminates primary creep, increases the creep rate, and enhances
ductility. (after Pickard and Derby, ref. 15.)
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Figure 2. Influence of stress on the steady state creep rate of 20% SiC whisker
reinforced 2024 alumium alloy tested in compression. (from Wu and Sherby8) Note
that at low applied stresses, thermal cycling induces a strain-rate-sensitivity-
exponent of one and the strain rate is greatly increased relative to isothermal
behavior at the same stress. At high applied stresses the internally gencrated
stresses have relatively little effect.

Untested Isothermal Tension

T=450'C 12% Elongation

Mm

Thermal Cycling Tension

T= 100-450°C 1400% Elongation

Figure 3. This photo illustrates the enhancement of ductility which is possible by
thermally cycling a 6061 aluminum-20 volume percent SiC whisker-reinforced
composite. The upper left sample was deformed at a low strain rate (~10-3 s-1) at
450° C, and shows approximately 12% tensile elongation at failure. The lower
sample was thermal cycled (100° C-450° C, 200 s period) for several hours with a
small applied stress {(about 10MPa) and shows in excess of 1000% tensile ductility.
{Photo courtesy of G. Gonzlez-Doncel)
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Figure 4. Schematic diagram of a whisker reinforced composite subjected to a shear
stress and temperature change. The right part of the figure shows stress state in the
matrix. The axial stress which is developed by the temperature change and the
shear component rcs;_ujlts from the applied forees.
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Figure 5. Thermal cycling strain-rate as a function of applied stress. The solid
lines show the behavior under thermal cycling which is predicted by the model of
Daehn and Gonzalez-Doncel, with and without a thermal expansion mismatch.
The points represent experimental behavior, from two series of experiments. Both
the simulations and experiments were run using Al-SiC (20 volume percent
whskers) under thermal cycling conditions of 373 K to 723 K, in 200 second cycles.
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Figure 6. Comparison of the data of the Daehn/Gonzalez-Doncel model. In both the
prediction and the experiments, the applied stress was 10 MPa and thermal cycles with a
high temperature of 723 K, and an variable amplitude were imposed. Two thermal
cycling periods (90 seconds and 200 seconds) were used. Again, there is good agreement
between the preciction and experimental data, both in terms of trend and magnitude.
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F. Creep Resistant Materials

Theoretically, the understanding of creep in pure metals is still not complete. In most
commercially interesting systems, the situation is still more complicated. In examining
these materials from a mechanical-behavior point of view it is often found that creep
resistant metals have: 1) unusually high stress exponents and 2) unusually high
activation energies for creep. While these observations cannot be explained from first-
principles theories, they can be rationalized somewhat by considering the structure of
creep-resistant materials. These materials usually contain many phases, and high
volume fractions of second phase. Thus, in considering creep the following must be
considered:

How is mechanical continuity maintained across phases (i.e. what's deforming and
where?)

What constitutive relations describe the interfaces (temperature and stress effects)?
What are the activation energies for creep of each phase?

How do dislocations cross inter-phase boundaries?

How do the relative proportions of each phase change with temperature?

What structural changes occur under stress and temperature?

Is the morphology which develops dependent on stress?

(There are other considerations, too).

Thus, quite alot of experimental and analytical work is required to develop an
understanding of a single advanced system. Mechanics, mechanistics and interface
issues must all be considered. However, much of the understanding gleaned from
simpler systems can certainly be applied.






