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d._Intreductiop

The aim of this lecture is to give an introduction to the
field of 'Defaects, disorder and diffusion' in crystalline so-
lida. The microscopic defact properties of solids determine a
large part of their macroscopic behavior, like mechanical
Properties and transport properties.

In this lecture we will focus our attention to the defect and
transport properties of ceramic materials, and hers mainly on
oxides. To discuas the basic ideas of dafect thermodynamics
and transport or diffusion, simple binary or ternary oxides
will be considersd. Compared to these *model systems' real
ceramics are quite complicated systems with a largs number of
chemical components and possibly with several coexisting pha-
sas. The defect and transport properties are dicussed from a
'physico~chemical' point of view, introduced originally by
Wagner and Schottky. Therefore, it is the aim of this lecture
to show the importance of the chemical potentials of the com-
ponents for the defect and transport properties of crystal-
line solids.

Only few references are given in the text of the lecture. In-
stead several books or reviews which were used for the prepa-
ration of this lecture are listed in the biblicgraphy at the
end. From these books or reviews detailed refarences can be

taken.



2. Defscts and Disorder 2.1 Types of Aisorder

- Temperature T=0: ideal crystal with given structure Frankel Schottky

T>0: Iimperfections, due to entropy

(G = H - T+5) A QD o o
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o@o@&m@

@o@/i@o
e eQe®
e QeQe®

OeQeQo

[
9, o
Phonons (lattice vibrations) ® ® % O
@ D o@ oo
Electrons,
salectr. holeas (elactronic excitations)
Point defacts {vacancies, interstitials Substitutional Interstitial
substitutional atoms)

1-dim. defects {dislocations)
2-dim. defects (grain boundaries, inter-
facas, surfaces)

3-dim. defects (pores, precipitations)

- Only electronic and point defects are in thermodynamic

aquilibrium (at elevated temperatures),



2.2 Point defects and structure slements

Crystal with several sublattices: 0= 1,.0...,0
Chemical components: kw1,....,n
Number of lattice points in subl. o: Z,
Total number of lattice points: Z=L2z,

Site relation
(structurae condition): Z 3 zr = ratio of two

integers

Example: NaCl-gtructure (i = 2
¢ = 1 anion sublattice

g = 2 cation sublattice

Each lattice point is occupied by a structure elament:

S = component k or vacancy V
Sg o = gublattica

q = charge

Structure elements (SE) are particles which obey the rules of
statistical mechanics, {.e. it is possible to use quasiche-

mical reactions batwesn them.

Rulas: - Site relation
= Mass balance

- Electrical neutrality

Problem: ~ Distribute the chemical components k to all
sublattices o

= Calculate the concentrations of all SE

2.2 Binary Ionic Crystals

Ions with opposite charge, no electronic defects
nez2 oz 2

Simplest case:
Binary ionic crystal AX: A = cation X = anion
Examples are ¢ NaCl, KC1l, AgCl, HaBr, KBr, AgBr,.

Crystal structurs: NaCl (two fcc lattices)
- the cations occupy octahedral interstices {A-sites)
in the fcc lattice formed by the larger anions (X-sites).
ZA H zx -1 : ]
= The tetrahedral interstices in the anion fcc lattice are

denoted as interstitial positions I.
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The charge q of the SE Su is taken relative to the ideal

lattice (Krdger - Vink notation) and is named affsctive

charge:
x = peutral relative
' = negative to the
+ = positive ideal lattice

Structure elements in the binary lonic crystal Ax:

x i n
A, Va X\ Anion subl. A
x: vi Ay cation subl. X
v’I‘ A% X3 Interstitial subl. I
\—.V_J ;—v——/
regular SE irregular SE
Point defects fvacancies V;, V;
with small interstitials AL, Xy
concentration \ antisite defects ", x:
Cation sites are normally occupied by ions Alt,
A: = cation on a cation site (absolute charge: 1+

effective charge: x)
vA = vacancy on a cation site (absolute charge: ©

effective charge: ')

¢
1

A anion on a cation site (absolute charge: 1-

effective charge: '')

Anion sites are normally occupied by anions X"

anion on an anion site (absoluta charge: 1-

o
]

effactive charge: x)

Vy = Vvacancy on an anion site (absolute charge: 0

affective charge: -)

cation on an anion site (absolute charge: 1+

effactive charge: -:)

Interstitial sites are normally empty (occupied by intersti-

tial vacancies VI:

V§ = vacancy on an interstitial pos. (absolute charge:
effective charge:

A; = cation on an interstitial pos.- (absolute charge:

effective charge:

'
XI - anion on an interstitial pos. (absolute charge:

effective charge:

Nine SE, but only two chemical components !

Explanation:

Quasichemical rsactions between the BE

o

x}
1+
*)
1-

Y



Frenkel disordar
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Frenkel disorder for the cations At

+ A
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-
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Site relation: A-site + I-site = A-gite + I-aite
Masa balance : HA - HA
Electr. neutr: x + X - ! + -
Chemical equilibrium:

I ji(reactants) = I j(products)
Electrochemical potential of SE sg=

BSDH = u(shH + q-ree

# = chemical potential, 4 = electrical potential

F = Paraday constant

(2.1)

(2.2)

(2.3)

BShH = ush 4 RT-1n(a(sJ)) (2.4)
standard activity
potential

- Ideal behavior of the structure elements: a(sg) - [sg]
= Number of SE sg. raferred to the number

of lattice points in sublattice o: (s) = n(sg)/za

law of mass action for the Frenkel reaction:

(Val * [A}] -aG,, /RT
E;;;-T_?;;; = Q - KFA(T) (2.5)
A I

A: and v§ are regular SE: [AX] » 1 and (vl =1
Frenkel equilibrium:

VAl = [(A}] = Kp, (2.6)

If cation vacancies, VR, and catjon interstitials, A;, are the

only defects the electrical neutrality demands:
] .
(Val = (A]) (2.7)
Thus

[Val = (A7) = (Kg)* (2.8)



Frenkel disorder for the anions It

Law of mass action:

. '
[Vl * [X3] = Kpy

8 t
chottky disorder ‘@ 1'. % ®

@ @@ @
(2.9) | Q) o [:]Enu Q) o Q) o
3 Ad AESER
@0%;0%0@0
e @0 @000
{2.10}) %.%.%.%.

If anion vacancies, V;, and anion interstitials, x;, are the only

defects again the electroneutrality demands:

. N *
(Vi) = [X}] = (Kgy)

With pure Frenkel disorder the lonic crystal AX remains
stoichiometric. The number of defects is only dependent

on temperature T (intrinsic disorder).

'
Ay + Xy =V, + V. + AX(surface) (2.12)
(2.11) Surface: real surface or inner surface (dislocation, grain
boundary) .
Law of mass action for Schottky disorder:
[Val * [Vy] = Kg (2.13)

If Schottky disorder dominates the electrical neutrality

demands:

] . X
[Val = (V4] = (Kg) (2.14)

8chottky disorder involves both sublattices, the cation and
the anion sublattice. The lonic crystal AX remains stoichio-
metric, and the number of dafects is only dependent on tem-

perature T (intrinaic disorder).

Fraquently, the Schottky ecquilibrium (2.12) is written as:



Substitutional disorder (antisite defecta)

. i
AA + xx - Ax + xA (2.15)
Law of mass action

(Ay) * (X)) = K, (2.16)

All these defect equilibria describe intrinsic disorder, i.e.
the ionic crystal remains stoichiometric and the dafect con-

centrations depend only on temperature (thermic disorder).

On the other hand, this means that in a really stoichiometric
crystal, AX, no single chemical componant, A or X, can be
solved, only the 'lattice molecule' AX can be solved (Schott-
ky equilibrium). The important consequence is that the defact
Properties of a really stoichiometric crystal, AX, cannct be
changed by the chemical potentials of the componants or the
component activities a

A or ax.

12

General case: All nine SE coexist.

Nine equaticns are needed to calculate their concentrations.
Four equations ars given by Ege.(2.6), (2.10), (2.13) and
(2.16):

VAl * [A}1 = &g,
Vel  [X1] = K.
[Val * [Vgl = Kg

[Ag] » (X0 = K0

For small defect concentrations the concentrations of the
ragular structure elemants, A:, x; and Vf, are (nearly)

identical to ocne (see abova):
[AR] =1, (X =1, (Vi]=1 (2.17)

The 8th equation is the site relation given by the crystal
structure (here NaCl) and the 9th equation is the electrical
neutrality:

(V) + 2¢[X] + [X7] = (Vg + 2-[A3) + [A]) (2.18)

If all equilibrium constanta, K, are known all defect

concantrations can be calculated.

13



Practiocal point of view:
8tatistical derivation

Distinguish between majority and minorxity point defects.
Distribute ny vacancies to N lattice sites and np (=n)
Electrical neutrality: Majority point defects consist at . interstitials to N interatitial poaitions.

least of a pair of opposite char-

ged defects Gibbs energy:
] Yy | . oAt . . . - P
(VQ) + 240X, 0 + [X7] = [Vy] + 2+[Ag] + (A7) G = G, + n,4G, +n;+aGy - TS,
Example: - G° + n-(nGv +AGI) - 'r-sc {(n = n, -nI)
Majority defects: v,'\ and A; Frenkel disorder
'
v, and v;( Schottky disorder = G, + n8Gy; -T:S, {2.23)
x: and AJ Antisite defects
Configurational entropy:

2.4_Energy and Entropy of formation: 5, = Reln W (2.24)
Equilibrium constant (law of mass action): W = number of possible arrangements

(n=0: perfect crystal, W=l)

-8G"* /RT aA8°/R -&4H* /RT
K(T) = @ -a r 8 (2.19)
N! N1
S, = R-1n ( ) (2.25)
Example: Frenkel disorder (N-nI)l-nI! (N-nv)l-nvl

4S:/2R  -8H:/2RT
S8p/2R  —aly/

[A‘I] - [v;] - (RF)k - Stirling's formula: ln.N! = neln N - N, N> 1

- E./RT
= conat, *« e FJ (2.20)
N-n
G =G, +n AGy, =~ 2'R-T*( N*ln + n+ln ) (2.26)
Ep = observed activation energy (2.21) N-n n
°S|.?/2R . Equilibrium (QG/Qn) p=0 and then N-n= N
a = preexponential factor (2.22} B



AGVI = 2+R+T+*1ln (N/n)
or

n
- = [V] = [I] = axp(~
N

& Gyr

(2.27)

) (2.28)
2<R+T

Comparison with (2.20)' shows that the standard Gibbs energy,

AG:, for the Frankel reaction is identical to tha Gibbs

enerqgy for creating an interstitial-vacancy pair, AGVI, as

expected.
Defoct Concentrations at Differsnt Temperatures
» s As CUR T}
Ff""['ii%]'"’[ii]‘“’['ztr] “’( 2RT)
Defect
Concentration lev" 2eV 4V 6eV 8eV
alN at 100°C I Ix0 xt0” Ix107 |x|oj
AN a 300C 6x10° 3Ix |07 110"  3x107®  Bx 107
AlN at 800°C 4x10" 2x10"  4x0* ExI0Y ix0"
niN at 1000°C 1x10°  1x10” I1%10™ Ix 10 Ix et
nIN at 12000C 1x 107 4x 10 1= 107 Sxo" a1xo*
riN a1 1500°C 4x 10 (=10™  2x10” Ix1" 4x 10"
#IN at 1300°C &x107°  4x10"  1x10” 5x 10 2x|0?
#!N at 2000°C 8x10°  6x10" 4x10” 1x10° 110

&mbﬁmimdl'm

Energy of
Formation, Preexponential Term =
Compound Reaction Ah teV) expidsiik)
Agbr Ay = Agi+ V), Il 30-1500
BeO null = Vi + V' ~6 k4
MO null = Vi ¢V ~6 ?
NaCl null = Vi, + Vg 234 5-50
LiF null = Vi + V; 2427 100-500
Ca0 null &= V2, + V) -6 2
CaF. Fret Ve F, 2328 10
Cac, = ¥, vCa; -1 ?
null = VE, +2V,; ~53 !
uo, On=x Vi + 07 1.0 *
Ul e ¥Vi"+ U, ~93 A4
null & VT4 2V ~ 6.4 ’
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4.5 Dinary Nonstoichiometric gompounds

Nonstoichiometric compound A, X

1-§
Nonstoichiometry |é)<< 1
é§ »0 cation deficit
§ <0 cation excess

Examples: CoQ, NiO, MnO, FeO, Zno,... (Hn304, F-so‘, o)

i.e. cation At anion X2~ Nacl structure

Difference to pure ionic crystals:

The compound is nonstoichiometrio: n

>
o
¥
-
1
o

However, the site relation is atill: z

>
.4

This behavior cannot be explained by intrinsic disorder, like
Frenkel or Schottky or substitutional disorder. There must be

an extrinsic disorder.



consider a nonstoichiometric transition metal oxide 11“0 Total: 10 structure elements and elactronic defects

where the metal A can exist in two valance states, A2+ and
a**, and with NaCl-structure. Thermodynamic degrees of freedom (Gibbs phase rule):
f=n+2-r
Struoture slesments n = number of chemical components
p r = number of phases
A: Ay V: cation sublattice
o: v, anion sublattice Here: n = 2 and r = 1 : f =3
v§ Ay of interstitial sublattice
f=p, (total pressure)
T, (temperaturas}

Substitutional disorder will be neglected because of the pqz (partial pressure of oxygen)
large size of the oxygen ions.

_ The chemical potential of oxygen gas with partial pressure poz
In addition (and in contrast to pure lonic crystals): is uqlu “éz(T) + RT-ln(pot/p') whera Méth) is the standard

chemical potential at standard pressure p*, normally p°=1 bar.
Electronic defects (semiconductor)
Problem: Calculate the concentrations of all defects as a
°;and conduction band: electron eLand function of p, T, poz.
band gap
Normally p is fixed and only T and Pp are used as variab-
By na valence band: electron les.
hole h;and
Nonastoichiometry of A, 40
§ = (Va1 - (A7) - [Vg] + (Of] (2.29)

1A “n



2.5.1 Defect equilibria

Intrinsic disorder:

LI v,

x x (7] o
Ay + 0. =V, + V. + AO(s) {2.30)
A Q A o} 3 X, rnX
IAA] [00]
[T} 1)
(Va1+[a;]
X u . A I
A s v a vl oy -0 (2.31)
A 1 A 1 A X,
[AX1-[V})
. U}
[Vo1* (051
b4 b L o I
X+ v =v +0 -— {2.32)
(4] I [+ S ¢ 0 [0§]'[V§]
Production of electrons and electron holes:
[ . - 1 . .
0 = ®pana * Ppand Ka ® [%panal® [Ppapg! (2.33)
Charge transfer from Al to A2+=
[AX] * [hp. o]
. x . A and
Ay =A +h K, = —S—— 2805 (2.34)
[AA]

Extrinaic disorder:
Solve the chemical component oxygen into the crystal, and pay

attention to site relation, mass balance and electrical neu-

trality:
.- . x
¥:0,(g) = Of = Vg + 2+(X, - AY) (2.35)
X, av 2
. . [0,]1-[A,]
or 4:0,(g) + V5 + 2.AX = 0¥ + 2a,, K, = 9 __ A

pq: (Vg1 (Ag1?

20

In Eq.(2.35) the site relation is satisfied but the relation
betwasn the number of the components A and O in the crystal

has changed, the crystal has become nonstoichiometric.
Electrical neutrality:

[Ay1+ 2°[A71+ 2-[v;]+{h;,md1 - z-[v:]+ 2-[o'£1+[o"“nd1 (2.36) "
Egs. (2.30)-(2.36) are seven equations for ten SE and electro-

nic defects. The remaining three equations are the site ba-

lances in each sublattice:

(AX] + (A4 + (Vj] =1 (2.37)
(05) +(Vyl =1 (2.38)
(A7) + o) + [v]) = 1 (2.39)

Again, a general solution is possible but to complicated.
Instead:

(1) Consider only small defeot concentrations, i.e¢. the

nhumber of the reqular SE is nearly onae:
[AX] = [0F] = [v¥] =1 (2.40)
The activity of the pure phase A;_;0 i3 nearly one

3,0 %1 (2.41)

21



(1i) consider only majority point defects, i.e. neglect
all minority point dafecta in tha electrical neutra-

lity (2.35). This means that at least a pair of opposi-
tely charged defects has to be taken.

Special cage (a}; Dominating Frenkel disorder of the cations

Majority point defects: A; and Vy:

{2.36): (A7) = (V)]
(2.31)r [A7] = (V)] = (g ()} (2.42)

Thus, the number of majority peint defacts is only dependent
on temperature T and independant of the oxygen partial pres-
sure p, ! The crystal A0 is stoichiometric:

4

(2.29}: 5 = [v;] - (A7] = 0 (2.43)

Minority defects:

(2.30}: [Vy) = Kg/[Vy] = xs/(x“)ll (2.44)
(2.32): [0]) = Kpo/ (V] = Ko ® (Kpp) '/Kg (2.45)
(2.38) [A) = (K -[Vo] +p,Y )Y

' A 1"Vl *Pg,

- (K1~KS-KF;*)5 . pO: (2.46)

(2.34): (hpanal = X;°[A;)

Ky (K KgeKpa ) ¥ po: (2.47)

{2.33): [egand} = Ka/[hi;and}

(xe/xzjotxl-xsoxr;*)‘* . po;‘ (2.48)

The numbar of the minority point defects, V;'and 0:, is only
dependent on temperature. However, the number of the elactro-
nic defects is dependent on the oxygen partial pressure poz.
This is important for the electronic conductivity which is
proportional to the number of electronic defects. The number
of electrons, e', decreases with increasing oxygen partial
pressure, while the number of elactron holes, h', increases

0 °

with increasing p
Special case {b): cation vacancies compansated by
elaoctron holes
Majority defects: V:, A; and h;and

(2.36) (A, + (Bhangl = 2-[v;] (2.49)

(2.34): {h;and] - Kz-[A;] (2.50)

* "
{Ap] = 2-(V,1/(14K,) (2.51)



(3.35): (az1? = xle[v;]-pO:

(2.30)3 - Kz"s'[V:]-l'Po: (2.52)
(2.51), (2.52): (V)] = (heK -Kge (14K} M3 o pO:/‘ (2.53)
(2.52): [A;] = const(T) - pO:f‘ (2.54)
(2.42): [hang) = Const(T) - pO:/6 (2.55)

The number of majority defects is dependent on temperaturs,

T, and increases with oxygen partial pressure, , with a

P,
O
typical exponent 1/6. The nonstoichiowetry, §, is glven by:

1/6

5= [v:] = const(T) - Po, (2.56)

Minority defects:
. 1 . -1/6
(2.33) [8hanal = K/ [Bipq) = CONSE(T) * By (2.57)
(2.30): (Vo] = const(T) - po;}/° (2.58)
(2.31): {A7] = const(T) + p, /¢ (2.59)
2

(2.32): {021 = const(T) - Po:/s (2.60)

The nunber of all minority defects depends on temperature, T,
and on oxygen partial pressurae, poz, with a typical exponent
1/6 or -1/6.

24

Remarks

(i) Frequently, the difference between the SE AA (localized
electron hole} and the slectronic defect hband (fres alectron
hole) is dropped and both particles are denoted as 'electron
hole' h . Then, the elactrical neutrality takas the

simple form:
(') = 2+[v}) (2.61)

and the number of ‘'electron holes', h°, is given by:

1/6

(h'] = [(hpanal * [A,] = const(T) - Po, {2.62)

(ii) Eqgs.(2.30), (2.34) and (2.35) can be combined to an
equation for the incorporation of oxygen into the crystal
which contains only majority defacts:
] .2
— (Vpl-[h ]

40,(g) = O} + v: + 2+h° R (2.63)
Py

2

The equilibrjum constant'iz is a combination of the old equi-
librium constants defined above: i; - xl-xg-xs. This proce-
dure is always possible dus to the fact that any quasi-chemi-

cal reaction which satisfies the site relation, the mass ba-

lance and the electrical neutrality can bs conaidered.

25



Special cage (c): Interstitial cations compensated by

slesctrons
Najority defects: A¥ and ‘Land

[ii] = const(T) - pQ;f/a (2.64)

[.Land] = const(T) - PO;}/S (2.65)

The number of majority defects depends on temperature, T, and

increases with decreasing oxygen partial pressure, p, , with
3
a typical exponent -1/6.

NMinority defacts:

(A1, [hy, gl

[0y, vyl = const(T) - pO:/G (2.686)

[V;] = conat(T) - 90'1/6 (2.67)
2

The nonstoichiometry, §, of the compound A,_sX which is here
due to cation interstitials is negative, i.s. the compound
exists with a cation excess:

§ =~ (A

28

General behavior:

(SE] = const{T) - po: m=0, t1/4, $1/6

log(SE] = log(const(T)) + nlog Po

(2.68)

dlog[5E]

-n B~ 0, t1/4, t1/6
dleg Pol

e

Exoger =~ Vipk diagram 94-50

Log [def]

B<O
Ce']=20A1]

R




. 4H® as5°
Reaktion System (keal/mol) (calyK mo)
Schottkygleichgewicht NaCl 46-49
A+ Xx=V,+Vi+AX KCl 53(61)

NaBr k)
KBr 455
LiCi 49
CsCl 43
AgBr 109
(Vea+Vs) CdS 94
(2Vy+3V3) Al,0, 470
(Vao+ V5) PbS 40
Frenkelgleichgewicht AgCl 28(13%) (20}
A=V, +A] AgBr 24
(Ve +F)) CaF, 53-65
(Ve +F) BaF, 43
{(Vo+0)) uo, 79
X =X+ Vi +n K AgBr 24
Vi 2h) NiO 57 -8.3
(Voo ) CoO 13 -9
Cd(g)=Cdcy+ Vs +2¢' Cds 40
05=40,(g)+ Vo +2¢ TiO; ~110
Nb,0, 102
Ta,0, 150
V,;04 ~ 30
U0, = U] +2¢ +0,(g) uQ, 305 47.5

Example {(a}; CoO
c°1-6° is a p-type semiconductor with a cation deficit, i.e.

2.5.2 Examples Co0, 3n0 and Fe,0,

28

majority defects should be cation vacancies, v)

the nonstoichiometry, §, is always positive. Therefore, the
o¢ Compensa-
ted by electron holes, h . If this simple model is true we

would expect a variation of the nonstoichiometry, &, with

oxygen partial pressure, po;’

dleg §

P = 1/6

ogq p°‘.'.
The slectronic conductivity, L is proportional to tha
number of slectronic defects, h', which results in an
expected dependence on po,_‘

dlog O

= 1/6
dlog p°z.

However, the aeasured values show a dependence which is

approximately given by an exponent 1/4:

29
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Explanation: Additional quasichemical reactions between the .

structure elemants and the electronic defects.
The observed behavior can be sxplained satisfactorily by the
existence of threea differently ionized cation vacancies com-

pensated by electron holes.

- Incorporation of oxygen:

] .. 2
x = _[VgeleIn')

" o Lo
koz(g) - 00 + Vco + 2+h Kl o T (2.69)
02
- Formation of associates between cation vacancies, v:, and
alectron holes, hf.
Singly ionized cation vacancy, véo:
] .
[Vo 1" (h ]
1 /] . Co
V. =V' +hn K, = —% ———— {2.70)
co Co 3 [Véol
Neutral cation vacancy, Vc::
[ .
(Voo 1°[h ]
L J— . - - CoO
Voo ® Voo * R K, __I;—;;—__— (2.71)
Co
Together with the electrical neutrality
. ] [ ]
[h'] = [V 1 + 2+ (Vggl (2.72)

the three equilibrium conutants,'il, Ka and K4 can be
deterained by fitting the experimental data for § and ag-

an

The results are (R.Dieckmann, Z.Phys.Chem. NF 107 (1977),189)

K, = 6.5:107>+axp(-149000/RT) (2.73)
K, = 2.4-6xp(-51000/RT) (2.74)
K, = 0.17exp(-72000/RT) (2.75)

i.e. normally cation vacancies, Véo, dominate with a p. =

%

dependence
[
[Vao] = const(T) po;" (2.76)

At high oxygen potential in addition neutral vacancles, vc:'
exist while only at low oxygen potential the 'normal' vacan-
cles, véL, bacome important. This bshavior explains the
slight curvature in the log § - log pol and log vy = log poz

plots found experimentally at low oxygen potential,

5=[VE, IV, 41V, 1-ICo; ) -[vg‘
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Exagple (kl: Zno

When ZnC is heated in zinc vapor, wa obtain a nonstoichiomet-

ric oxide with excess zinc, Zn,, ,0, which is due to Zn-inter-

1+4
stitials:
(zny] (e’ )
n(g) = Iny - v; ‘o K, = —r (2.77)
Pzn
With the electrical neutrality
(2ny] = (e'] (2.78)
we obtain for the nonatoichiometry, §:
§ = (2zny] = [¢']= (X"« p,} (2.79)

This result can be written in terms of the oxygen partial

pressure, pot, by considering the eguilibrium:

2n(g) + 4+0,(g) = 7o Kzno = Pgnl * po;k (2.80)
which yields:
6 = (ang) = (e') = (KD (Rype) ™ - B! (2.81)

This simple model is confirmed by the experimental data for
the slectronic conductivity, Ot cof the n-type smemiconductor

Zno.
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Conductivity of ZnO a3 a tunclion of oxygen p at 630°C. From H. H.
Baumbach and C. Wagner, Z. Phys. Chem., BI2. 199 (193)).

Doubly ionized Zn-interstitials, ZnI, which would result in
2:(2n;] = (a'] = const(T) - pa;lls (2.82)

are excluded by these results.

Example (c): Fe,0,

Magnetita, F304, crystallizes in the spinel structure, where
the cationa can occupy octahedral and tetrahedral positions
in the cubic closed packed lattice formed by the oxygen
anions. Thermogravimetry shows that magnetite is one of the
rare examples in which cation excess and cation deficit is
poasible, i.e. the nonstoichiometry, &, in Fea_ao4 can be
poaitive and negative. This behavior can be explained satis-
factorily by the existence of cation vacancies, vFe' distri-

buted randonly over both cation sublattices, and the exist~-

i3



ence of Fe-interstitials, rcI. (R. Dieckmann, H. Schmalzried,

Ber. Bunsenges. Phys. Chem. 81 (1977) 414)

Fed/Fe0, Fey o‘/'hzoi
ok T=1235 oC
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At the stoichiometric point, §=0, the intrinsic disorder is
Frenkel disorder of the cationa, while at higher oxygen po-
Fentials cation vacancies dominate and at lower oxygen po-
entials Pe-interstitials dominate. Fe?*- and Fe’*-ions are
also randomly distributed over the octahedral and the tetra-
edral cation sublattices. Therefore, a reqular SE is diffi-
cult to define so that in this case no effective charges are

specified in the SE.

4

2.6 Impurities, Doping .

As yet wa have neglected the concentration of impurities
compared to the concentrations of inherent defects. If small
additions of foreign subatances are made the equilibrium
constants for the disorder types discussed above do not

change. However, the site relations and the alactrical neu-

trality change.

If for example homovalent cation impurities, B, in small
concentration are present in a binary oxide A0, the corres-
ponding SE is B: and the electrical neutrality does not

change. i.e. the defect properties remain unchanged.

If, however, a heterovalent impurity is present, the electri-

cal neutrality is changed.

Example (a): If 8203 is added to to an oxide A0 in which
cation vacancias, Vﬂ, and electron holes, h, dominate, the

electrical neutrality is as follows:
[h'] + (8] = z-[v:1 {2.83)

In combination with Eg.(2.63) the number of cation vacancies,
Vy+ Or the nonstoichiometry, &, in the doped oxide can be
calculated. If the concentration of the dopant 8 ia larga
compared to the number of slectron holes, h, the electrical
neutrality simplifies to [B;] - 2-[v:], i.e. the nonstoichio-

metry, § = [v:], in the doped oxide is only dependent on the



dopant concentration and independent on temperature and oxy- tor ' a vacancy pair in AX with NaCl structure)} and 4G, is the

gen partial pressure (region of exclusive extrinsic dis- standard Gibhbs energy of formation of a pair. If the vibra-

order). _ tional entropy in AGP is neglected then AGp is approximate-
ly given by the coulombic energy of attraction betwesn the

Exomple (b)i If an cxide A0, is doped with BO, then anion va- oppositely charged defects. Depending on the dielectric con-

cancises, Vg, are produced to compensate the additional charge stant, X, and on the separation of the defects, R, this

of the dopant, B;:. In this way the number of anion vacancies energy varies from 0.5 eV up to 2.8 aV.

is totally fixed by the dopant concentration. A well known

exanple is Zr0, doped with Ca0 which is used as a solid elec- By tha same machanism pairs are formed between haterovalent

trolyte with a high oxygen conductivity. dopants and vacancies.

2.7 Interaction of defects, aspociates

x R(A) —Ah*=~qqixR (V)

¥When defects with opposite effective charge are present there Nav('l;‘l -Va 5.62 2.82 0.9
is an attractive coulomb force between them leading to the Cavu— Vi 3.99 0.6

formation of ;ssociatel. In the sinplest casa, these associa- CaF; : 8.43
tes are pairs of defects on nearest neighbor sites. For ex- F’f_‘ Vi’. 274 0.6
ample, a vacancy pair consisting of a cation vacancy and an 52:: KZ—YE. g:g g:
anion vacancy in a crystal AX containing Schottky defects is MgO 98 . 28
formed in the guasichemical reaction: ‘ Vie— Vo 2.11 2.8
Feu,— Vi, 2.98 1.0
Feug = Vi~ Feu, 2.98 0.5

VAt Vg = (v (2-84) NiO 120
Vii— Vo 209 23
The number of pairs is given by ]':ri:‘.iil:b\lfi::—Niﬂi ggg g:
Lid— Nin 295 0.4

1 o\ X —

::r";:‘::;] "Fpmme A (2.85) Ucc);1— Vi y 2.09 0.5

where m is the number of orientations of the pair (e.g. m=s
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2.8 _Ternary qompounds

In ternary compounds an additional degree of freedom is
avalilable compared to binary compounds, i.e. apart from p
and T two chemical potentials have to ba fixed.

In a stoichicastric spinel, A8204, one chemical potential

vhich is easy to control exparimentally is again the oxygen
partial pressure, poz. Since the composition of the stoichio-
metric spinel is fixed, the other independent variable can be
chosan as the activity of 5203 or (AO). For simplicity, let

us assume, that in the quasi-binary system Ao-Bzo3 there are

no other compounds except the spinel AB Then the activity

204+
of 8203 is equal to unity for ABzo‘ in equilibrium with BZOJ.

For AB,C, in equilibrium with AO the activity of B,0, can

k]
easily be calculated from the reactlon:

-1
AO + 8203 = AB 04 KAB o ™ (aAO'aBzOB) (2.86)

2 % %

where the equilibrium constant is given by the standard Gibbs

enerqy of formation of spinei:

K = exp{- G /RT) 2.87
AB,0, AB, 0, { )

Taking 2,5~ 1 in BEq.(2.86} yields tha corresponding activity
of Bzoaz

ah:."s =- axp(a Gaaz%/n'r) when a,, = 1 (2.88)

38

Assuming the existence of interstitial cations a possible

external reaction is:

..

IA0(g) + V; + 2.8 = B,0,(g) + 3:A] (2.89)
leading to

K., =a _ +[a7)3.(B7"2 (2.90)

axt 5103 I I

Together with Eq.{2.86) (which couples the activities of A0
and 8203), the mite balance, the mass balance and the elec-
trical neutrality the number of point defects can be calcula-
ted.

The result for an arbitrary type of defect i is:
(1) = const(T)-p.® «(a 0 (2.91)
0, B0,

Like in binary oxides the number of defects depends on the

oxygen partial pressure, Po, + with a typical exponent, m, but
2

in addition on the B,0,~activity, ap o + also with a typical

23
exponant, n.



Concentration of point defects i in the ternary crystal AB,0,
at constant poz as a function of the activity of Bz°3‘ The
intrinsic disorder is assumed to be Frenkel disorder in the
B-sublattice: [B;'] - [vg']

log 1/)

log-a'ﬂ:

These considerations are valid for spinels like Hgnlzo‘ but
they apply also to compounds with different crystal struc-
ture, such as Cozsio‘ with olivine structure. However the

exponant n must be recalculated for each disorder type.

40

Finally we will discuss ternary solid sclutions, (Axnl_x)o,
which exist within a large composition interval, in contrast
to a spinel, ABzo‘, discussed above. Due to this behavior,
now the composition, x, can be taken as the sacond variablas,
apart from the oxygen partial pressure, poz. Examples are the
solid solutions MnO-Mg0, Fe0-Mgo or CoO-MgO. More exactly, ve
should write (Axal_x)l_‘o, vhere the nonstoichiometry, ¢, is

now a function of poz and of the composition, x.

Ip.l[atmll 2% | 2-16-1‘ z~n-=| zs-n*l
e |12 3 [ ]

A

Ne

<5 G4
OlCo,Mg,.,10 ‘g
OCo Mgy, Sil X%
$¢

1 s )

10 s 0

x

These experimental data can be interpreted as follows: The
standard Gibbs energy, 4G°, for the external equilibrium (in
which oxygen is solved into the crystal) is a function of the
composition, x. The observed linear curves in the log 8 ver-

sus x plot show that AG*' varies linearly with composition, x.
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2.2 Experiments
Possible sxperiments for the atudy of disorder in oxides

Al_so are thermogravimetry or coulometric titration. In both
cases the change of the oxygen contents of the sample is mea-~
ured: In the first case, via the weight change of the sample
after a change of the oxygen partial presaurs, and in the se-
ond case with the help of a solid state electrochemical cell
by which it is possible to titrate oxygen (CaO-stabilized
zirconia). However, in both cases only changes of the non-
stoichiometry, §, can be measured. Only when the compound
exists really stoichiometric, i.e. when §=0 is possible, the
titration curve is s-shaped and the point of inflection can
serve as an absoclute refersnce point for §. However, even in
this case the neasured nonstoichiometry, §, can ba interpre-
ted in terns of different defect models which result in the

same poz-dependence for §.

Due to thess difficulties more experimental information is
needed to obtain sound defect models. One possibility was
used before: the measurement of the electronic conductivity,
L which is proportional to the number of electronic de-
fects. Thuas, the pol—dependencc of tha electrical conductivi-

ty can help to distinguish between different defect models,

In addition, the Aiffusion coefficients for matter transport
depend alsoc on the oxygen partial pressure, poz, with an ex-
ponent which is typical for the transport mechanism. How this

exponent ias coupled to the defect proparties will be discus-
sed in the next chapter.
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3,1 Diffusion mechanisms

Diffusion or mass transport in crystalline solids needs de-
tacts by which the ions are mobile. This concept leads to a

simple distinction between two basic diffusion mechanisms.
Vacanoy diftusion
Ions which occupy regular lattice sites can jump to uncccu-

pled lattice sites, 1.e. they exchange their site with va-

cancias.

An equivalent point of view is to say that the vacancy has
made a jump and has exchanged its site with the ion. Vacancy

diffusion ia the most common diffusion mechanism.



Interstitial aiffusion

Interatitial ions move within the interstitial sublattice by

jumping between normally unoccupied interstitial positions.

X KX KN KX |
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Interstitialoy diffusion

Here interstitial ions knock ions on reqular lattice sites
onto interstitial positions. Collinear and also non-collinear

interstitialcy diffusion mechanisms are possibla.
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2,2 Gelf - diftusion

For the sake of simplicity, the following considerations will
be done for a vacancy mechanism. However, the rassults are
also valid for the other mechanisms.

Consider a binary oxide AC with cation vacancies, Vf, as
majority point defects (compensatsd by elsctron holss, ﬁ).
All other defects are minority defects, i.e. only the ca-
ticns, Al

A
discussion the site index A and the effective chargs q will

+ are mobile via the vacancies. In the following
ba dropped.

At elevated temperatures, T, and constant oxygen partial
pressure, pql' the crystal is in thermodynamic equilibrium,
i.e. therea are no concentration gradients for the ions A or
the vacancies V. However, the ions A move randomly by ex~-

changing with vacancies, V.
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The corresponding potential for the cationa looks like:

UA

i 2 2
LJ L L]

0 S 2s 3¢ Ubs §s

i 'l
r L4

) I

whers the jump length, s, is given by: s=a//7. Nearly all
lattiqo sites are coccupied by cations, A, and only a small
amount of lattice sites, [V], is occupied by vacanciea. The
ions A vibrate around their equilibrium positions (Einstain-
or Debey-model, phonons) with an average vibrational energy.
only if an energetic fluctuation is large enough tha ion can
cross the energy barrier to the next lattice site. However, a
necessary condition for a jump is that this lattice site is
occupied by a vacancy. Due to the fact that the ions A are
not distinguishable the situation gets complicated very fast.
An easlier point of view is to focus on the motion of tha va-
cahcy, since these particles are strongly diluted and there-

fore we can follow the path of a single vacancy.

A vacancy, V, carries out a random walk, i.e. the probability
of a jump in any posaible direction is the same. Then, the

question is: How far moves a vacancy on average in time t?7

To answer this question we consider for simplicity ona-

dimenaional diffusion of a random walker.

At

A
-+ S s e S S
~S -% =31 -2 -4 0 1 2 3 % £ 72Is

After time t the random walker has carried out n jumps and

the corresponding total displacement, 2z, is:

AZ = 1§1A21 (3.1)
where azy is the displacement during jump i, which can only
take the values Azi = +8 or ‘zi = -8. Because jumps to the
laft (Azi--s) and jumps te the right (‘zi-+s) occur with the
same probability all displacements in (3.1) add up to an ave-

rage total displacement, <Az >, which is identical to zero.

n
€4Z >= T <Az, >= 0 (3.2)
=y 1

However, the mean square displacement, < (4:)2 >, is not zero:
n n

< A2)% > = cazeaz > =< (X Azj)-( T azy) >
i=1 3=1

n n
= < F L a4z, Az, >
i=1 Jm1 + 7



2 n 2 n n
< (Az)° > m'¢ E ngi) > + E E <Azi-42j > {3.3)
i=1 im=y g;i

The double sum in the second term on the rhs of (3.3) adds up
to zero bacause individual jumps i and j are uncorrelated.
The first term is identical to n-lz, bacause for any jump i
the quantity (Azi)a is identical to 8. The final result is:

< (4z)% > = n.a? (3.4)

The mean square displacement of a random walker is proportio-
nal to the number of jumps, n, and proportional to the square
of the jump distance.

Now we define a diffusion coefficient, D:

< (Az)2 >

(3.5)
2.t

The jump frequency of the random walker is given by the num-~
ber of jumps, n, per time,t: I' = n/t. Thus the diffusion

coefficient, D, can be written as:
D = .8 (3.6)
In three-dimensional diffusion the factor 1/2 changes to 1/6

(six directicons in space) which results in a diffusion coef-

ticient for the vacancy:

D, = (1/6)-32-I‘v (3.7)
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Ty is the jump frequency of the vacancy to any of its nearest

neighbor sites (=12 in the fcc structure).

The componant diffusion coefficient or the self-diftfusion
coefficient, nl, of the cation A can be defined in the same

way:
2
DA = (1/6)-8 'PA {3.8)

where r, is the jump frequency of the cation to a nearest

neighbor site. However, A can jump only when the adjacent si-
te 1ls occupied by a vacancy. This probability is identical to
the wmolar fraction of vacancies, X; = [V]. 8ince a jump of an

ion A corresponds to a Jump of a vacancy the jump frequency

Ty is given by the jump frequency of the vacancy, Iy,, multi-
plied by the probability to find a vacancy, x,:
I‘A = v-xv (3'9)

Ancther way to obtain the relation (3.9) is the jump balance
which allows also to consider the jumps of several ions via
vacancies. The number of jumps of vacancies in time t must be
identical to the number of jumps of ions in the same time.
The nusber of jumps of species i is given by ng°ry where ny
is the nunber of species 1 and ry the jusp frequency. For our

sinple case of a single ion A the result is:

nyTy = n,eTy {3.10)

Fy-



Regarding the definition of the molar fraction of vacancies,

X, = v . 2!~, (ny << ny) (3.11)
nat gy Ny
(3.10) is identical to (3.9). T, is an effective jump fre-
guency for all ions A. Using (3.7) the self-diffusion coef-

ficient or component diffusion coefficient of A, DA' can ba
written as:
DA - Dv-xv (3.12)
Example: Co, 0 at T = 1200°C and p, = 1077 bar
2
§ = X, = 10‘3 and Dv - 2-11'.1'6 cnz-s‘1
*
as 4 A
- . 2 . L1all -1
Pv Dv 6/8 1.5-10 a8
-11
/Ty = 610 ) time between jumps
T, = Tyx, = 1.5:10" s}
2 .h L] Y
< ( 2)° > = (6+Det) (mean square displacement)

after 16a: < { 2)2 >k = 140 pm vacancy V

- 4 pm cation A

How can Dy or bn be measured?

3.3 Tracer-diffusion

To follow the path of a single ion, A, it is necessary to
mark an jon. Usually, these tracer ions are radiocactive iso-
topes, IF, of A which ars, however, chemically identical to
A. In an ideal tracer experiment, the molar fraction of the
tracer ions, ., is negligible, aven compared tc the molar
fraction of the (majority) dafects. For this reason, the tra-
cer lons are distinguishable and (in principle) the path of
sach tracer ion can be followed. Before we discuss how this
is done experimentally, the microscopic diffusion step for

tracer diffusion is analyzed.

Consider a situation where the tracar jon , ﬂ‘, and a vacan-
cy, V, occupy adjacent lattice sites, 1 and 2. Now, the tra-
cer has the possibility to jump to site 2 by exchanging sites
with the wvacancy.

Before jump After jump

A



After this jump of the tracer ion, A’, into the positive z-
direction the tracer cannot jump further into this direction
baecause the next lattice site 3 is occupied by A. For further
diffusion of the tracer into the positive z-direction the va-
cancy has to move to site 3 by exchanging with ions A. There-
fore, the probability that the tracer jumps back to its ori-
ginal position 1 is larger than the Probability for a jump to
site 3. In other words, in contrast to the jumps of the va~
cancy the juaps of the tracer, A', are correlated, the tracer
is no random walker. The jump back to the original position
is not effective for diffusion which results in a mean

square displacement for the tracer which is smaller than the

random mean square displacement.

<wun?d <« <wn?d>, (3.13)

The correlated motion of the tracer shows up in the tracer
daiffusion cosffiolient, ﬂ:, in form of a geometrical correla-

tion factor, f:

u: = (1/6) --2-rv-xv-f (3.14)

With the help of (3.5) the following relation for f holds

2

<( z) >corre1ated
2

<( z) >randon

(3.15)

which can be used to calculate the correlation factor. The

result is that for a given diffusion machanism (here vacancy
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mechanism) f depends only on the lattice structure in which
diffusion takes place.

Lattice Defect J
Diamond Vacancy )
Simple cubic Yacancy 0.653!
BCC Vacancy . 0.7272
FCC Vacancy 0.7315
FCC Divacancy 0.475
FCC {100) dumb-bell interstitial 0.439
NaCl N Colinear interstitislcy

NaC) Non-colinear interstitialcy (forward) ]
NaCl Non-colinear interstitialcy (backward) 0.964)

Combining (3.14) and (3.12), allows to calculate the compo-
hent diffusion coefficient of A, DA' from the measured tra-
cer diffusion coafficient, U:, and the theoretically calcu~

lated gecmetrical correlation factor, f:
ﬁ: = Dy'xyf = D,.f (3.16)

However, how can we measure the tracer diffusion coafticient

in a homogeneous crystal which has been discussed up to now?
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3.4 Diffusion in s concentration gradient

piftusion in a concentration gradient is described by Fick's

tirat law. For one-dimenaional diffusion {along the z- axis)
of a spacies with concentration, c, Fick's first law connects

the flux, j, with the concentration gradient, acyaz:

Ac

j = =D (3.17)
whers D is the phencmenological diffusion coefficient. To see
how this diffusion coefficient is connected to the atomistic
diffusion coefficlent discussed bafors we consider a crystal

with a composition gradient along the z~-axis:

The humber of ions per unit area in lattice planes 1 and 2 is
n, and n,. We allow jons to jump left or right the jump dis-
tance s with the same probability and with the jump freguency
I'. Thus, the number of jons jumping in time dt from plane 1

[

into plane 2 is i-nl-r-dt while the number of ions jumping
from plane 2 into plane 1 is h-nzor-dt. The number of ions
which flow per time and per area through a plane between

lattice planes 1 and 2 is the flux, j:
3 =A%(ny = n,)r (3.18)

The concentration of ions in planes 1 and 2 is given by
c - nl/l and c, = nz/s anéd the gradient of the concentration

is 9c/3z = (¢, = ¢,}/8, resulting in:

9c

j - -k-lz'l"'

(2.19)

Comparison with Fick's first law (3.17) shows that the phe-
nomenological diffusion coefficient, D, for diffusion in a

coﬁcentration gradient is jdentical to the nicroséopic daiz-
fusion coefficlent of a random walker in a homogeneous cry-

stal without concentration gradient.

This jdentity allows the simple determination of (microsco-
pic) diffuajion coefficients by measuring the concentration
profiles of diffusing particles. The concentration profiles,

c€(z,t), can be calculatad by solving the continuity equation.

fac(z,t) ?3i(z,t)

2t 9 z

(3.20)

together with initial and boundary conditions.



Now, the tracer diffusion coefficient, D:, can be determined
sasily by measuring the concentration profila, C\. (z,t),
which has developed from a thin film of tracer on the surface
of the crystal under investigation. This thin film solution

is a Gauss-function (M=total amount of tracer per unit area):

M 22

)'"IP(
(¥+D}+t) 4-D}-t

c(z,t) = } (3.21)

be
{1

lel
=64

The tracer diffusion coefficient, D:, is obtained from the

slope of a plot log c(z,t) versus zz.

log concentration

FZicm?)
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The jJump of cations, A, from one cation site to another is a

o o83 oc

&

l i 1
ia) (L] [}

The activation Gibbs energy, AG' (w=moticn), to overcome the
barrier between two sites, related to the thermal energy, RT,
determines the fraction of ions which have sufficient shergy
to surmount the barrier. Thus, the diffusion coafficient is

expected to have the form:
D, = const:exp(-4G_/RT) (3.22)
From reaction rate theory cne obtains the following result:
D, = g-o-szvnxp(asm/n)-exp(-AHE/RT) (3.23)
where V is an attempt fraquency to surmount the barrier which
can be identified with the vibrational fraquency of the atoms
(V=201%/1) . 9 is a geometrical factor, s is again the jump di-

stance and as,y is the entropy of motion and AH- is the en-

R7



r

thalpy of motion. (3.23) shows that the jump fraquency, r
used earlier is given by:

ra=y - exp(-~4G,/RT) (3.24)

However, in this analysis it was assumed that diffusion takes
place in an empty lattice. In reality, only a fraction, Xy
of the cation sites is empty, for example due to Schottky

disorder. As shown in part 2.4, Xy is dependent on tempera-

ture:
X, = exp(-AGr/(z-R'r))

where G, is the Gibbs enargy to form a cation vacancy (and
an anion vacancy). The corract diffusion coafficient, Dy,
a vacancy mechanism is therafors obtalned by multiplying with

xv:

for

aAG, + &-Acf

D, = g-V-s%.exp(- )

RT

AS_ + k.S

AG_ + X:AG
- g-\’-'zcexp( m £ m

£

) ¢ exp(- ) (3.25)

RT

Thus, the diffusion coefficient can be expressed as:
D, = D;-exp(-Q/RT) {31.26)

vhere Q is the activation energy which can be determined

experimentally from the slope of a 1n DA versus 1/T plot
(Arrhenius plot).

Valuwes of the Schottky Formation

and the Cation ) Emt Eathalpy and Estropy
Eatheley ‘uin' of Seversl u‘“d:.-' belpy Valwet lor Diffusion s KC?
AH, aH' Schottky defect formation:
Subst eV eV Enthalpy AH.(eV} 26

bl : ! Entropy AS,/k 96
LiF 134 0.70 Potassium ion migration:

Licl L2 0.40 Enthalpy AH,'(eV) 07
LiBr 18 0.3% Entropy AS,'/k 2.7
Lil 1.34, 1.06 0.38, 0.43 L L

NaCl .30 0.68 Chiorine ion migration:

MaBr 1.68 0.80 Enthalpy &M, (eV) 1.0
KCl 16 0.7 Entropy A5y fk at
KB b5y 0.67

Kl J 1.60 0.712 Source. 5. Chandra and 1. Rolfe.
CsCt 1.86 0.60 Can. J. Phys., 43, 412 (1570).
CaBr 20 0.58

Cl 1.9 0.58

TICI 1.3 Q.5

PClL 136

PbBr; 1.4

Fick's first law (3.17) is a special cass of more general

transport equaticns which can ba derived within the framework
of linear irreversible thermodynamics.

The starting point is to calculate the rate by which entropy
is produced during an irreversible process. As a result, the
antropy production, ¢, can be written as:

9T = £, J,-%; (3.27)

where the sum extends over all irreversible processas. i is



a gesneralized flux (mass transport, snergy transport, chemi-
cal reaction rate,...) and xi is tha conjugated generalized
thermodynamic *force', To every ilrreversible process corres-

ponds a special ‘force':

Irreversible process Flux Force

Heat transport 3j xq = ~-9T/T

Mass transport
of spacies i 34 Xy = Fy =T V(uy/T)

Chemical reaction (dc/at) b 4

react react = Zx Yk'#x

Here F, is a 'true’' force acting on species i, like an elec-
trical force. For constant tamperature, T, the thermcdynamic

force for mass transport simplifies to:

Xi = Fi -Vui (3.28)
and if only electrical forcas, '1 = ~qy-Fe Ve, vhers ¢ is the
electric potential and P the Faraday constant, are considered
then the thermcdynamic force, xi. for nass transport is given

by the negative gradient of the electrochemical potential of

species 1.
"1 - - V(l‘i + qi'r'.) - 'Vﬁj_ (3.29)
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In the linear regime, i.e. for ‘'small' forces, the flux, ji'
of species 1 (i=1,...,n) is proportiocnal to tha thermodynamic
forces, X, with a transport coefficients, Lij’

3p = By Lyyexy i=1,....,n {3.30)

By definition, the transport coefficients are independent of
the forces. Therefore, the gradisnts in the chemical poten-
tials of the diffusing species ars the true forces and not
the concentration gradients like in Fick's first law. In ad-
dition, (3.30) stataes that the flux of species i is not only

dus to the forca xi but also due to all other forces. These

‘cross-effects' are described by the cross coefficients, Lij'
for which Onsager's reciprocal relations hold:
L-i-j i ji 1,j-1,....,n (3.31)

A rough estimate of the transport coefficients is possible by
neglecting the cross-coefficients, Lij-o (i=j), resulting in:

Iy = LygnXy (3.32)

On the other hand, the mobility, bi' of species i is defined

as its velocity, Vi+ per unit force, resulting in a flux

ji = CycVy ™ CyebyeXy (3.33)
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Using the Nernst-Einstein relation

Di - bi.R.T (3.34)

the transport coefficient Lii can be written as:

Dj-cy

L (3.35)
i1 R-T

The transport coefficient of species i, Liys is given by the
product of its diffusion coefficient, Di' and its concentra-
tion, Cyr referred to the thermal energy, RT. Apart from cor-
relation effects this result remains true if the off-diagonal

elaments in the transport matrix L are not neglected.

1.7 chemical diffusion in a binary oxide A0

Consider a binary metal deficient oxide, ‘1-a°' with cation
vacancies, v:, as majority point defects compensated by elec-
tron holes, h' (Co0, NiO, MnO), which is equilibrated at ele-
vated temperatures and at a certain poz. If the oxygen par-
tial pressura of the surrounding atmosphere is increased an
oxidation process carries on in which cations, Q:, flow to
the surface and cation vacancies flow to the interior of the
crystal. As a result the nonstoichiometry, §, increases from
its original value, So, to a ftinal value, 61, corresponding
to the new oxygen partial pressure poz. This process is ca%-

led chemical diffusfon and the flux of cations A is given by
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jA - 'D'ch {3.36)

where D is the chemical diffusion coefficient.

8o
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How is the chemiocal diffusion occefficient, B'connootod to
the other diffusion coefficients?

The thermodynamic force exerted in this experiment is a gra-

dient in the chemical potential of oxygen, Vuo « However, due
i
to the equilibrium

A +%:0,(g) = a0, By + Nepg = opl (3.37)
where Bag is the constant standard potential of the pure
phasa A0, the gradients of the chemical potentials of oxygen

and A ara not independent:

Vi = ""v“ol {3.38)



Thers is only a single thermodynamic force in this experiment
given by (3.38) and therefore the flux of the mobile cation

can be written as:
ja - -LM‘V“A {3.29)
whera the transport coefficient is given by (see (3.15)):

Lya ™ Dy, /RT (3.40)
The torco,‘?ua, exerted on the chemical component, A, nesds
mors attention, because the component A does not exist within
the crystal. As discussed earlier, within the crystal only
structure elements exist. This problem can be solved, by re-

garding the solution of component A intc the crystal:
A=At oyt oy (3.41)
A A *

Eq.(3.41) satisfies the site relation, the mass balance and
the slectrical neutrality. If equilibrium is established for
(3.41) we can write for the chemical potential of component

Az
] '] [

Kp = B(Az)} - “(VA) = 2+u(h) (3.42)
whare the chemical potentials on the rha are the chemical po-
tentials of SE and electronic defects. Each of them can be
written as the sum of a standard potential and an activity

term:
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B(i) = u°(i) + RT+1n a(i) (3.43)
Since the molar fraction of vacancies, x(v:), is very small
compared to the molar fraction of cations, x(A:), both par-
ticles can be regarded as an ideal solution within the ca-
tion sublattice, i.e. their activities are given by their mo-
lar fractions. The activity of the electron holaes, a{nh’), is
also given by their molar fraction, x(h°), provided the num-

ber of holes is not too large. Now 'the chemical potential of

the component A can be written as:
e e X . pult )
By = BT(AL) = s (V) - 2:p'(R7)

+ &7~ (1n x(A}) -1n x(v¥) - 2.1n x(n") ) (3.44)

Regarding that x(A}) » 1 and x(b’) = z-x(v:) << 1, the

gradient of B, <an be writtan as:
Vi, = = RP- (V10 x(v}) + 2. 71n(2-x(v:)))
= - RT+3-V1n x(V:) (3.45)

Using Lya = D,°C,/RT and Dy = Dy*x, the final result for the

flux of A is (c.-A - x(AA)/V., v. = molar volume):
jA - - M‘v“h - - J-Dv- Vc.:‘l (3.46)
Comparison with (3.36) shows that the chemical diffusion
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coafficient, 3: which describes diffusion of the cations, A,
under the influence of a thermcdynamic force is given by:

D= 3D (3-‘7)

v

Due to the conservation of lattice sites in the cation sub-
lattice the flux of cations, jA' and the flux of vacancies,

Jy+ are not independent:

Ity mo (3.48)
resulting in:

dy == D Ve (3.49)

In a binary oxida, A,_;9¢ chemical diffusion of cations and
of vacancies is described by a'lingla chemical diffusion

f el
coafficient, D.

The chemical diffusion coefficient, EL is larger than the
self-diffusion coefficient of the vacancies, Dy, by a factor
of 3. This enbancement factor is due to the fact that the
oxide AC is a semiconductor with mobile electronic daefects,
n'. During a chemical diffusion experiment electrical neutra-
lity prevails, i.e. there is nc electric flux through the
sauple. Thus the slectronic defects have to move with the

charged vacancies:
jh. - z.jv; -0 (3.50)
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Because the electron holes, h’, have a higher mobility than
the vacancies, V:, they ‘try to move faster' which regults in
an inner electrical field, called Nernst rield. The correa-
ponding electrical potential is called diffusion potential.
This diffusion potential slovs down the motion of the faster
elactron holes and enhances the motion of the slower cation
vacancies, The exact calcylation of the enhancement factor
shows that it is identical to 1 + @, wvhere a is the effecti-

ve charge of the dominating cation vacancy. Thus,

]
o
D= Dy (1+a), VA doninates (3.51)
It cation vacancies, v;, dominate, as this was shown for the
cagse of CoO, then a = 1 angd the enhancement factor for chemi-

cal diffusion is 2.

Remayrk:
During tracer diffusion there are no external forcaes, and the
crystal is chemically homogenecus, particularly, ¥ x(vA) = 0,

However, the same formalisa as above can be usad:

I Dy Vi = = (Dhece /BTy v, (3.52)
N S HER AT (3.53)
Vulc = RT-91n X, (3.5¢)
= -0y sVepu (3.55)



2.8 Ipterdiftusion

Consider a diffusion couple of AO and BO where the hinary
‘components', AO and BO, form a complete solid solution,

(A }JO. The expariment is carried out at constant tempera-

1-xPx
ture, T, and in an atmosphers with constant oxygen partial
pressure p, . The cations, A and B, are mohile via cation va-
cancies while oxygen is immobile. At time, t=0, we have the

following situation:

What are the interdiffusion profiles of AO and BO ?
From linear irreversible thermcdynamics we know:
0:T =L 3, -X, = 3 +X, + Jg Xy, (3.56)

with X, = -VuA and Xg = -VnB. The fluxes can be written

as:

Ip = “Ipp* Viy = Lnp® Vg {3.57)

Ip = ~Lgp Vi, = Lgg Vig (3.58)

The flux of the cations, jA + jB’ is compensated by a flux of

vacancles, jv {(conservation of lattice sites):

AR

Iptigtiy=0 (3.59)

To proceed two assumptions are necessary:

(1) BEquilibrium for the oxidation of A to AO and B to BO:

A =20 - -0, Vi, =Vigg = 3V,

= Yur0 (3.60)
B =B0 - §-0, Viug = Vg, = 4V,

= Vg, (3.61)

(ii) The mixed oxide, (A 0, which forms during interdif-

1-xPx)
fusion is an ideal mixture of the binary 'componants‘' AC and

B0, with x - X

A0 A and Xpo = Xp = l-xA, i.e.

* + RT*1n x, and bpo ™ “Bé + RT«1ln x (3.62)

a0 ™ Hao B

Now the flux jA in (3.57) can be written as:

Xy vaB
jA - _LM.RT. " - LAB'RT. ”
A B
L L
= -gre( —M - BB ,.gy,, (%, + X5 = 1)
*a *p
L L
= -rr.( 22 - AR, .g. (3.63)
°A °p
vwhers c, = xA/v‘ and ¢, = xn/vn ars the concentrations of A

and B (v‘ = molar volume). Comparing (3.63) with Fick's first
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law we can define a component diffusjion coefficjent, DA:

L L
D, = Rre( —22 _ _AB, (3.64)
A c [

A B

If the cross coefficient, LAB' is neglected we obtain again

the relation between DA and FAA found in (3.35).

In the same way tha flux jB is given by:
g = -Dg*Vep (3.65)

where the component diffusion coefficient of B, DB' is

defined as:

) {3.66)

Genexally, the diffusion coafficients, DA and DB' are not
identical resulting in a non-vanishing flux of vacancies

through the crystal:

jv - ”jA -jn - (DA - DB).ch (3.67)
This induced vacancy flux can 'relax' at the surfaces of the
crystal provided that the number of inner surfaces ia negli-

gible. At the surface where vacancies arrive the following

reaction carries on:
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[} . x
AO + vA + 2'h = AA + a-oz(g) . {3.68)

01(3) RO

-
Iv

> 2

Lattice planes disappear and the surface of the crystal moves
relative to the lattice frame with a valocity:

Ve - V‘-jv (3.69)

Experimentally, the concentration profiles of A or B are
measured relative to the surfaces which have shifted during
the expsrimnent. Therefore, we transform to a nevw refarence
frame which moves with velocity v relative to the lattice

frame. In this reference frame the flux of A is:

via =3y T oV =3, 4 eV e,

(1= X093, - %33y
- - xB°DA'v°A + %y Dy Veg

- - (xB-DA + xA.DB}. ch (3.70)



In the same way, the flux of B can be calculated as:
vIp = ~(x,°Dy + x5°Dy) ¢ Vey (3.71)

Both fluxes, 15 as well as jB' are characterized by the same

interdiffusion cosfficient, D:
(3.72)

This relation for the interdiffusion coefficient is called

Darken relation.

via = ~ DV, = -D:(-Vcy) = =]y
or

viatyig= o (3.73)

Thus, in the reference which is fixed to a moving surface of
the crystal the component fluxes add up to zero, in contrast

to the lattice frama.

The measursable interdiffusion profiles of A and B are
characterized by a single parameter, the interdiffusion

coafficient ?;

‘no Bo

>z
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e
The interdiffusion coefficlent, D , in (3.72) is strongly de-
pendent on the composition, x. To determine the concentration
dependent diffusion cott!iciont,‘E(c), experimentally the

Boltamann - Matano analysis is used (c-x/V.):

- £
D(c) = m{ (co-c(ﬂ)'_ﬂ c(z) dz
(-]
+c(z). § (e,-c(z)) dz {3.74)
z
c
!c.,—cl-da
deide
2
[coz /
-
0
02 2z

o~
Once a chemical diffusion coefficient, D(c), is determined it
can ba compared to the Darken relation (3.72), which pre-
dicts a value for D with the help of tha component diffusion

coafficients, DA and DB'
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3.9 Microscopic diffusion mcdels

In this last chapter we will discuss two microscopic diffu-
sion models which describe diffusion of two mobila compo-
nents, A and B, via vacancies. The first model, tha five-
frequency model, describes diffusion in a dilute solid solu-
tion while the smecond model, the random alloy wmodel, deacri-
bes diffusion in a concentrated solid sclution. Both models
ware developed for binary alloys, Al_xax, howaver they can
alsc be used for ternary compounds, (Al_xsx)x, vhera the com-
ponent X is immobile, as this is the case for several oxides
or sulfides. It should be emphasized that these two rmodals
are the only exact diffusion models for diffusion within a
crystalline solid. In both cases it is the aim to calculate
the transport parameters which describa diftusion, i.e. the
diffusion coefficients, Di' and the transport coefficients,
Lij' as a function of the slamentary jump frequencies of the

Mobile compeonents.
(a) Five - frequency = model

The model (Lidiaxd, 1956) describes diffusion within a fce-
lattice and in a dilute solid solution, wheres A ig the =mol-
vent ion and B is the solute ion, e.q. (Al_xax)o with x<<1,
As usual in vacancy diffusicn, the B ifons can jump only when
they occupy a lattice site adjacent to a vacancy. Due to the
fact that the B ions are strongly diluted thig arrangement
forms a distinguishable pair within the solvent system A0,
These pairs, {8,V}, can form randomly with a short lifetime
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or they can form due to an attractive interaction with a
longer lifatime, as this was discussed earlier (see chapter

2.7).

The nature of the model is defined in the next figure whers

only the cation sites are shown:

N g

& solvent ion A

@ solute ion B
g O vocancy v

In this diagram a single solute - vacancy pair, {B,V), ia
shown while all other sites are occupied by solvent ilons A.
Jumps of the vacancy are only allowed to nearest neighbor
sites and the Jump frequencies of the vacancy to the various
sites are indicated by tha symbols LY LT LPY, vs and LA

which have the following meaning.

W, = exchange of ¥ and A in the pure crystal Ao

W, = sxchange of V and B

W, = exchange of V and A in the nearest
neighborhood of the solute B

Wy = exchange of Vv and A, dissociative for the pair

W, * exchange of V and A, creating a pair



The five - frequency - model is a nearest neighbor model al-
lowing for a specific interaction between the solute, B, and
tha vacancies, V, which shows up in the different jump fre-

quencies of the vacancy in the surrounding of the solute.

1t xp iz the ovarall molar fraction of solute, B, and if xg
and xs are the molar fractions of unpaired, i.e. free, solu~-
tes and vacancies, then the number of pairs, x_, can be cal-

P
culated from the chemical equilibrium

-aG_/RT
K, = 12-e 4 = —?-EE———- (3.75)
Xg " Xy

where 12 is the number of distinct orientations of the pair

By + V, = {B,,V,},

and,AGp is the solute - vacancy binding energy (see chaptar
2.7). Due to detailed balance the binding energy determines

the ratio of LA and Wit
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u‘/w3 - nxp(-AGp/RT) (3.76)

Without going into the dstails of the derivation the results
for the transport paramsters in this model are:

The solute diffusion coefficient, DB' is given by:
Dp = (1/6) cafew, pety (3.77)

where p = xp/xﬁ is the degres of pairing of B and fy is the
physical correlation factor for the motion of B which will be
discussed later. This result which is valid for small soluts

concentrations can be discussed for two limiting cases.

(4) a6, =0

This limiting case describea diffusion of homovalent solutes,
B, in an AO matrix where the solute - vacancy binding is ex-
pected to be negligible. Therefora, the jump frequencies L)
Vi Wy and W, are identical and only two different frequen-
cies, W, and W, remain. In this two- frequency modsl pairs
are formed only randomly and the number of pairs is:

xp - 12°xn'xv. p= 12-xv (3.78)

resulting in a solute diffusion coefficient

- - 2. - -
DB 2-a Wy Xy, fa (3.79)
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This results looks very similar to the result for the tracer
diffusion coafficient found in chapter 3.3. The diffusion
cosfficient is proportional to a geometric factor, to the
jump frequency, W,, and to the number of vacant lattice si-
tes, Xy The physical correlation tactor, tB' describes the
correlated walk of the solute which is due to the different
sxchange frequencies of a vacancy with A and with B,

Yo
£, = (3.80)
vo + (1/2-1) v,

Hera f=0.781 is the geometrical correlation factor for diffy-
afon via vacancies in a fcc-lattice. The corralated walk of

the solute can be understood as follows. If W, =W then

o’
fB = £, i.e. the solute B bshaves like a tracer of the sol-
vent A. If v, >> W, then tha pProbability is large that the
ion B, after exchanging sites with a vacancy, immediately

Jumps back ipto the vacancy. Although B jumps fast compared
to A its mean square displacement ig spall, resulting in a

small correlation factor, tB - wo/(lff-l)-wz) << 1. Finally,

ir Wy << W,, then B moves uncorrelated, fB =],

(ii) AGP < 0 and lacpl > RT

This describes diffusion of sclutes with a strong attractive
interaction to vacancies, for example the diffusion of cr 't
in Ni0. The degree of Pairing, p, im a function of the solute
concentration, Xg., approaching the saturation value 1 for
large solute concentrations. Thus, the solute diffusion coef-

ticlient, Dy, in (3.77) is a strong function of the solute

concentration xp:

78

' Bi- EV728p

a1

"] |
””’,_——"'ﬁffi;;a;kr

1 |
[ o%ﬁ_ 0-0i0 [ X7
C M cancentration Lok '

° B2 (AP L 1 pr w KCL

f. =17 %
-]

Finally, the transport coefficients are known within this
diffusion model. Por simplicity only proportionalities are

given:
Lya ~ voex5 + ST A (3.81)
LAB ~ rz('o"1'"é'"3"4)'xp (3.82)
Lpa = Log (3.83)
I.BB ~ PJ('O'"1"2"3"4)'xp (3.84)

Heare rl. ’2 and FJ are complicated functions of the Jump
frequencies w;. The transport coefficient LAA consiste of a
simple ternm which is due to the exchange of A with free va-

cancies and of a more complicated term which describes thae



possibility of exchange batwesn A and vacancy located in a
pair. In contrast, Ly, describes the motion of B which is on-
ly possible within a pair. The cross coetticient, LAB' is
also proporticnal to xp and can ba of the same order of mag-
nitude as Lg,. In addition, Lyp ©an be positive or negative,
depanding on the relative magnitudes of the exchange frequen-

cles LT

(b) Random alloy model

The random alloy model (Manning, 1967) describes diffusion in

concentrated solid solutions, for exampls in (A Bx)o with

1-x
x % 0.5. The complicated spectrum of jump frequencies belong-
ing tc all possible A - B arrangements is approximated by
average jump rates. In this way, the jump frequency of the
vacancy, rv, in the mixed oxide, (A,B)O, consists of the ave-
raged jump frequencies, rv(n) and rv(n), in the pure oxides,

A0 and BO, respactively.

Ty = X, °Ty(A) + Xp°Ty(B) {3.85)
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In contrast to the simple binary crystals, A0 or BO, whers
the vacancy jumps are uncorrelated (random walk), now also
the vacancy jumps are corrslated which is described by a va-
cancy corrslation factor, fy- Since the jumps of A or B are
also correlated (resulting in th and ta) there arae now threse
correlation factors in this model. Howvever, with the help of
special kinetic argquments, Manning was able to express the
measurabls tracer diffusion coefficients, D, and Dy, in the
mixed oxide as a function of the elementary jump fraguencies,
Ty(A) and rv(B), the molar fraction of vacancias, Xy and the
composition, x. Comparing the results of his kinetic mcdel
with linear transport theory he was able to spacify relations
for the transport coefficients. The result is that the trans-
port coefficients are datermined definitely by the tracer
diffusion coefficients, DA and Da.

cy D 2+c, D

LM.-—"-—A--(1+ A2 ) {3.86)
RT Ky (S5°D, + Cp'Dp)

2 c,*D_+c_ D

Lp = A_A BB _¢ (3.87)
M,RT  c,+D, + cp°Dp
c,*D 2+c,.*D

Lyp = —0—B-+( 1+ A A ) (3.88)
RT Ho'(cA'DA + cB'DB)

where M, is a constant determined by the lattice structurs.
Like in the five - frequency model, Onsager's reciprocal re-
lation, FAB - LBA' appears as a result of the particular
model.
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2.10 Examples

Example (a}: Tracer diffusion in Co, 40
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Example (b): Tracer dAiffusion in magnetite (Fe_0
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