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Microstcuctural Changes in Superplastic

Deformation
1) Grain growth ' /
2) Discrete motiorni across grain boundaries
3) Grain rotation A

4) Grains remain equianed
3) Texture ueually destroyed
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Grain Growth in Superplastic Deformation
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Mechanism

Diffusional
Nabarro-Herring

Coble Creep

Slip
Viscous Glide
(Class I Solid Sol.)

Weertman's Climb
Model

Lattice Diff. Cont
(Phenomenological)

Pipe diffusion control
(Phenomenological)

Constant Structure D;

(Phenomenological)

Constant Structure Dp
(Phenommdogical)

Dy

Dy

Dp

Dy

Dp

(o/B) d-2
(o/EN a3
(o/E)3 et
(o/EAS M-05

(0/E)5  Stress fixes structure

(c/E)7 "
(o/EPB .
(c/E)0 y

Minfitting sobetes — Cliie contoels
wap. Climb and glilie eve soguansing

Puve Metals
Coarse grains, T>0.6Tm

As above T= 0.4 0 06 Tm

Constant Structure Tests and
ODS alloye T>06 T

As above, lower Tamp smge
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Pipe Diff. Cont. Dp (o/EN a2 As above, but lower T.
G. B. Diff. Comt. Dp (6/ER d3 ~ As above, maybe fieer GS
Others |
Harper-Down Creep Dy (/B - High T, Low 0, Coarse Gains
Term
u Symbols
]- Lattice Diffusion E- Dynamic Elastic Modulus
p- Diffusion along dislocation pipes L- Linear Intercept G. S. (or interpasticle size)
gb- Grain Boundary Diffusion d- Graim Diameter »1.76 L
A- L. L. Subgrain size
W e- Fractional size diff. between solvent & seluie stems
o
e L AE\S( ) ’0 c- Concentration of solute atoms
—D+BD +CD e laed Swed Feacti

Dx=D;e"P(;p;Qr_x)

n- Simess expoment (n=(1./m) m-sirain rate semgitivily g
M- Dislocation Sousce-Density
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Application to Whisker Reinforced Composites:

The real stress state is complicated, and has
tremendous spatial variation...

Consider this approximate geometry...
(can conalder a single matrix eloment)

A First-Order Mode]

* Perfect bonding at fiber/matrix interface.

* vonMises material with T independent flow stress g,
¢ Composite externally loaded in shear.

* Temperature change induces axial stress.

7

X
Treat with Levy-vonMises Equations:

de, = 2dky

"'%o

where cru 1» the siress sinte, lons the Rydrostatic component.

On _ On
1y : Ty 0
% T90,0 ty—0,0
00 | 0
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After a full temperature cycle, everything but the shear cancels out!
Thcnwecancdcuhhlhmsmlnpercyclcu..

2 _ 492
o, 31,

Cangluaion:

If temperature change induces plastic deforma
-nuusueunsuduhwhwophudgunnn.The renine)

that strain will be rtional to
o the applied stress, the

y strain and In
10 matrx ow s, * 1 Iveel proportiona

magnitudeof 4

MODEL ASSUMPTIONS:

*

Two-dimensional problem.
Fibers deform elastically only.
Matrix has elastic and plastic, power-law creep, behavior.

All axial load is transmitted through the matrix as a shear stress.

Composite elongates by shearing of the matrix between fibers.
Bonding perfect at fiber / matrix interface
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Input Initial Data:

t, T, er, YPT

!

Calculate Axial Stress:
E.(ACAT ~- ¢ r)

e

Calculate Max ‘h rass.
2 2
s 55) + ()

!

Caiculate Shear Sirain Rate:
Y= KD T

Reseive Straine lm_am
e, = Al‘y( 4t )

,A,,( = )(%)

incsowent Yee and temperature

Um Torms:
t, T, ep, TFT

Strain Rate (s™')

0" g ———— -
Isothermal Deformation j—a
723 K 4
102 3
= - Trcnsvcrse\ ]
107
= 1/
0%k
1073

Stress (MPq)




Used in Simulation of MM formation

Alumisum Diffusion Daf
Doy (m2/s) Dop(m2/s) QuKI/mole) Qp(K]/mole)
17x104  28x10+6 142 82

Composite Creep Constants & Geometric Factor

Material n K F
6061-20% SiC 11 1.07 x 103 1.2
Component Phyaical Propertiss

Component E (MPa) 1) Yol Fragt
Al 58,000 4 x 106 08

SiC 510,000 4.6x106 03

Temperature (K)

Axidl Stress -0y (MPa)

Plostic Strain




Strain Rate (s™')

1073 SH—

- Thermol Cyclmg
- 373K - 723K

o - 2008 Cycle

LR llll‘lll

T T 1T
Y
=
O
=
O
=
o
D

LI ll"ll

Prediction (No Internal Strass)

Stress (MPa)

Strain Rate (s°')

1073

F Thermal Cycling
10 723 K High Temperature
Appllod ress O MPa

10-3 Experimental
903 Cycle
IO'. Predicted
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Thermal Cycling of Continuous-Fiber
Reinforced Composites

Fundamental Relationships:

Load Equilibrium
G, = Vfcrf + V.0

g G
pl fl_ pl m
a AT +e + (—Ef)—amAT+em +(—-Em)

Assume Both are Elastic With Plastic Response:

e=K ex;(:ﬁ%—}y"

—

Pick Reasonable (but arbitrary) constants:

Matrix _Plber
E (MPa) 550 oy
a (C-1 X 10-6) gl) F
Qe (/o) 7 1%
(s-tMPa-n) 75,000 1 x7l0'.
n

S N

10

-3

rMaterlols Subjectedto  /
1 200s, 300-700K sinusoidal
{ temperature cycles

—
o
A

s sasad

—

<
(8]

i

Steady State Strain Rate (s™
o o
S &

, Matrix
only

] -
Applied Stress (MPa)



3

Composites Subjected to
300-700K Thermal Cycles and

i

10°

Steady State Creep Rate (§)
%’

:

: 10" Constant Normaillzed Stresses

stress Imposed to produce
creep ratew10 4

62 04

o
o

06

08

Flber Volume Fraction

—ed T -

14

* Experimental and theoretical evidence have demonstrated
that temperature changes have an important influence
on the deformation of composite materials,

* These effects should be considered in life prediction
regarding composite materials

* These considerations can aid in the design of "good" high
temperature composites.

* More work is needed to understand effects of:
Interface Behavior

3-D Reinforcement Geometry
Actual State of Stress

* Some related processes need examination:
Internal Damage

Crack Propagation

* The study of model systems and limiting cases represents
an important step in understanding these effects.
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Abstract

A numerical technique for simulating the plastic response of
whisker reinforced metal matrix composites under conditions
of changing temperature and applied stress is developed. The
model simulates an elastic - plastic (diffusion controlled power-
law creep) matrix and elastic whiskers, with variable whisker
length and spacing. To test this model, the mechanical
behavior of a metal matrix composite of 6061 aluminum,
reinforced with 20 volume-percent discontinuous, oriented
silicon carbide whiskers was studied under conditions of
repeated temperature cycling, and isothermal creep. The results
of the thermal cycling experiments are compared to those of the
model. Both the experiments and the model demonstrate that
the composite flow stress may be significantly reduced by
thermal cycling (relative to isothermal, elevated temperature
behavior) and that under appropriate conditions, the composite
strain rate is proportional to the applied stress. Also, agreement
between the experimental results and the first-principles model
is very good in terms of both magnitude and trends, despite
simplifications in the model.
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Introduction
Metal, ceramic and intermetallic matrix composites are receiving much
attention as potential high temperature materials. However, several studies
on metal matrix composites have shown that thermal expansion differences
between the matrix and a reinforcing phase can dramatically accelerate
deformation!23, The key features of the deformation under sufficiently large
temperature cycles and low stresses are that: 1) the material will flow at
stresses far below the yield stress at the high temperature of the cycle and; 2)
At low applied stress the material deforms with a high effective strain rate
sensitivity. This gives rise to high tensile elongation as in conventional fine
structure superplasticity. At sufficiently high stresses (or imposed strain rate),
thermal cycling has very little effect on deformation.

The deformation of composites under thermal cycling conditions may
have potential benefits and imposes some limitations. As a benefit, a thermal
cycling process may possibly be developed into a useful new technique for the
superplastic forming. The apparent drawback to such a process, however, is
that the maximum superplastic strain rate appears to be about 104 s-1 124,
which may be too low for commercial production applications. However,
this effect may be useful for some specialized applications. The enhanced
composite deformation seen under changing-temperature conditions may
prove to be a drawback in many cases. Many advanced COMmposites are now
being developed for elevated temperature service’, and it has been reported
that these materials will creep, and exhibit shape instabilities, at unusually
low stresses under thermal cycling conditionsS. It is therefore important to be
able to predict how temperature fluctuations will influence the deformation
behavior of these materials in service.

Thisamlyﬂ:mndmhowtheuﬂeuandsmlndwdopedbyd\amd
expansion mismatch and temperature change can influence the axial
deformation of aligned whisker-reinforced composites. This simplified
analysis is intended to elucidat® considerations which must be made when
predicting service life for composites in changing temperature environments.
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Also, the issues considered should have relevance in the design of
composites which will resist the problems associated with temperature
changes.

Background
Prior Experi 1 Resul
There are two important conditions under which stress and strain can
develop within a material, in the absence of any external forces:

1) Phase changes. If a phase change has an accompanying volume
change, mismatch stresses and strains are developed at the
transformation front;

2) Changing the temperature of a polycrystalline material which has
anisotropic coefficients of thermal expansion. For example
temperature changes in polycrystalline a-uranium (ag00=26 X 106,
@010} = -2.4 X 10-6) and zinc (aj1910 = 15 X 106, oqo0p1] = 60 X 106)
produce mismatch stresses and strains at grain boundaries. Similarly,
changing the temperature of a polyphase material (or composite) in
which the constituents have different coefficients of thermal expansion
will induce interfacial stresses and strains.

The effects of both of these interal stress generating mechanisms on
macroscopic deformation behavior has been studied to some degree (reviews
of these results have appeared in the superplasticity literature?-), The
general scheme of the experiments is to impose an axial load on a sample and
produce internal stresses by repeatedly cycling the temperature. In both cases,
the deformation behavior is very similar and is schematically illustrated in
Figure 1. The generic behavior can be summarized as follows. So long as the
internal strain mismatch is large enough to induce plastic strain, at low
appUedulreua,thestnhxperﬂmulcydeMﬂbeproporﬁomlmﬁ\e
applied stress210-1¢, When strain per cyde is proportional to applied stress,
under repeated temperature cycling, strain rate is proportional to applied

gy
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stress (this is equivalent to a strain rate sensitivity exponent of one and high
resistance to neck growth is expected). If the applied stress is raised to a
sufficiently high value, then the material will behave as it would without
internal stress. This transition occurs when the plastic extension of the
sample is on the same order as the plastic strain induced by interfacial
mismatch. Thus, the practical effects of thermal cycling induced plastic strain
are: 1) the material will deform significantly at stresses far below its
isothermal yield stress (at the high temperature of the cycle)23.10-13; and 2)
true superplastic behavior, incduding extremely high tensile ductility, can be
obtained due to the high strain rate sensitivity obtained in thermal
cyclingi2.14.15, Thus, this phenomenon has been given the names
"environmental superplasticity"? and "internal stress superplasticity™1-12,

Since the present treatment is concerned with the thermal cycling
behavior of composites, the behavior of materials containing thermal
expansion mismatches under thermal cycling conditions are briefly reviewed
in the following paragraphs. Most of the early studies on the effects of
thermally cycling a polycrystalline material with anisotropic coefficients of
thermal expansion were carried out in uranium, and a few other non-cubic
metals, in the absence of any externally applied stress!6-20, The general
conclusion of this work was that in random polyaystalline samples, thermal
cycling leads to internal plastic deformation, but no macroscopic shape
changes. If, however, the sample contains a preferred crystallographic
orientation, repeated thermal cycling may lead to changes in the specimen
dimensions in the absence of applied stress?1-23,

A few metals were also studied under an applied stress. Lobb, et. al.13
demonsirated that in polycrystalline a-uranium, cycled between 4000 C and
600° C, the strain rate (or, equivalently, strain per cycle) is proportional to the
applied stress at low applied stresees, and that very high tensile elongations
(beyond 430%) can be obtained without necking. Wu et. al.! showed similar
results with polycrystalline zinc under temnperature cycling conditions, they
also pointed out that strain rate {or strain per cycle) does not vary strongly
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with increasing strain (or number of cycles). Daniels?% examined the thermal
cycling plasticity of polycrystalline zinc in cycling between 0° C and -70° C and
again found strain rate to be proportional to applied stress. Furthermore, the
flow stress was well below the room temperature yield stress. All three of
these studies demonstrated that strain rates can be increased by several orders
of magnitude by appropriate thermal cycling, at a given stress, relative to the
isothermal strain rate at the high temperature of the cyde.

Recently there have been a number of studies on the deformation of
Al-SiC composites under thermal cycling conditions. Sherby et. al.2.12.25 haye
again shown in this system that the strain rate (or strain per cycle) is
proportional to applied stress for 100° C to 450° C cycles, and that due to the
high effective strain-rate-sensitivity, tensile elongations in excess of 1000% are
possible under thermal cycling conditions. This is remarkable considering
that these materials typically show isothermal tensile elongations under 20%
at 450° C. It was also demonstrated that under these conditions, whiskers may
re-orient and align in the direction of flow2. Le Flour and Locicero?
examined a similar composite in the thermal cydling range of 70° C to 200° C,
They concluded that very low stresses (about 10% of the isothermal yield
stress) can induce significant strain in the composite, under this low
tempetature cyding.

Recently, Sherby et 1.122 performed creep experiments, under
conditions of thermal cycling, on polycrystalline zinc, and aluminum
reinforced with silicon carbide whiskers. To analyze their results, they
developed a model for creep of metals which considers the presence of an
Internal stress. The model uses the empirical Garofalo creep relation? as a

starting point;
;e K Dar. o
e'ﬂ-.-bT‘[’mhaE .

n
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In this relationship: & is the strain rate, 0 is the applied stress, n is the
isothermal stress exponent, Deys is the effective diffusion coefficient, E is the
Young's modulus, b is the magnitude of the Burgers vector, and K and a are
materials constants.

The Garofalo relation was modified in two ways. First, average
quantities for Dest and E are calculated for the thermal cycle. To obtain the
average effective diffusion coefficient, Dggg, Doy is time-averaged by
numerically integrating Desf as a function of temperature over one cyde. An
effective temperature is defined as the single temperature which would give
the same Det¢ as is obtained by integration. The effective modulus, E is taken
as the modulus at the effective temperature,

The second step in this model is to make the assumption that: "At any
given time during thermal cycling, half of the dislocations are influenced by
an internal stress that aids their motion and the remaining half are
influenced by an internal stress that opposes their motion.”! Further, the
model assumes that these two groups of dislocations each contribute
independently to plastic deformation. Or, defining the internal stress as o;,

é=%é‘[f(c+ci)]+-%-é'[f(o—o‘)] @
The Garofalo equation, with the average quantities, is used as the functional
form for é*. The resulting relationship gives the same functional form for
the stress v. strain-rate relationships as are obtained in thermal cyding
experiments. Strain rate is proportional to applied stress, Gypp, When the
applied stress is small relative to the internal stress, but reduces to the
Garofalo relationship at high applied stresses. When the applied stress is
much lower than the internal stress, the resulting relationship can be
expressed as:

e 2e(2) (o)

b \EJ 1E ®

Msapproachhasbeenusedbyﬂtisywptoamtelyﬁtmdpmdid
themullsoftheirexpeﬁments,aswdluﬂmeofotherreseuchm There
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are, however, elements of their model which are not satisfying. First, the
state of stress in the matrix is not adequately described by their scalar
treatment. Secondly, the mechanistic description of how applied and internal
stresses act on individual dislocations is not well developed, and is especially
difficult to accept when the internal stress is much greater than the applied
stress.

The prediction of creep rates of materials under non-isothermal
conditions is also difficult. The useof average quantities for Deg;, E and g;
makes it difficult to predict deformation behavior under wide temperature
variations or under the action of one-time transients. Also, in order to
predict the thermal cycling creep rate, one must estimate the internal stress
for the thermal cycling conditions. The model relates g; to the "yield stress”
of the material at the effective temperature, and an appropriate strain rate
(which is related to the cycling rate). o is difficult to predict with high
accuracy under conditions of changing temperature. However, at low applied
stress, thermal cycding creep rate is proportional to g; raised to the (n-1) power,
where n is the isothermal stress exponent (typically 5-20). This makes
accurate predictions with this mode! exceedingly difficult.

Approaches Based on the Levy-vonMises Flow Law

One of the early observations of accelerated deformation because of
internal stress was encountered in the creep of polycrystalline orthorhombic
@-uranium. When subjected to irradiation by neutrons it was found the
creep rate of a-uranium was 1.5 to 2.0 times greater than under normal {non-
irradiated) conditions?. In single crystals of uranium, the effect of irradiation
is to elongate the crystals along the b axis and decrease their length along the a
axis, at a strain rate g, which is a function of flux. Internal stresses and
strains thus develop at grain boundaries in polycrystalline uranium. This
problem was first analyzed by Roberts and Cottrel!. They concluded that the
intergranular stresses induced plastic flow in the grains, and that most of the
work of deformation is done by these internal stresses. The external stress
serves to influence the local deformations such that the averaged external
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strain has a non-vanishing component in the direction of the applied stress.
They estimated that the external strain rate, €e, of the uranium should be on

the order of
[ §
- - J.v
€ (“v}' 7y

where oy and O,pp ace the material's yield stress and the applied stress,
respectively.

Based on this early qualitah‘ire work, a number of workers have
developed quantitative models of deformation under conditions of internal
stress, as produced by: thermal cycling with a thermal expansion
mismatch3031, radiation growth and repeated phase transformationst. All
of these models estimate the stress state in an average grain of material. This
stress is produced by both the externally applied load and interna! stresses.
The resulting plastic flow is then resolved by use of the Levy-vonMises flow
law3233 (This theorem basically states that, for an isotropic material
experiencing plastic flow, the plastic strain rate in any direction is
proportional to the deviatoric stress in that direction). An important
boundary condition in the development of these models is that in the absence
of an applied stress, the average of the internal stresses in the material over
all grains is zero at any time. Therefore, if no load is applied, the material's
shape will not change plastically during thermal cyding. If a material has a
load applied which is much less than the yield stress, and the internal stress
produces ylelding within the material, the average normal stress in the
mmidwﬂlbenm-zuomdﬂmvviﬂbemelonglﬁonoﬂhzmtuhlln
the direction of the applied load. By these models, the amount of elongation
will be proportional to the applied load, the amount of Internally-induced
plastic deformation, and s inversely proportional to the material's flow
stress. Under high applied stresses (i.e. approaching the yield stress),
isothermal deformation behavior is approached. Models of this type have
been shown able to predict the behavior of metals undergoing an isothermal
(or nearly isothermal) phase transition!. However, currently they can only be
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qualitatively invoked for real materials going through large thermal cycles,
since flow stress varies strongly with temperature.

A Model for Composite Deformation

In the following sections, a model is developed to describe the plastic
deformation of a whisker reinforced metal matrix composite under changing
temperature conditions. This model closely follows a much simpler version
proposed earlier’. The modeling begins by understanding the stress state in
the matrix, between the whiskers. Then using a simple, accepted, constitutive
equation, the strain in the matrix can be calculated and related to overall
strain in the composite. Since the constitutive equation used is general, the
model can be used to predict behavior ranging from isothermal high
temperature creep to low temperature thermal cycling. The modeling will

use only parameters which can be independently measured in isothermal
tests.

Effect of Applied Stress

Consider how plastic deformation may occur in an aligned whisker-
reinforced material. The typical situation is to reinforoe a ductile matrix with
stronger, high aspect ratio whiskers. An idealized geometry is presented in
Figure 2. It is clear that even in this simplified geometry the stress state in the
matrix of this composite is complex, and dependent upon location (Le. the
stress state in the matrix near the end of a whisker is different than in regions
which are constrained between two closely spaced whiskers).

If the assumptions are made that the whiskers do not deform
plastically and that there is perfect bonding between the whiskers and the
matrix, the only way in which such a composite can sustain significant plastic
elongation is if there is shearing of the matrix, between whiskers and
accommodation at the whisker ends. The required shear stress in the matrix,
between two whiskers, is shown in Figure 2b. Based on these observations,
the following geometric assumptions will be incorporated into this model:

RV LT Erl W
hw YR
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* There is perfect bonding between the matrix and whiskers.

* The whiskers have a length, L ,that is much greater than the inter-
whisker spacing, S. Whisker end effects are neglected.

* Shearing of the matrix, between whiskers, sets the strength of the
composite, and is the rate limiting step in composite deformation.

¢ The entire applied stress on the composite is transmitted through the
reinforcing whiskers which constitute V,, volume fraction of the
composite. The matrix has a volume fraction Vim=1-Vy,.

¢ Stresses and strains are uniform in the matrix, and the matrix is
isotropic.
¢ Elastic and plastic deformation are permitted in the matrix. Only

elastic deformation is permitted in the whiskers. The whiskers are
also elastically much stiffer than the matrix.

* A two dimensional problem will be studied.

When these assumptions are incorporated, the composite geometry shown in
Figure 3a is obtained. The black lines represent whiskers, and gray denotes
matrix. Wiﬂnhhmumedgeomeuy,voidswiuapparinthecompodu
upon deformation, as is illustrated in Figure 3b. Clearly a single, uniform
shearsmincamoudequatelyduaibeﬂleﬁaumwoflminln&nmmxof
realoompooites,mdoﬂmnmandsminshmmmqmrednurwhhker
ends. However,theshenringpmneuillmmmdinﬂgure%mymnmlthe
deformation rate in some cases, and this is assumed in this model. This
geometric model is attractive since thermal and applied stresses can be
reaolveduhldepmdmtndll,mdtheuoompmmn.

Thelmu{cdllo.dlpplledtoﬂ\eeompmiumwﬂ\emuithw
examined. A coordinate system based on the transverse, X, and whisker, Y,
directions Is also indicated. InlcmrdwiﬂlFigume,dwshwsmacﬁng
loca]}yonthemu'lx,t,y,cmberelatedwthenmexta-lippliedtothe
oompodte,amby:

. Lo L ‘ S e L .‘..
a B .-‘7 . L. n{ o L 18 ; LT - " , !
Bk ei e e L L m“i- .
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¢, = Fore 59y (2o
M R
2 . (5)
The composite plastic elongation, €comp, Can also be related to the plastic shear

strain in the matrix, Tyy. Again, referring to Figure 3b, one may see that the

relationship is:
=(2
""'"(L)V'Y“_ ®
Based on this analysis, a geometric factor, F, can be defined as:
L
Fe(35) M

With this definition, the stress and plastic strain imposed on the composite
can be related to that in the matrix in a very simple and useful form:

1. = ... 4
™ 2JF @)
2Fe
T = V.-'

b))
These equations intuitively show that if the introduction of whiskers to the
matrix wili strengthen the composite by some factor, then the strain in the
matrix will be amplified by the same factor. These equations are consistent
with conservation of energy. The equations developed here are in accord
with the more general relationships developed by McLean® which describe
steady state creep in whisker reinforced composites under isothermal
conditions.

Effect Of Temperature Change

The other stress component which requires understanding is the
stress generated by the thermal expansion mismatch. Throughout it shall be
mumedt!ntthaearenotempenhnegndimtsﬂ\mghﬂlemposite. In
tlmmmpocite,itismumedhtthewhiukusmdmﬁxmpafecﬂy
bonded at the interface, and the matrix is fully constrained by the whiskers.

ﬂﬂsmqulruﬂmthroughatempenmndmngeﬂnelmgthsofﬂwmm
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and whiskers must remain equal, and tensile forces in one component must
be balanced by compressive forces in the other. By these considerations, the
axial stress in the matrix can be related to the strain mismatch brought on by a
change in temperature of AT by:
—[~—~—""“‘°‘3’f£_"’]
(1 YVE, J (10)
In this relationship Aa is the difference between the coefficients of thermal
expansion for the matrix and whisker. E and V are Young's modulus, and
volume fraction, respectively. The subscripts w and m refer to the whisker
and matrix, respectively. The term e, represents the amount of axial plastic

flow in the matrix resolved in the whisker direction, relative to the initial
state.

State of St 1 Stcain in the Matri

Both the thermally generated stress, Sy, (Equation 10) and the applied
stress component, ®xy, (Equation 8) can be imposed on the matrix as indicated
in Figure 4. Note that the thermally generated stress produces only an axial
stress, and the applied stress results in a pure shear stress. These matrix stress
components can be plotted onto Mohr's circle of stress as shown in Figure 5.
The maximum resolved shear stress, tpgy, {which is the "effective stress” for
plastic flow) and the angle between the plane of maximum shear stress and
the whisker direction, 8 are given by,

1
[+
T et (T') an
g T
20 {7 @

I a small of plastic sirain increment, Ay, (an effective plastic strain increment)
is now allowed, this plastic shear strain will occur on planes of maximum
shear stress. Mohr's circle of strain, shown in Figure 6, is now used to resolve
the shear strain back onto the X-Y coordinate system. The diameter of the

C R T, 3 L '
MRV 0 iy ATy 6lim
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circle Is Ay, and the angle between the whisker direction and planes of
maximum shear stress, 8, has been set in Equation 12. On the X-Y ooordinate
system,two strain components can be resolved as a shearing between
whiskers Yxy and an axial strain ey:

Ty = 4700820 13
(DA
’*"(T)‘"' % (14)

When Equation 14 is substituted into these equations, they can be simplified

to:
Y = A’(;_E) (15)

"=A’{4::-). (16)

Again, the strain component ey serves to decrease the thermally induced
stress, while ¥y elongates the sample in response to the applied load.
Considering Equation 9, the plastic elongation of the composite can be related
to the stress and strain in the matrix, during the strain increment, by:

=22 )(5) -

Matriz Constitutive Behavi

A relationship between the matrix strain-rate and current values of
stress, temperature and prior strain, is required to model deformation of the
idealized composite. Real matrix behavior is very complex under the
circumstances to be modeled. Whiskers contribute dispersion hardening and
stabilize small subgrains. The widely varying temperature and stress state
further complicate the situation. For these reasons, the stmplest, justifiable
matrix behavior is assumed for this model: diffusion controlled power-law
creep, with no strain hardening effects. Other flow rules may can work as
well or better, but this flow rule incorporates a wide range of behavior and
has a physical basis.

phgl N

T ekl e il




Composite Deformation and Temperature Change / 14

Specifically, the assumed relationship between the shear (effective) strain rate
and the shear (effective) stress is:

Tou=KD 7o, (18)
where tmay is the maximum resolved shear stress. ¥max is the plastic shear
strain rate resolved on planes of maximum shear stress. K is a material
constant which relates o strength n is the stress exponent and Dy is the
effective diffusion coeffident. Detf represents the diffusion coefficient which
is the sum of terms for lattice and pipe diffusion and can be represented by;36

- 1 —-—
Ds=D, ex %)*'320(%) Dw “"("i%!) (19)
where Dy and Dogp, are pre-exponential constants, Q; and Q,, are the
activation energies for diffusion. The subscripts | and p refer to lattice and
dislocation pipe diffusion, respectively. R is the gas constant and T is the
absolute temperature. The dislocation density varies with the state of stress
in the material, therefore the pipe diffusion coefficient also varies with stress.

C ional Technj
All the elements nhecessary to simulate plasticity of whisker reinforced
metal matrix composites under thermal cyding conditions have been
presented. Based on these equations, a computer program for simulating the
behavior of the metal-matrix composite has been written. The essence of the
program is shown in Figure 7 and is described in the following paragraph.

hﬁﬁaﬂyhmpodmbegimatthelow&empenmohﬂmmalcyde.
T}wlppﬁedsu'monthempociuprovidulsheusminthemh'ix. No
otherintundsﬂsuuorsﬂahsmpresmt. Whenﬂteslmuhumbegimn
short time interval, &t, progresses, and the temperature of the composite
changes by a small amount. The applied load generates a shear stress
(Equation 9), and the thermally generated (axial) stress is determined
{Equation 10). 'Ihedlucuonnndmngmmdeofﬂumuimumshenamh
calculated (Equation 11). Plastic flow is permitted along planes of maximum
shmsmforuhonﬁmeinmaugovmledbyamﬁmﬁveequaﬁm
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(Equation 18) which considers the current state of stress and temperature.
The plastic strain which took place during the time interval (y At} is resolved
as shear and axial strain onto axes defined by the X-Y coordinate system
(Equations 15 and 16). These plastic strains are added to their current values
and provide ey and Yyy as time progresses. This procedure is repeated for each
short ime increment.

Experimental Procedures

The material chosen for the experimental part of this study is a metal-
matrix composite consisting of a 6061 aluminum atloy reinforced with 20
volume-percent silicon carbide whiskers which was prepared by powder
metallurgy techniques. The whiskers have a mean diameter slightly less than
1um, and lengths on the order of 10um. The composite was consolidated by
back extrusion of a tube 152.5 mm in diameter and 12.7 mm in wall thickness.
unmu]tofﬂﬂsproceu.thewhiskusmstronglyode:mdinaphm
parallel to the extrusion direction, and are weakly oriented in the extrusion
direction.

Test specimens were prepared with the tensile axis parallel
(longitudinal samples) and perpendicular (transverse samples) to the
extrusion direction. The samples have cylindrical gage sections of 5.08 mm in
length and 2.54 pun in diameter. This geometry was utilized for both
thermal cycling creep tests and strain-rate-change tests at constant
temperature (isothermal tests). In this investigation, both longitudinal and
transverse samples were tested under isothermal conditions and only
longitudinal samples were tested under temperature cycling conditions.

Isothermal tensile strain-rate-change creep data was taken in _
longitudinally and transversely oriented samples with a Instron load frame at
723 K. Heating was provided by a dual elliptical radiant quartz furnace, and
the temperature was maintained within 2° C. The stress v. strain rate
relationship was determined by elongating the sample 3 to 5% at one cross-
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head speed and increasing the cross-head speed by about a factor of three and
elongating the sample another 3 to 5%. This procedure was repeated
increasing the strain rate each time until approximately three orders of
magnitude in strain rate were covered. In each rate segment, the flow stress
came to a plateau value.

Thermal cycling experiments were performed on longitudinally
oriented cylindrical samples in tension. Two series of experiments were run.
One examined the relationship between strain-rate and applied stress, at fixed
temperature cycling conditions. Another series of experiments examined the
effect of the amplitude of the temperature cycle on deformation rate, at a fixed
applied stress. For both series of experiments, the equipment used was
similar to that used by Wu et. al.}, and consisted of a quartz radiant tube
furnace, temperature controller and a load train that induded a constant
stress cam. The temperature was measured by a thermocouple which was
embedded in a hole in the top of the sample. Thermal cycling was achieved
by a system of relays and timers. Specifically, the furnace operated until a pre-
set high temnperature is reached. At this point the furnace switches off and
the sample is cooled by forced convection until a programmed time interval
elapses. Then, the timer re-sets and the furnace heats again. Thus, the upper
temperature of the cycle and the cycle period were controlled directly. The
lower cycle temperature is indirectly controlled by controiling the heating
rate, cooling rate and cycle time. Strain rate was obtained by dividing the
sample strain (calculated based on the sample’s reduction in ares), by the total
time of testing under thermal cycling conditions. In all cases, there was a
linear relationship between strain and time (or number of temperature
cydles).

Theldndadupbawmappuedmmmﬂn-nhwdﬂamp\ed
byulﬁnguZOOamﬂcydebetwemSBKmdm&nwlpplyinngﬂed
stresses. lnqcﬂng,lppm:dmnelyuOsemndswurequlredforheaﬂngmd
60 seconds for cooling. One set of data was obtained by applying a different
stress to separate samples and straining them to high elongation (>30%).
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Another set of data was obtained by using one sample and varying stress, and
measuring the strain rate, only allowing 3 to 5% strain at each stress level.

The effect of thermal cycle amplitude was explored in another series of

experiments. Longitudinally oriented composites were studied at a constant

stress of 10 MPa. The amplitude of the temperature cycles was varied by
decreasing the lower cycle temperature. The high temperature was
maintained at 723 K. To accommodate the largest possible range of thermal
cycling amplitudes, two cycle periods were used. A 90 second cycle was used
for the smallest thermal cycles (678 X-723 K through 257 K-723 K). And a 200
second cycle was used for the larger thermal cycles (606 K-723K through 228 K-
723 K). The cycle sizes were varied by changing the heating and cooling rates.
The smallest cycles were attained by insulating the furnace. Faster cooling
rates were achieved through forced-air cooling. The largest cycle (228 K-723 K)
was achieved by cooling with a liquid nitrogen mist. One sample was used in
these experiments. A few percent strain in each cycling condition was used to
determine strain rate.

Results and Analysis
Determijnation of Constants

The first task in predicting deformation behavior is to identify
appropriate constants for the model. The aluminum diffusion constants37-39;
and values for the moduli of the silicon carbide*? and the aluminum4! and
thermal expansion constants¢243 for both materials were taken from the
literature. These data are presented in Table L

The matrix stress v. strain-rate relationship as well as the geometric
factor, F, can be estimated from the 723 K isothermal strain-rate-change tests
on the longitudinal and transverse samples. These data are shown in Figure
8. From these data, the independent contributions of geometric
strengthening and matrix strength must be determined. One must realize
that the introduction of whiskers into a matrix strengthens the resulting
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composite in two independent ways: 1) Whiskers inhibit the motion of
dislocations directly, and by stabilizing small subgrains (i.e. they effectively
strengthen the matrix by refinement). This effect is independent of composite
orientation; 2) As discussed previously, the whiskers change the way in
which the composite may deform. The whiskers bear a large part of the stress.
Therefore, stress and strain locally in the matrix are no longer equal to the
stress and strain macroscopically imposed on the composite. The magnitude
of this geometric strengthening is a function of composite orientation.

Since in a real composite there is a complex distribution of whisker
sizes and inter-whisker spacings, and slip will generally occur where easiest,
effective values of S and L (in the context of Equation 7} are needed to define
F. In this analysis it is assumed that the matrix stress v. strain-rate behavior
can be approximated by the the composite when tested in the transverse
orientation (l.e. F=1 in this orientation), since whiskers which are
perpendicular to the testing axis cannot bear any load. While this assumption
is not strictly correct, it is a useful one, and the error it introduces is discussed
later. Thus, K and n in the constitutive law, Equation 18, can be set based on
the transverse tensile data, and are shown in Table L. Since the matrix
behavior is assumed to be represented by the transverse stress v. strain rate
relationship, in a composite with a reinforcement factor of F, the same state of
stress and strain rate in the matrix will exhibit a macroscopic composite flow
stress a F times greater, and a strain rate which is decreased by a factor of
F/Vm. These relationships come directly from Equations 8 and 9. In applying
ﬂ\isreumingbl?iguns,al?ofumbeesumatedfurthelongimdlml]y
oriented composite. This is a reasonable approximation. A close packed array
of 10um long, 1pm diameter whiskers, which comprise 20 volume percent
has an inter-whisker spadng of about 2.0um. merdorel'ucalaﬂatedby
Equation 7 is about 1.25,
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The constants presented in Table 1 were used with the model and
predictions were made regarding deformation of the 6061A}-20% SiC,,
composite under thermal cycling conditions. These were compared directly
to the thermal cycling data obtained experimentally.

Stress and Strain vs. Time -

Figure 9 shows the type of behavior, in terms of stress and strain as a
function of time, which are available from this model. These simulations
were run under imposed axial stresses on the composite, Ocompr Of 5 MPa and

. 20 MPa. Figure 10a shows the sinusoidal temperature variation which was

used in modeling. The cycle is varies from 373 K to 723 K with a 200 second
period.

The temperature change produces a normal stress in the matrix. This
stress, Oy, is plotted as a function of time in Figure 9. Since the model
incorporates the temperature dependance of flow stress, the magnitude of the
Gy increases throughout cooling, but eventually decreases upon increasing
temperature. [t is also noteworthy that changes in the applied stress serve to
change the thermally induced siress slightly. This occurs because the full state
of stress In the matrix is estimated.

The components of plastic strain as a function of time are plotted in
Figure 9c. The axial strain components at 5 and 20 MPa are shown on the
bottom part of the figure. Again, variations in the applied stress have little
effect on these strain components. The upper curves show the plastic
elongation of the composite as time progresses. The slope of this line over
several cycles gives the steady state strain rate of the composite. Examination
of these curves shows that In this range, the composite strain rate is
approximately proportional to the applied stress and that significant
composite elongation only occurs when plastic flow is being induced by
changing temperature.
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The predictions in Figure 9¢ only represent the effects of plastic
elongation, which occurs by shearing of the matrix elements. The composite
length may also change by thermal expansion. However, as analyzed by
Garmong#, elastic, plastic, and thermal expansion strains must be coupled in
these composite systems. Continuing with the assumption that there is
perfect bonding at the whisker / matrix interface, the lengths of the whiskers
and matrix elements must remain equal. Therefore, the total axial strain in
the composite, eT, is given by the sum of the reversible elongation (thermal
and elastic) of the whiskers (which is equal to that for the matrix) and the
plastic elongation of the composite. This is given by:

T= +a (AT + o™
it e
ecomp Is defined in Equation 17. Ac™his refers to the change in the axial stress
in the whisker, relative to that which would be present under load but

without any thermally induced internal stresses. This can be related to the

matrix stress by the isostrain rule of mixtures as:
- v- o“l"
Ve @

tﬁ.

9% is defined by Equation 10.

The total composite axial elongation is plotied as a function of time
with applied stresses of 5 and 20 MPa in Figure 10a. This figure shows that
ﬂmmnletpmsimhgamﬂyﬂwdoudmntmmforndngleﬂumalqde.
However, the applied stress also leads to composite elongation, and the
elongation rate is roughly proportional to the applied stress.

Another interesting feature of this analysis is that If the plastic
elongation of the composite elongation is neglected (i.e. only the last two
tamsoquuaﬁmmmmﬂered),ﬂlmisahyﬂaisillntherdaﬂmMp
between composite strain and temperature. This is illustrated in Figure 10b.
This hysterisis will exist regardiess of applied stress. However, its magnitude
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may be affected somewhat. This effect was analyzed in a similar manner by
Garmong* and this prediction shows the same features as experimentally
measured length v. temperature curves for composite materialst,

Effect of Applied Stress

The strain rates obtained from 6061Al-20% SIC, composite cycled
between 373 K and 723 K at various applied stress levels are shown in Figure
11. To mode! the stress v. strain-rate behavior, a sinusoidal temperature with
the same amplitude and period was used with the model, and the steady state
composite strain rate was calculated at several imposed stresses. This
predicted applied stress stress (Geomp) v. strain rate ( €comp) relationship is also
plotted in Figure 11. The creep rate of the metal-matrix composite in the
absence of an internal stress has also been predicted and is presented in Figure
11. This relationship was developed by setting the difference between the
coefficients of thermal expansion between the whiskers and matrix to zero
(Aa=0). Therefore, no thermal stress oy, could develop in the compasite.
Running the simulation then gave the isothermal creep rate as time averaged
at each temperature at the applied stress. This is equivalent to the isothermal
composite creep rate at the "effective temperature” as defined by Sherby and
co-workers!.

The figure shows the predicted thermal cycling stress v. strain-rate
behavior for the metal matrix composites has the same characteristics as have
been seen experimentally. The steady state creep rate has a strain-rate-
sensitivity exponent approaching 1 at low stress. The creep rate approaches
the effective isothermal behavior at high stress. And, most importantly, the
predicted behavior corresponds to the experimentally observed behavior
within the experimental error in the strain-rate measurements. This suggests
the proposed model may accurately predict deformation under non-
isothermal conditions.

Under these temperature cycling conditions and low stresses the high
strain-rate-sensitivity-exponent inhibits neck growth and allows extremely
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high tensile elongations. At 623 K and strain rates on the order of 10-3 51 this
composite fails at less than 10% elongation. Under temperature cycling, the
Al-5iC,, composite reached elongations to failure of 12%, 600%, and 1050% at
respective applied stresses of 40 MPa, 20 MPa and 10 MPa. This is consistent
with the increase in the strain-rate-sensitivity-exponent with decreasing
applied stress.

Effect Of Thermal Cycle Amplitude

Another important issue is how the amplitude of thermal cycles will
affect creep rate. This effect may be important in the life prediction of metal-
matrix composites under non-isothermal conditions. Furthermore, this
understanding can aid in the determination of what accuracy in temperature
control is needed to acquire "isothermal® creep data when testing metal-
matrix composites.

To address these issues the model was run to simulate the conditions
of the experiments run with varied temperature cycle amplitudes. In
modeling, the sinuscidal thermal cycle was imposed on the composite, with
200 and 90 second periods. The high temperature of the cycle was maintained
at 732K, but the lower temperature was varied. The resulting predictions and
experimental results at 10 MPa applied stress are shown in Figure 12 More
than one order of magnitude in both temperature cycle amplitude and strain
Tate were experimentally examined. Furthermore, since the power-law creep
rehﬁmuhipismﬂmoepmd,ﬂtispmdicﬂonis:hoexpechdmbemoduvey
small temperature cycle amplitudes. Thus, the predictions and the
experimental data are in good agreement. These data, and the data shown in
thelutsecﬁmﬁmg]ymppoﬂthepmpoudnnddforﬂimalcydlng
plasticity in metal matrix composites.

The shape of the predicted relationship between cycle amplitude and
strain-rate requires some explanation. At low cycle amplitudes, the thermal
cyding creep rate approaches the isothermal creep rate. The deformation rate
is not strongly affected until the thermally induced stress is on the order of
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the applied stress. Upon increasing the thenmal cycle amplitude, the thermal
cydling creep rate does not significantly increase unti} the thermally generated
stress becomes similar to the applied stress. As the thermal cycling amplitude
increases, the composite creep rate is driven strongly by the imposed
temperature changes. For large cycles most of the work of deformation is
done by the thermally induced stress and the applied stress merely influences
the resolution of the strains. At very large thermal cycles, the slope of the
strain rate v. thermal cycle amplitude curve begins to decrease. This can be
undmmodbymﬂhgzhntﬂmmrvamgmudbyﬁﬁngﬂwhigh
temperature and cycling to lower low temperatures. Thus, the material
strength (averaged over the cycle) increases as the amplitude of the
temperature cycles increases. As was shown in Equations 4 and 17, at any
particular time, the composite strain (with applied stress held constant) is
inversely propertional to the matrix flow stress. Thus, little elongation is
obtained in the low temperature part of the cycle where the matrix flow stress
is high. Conversely, if the low temperature were fixed and larger cycles were
achieved by using higher high temperatures, the slope of the strain rate v.
cycle amplitude curve would continue to increase, since the average matrix
flow stress would continue to decrease.

Figure 13 shows the predicted effect of different applied stresses on the
temperature cycle amplitude v. strain rate relationship. The most striking
aspect of this figure is that the curves generated at 5, 10 and 20 MPz are weil
aepu:tedatlowcydeamplhudu,butbemmevuydmewseﬂunthlgh
stress amplitudes. This is an expression of the stress exponent being high in
isothermal conditions, and low under thermal cycling conditions. Note that
the magnitudes of temperature cyde amplitudes needed t double the cycling
rates are approximately 3 K, 6 K and 12K, at 5 MPa, 10 MPa and 20 MPa,
respectively. This again demonstrates that deformation will be accelerated
when the thermally induced stress is of the same order of magnitude as the
applied stress. This figure also clearly shows that composite behavior at low
stress is very strongly affected by temperature fluctuations.
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Discussion

A first-order model for the analysis of deformation in polyphase
materials under thermal cycling conditions has been developed. This model
allows the straightforward examination of how microstructural and thermal-
" cycling variables can influence deformation. Despite geometric
simplifications, the model has been shown to agree with experimental data
with reasonable accuracy and no serious discrepandcies between the predicted
and the experimentally observed thermal cycling behavior were found. Thus,
this rew model seems to have real predictive capability. The important open
question is: is the model valid? To make the problem tractable and more
intuitively clear, scme gross simplifications were made. Specifically, there
were two important simplifications in the model development. First, in real
composite materials, the state of stress and strain in the entire matrix cannot
be characterized by one representative element. Secondly, it is not yet clear
that the geometric factor "F", which was developed in two dimensions, has
relevance in real composite materials. These issues will be addressed in turn.

In real composite materials, stress and strain in the matrix cannot be
resolved into two independent shear and axial components which relate to
composite elongation and shear, respectively. Stress and strain in the matrix
have a complex spatial variation which cannot be simply characterized. It is
suggested that the important accomplishments of the current method are that
it estimates, with reasonable accuracy, the effective plastic strain induced in
the matrix with each temperature cycle, and the effective stresses and strains
involved in composite elongation are also estimated in a reasonable way.
Recall that a key result of the previous Levy-vonMises based analyses of
related problems is that elongation per cycle (at fixed applied stress) is
proportional to the amount of plastic strain per cycle and inversely .
proportional to the material flow stress. In summary, the key to the physical
process is that: temperature cydling induces some amount of plastic
deformation in the matrix; this strain would be fully reversed with each cycle
if no external stress were imposed, but with stress applied, the matrix strains
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irreversibly in response. Therefore the model is predictive, not because it
precisely describes the state of stress in the matrix, but because it estimates the
effective thermally-induced plastic strain and accounts for the applied stress
in a reasonable manner.

The relationship between the applied stress and the stress which acts
on the matrix is the other major assumption of this model. The need for a
term like "F" is justified by the fact that the flow stress of whisker reinforced
composites varies with the testing axis. If the matrix is assumed to be
isotropic, it follows that the whisker alignment and distribution will
influence the stress transmitted to the matrix. A geometric term is also
important since it influences the transition-strain-rate between low stress-
exponent and high stress-exponent behavior. Assuming a fixed amount of
thermally induced plastic strain per cycle, the transition rate will be
proportional to 1/F. In the current analysis, the assumption that F=1 for the
compoasite oriented in the transverse orientation is certainly not strictly true
(but this error is prubably small). However, this will not produce a large error
in the model, since the creep constant, K, and F must be set together based on
longitudinal creep data. (Thus, at high applied stresses, the thermal cycling
creep rate matches that which would result without any internal stresses).
Thus, If °F" is estimated as being 50% 00 low, the strain rate will be predicted
to be 50% too high, at most. Therefore, the predicted deformation behavior is
only weakly dependent on F. By this argument, one would expect that
loading along other axes (i.e. transverse) will have relatively little effect on
strain rate under thermal cycling conditions. This has been shown
experimentally by Hong ef. al2.

The assumed constitutive law is also somewhat oversimplistic. The
model essentially uses steady state creep data to set the stress v. strain-rate
behavior of the matrix. When effect of directional hardening (which has
littleeffectlnthethermalcydlngcnu,butlsmlmpaumfaminsﬂdy
state creep measurements) is considered, the effective strength of the matrix is
lowered. Therefore, the amount of thermally induced effective plastic strain
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in the matrix is underestimated by this model. On this basis it is expected that
the model may underestimate the composite strain rate slightly. This could
be corrected if the matrix constitutive behavior in these composites were
understood more fuily.

Congluding Remarks

A simplified, first principles model for modeling deformation in metal
matrix composites under conditions of temperature change has been
presented. The key elements of the model are a temperature and strain rate
sensitive constitutive equation for the matrix material, and a simplified
geometric formulation. This model is capable of analyzing the full rarge of
composite deformation behavior, ranging from large thermal cycles to
isothermal creep. Furthermore, the model allows time-based analysis of the
stresses and strains which act within composites when subjected to
temperature changes. The results of this model have been shown o be
consistent with a wide range of experimental data. This agreement is in spite
of over-simplification with regard to the state of stress and strain in the
matrix. The good comparison between theory and experiment suggests that
the most important factors in composite deformation under large
temperature cycles are: the amount of thermally induced plastic deformation,
and the ratio of the current flow stress and the applied stress. The
reinforcement geometry is not a large factor, 30 long as the entire matrix is

experiencing thermally induced plastic flow in a fairly uniform way.

The utility of models of this type is that they allows a systematic
analysis of how relevant variabies (applied stress, temperature cycle
amplitude and period, reinforcement geometry, thermal expansion
coefficients, elastic moduli, matrix constitutive behavior, etc.) will effect the
deformation under conditions where there temperature changes with time.
Ihus,&dsnppmdlmybeunﬁxlinlifepredkﬁonmethodologymd
materials design related to composite materials.
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DNomenclature

Stress and Strain

oj - normal stress Subscripta

%jj - shear stress Y - whisker direction

¢j - normal plastic strain X - transverse direction

Tij - shear plastic strain max - in maximun orientation
& - normal plastic strain rate " comp - for the composite

eT - total elongation of composite

¥%;j - shear strain rate

AY - strain increment, as resolved in maximum orientation
0 - angle between Y axis and maximum shear direction
Ao - change in whisker stress due to temperature change

E - Young's modulus Subacripta
« - coefficient of thermal expansion w - of the whisker
Aa - difference in afand any m - of the matrix

V - volume fraction
F - composite geometric factor (related to whisker spacing/length)

Matriz Plasticit
K - a creep constant

n - the stress exponent

Dot - the effective diffusion coefBcient

Test Paramsiers
¢t
At - a short time increment

T - temperature
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Table I. Constants used in simulation of MMC Deformation

Aluyminum Diffusion Data
MM@E)_QMMMM

17 x 104 28x 106 142 82

Composite Creep Constants & Geometric Factor E R A
Materia| n K F E ]
6061-20% SiIC 11 1.07 x 103 12 ]
Component E (MPa) a(C-1) Vol Fract - 3
Al 55,000 A x106 08 N i
5iC 510,000 46x 106 02
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Rgure 1. Schematic diogrom of the miationship between appied stress
and strain rate for materials with lage intemal sirain mismatch under
repeated temparature cycing. Note that at low applied siresses.
themmal cyciing induces o strainote-serslivity-exponent of one and the
strain rate s greatly Increased relative 10 sothermal behavior ot the some
stress. At high applled shesses the Intfemally generated siresses have
reigtively Mte effect.
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Ague 3. Assumed composita geometry a) unstrained; b) after
composite elongation.

Agure 2. idealized Compotite Geometry, with X-¥ coordinate system
shown. The prevaling siate of stress In the matry, whan consirained
between two closely spaced whiskers § shown In (D).
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Rgure 7. Row chart of the computational steps irvolved with the
simulation of creep of whisker reinforced composites, under themal
cycing conditions. The symbok represent values defined In the taxt.
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Figure Pa.b. c. Results of the simulation of the creep of @ whisker
reinforced composite under themmal cyciing conditions at opplled
stresses oeomp Of 5 and 20 MPa . (o) shows the tempercture cycle which
was imposed. The axial stress in the matrbx, gy, 0s o function of time is
shownin (D). Note that the magnitude of the sitess drops in tha iate
stages of heating cycles, and continues to rise during cooling. The
plastic strolrs generated. £, (thermally INduced) and teomg (COMposite
elongation). ore shown in (C). The siope of the ey line with time gives
the steady state. thermal cycing strain rate. The constonts used In this
and subsequent predictions are presentad in Toble 1.
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Figure 8. hothermal stress v. strain-rate reiciionships for the longitudinal
ond fronpvene SIC reinforced Aluminum composites at 723 K. The
geometic factor, F, & 1.2 In this cose.
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Fgure 10b. Thermal strain of the composite ( &, (AT) + E (A0™)) ma
function of temperature. Note the hystedsis in the this “reversitie” strain
component (L.e. total compostie strain minus plostic elongation).
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Agure 12. Comparison of experimental data 10 the model. in both the
prediction ond the experiments, the applled siress was 10 MPa and
Mndcycbsmdﬂd'ndahlghtmdmdmx.mdm

ampitude. Twomermolcychgpeﬂoammwmm
were used.
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