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Abstract. Using 4 proper space average. we have caloulated svstematically the pe con-
ductivity and percolation threshold of cermet thin films and a granular composite in various
mean-ficld theories. The results emphasise the decisive rale of the composite microgeometry
which has 10 be considered together with other eftects neglected in effective mediom
theories. They should help in the interpretation of the growing number of experimental data
On cermets. composite and porous materials,

1. Introduction

The relationship between the microstructure and the optical and transport properties is
one of the most important and interesting aspects of the physics of composite materials,

Cermet thin films used to fabricate selective surfaces for solar photothermal energy
conversion are made of a mixture of metal (for instance Cr. Au. Pt. Co, ...) and
insulator (Cr,04. Al.O,. S10,. . ).

When the metal concentration or metal volume fraction fis small, the system is made
of metallic grain inclusions in an insulating matrix. By contrast when ftends to one. the
system appears as a mixture of insulating inclusions in a metallic matrix.

For a critical value of f. called the percolation threshold ., the system undergoes an
insulator-metal transition. In the vicinity of f,.. the dielectric constant and therefore the
optical properties exhibit dramatic changes and as a consequence it is possible to prepare
films whose reflectivity can vary from zere to one in a narrow range of frequencies. The
condition for an efficient selective surface is that this transition occurs for frequencies
lying between the solar spectrum and the infrared black-body radiation spectrum of the
collector.

The grain formation in these films isthe result of several processes. essentially surface
diffusion and coalescence and as a consequence the final microgeometry depends on the
nature of the cermet constituents and of the film preparation.

One interesting aspect of these systems is the dependence of £, and therefore of the
conductivity on the microgeometry and in particular the shape and distribution of grains.
This is an important property in its own right since it determines the concentration of
inclusions for which dramatic changes in the electrical and optical properties occur.
The study of the insulator-metal transition and its related critical exponents can give
important clues to the microstructurc.
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7184 F Brouers

In Co=510- for instance. f v about 0535 while 1t s about (.25 for Co-AlLO..
This ditference has to be related to the different microgeometry of the two materials
{Niklasson and Grangvist 1984, Barzilai er al 1981},

It is therefore of interest to have an overall picture of the dependence of these
properties on the nature and shape of inclusions.

Another interesting related probiem is the relation between the electrical resistivity
of arock and its pore fluid content. An empirical equation that relates conductivity and
porosity was first proposed by Archie (1942) and has become known as Archie’s law:

Or =aa,g¢g”

where o, is the water conductivity and ¢ and m are empirical parameters that vary with
the rock microgeometry. The exponent m appears to be non-universal und can vary from
1.510 4. ais generally assumed to be of the order of one.

The main difficulty with percolation in that system is that the uwsual percolation
models require a fimte critical threshold. There is currently a discussion { Balberg 1986)
about the existence of a strictly zero or a very small partial porosity.

In some simple porous rock models. it can be shown that in the case of a large aspect
ratio. one can obtatn ¢ values which can be made as small as desired. Balberg (1986)
has also argued that ordinary percolation theory can account for the zero pore space
threshold as well as for the power-law behaviour derived from available experimental
data. In all these problems, effectis e medium theories are natural reference points with
which percolation theory resuits can be compared.

Itis therefore of interest to have an overall picture of the variation of bc conductivity
and percolation threshold with the aspect ratio of particles in the various mean-field
theories proposed so far.

In 88 2 and 3, we recall the two basic Maxwell-Garnett (Garnett 1904, 1906) and
Bruggeman {1935) theories as well as the expression for the DC conductivity and the
percolation threshold of an ellipsoidal inclusion. In § 4 the same quantities are expressed
in the symmetrised Maxwell-Garnett approximation.

In § 5 we introduce an average of randomly oriented spheroids valid for any con-
centration and calculate the variation of percolation threshold and DC conductivity with
the aspect ratio and depolarisation factor. These results are commented on in the
conclusion. An Appendix deals with a proof of the equivalence of two different sym-
metrised Maxwell-Garnett approximations.

2. Aggregate and separate grain structure

As discussed in a number of recent papers {Niklasson and Grangvist (1984) and ref-
erences therein), granular composite films generally can be described by one of the two
distinct microstructures: an aggregate structure where the metal and insulator grains are
inter-dispersed and topologically equivalent and a separated grain structure where the
metal and insulator exhibit an asymmetric topology consisting of either metalilic
inclusions in an insulating matrix or insulating inclusions in a conducting matrix.

3. Bruggeman and Maxwell-Garnett approximations

This dichotomy finds its counterpart in the two main theoretical approaches which have
be=n used to interpret the optical and transport properties of these materials.

ek i e b, n TS




Conducrivity in mear-field theories 7183

The traditional ideas of the effective medium dpproximation have been introduced
in this problem. nameh a random unit is subjected to an. as yet unknown. effective
medium which is determined to be such that the resulting extra perturbation vanishes
on the average over all possibilities of the random unit. If this perturbation is taken to
be the Lorenz-Mie scattering amplitude in the direction of the impinging light beam
S(6 = 0}, Niklasson and Grangvist (1984) have shown that one can obtain elegantly the
various mean-field approximations, The condition

(S(e=0p=0 ) (H)

first introduced by Stroud and Pan (1978) is a generalisation of the optical theorem to
non-homogeneous systems.

If the random unit is a sphere of component A {concentration f. dielectric constant
€alw}or component B (concentration 1 — f. dielectric constant ep(@) embedded in an
effective medium (dielectric constant £*(w)) (see figure 1), the condition {1) reads in
this case:

fSa(8=0)+(1-f)15,(8 = 0) = 0. (2)
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Figure 1. Random units A and B in the effective medium (Bruggeman approximation).

Using the dipolar approximation of $(8) for a sphere (Van de Hulst 1981) (1) leads to a
relation which allows the calculation of the effective medium £*(w):

Ep = Efa €p — FRa
. t(1-f)—2 -9 3
Ep + 2684 11 Ep + 2ef, (3)

This is the approximation known as the Bruggeman approximation (BA) (Bruggeman
1935). The BA is analogous to the cpa theory of random alloys and applies to the
aggregate structure,

If the random unit is a coated sphere, for instance an internal sphere A of radius r,,
surrounded by an external sphere B of radius ry with a volume fraction f = (r, /rg),
using the dipolar approximationof § (8 = 0)foracoatedsphere having this compositional
geometry, the condition $§3(0) = 0 yields the expression

Ea + 26 +2f(en — £p)
? Ea + 265 — fle, - £p)
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7186 F Brouers
which is the Maxwell-Garnett approximation (MG) (Garnett 1904, 1906) for an A
incluston in a B host. If instead one considers a B inclusion in a A host, by making the
replacement A= B and f— 1 - f. one gets an analogous relation for the inverted
structure. One can calculate the bC conductivity in these two approximations by using
the relation between dielectric constant and conductivity in the limit @ — 0. This is
equivalent to replacing €, by 7 and € by 0. In that case the effective £* is the ratio of the
composite conductivity to the pure A conductivity. For the BA. one gets:

Opa/0a = (3f - 1)/2. (5}

The percolation threshold is f, = 1,/3.
In the MG. for an A (metaliic) inclusion in B (insulator), the system is always an
insulator and f, = 1. For a B inclusion in A. in contrast

OmG/0a = 2f/(3 = f} (6)

and the relative conductivity varies from 0 to 1 without percolation threshold (f, = 0).

Since the shape of inclustons in cermets are far from being spherical, the theorv can
be extended 10 ellipsoidal inclusions. If g is the depolarisation factor in the direction of
the field. equations (3)-(6) become respectively:

E4 — EBa £g — FR
O ey raarrhdl @
E;{GZEBEEA"*(]“S)EB +f(1-g)(ean — €3) (4]
BEa + (1 = g)ep ~ fg(en — €5)
Opal0a = (f~g)/(1 - g) (fe=8) (5%
Ouc/0a = fll - g)/(1 - f3) (fe=0) (6"

In the BA the two depolarisation factors are not necessarily the same. In that case
{3') becomes

Ex — ERa £p ~ Ega
1 - =0 "
Lenrenten -0 U D et — i 37
and
Osa _ SO —gs)—(1-/)ga (f= £ .) (5
A - t-ga)+fU-gg) ¢ l-gg+gal )

The percolation threshold volume fraction depends on the shape of the random units.
This is illustrated for spheroids by considering the two following limiting cases. If g, 5,
is the depolarisation factor of random unit A (B) in the direction of the minor {major)
axis of the oblate ( problate) spheroidal unit

For g, — 0 (problate spheroids) fc—0 foranygg
For gg — 1 (oblate spheroids) fe—=1 foranyg,.

4. Symmetrised Maxwell-Garnett approximation

For small concentrations of inclusions (fclose to 1 or to 0), it appears that a number of
composite films are better described by the separated grain structure. Since the MG

-32 -
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appProxXimition 1s unable to describe the metal-insulator transition. symmetrised MG
approximations have been proposed by intreducing an average over the two following
random ur ‘ts: an inclusion of A coated by a shell of B and an inclusion of B coated by a
shell of AL Using this picture the film can be modelied as a mixture of two tvpes of coated
ellipsoids. Dielectric-coated metal ellipsoids are denoted as tvpe 1 units and metal-
coated insulistor ellipsoids are denoted as tvpe 2 units (see figure 2. The probiem s to

Figure 2. Random units | und 2 in the effective medium tsymmetrised Maxwell-Garnent
approximationy,

evaluate the proportion of these two random units for a given value of the filling factor.
Sheng (1980) has introduced a probabilistic growth model where the probabiiity of
occurrence of these two units as a function of f is given by the number of possible
configurations of each type of units. This number is given by the volume available to the
internal ellipsoid in the external ellipsoid. In the case of coated confocal spheroidal
units. these probabilities are (Sheng 1980)

P = ul,"(ui + u-) and Pr= w1, + us) (7)
u, ={(] —fi -‘)fl and u_,:[]-(]_f)l}]_‘-

For spherical inclusions (g = 1/3). two schemes have been used 10 apply the Sheng
approximation. Niklasson and Grangqvist (1984) have used the condition (1}ie.
PS8 =0)+p.S(8=0)=0 (8)

where $,(6 = 0) and 5,(6 = 0) are the scattering amplitudes for 1vpes 1 and type 2
respectively. Gibson and Buhrman (1983) have calculated the dielectric constant of tvpe

1 and type 2 units in the MG £} and €7 and then introduced these two values in the’

Bruggeman formula (3) with £a=¢] andep = ¢} andf = P, Itcan be shown that these
approximations vield the same second-order equation for ¢* (see Appendix) and are
therefore identical.

In the case of coated confocal spheroidal units when the depolarisation factors in the
direction of the field are respectively g, and g.. the same method can be used and again
itcan be shown that the two schemes give the samne results. In particular, the conductivity
of the composite material can be written-

0*/0, = Fo, 9

-..33’
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Conductivity in mean-field theories

Formulae for the relation between depolarisation factors and axial ratios for sphe-
roids are found in Landau and Lifshitz (1960).

5. Average for randomly oriented spheroids

Any application of this formalism to cermets requires some average of the randomly
oriented spheroids. If this 1s done over the three spheroid axes the Buggeman self-
consistent equat:on (1) reads:

fASa + 484 + (1 = )iSy, + 485, =0 (13)
where
E.\ - £

. v (14)
£+ gy —F7)

Syt =x.v) =
£, 15 the depolarisation factor of random unith A in the direction of the minor (major)
axis of the oblate ( prolate) spheroid unit and

Ean = H1—ga) Se.=SadA=B.f=21-f})

In a similar manner the self-consistent equation (8) for confocally coated spheroids
can be written:

pIE%SIx+:’;Sl_\E+p2 |-JlSlt +:%53\|=0 (15)
where

- {g.(f— 1)(ea — €p) — £p)(€p ~ €") — fen(€n — Ep) (16)
[g.(f— 1) es — €5) — ep]{e™ + g1, (€5 — £*)} — g1 fenlen — £p)

Sui=x.y)

g1, is the depolarisation factor of random unit 1 in the direction of the minor (major)
axis of the oblate (prolate) spheroid random unit and

gn=¥1-g,) $,=S(A=2B,1=22f=1-/).

In contrast to previous average treatment (Granqgvist and Hunderi 1977) this pro-
cedure is valid for any volume fraction f. If we replace £, by i and g5 = 0, the composite
conductivity of the averaged Bruggeman and averaged symmetrised Maxwell-Garnett
approximation can be calculated for any set of values (g4, gs) or (g, g2) as a function of
fand the percolation threshold f, may be determined. The results of the calculations are
shown in figures 4 and 5 and in tables 1 and 2. Figure 4 exhibits the averaged Bruggeman
results. Figure 5 exhibits the averaged symmetrised Maxwell-Garnett approximation.
The curve for the couple of values (g, = 0.33, g, =0.945) and (g, =0.333, g, =
3.7 x 107 %) correspond to the case considered by Sheng (1980). One can verify that the
results based on {15) and (16) are very close to the ones derived from the slightly more
complicated expressions of that paper.

The comparison of the two figures emphasises the qualitative difference between the
two fundamental composite systems mean-field approximations as far as the dependence
of conductivity and metal—insulator transition on microgeometry is concerned. This has
10 be present in mind when interpreting cermet optical and conductivity data.

From the examination and the comparison of figures 4 and 5 a few conclusions may
be drawn:
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where a: is the MG conductivity for the conductive coated spheroid 2:
o =f(1 - g)/(1 - fg-} (10)
and Fis a statistical factor depending on p, and the two gs:

F=8:‘P:+P:{£1HRJ)A an
g~ 1+pdg —g)

The percolation threshold £ is given by:
f. = f(p%) (obtained from (7))

and

pr=g:1+g:—g)) (12)
The shape of the function 0* /o, and the values of the percolation threshold depend
dectsively on the values of g, and g and therefore on the shape of the inclusions. This is

illustrated by considering the two extreme limiting cases:

g, — 1 (oblate spheroids) where p$ =f = I foranyg,
and

£: — U (prolate spheroids) where p§ = f, = Oforanyg,.

The variation of the composite conductivity (9) expressed as a fraction of the metallic
component bulk conductivity is piotted in figure 3.

I d
t !
- !
ool i
s | /
B B !
0.4 ; !
L ’ /
: /
L : 4
0.2 :, //
I ' -
¢ 0.2 G.4 0.6 4.8

Figure 3. The normalised conductivity as a function of metat volume fraction for three sets
of {g,. g-) values in the symmetrised Maxwel-Garnett approximation. (g,. g,): Full curve,
(0.333. 0.004); doteed curve, {0.333. 0.333); chain curve., (0.333,0.945).

To make the comparison with the work of Sheng (1980) easier we have chosen the
following values: for the random unit 1, g, = 0.333 (spherical random unit); g, = 0.945
and g; = 3.7 X 1072, values of the depolarisation factor corresponding respectively to
an oblate (prolate) spheroid random unit whose minor (major) and major (minor) axes
of the elliptic cross section are 0.035 and (0.035)"!,

- 35—
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0.2t

¢

Figure4. The onentationally averaged normalised conductivity as afunction of metal velume
fraction for several se1s of depolarisation factors (g, gx) in the Bruggeman approximation
(ga- go}: C. (0333, 0.333); B. (0.004. G.004), {0.004. 0,333} (0333, 000} A, (0.945,
0.004). 10,645 0.333): D (0004, 0.945). E, (0.333,0.945).

08t

— 0.6}

Gat

0.2t

o 0.2 0.4 0.6 0.8
f
Figure 5. The orientationally averaged normalised conductivity as a function of metal volume
fraction for several sets of depolarisation factors {g,, g;) in the symmetrised Maxwell-
Garnett approximation.
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0.004 0.333 CDEF
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0.333 0.004 ABDEF
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0.945 0.004 CGF
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Table 1. The percolatuon threshold volume fraction in the orentationally averaged Brug-

geman approximation. (The figures in brackels are the volume fractions corresponding to a
normalised conductivity equab100.01,)

<

N
>~ En

£y s IR AT gk 0333 0700 0945  p.oge

=

PRV UU'_T 0.2 0.002 0.002 ¢.002 0.008 0026
(0.0ax) (U048} (0.046)  (0.043) 10.054) (0169} (0.394)
17x 10 ¢ Q 017 0 (}]7" 0.017 0.016 0.020 (1.068 0.190
(0.061) (0061} 10.059)  (0.055) (0.069)  {0.209) (G.457)
nos 0170 0370 0167 0.156 0.190 0.455 0.727
o (194 ((193) 10LI89) (0.178) (0.215) {0491 (0.756)
03 1.357 1 356 0.350 0.333 0.387 0.692 0.877
o (0.363) (0.363) (357 (0.330) (0394 (0.698)  (0.880)
0700 (252 (0282 0.247 0.233 0.27 0.378 0.813
' (13.264) {0.264) (0259)  (0.244} (0.290)  (0.59 (0.822)
0,945 4.063 (.063 0.061 (057 0.071 0215 0.466
’ (0.084) (110843 (0.082)y (0 076) (.094)  (0.271 t0.543)
ey 0.019 0.619 0.019 t.017 0.022 0.0714 0.204
11.042) (.04 (G.041) (0038 (C.048)  (0.153) {0.366;

(i) The coating of inclusion in the separated grain structure increases the value of the
percolation volume fraction threshold.

(1i) For volume fractionf > 0.5, the departure from sphericity implies a decrease of
the average conductivity. In the separated grain structure model. this effect is more
pronounced for oblate random unit spheroids 2 (conductor-coated insulating inclusions).
In the aggregate structure model. this effect is more pronounced for oblate insulating
spheroid inclusions.

(i) For volume fraction of <0.5, the percolation threshold £, shifts to lower f for
prolate random unit 2 in the first mode! and prolate random unit A in the second model.

Table 2. The percolation threshold volume fraction in the orientationally averaged sym-

metrised Maxwell-Garnet: approximation. (The figures in brackets are the volume fractions
corresponding to a normalised conductivity equal to 0.01.)

g:
l\ 43x10°* 37x107' 005 0.333 0.700 0.945 0.984

s3xq0- D164 0.25¢ 0398 0461 0430 0331 0264
‘ (0.369) (0.374) (0.42G; (0.467) (0.439) (0.373) (0.350)
3910 0164 0.259 0398  0.461 0429 0331 0263
: (0.369) (0.374) (0.420)  (0.466) (0.439) (0.372) (0.350)
0.05 0.163 0.258 0397 0460 0428 0329 (262
e (0.367) (0.373) (0.418)  (0.465) (0.437) (0371) (0.349)
0333 0.160 0.254 0392 0455 0423 0335 (268
' (0.363) (0.369) (0.413)  (0.460) (0.433) (0.3¢7) (0.345)
0.700 0.169 0.266 0406 0470 0438 0338 (270
: (0.376) (0.381) (0.428)  (0.475) (0.447) (0.380) (0.357)
0,945 0.223 0.336 0.488  0.552 0522 0416 0.4
: (0.446) (0.453) (0.507)  (0.556) (0.528) (0.454) (0.427)
0,984 0.281 0,406 0.563 0625  0.59 0491 0412

(0.512) (0.520) (0.579)  (0.628) (0.601) (0.525) (0.494)
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H the spheroid axis ratio is of the order of 100, the percolation threshold is zero and
the svstem is conducting for any {1 the Bruggeman approximation. In the separated
grain model, the coating of the metallic inclusions does not allow any percolation paths
for low values of the volume fraction and theretore the limit f = 048 reached for verv
low values of g,

Tables | and 2 give the percolation threshold for various values of (ga. g% and (g,.
¢.} in the two models. Because of the presence of long tails for some values of the
depolansanon factors. we have also given (between brackets) the values of ffor which
the cermet conductivity is one hundredth of the pure A conductivity. This can be of
importance to compare experimental results with the theoretical curves.

6. Conclusions

In this paper we have discussed systematically the DC conductivity and percolation
threshaid in the various mean-field theories used to interpret the experimental data of
composite thin films and cermets.

The aim was to have an overall picture of the dependence of these properties on the
nature and shape of inclusions. The results presented in this paper should help in the
interpretation of the growing number of experimental data on cermets. composite
materials and porous materials.

We thought that this study was also necessary 10 assess the importance of effects not
included in usual mean-field theories i.e. correlations and clustering effects. a detailed
description of the microgeometry and multiple terms in the polarisabihity.
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Appendix

For spherical inclusions (g = §). two schemes have been used to apply the symmetrised
Maxwell-Garnett (MG) approximation with the Sheng (1980) coated spheroids prob-
abilities p, and p; (7). Niklasson and Granqvist (1984) have used the zero average
scattering function (8) while Gibson and Buhrman (1983) have calculated the dielectric
constant of type 1 and type 2 units in the MG approximation €} and £} and then
introduced these values in the Bruggeman formula (3) with €4 = €] and g5 = €7 and
f= p,. The two procedures lead to the following second-order equations

Ae*?+ Be* + C=0 (A1)

where

A=20-NB-Hea — AL ~f-eaes + (2 + f)fes]
B=p B, +p,B;

H
i
}




Conductiviny in mean-field theories
! By =211 = f1ey, = (87 = 111 = Byenen — (107 = 13f + 6)e 65 — 4f(1 — [)e}
Biife=l —f. ey fg)

C= =201+ 20feien + (8 = Bf = 3jeies - 21— /)3 - 2feary

o
I

[ and are therefore identical.
i We have verified that this equivalence is also true for any value of g, and g..
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DIELECTRIC AND OPTICAL PROPERTIES
CLOSE TO PERCOLATION THRESHOLD

F Brouers

International Centre for Theoretical Fhysics, Trieste Italy.

ARESTRACT

We analyze the dielectric and conductivity properties of a metal-
insulator composite thin films or cermets close to the insulator-metal
transition. Using the frequency dependent Bruggeman approximation it is
possible to predict the existence of an optical threshold at a
concentration p* stightly higher than the percolation threshold p,. At
that concentration defined by the vanishing of the real part of the
dielectric constant and which depends on dimensionality and on the
relaxation time ¥, we show that the composite optical conductivity (or
the optical absorption] is constant up to near infrared frequencies. This
result can be related to the percolation scaling laws of a mixture of self-
inductors and capacitors and for T — 0 is in agreement with a
qualitative explanation based on real space renormalization group and
scaling arguments.

Keywords Dielectric constant,metallic conductivity, percolation, effective
medium theory, optical transition, scaling laws.
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The understanding of the dizorder induced dispercive variation of the
metalbic or ionic conductivity in disordered  materials™, thin fitms,
cermets smokes, porous materials, polymers etc. is one of the most
chalienging problems in the field of inhomogenecus materials. For
instance, close to the percolation threshold p,, the interpretation of
optical data ar radio frequencies data of granular and cermet thin films
requires an extension of the theory of percolation to mixtures of
resistors, nductors and capacitors 58

Two dimensicnal discontinuous metal films are abtained during early
stages of film growth by evaporating and sputtering onto a non-
conducting substrate. The deposited metal first form isolated islands.
They undergo coalescence growth and then via surface diffusion and
direct impingement as the film thickness increases they eventually form
& continuous film. In this case the intervening insutator consists partly of
the substrate and partly of the space between the metal islands above
the substrate.

Granular metal consist of inhomogeneous mixtures of metal and non
metal. Three dimensional composites are generally produced by co-
evaporation or co-sputtering of a metal and an insulator. They are known
as cermets.

Electrical properties of such systems vary continuously as composition is
changed when the concentration of metal is small, the metal forms smatl
isolated islands embedded in an insulating matrix and electrical conduc-
tivity is small and highly activated.

As the proportion of metal is increased, the islands grow and coalesce,
the activation energy falls and eventually for a given thickness or given
composition (percolation threshold) continuous metallic paths extending
through the material are established. At this stage the system undergoes
an “metal-insulator” transition to a conducting state. For higher metal
concentrations the structure becomes that of a isolated insulating
inclusiens in & metallic matrix. The conductivity continues to improve as
the proportion of insulator is reduced to zero.
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Fecerthy ceoeoa P‘B:*-:'*“z-‘““'z’ O A DeEpo dewenied 1o the pebisonun of
cptical properties e the viomity of the percolation threshold The
intereszant evpernmentsl observation 1= that the near mfrared trans-

mittance and reflectance as well the optical absorption become
frequency independent.

If the three groups agree ori the strong correlation between the fre-
quency mdependence of the three optical quantities and the presence of
a percolation threshold in Al and Au granular films, the magnitude of the
critical thicknesses for which this interesting phenamena occurs s
strongly dependent of the thin il deposition technology, substrate
conditions etc. The cnitical thickness is larger for conventienal evapo-
ration than for films in which the deposition is accompanied by ion bom-
biardment as in sputtering.

In the case of reflectance,a qualitative explanation of this behaviour has
been given by Yavil and Deutscher®™™® in terms of the different length
invalved in the percolation process: the wavelength A , the grain size
and the correlation length £ ,defined as the linear length above which
the probability of two sites [grains) to belong to the same finite clusters
decays exponentially and which diverges as {p - p,J™ at percolation
threshald. In the region a << A << €. a real space renormalization group
argument leads to a expression for the film transmittance given by :

Tpl=p, T + 1-p T, + (A/2malY? (p-p.) (T, - Ty (1

where T, and T; are the average transmittances of the metallic and-
insulating region at percolation. The argument strongly rely on the
assumption that T, =0 and T;=1 are independent of frequency. In the
case of the optical absorption as discussed in Gadenne et al. {1988), the
frequency [(or wavelength) dependence of the corresponding quantity
depends on an effective relaxation wavelength and its corresponding
relaxation time <t which are strongly material and microgeometry
dependent

The purpose of the present paper is to show that although it cannot
account correctly for the exact critical exponent and the correct
behaviour in the vicinity of the percolation threshold, the Bruggeman
approximation extended to finite frequency and which has been used
widely to described composite materials and to model thin film layers
systems is able to account for this frequency independence of the optical
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ctose o the peviolaton theeshold p, but which depend on the relaxation
trme T Thiz result can be retated to the percalation scaling laws of a
mi-ture of self-nductors and capacitovs and for ©'— 0.1 iz in agreement
with the conctusions of the renormalization qroup argument of Yavil and
Oeutecher This should not be too surprising since it has been shawn
recently®™ that the analytic effective medium approximations are ir
good agreement with the result obtained by numerical simulations if one
except the immediate vicinity of the percolation threshold.

2 THE PERCOLATION OPTICAL THRESHOLD.

A detailed analysis of the dielectric properties of a mixture of a metal
,supposed to obey a Orude law, and an insulator, represented by a
constant dielectric constant, reveals the existence of a variety of
interesting details which can lead to & deeper analysis of optical data of
granular and cermet thin films.

It is for instance possible to predict the existence of a _percolation
opticol threshold at a concentration p* > p, characterized by the

< T

condition €' (0) = 0 (Evros and Shklovskii®¥) Gadenne et al.®). We show in
this paper that at this concentration p*, the conductivity is constant up
to the near infra-red frequencies {from «w = 0 to a fraction of wy). At that
concentration and in a range of frequencies up to T, the system
behaves as a pure resistor. This transition occurs at p* and not at p. as
this is sometimes assumed.

Let us calculate this optical threshold using the model of Lafait et al ®-
)

We start from the Bruggeman formula for the effective dielectric cons-
tant €*(co) :

€mlw])-€*(w) (1-p) €4-€*(c]

P e w)+ gle Tl el | €*lw)+ gleg-€*lc))

=0. (1)

p is the concentration of metal m. dis the insulator and g the
depolarization factor which depends on the shape of the inclusions In the
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case of sphenc sl inciusions ane has g9=1/3 for three dimensional systems
and =172, for two dimensional systems

e have
T;'w Z TIZC.OPZ
s fel=fe (oo __,._2L1 i — =
:—_m[w] \_‘:m{ ] i.'AJ':'t 1 ¢t lc.o’f[m"‘t‘f*i] [s-1
. kel Tnez . . .
and since T, = cm = omlo) the dc metallic conductivity of m.
[

. - . 'tcrm[O] . Crm[G] ' ]

En )= {en =) "SI0 Cmlwtney T Em T € O

We shall use in the numerical illustration the Lafait et al ¥ values: g=1/3
haw, = 9.2 eV for the plasmon frequency, h/T = 0.06 eV for the inverse
relaxation time, €} = 6.5 and €4 = 2.82 used to represent a gold based
cermet.

Rs observed by Berthier et al. ®) (see also Brouers ™) in the Limit e — o,
the Bruggeman approximation {1} yields forp > g

oo} = [';"S]om[ol (@)
-p) [1-
and e[ o« B[P e, s)

This is an exact result of the mean field approximation.It can be obtained
by separating the real and imaginary parts in Equ. (1),

The percolation threshold is p, = g. €'(0) diverges for p = g = p,. These
results are in agreement with the percolation theory if we use the mean
field conductivity and superconductivity exponents t=s=1.

Since eglolis strongly negative in the chosen numerical example €'yfo) =
- 20,000, there is a characteristic concentration p* for which €*{o} is zero
(gptical threshold). For p<p*, the behaviour is dominated by the dielectric
divergence. For p>p* it is dominated by the metallic behaviour €™*(0) < 0.

In Figures 1,2 and 3 we present the results of the calculation of the
dielectric constant €lw) the real and the imaginary part of the
conductivity for the Lafait et al.®% model for three concentrations
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Belows [po=03370, &t {p = p* =0 32850 and above lp = 0341 the “optical
threshioid” dne this example the pevcolation threshold g, = 172 The
behawviour obtained for the real part of the conductivity, the "optical
conductivity” which is proportional to the optical absorption coefficient,
IS wery similar to what has been observed by Gadenne ™% in granular
discontinuous gold films of different thickness arcund the percolation
threshold . The optical conductivity close to percolation exhibits a linear
behaviour versus frequency lor wavelength) The slope of this variation
is positive beyond p*= p, negative below and vanishes at the optical
cross-over percolation [p*) which coincides with the vanishing of €,*

In the chosen numerical example p, = 1/3 and p* = 0.3385 The difference
tz small Howewver this value strongly depends on T Due to the grain size
ar the small film thickness h/T can be much higher see Ref.9. In Table I
we give the values of p* for different values of h/T.

h/T p* p*
(s=1t=1) (5=0.75,t=1.95)

0.06 eV 0.3385 0.3515
06ev 0.3875 0.438
Jey 0.7560 0.791

Table ]

We also report the values obtained with the correct exponents t and s
1.e. by using

p"DC]t [LF’L]S
["Dc and = in{4) and (5] .

Berthier et al. (1987) have interpreted their experimental data by fitting
them to an effective Drude formula

t
PP
I-pc ] mpzt
1+ ewiT

€[] = €*(w) -

(6)
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We want to emphasize that thiz e only possible and physically justified

for pxp*. where a plasmon mode can be defined.
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To understand the behaviour of electrical and optical properties close to
percolation threshold as well as to use numerical or circuit simulations it
is convenient to represent a Drude conductor as a R- L -C system where
the resistance R =1/o,(0) , the inductance L = T/0,(0) = m/ne? and the
capacitance Cy, = €g€'ylee). The insulator is represented by a capacitor C,
= €5€'y. One can define for the conductor and the mixture the following

1
characteristic frequencies : the plasma frequency wy= \f_ , the
Ln€o

relaxation frequency wg = T = R/L, the Drude circuit resonance
1
frequency wyc. = —7 and the RC frequenc = 1/RC,, to which
q 4 wWig, m q Y wpe,, m
we have to add the composite characteristic frequencies weg, =1/RCy and

1
Wy, = —-\f;- In these conditions using eguation {5) the condition €*(0) =

- LmCq
0 yields
p*~pe]’ L p*ii-p*)
[ p, ] [%- Cml = TpJ? e (8)
or
(p*-p,) 2

(9}
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=, the solution of this equation is given by

and poang A=0,, - =
4

1

. | <
2PeR+ e, 4D, A+ 1-3Ap;
* _ -
p* = Z(A+ 1]

11}

Since pg < 1, p*is always real and the numerical values ohtained from (11]
coincide with those of Table 1

If p.=1, 8s expected p* =1

As already noticed in Table 1if R, — 0, p* —[. and the optical transition
occurs at the percolation threshold.

*_
In the case p, = 172 P : Pe AfR+1 =1 (12)
[

If moreover C,, =0, E—p.-&—«, ftﬁ,{x +1 =1 (13)
¢

Clerc et al.”) have shown that for two-dimensional real (RLLCyp circuits
this last relation, established here for co = 0, holds up to w ~1/‘JE .

tL *®
If we define the effective quantities L* = [S*-;cl’ R* = [pp*:ﬂpmc] and
* _ o~ % * ‘ * _ * cd » - Cm
C*=Cy™ + Cp* withCy*= (1-p*) - and C,* = [p* - p,] =¢ [the
(P*-pel P

(-p*) d-capacitors are coupled in parallel and the p* m-capacitors are

coupled in series}, the condition (8) is equivalent to R* = \I‘L*/C*.
In that particular situation the effective circuit is in unit power resonance

(G* = 1) and the resulting equivalent impedance is Z* = -\fL*/C* . For finite
frequencies it is easy ta show that the effective circuit is resistive up to
frequencies w ~ wyxcx = copscs = wyspe= 7' This explains the behaviour of
€ilw) and olwl in Fig. (2). The real part of the dielectric is zero and the
conductivity is constant up to '

-~ 7



Loy the eiedtrical criwit anangue and a ger':eral|zat1u:n'| tooa mimture of
setfnductors and capacitor: of the scaling lawe derived by Efro: and
shilow ki and Stratey™ ) it iz morecwer posetble to show that at p =p*,
the do conductivity is wery close to the optical conductivity in the near
infrared reqion as observed numerically in Fig 2 and ewxperimentally in
the vicnity of the percolation threshold (Gadenne et al 7).

Equation (Bl can be written

T e 2 (14)

g Npr-pY)

o*w=0,p (p.) Cyt o 0)
. . Tl0]
ard since oy =iCyew, aNd o plwdT ) = - -
*“_ *
o *e0,p* = %\fcrdlw]am[c»‘t"] (15)

The right hand side of this expression is the conductivity close to the
percolation threshold of the m-d compaosite in the region T « w given
by the two conductors™ scaling law ¢ ~ oplogogVE*Y of Efros and
Shklavskii and Straley in the mean field approximation (s=t=) or in two
dimensional systems (s =t). Therefore in the Bruggeman approximation
the optical threshold condition €*[0) = 0 is equivalent to the equality
between the low frequency Drude conductivity and optical conductivity
in the optical region close to percolation region as this is shown
numerically in Fig.2..
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A madel used by Lafait et sl to interpret optical and infra-red properties
of cermets and granular films ha: been analyzed in the regior where &
frequency independent behaviour of optical absorption, reflectivity and
transmittivity has been observed. We confirm the conjecture of Gadenne
et al."?) that this remarkable behaviour coincides with the vanishing of ¢
the real part of the dielectric constant (which in this region is difficult to
measure accuratelyl and is the signature of 8 "percolation optical cross-
over *  The cross-over concentration is close but different from the
static percolation threshold p, and depend on the microgeometry of the
sample through the relaxation time ©. In real systems, it might not be
easy to separate them.

Based on an effective medium theory, our treatment cannot be the
complete answer to that problem. We believe that future efforts should
be done in two directions.

a} Since the exact location of the optical cross-over appears to be
dependent on the film microgeometry and its influence on the various
scattering mechanisms, a detailed analysis of the correlation between
the various microgeometries resulting from different nucleation and
coalescence growth processes and the discrepancy between critical
thicknesses (t*] or coverage (p*) reported by different groups using
different preparation methods {evaporation and magnetron sputtering)
should be pursued.

b) Numerical simulations on R-C-L electrical networks and measurement
on real electrical circuits could be done to confirm the conclusions of our
study and to determine the exact exponents for two and three dimen-
sional composite systems.
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FIoURE CHETIONS

Figurel Real part of the dielectric constant (A and real and imaginary
part of the conductivity (B) far pe< p=0337< p*,

FigureZ. Real part of the dielectric constant IR} and real and imaginary
part of the conductivity (B} for p=p* = 03385

Figure3 Real part of the dielectric constant () and real and imaginary
part of the conductivity (B] for p=0340> p*
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