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FIBER REINFORCED CERAMICS
Trieste, 1989

PREAMBLE

"Strengthening with flbers has so many advantages - high strength, toughness, high-
temperature strength, thermal stability, and cheap, light and chemically inactive
materiala for the fibers - that it seems certain to become the basis of engineering
solids of the future. The main problems are technological. We have to devetop wWays
of making and assembling the tibres cheaply by the ton and develop new methods of
engineering design and fabrication to make best use of their properties. These
developments will require great effort but the stakes are high." A. H, Cottrell,
"Strong solids,” Proe. Roy. Soe. A282, 2-9, (1963).

Fabrication of ceramic matrix composites involves high temprature treatment
{sintering) and this introduces two complications. In some systems, Nicalon/SiC for
example, a thin layer of non-crystalline material forms at the nterface and effectively
seals the fiber/matrix Interface, thereby destroying the crack - stopping
characteristics of a weakly bonded interface. Sdcondly, thermal and hence mechanical
degradation of fibers usually occurs, leading to overall reduction in strength. The key
to solving both problems lies in the development of fiber coatings and this, the
development of fibers coatings, is the toplc that I have selected for the ceramies part
of my lectures.

One generie problem to be designed around with ceramic matrix composites 13 thermal
expansion mismatch between fiber and matrix materials, This is a particularly
important problem because of {(a) the large temperature range through which
engineering ceramics are required to cyele, and (b} the fact that very small thermal
expansion mismateh leads to very large interfacial stresses.

Pollowing the traditional practice of toughening ceramies by introducing mechanically
more compliant meterials, for example star into bricks and hair into pottery, attempts
have been made to incoprorate metals into modern ceramics. One of the first
attempts, by C. T. Forwood and A. J. Forty, Phil. Mag. 11, 1067-1071 (1965), exploited
the separation of particles of gold within NaCl singie crystals. The inerease in
toughness was found to be only marginal. This goal, of achieving toughness by making
use of the higher fracture toughness of metals, has largely been sbandoned in favor of
the crack - stopping ability of weak interfaces with fibers more capable of high
temperature performance than are the metals,

A big step forward came with the advent of Niealon SIC continuous tiber (8. Yajima et
al,, Synthesis of continuous SIC fibers with high tensile strength,* J. Amer. Ceram.
Soc., 59, 324-327, (1978)). Synthesized from an organometallic precursor,
polyearbosilane, Niealon ls an oxidation - resistant, high strength, fine - grained SiC
fiber. The fiber manufacturing process begins with the dechlorination of
dichlorodimethylsilane using molten metallic sodium. The dimethylpolysilane so
formed is a solid polymer, and is further polymerized to polycarbosilane, purified and
spun into fiber form, After exposure to ozone to promote eross-linking, the fiber is
converted to silicon carbide by a sequence of heat treatments ceulminating at 1475-
1675 K. The final overall chemical compesition in wt % is Si 55, C 30, 0 15. The
average content of phases in wt % 1s typically B-SiC 60, non-erystalline 8i0y 30, non-
crystalline earbon 10. The fiber density is 2.55 g em-3,

FABRICATION OF POLYCRYSTALLINE CERAMIC COMPONENTS
— e L AL COMPONENTS

The raw material from which conventlonal monolithic ceramics are tabricated is
usually in the form of powder. Initial consclidation may be by simply packing the
powder into a mold, by extruding an aqueous slurry or mixture of powder and organic
binder, or by cold - pressing a compact, Sintering at elevated temperature may be
with or without application of pressure.

In the case of fiber reinforced ceramies, the fibers and ceramic powder must first be
blended together. If the fibers are short lengths, whiskers for example, adequate

preg tape or sheet. Pre - preg tape lends itself to filament winding, and pre - preg
sheet to laminate stacking, In both cases, final consolidation and densification Is
achieved by hot pressing or hot Isostatic pressing (HiP). Hot pressing ia not without Its
problems, particularly in respect of inflicting mechanieal damage at compressive
contacts between fibers.

Continuous fiber reinforced ceremics are best fabricated by chemical vapor
infiltration of a fiber preform. Although slow, chemeial vapor deposition (CVD) of
solid materis] onto fibers fn order to build up a matrix ean be accomplished at
relatively low temperatures, and It makes for a relatively stress - free composite, The
vapor is usually an organie substance and several methods of infiltration are available,
Ineluding (i) isothermal, (if) temperature - gradient, (iii) pressure - gradient and {iv)
forced - flow, thermal gradient permeation. Since it represents "state of the art"
technology, the latter processg is described below for a composite having as matrix
material a ceramic with good thermal conduetivity, specifically SiC,

The tiber preform is assembled inside a graphite holder, water-cooled around its sides
and base as shown In Figure 1. The upper surface of the preform is located Inside a
furnace, and the reactant gas (usually & mixture of gases) i3 force-flowed through the
base of the holder Into the cold, unreactive lower part of the preform. When it
reaches the hot zone, the gas decomposes and solid material Is deposited onto the
tibers hereabouts. Deposition progressively densifles and raises the thermal
eonductivity of the composite, causing the hot zone to move towards the cold zone.
Eventually, the upper regions become impervious, the exiting gas changes from flowing
vertically to flowing radially and is forced to find its way between the composite and
the holder to the vents in the roof of the latter. PFor Nicalon fabric reinforced SiC,
processing times of 18 to 24 hours, densities higher than 90% theoretical density and
room temperature flexure strengths approaching 600 Mn m*2 have been reported.

ORIGINS OF TOUGHNESS

Experimentally, it is found that Incorporation of tibers into ceramies increases the
strain to failure. The onset of matrix eracking manifests itself by acoustic emission
long before departure from linearity in the stress versus strain relationship and this, in
turn, occurs long before overall fallure of the composite,

Frictional resistance to fiber pull-out is reckoned to be an important source of
toughness, and several methods have been devised to measure it. D. B, Marshall (J.
Amer, Ceram. Soe., C259-260, (1984)) uses a micrchardness indentor to displace
individua! fibers oriented perpendicular to a thin slab of composite. The normal force,



deduced from the hardness Indentation left in thé fiber, Is
F=2wRtt

where T is the frictional stress, t is the thickness of the slab and R is the fiber radius,
and the frictional stress is

T = F2/40 yR3E

where E i3 Young's modulus for the fiber material, and u is the fiber displacement,
Using this method on surface-treated Nicalon/SIC composites, R. A. Lowden (M.S.
thesis, University of Tennessee, 1988) finds values for T at room temperature in the
range 1-100 MN m-2.

i)

The Interfaclal frietional stress between fiber and coating has also been measured by
R. A. Lowden (M. S. thesis, University of Tennessee, (1988)) by vapor depositing a
uniform length of coating in the central region of a single fiber, gripping the uncoated
ends and tensile testing the fiber until segmentation of the coating by clrcumterential
cracking ceases. This is tHustrated in Figure 2. He then uses Aveston and Kelly's
formula for the eritical length of fiber In a creeplng matrix, page 25 of composites
notes, to estimate £,

Typical results for Nicalon fibers are 1~ 40 Mnm-2.

In all of these methods, Interfacial stresses arising from Poisson contraction are
ignored. Ceramics as a class of materials are characterized by having small values for
Polsson's ration (~%). Hence we are concerned with the difference between two small
numbers, i.e. a small number, when considering Poisson contraction in ceramic matrix
composites.

FIBER SURFACE COATINGS

Auger analysls of Nicalon fibers heated in argon revesals the presence of a surface film
containing silicon and oxygen, Pigure 3. In Nicalon/SiC composites, this film strongly
bonds the fiber/matrix Interface, with the result that the composite i3 no tougher than
unreinforced SiC. Worse still, SIMS anlaysis of tibers extracted from Niealon/SiC
composites manufactured by methyltriehlorositane vapor deposition processes, revesls
that chlorine, presumably picked up from the precursor vapor, is concentrated in the
surface layers. Chemical attack of the fiber by chlorides derived from the matrix
vapor deposition process Is another potentially embrittling mechanism.

To insulate Niealon fiber from vapor deposited SIC, and thereby avold both mechanical
continuity attributed to the silicon- and oxygen- containing surface film and echemical
attack by chlorine from the matrix precursor, {t Is advantageous to coat the fiber with
pyrolytic carbon (Butler et al., J. Adhesion, 5, 161-178, (1973)). This practice, of
earbon costing fibers with which to reinforce ceramics, has been widely used. There
are several methods available, ineluding pyrolysis of resin binders used 1o assemble
tiber preforms, and thermal decomposition of organic material, usually methane since
it contains no ehlorine, introduced Into the preflorm by vapor Infiltration. The main

limitations of pyrolytic earbon coatings are poor oxidation resistance and a tendency
to over-lubrieate the interface.

Other fiber coatings that have been experimented with Include elemental silicon,
silicon carbide, elemental boron, and boron nitride. In principal, silicon on Nicalon
fibers should serve two useful purpogses. It should interact with excess carbon and
thereby prevent the formation and outgassing of carbon monoxide during high
temperature service. It should also promote glass - forming reactions and hence
provide for viscous flow and blunting &t ecrack nuclei. Silicon carbide is conveniently
deposited chlorine-free from a mixture of methylsilane and argon at 975 - 1275 K but,
to date, has not yielded substantja! improvements in mechanical properties. Elemental
boron can be deposited from diborane/argon mixtures at 775 K. The glass-forming
characteristics of boron make It an attractive candidate for the reasons outlined above
tor stlicon. Boron nitride coatings have met with limited success in SiC tfiber/zirconia
and zirconium titanate matrix compoistes (B. Bender et al,, Bull. Amer. Ceram. Soc.,
65, 363-369, (1986)). Boron nitride coatings have been successfully deposited on
Nicalon fibers using a diborane/ammonia mixture. The main problem with boron
nitride is that It oxidizes at high temperature.

Rickel-coated carbon fiber has been avallable for a number of years and has been
successfully incorporated into metal matrix composites. Attempts have been made to
extend this technology to manufacture metal-cosated fibers for use In ceramie gystems,
and here we cite the coating of Nlcalon fiber with molybdenum by decomposition of
molybdenum hexafluoride. .

In all of this, what we most want to know Is how weak or strong the Interfacia! region
needs to be for optimum properties.  Elastically soft coatings lead to radial
compression at the interface whereas elastically stiff coatings lead to radial tension;
the latter can be sufficiently large to cause interfacial debonding. This reasoning
appears to indicate that stiff, and not soft coatings best serve the quest for orack
arrest at fiber interfaces.

The immediate future wiil see the emergence of a reliable database for the tensile
properties of ceramies and ceramie matrix composites. ‘This will require the
refinement of tensile testing techniques. Compared with more conventional
engineering materials, the tensile properties of ceramlcs are far more sensitive to
experimental varlables such as surface perfection and test-piece alignment. In respect
of the latter, ultra fine self-alignment, achieved through hydraulie displacement of a
ring of pistons carried by the tensile grip and in contact with the connecting rod of the
mechanical testing machine, is rapidly gaining In popularity, Further development of
high temperature techniques to replace the strain gage technology used to measure
displacement In tenstle testing at more modest temperature, is also needed.
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Specific modulus and specific strength
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ceramic whiskers —_ Fiber loadings (viz. fiber volume fractions)
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Law of mixtures for modulus of uniaxial composites | - ' o must exploit anisotropy
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effect of wids on modulus . deflection of a beam in weightless environment
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Three-dimensional weaves r b)) carbon/carbon composites
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Directionally solidified cutectics
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inisotropy of siress

Tectrical conductivity
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Matrix representation of second rank tensors
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slress

Figure 33 The forces on 3 unit cube in a homogencously stressed solid.
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stress is a “field” tensor
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Representation quadrics

Sz = |

g 1]
: =

E.1
5 h
L
t--.;.__-_'t

=

Figure 17. Representation quadrics for second rank tensors. {a) All three principal propertics posi-
tfive, (D) Iwo negative and one positive (section A-A is an imaginary ellipse. and the other two sec-
1ons, lying in the piane of the paper are hyperbolas}, ic) lwo positive and one negative {section A-A
i 8 real €lipse). The case of all twee principal properti gative gives an imaginary ellipsoid.

L

Figure LM Represenimtion quadric for a uniaxial composite.

stress ellipsoid

Neumann's principle

conductivity has higher symmetry than the laminate symmetry

magniwde of a tensor property

le| = aydd;



radius normal property
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siress concentration at the edge of a crack
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stress amplification of up to 9 compared with 3 in an isotropic plate

Flgure 4.5, Distribution of circumferential stress (0., in Inglis’ notation) around the edge of a circular
hole. Tensite siress o applied in the fiber direction (8 = =/2).

Flgure 44 Distribution of circumberemial stress o, (Inglis' notation) around the odge of a circular
hole. Tensile stress applied im i iransverse direction (§ = 0).
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TENSILE STRENGTH [MNm %)

If hole is small, composite withstands larger siress than predicied above — Failure sites at holes in uniaxial composiles subjected 1o axial and transverse tension and compression
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Anisotropy of elasticity
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effect of longitudinal stiffness on torsional stiffness '-‘ ’ compliance and stiffness are fourth rank tensors
I

31 =8l

6561 coefficients involved when transforming axes

Yy
but since stress and strain are symmetrical 81 reduces o 36
Two-suffix {or matrix) notation
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6 x 6array = 36 numbers for compliance, and a different 36 for stiffiness

€ = 5,0
g, = Cyy
)
Figure 5.2. Illustrating the effect on torsional stiffness of exial stifiness of a fan blade (aficr K. T,
Kedward). however, since each array is symmetrical about leading diagonal, 36 reduces (o 21



most laminates possess symmetry of the kind possessed by orthorhombic crystals, so the 36 is further reduced to ¢
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stress. (b) Reversul of shear siresses by operation of two-fold symmetry,
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rotation about a principal axis
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Ox, On, PLANE O, Ox, PLANE On,On, PLANE
45 904 a5* age a5
' v .
) ) fc)

Figure 8.8 Effect of fiber direction on Youngs modulus. Roturion (ap in the Ox, Ox, plane. b} in the

Ox, Ox, plane. {c) in the Ox, Ox, planc.
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Figure 54 5, fur noations in the Ox, On, planc |(° = grain tfiker) direction. 99° = trunsverse

dirccnon]. a7 vt = 10 *m* N —— hapd wood.,
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Ox,Ox, PLANE
On,0n, PLANE
—
10b 10p -~ ~
—_— 7 N\
- - - AN
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S
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05, ash
o a5° 90° 0 a5¢ 8g*
Flgure 57 Vuristions of G/, with fiber direction for an elastically srong unianisl composite {full
Iy} amd on elastically weak unianial composile (broken kines). Units = GNm?. Afier R, F. §.
Hearmon [24).
10 10p
-
On,Ox, PLANE On,0x, PLANE

i -

45* 20° o

45° a0

Figure 58 Vacistions of G/, with fibcr direction for strong and weuk composites. Units = GNm**

Afier R. F S Hearmon |24).
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four “new” coefliciens
Sa
E
Sa

Sie

Coupling between shear and extension

concept of “pure” and “free” modulus

+0

SR L

Fligure 59. jllustrating coupling between shear snd extemion. Aller R, F §. Hearmon | H].

1w
oS Ey
E
E
E
° N ,
’ a5 ot

Figure 5.0 Variation of the axial Youngs modulus with orientation angle for single ply and sym-

metric {+#) laminates.
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45°

Figure S.11. Yuruativn of shear modulus with oricatation angle for single ply amd symmetric (£
laminates.

MOOULUS (GNm 1}

100 =~
[
E,
50 -
G"
0 |
0 45° 20°
[

Figure 5.12. Luminate elastic constanis for symmetric { +8) HM-graphite/epoxy Inminates
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Orthotropic laminates r Hooke's law
t

& =500, + 5010, + Sie7

SN0, + S50, + S&T

&

500, + 500, + 547

-t
]

orthogonal anisotropic plates (viz. orthotropic plates)
0/90]

main axes of stiffness

four independent components of compliance

Tty J2s Faze See

generally and specially orthotropic plates

1 FIBER b
DIRECTIONS
L / \ [
- LAWINATE
Yo w1
F L
1~ axes
-y — ¥
" A rotation abowl 4 principal axis
- ]

Figure &.1. {3) Generully-ortheriropic plate, th) speoiadly-uriwatropie plate.



Q; (GNm™)

L}

Figure &2. ), (= r,) for ghasshiber reinforced epony resin {p = 12+ Ridastion 1 the Ox, Ox,
plane. 0° = fiber direction, 90° = vranwverse direction Jafier § B Dong. UCLA (1988))

Q;{GNm 1)

Figure 8.3 Q' t = ) for corbon fiber reinforced Cpuxy resin iy
plune. 0° = fiber direction, 90* = trumsverse direction fafter 5. B. Dung. UCLA (1986)].
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Q, (GNm-Y)

Q.. Qi
Ql Q;
Q5
\ Q,
10 20 30 40 50 60 70 80
L]
Flgure &4. Q.. ¢ = ;) for carbon fiber reinforced alumi fy = 2/5). Rowtions in the Ox, Ox,

planc. 0* = fiber direction, 96* = iramverse direction [afier 5. B. Dang. UCLA (1986)).
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Theory of buckling of ortholropic laminates

bending moments

Figure 6.5. B

in an ek

n

of urthotropic laininate,



N (- Constitutive equation for orthotropic laminates
[

M, = ]‘ o,zdz N A B

oo

M, = j " o,zdz

: normal strains
M, = j r2ds

plate curvatures

differential equation for buckling Joad
fiber cruss-overs
2. w . ow ‘ o
12 Lot ar + dcy, al'la_)' + (2cy; + dch) ..ér;a_)?
. w 3w
t i g ek g |- P =0

P

of Viw =
D resin-rich material

-
7 7



modulus measured in tension differs from that measured in bending

couplin;
oy

[]
' . £
[]
L i .
;
— . — ¥ Y —— - .
.
[
'
[}
) A Ay Ay ' B.. B, B
. A ' B, 6, B.
A ' B. B. B
]
____________ o oo o ovw o= — - -
3 ' D, Dy Du
' Ou Dn
' Du,
1
1

] &~
Figuee 6.7. Figure &8. lllusirating coupling phenomena for arthitropic leminales.
Ay Telales a,(ie. 0.}, edie €,)
E, + E
= ...‘1_.2__'1 By, relates oy(i.e. 0,), eli.e €,)
~ !"-_'L_‘?'_ !___ﬁ Miie M), aglie o)
T 8

elc.
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Carpet plots

E.-GNm*

Figure &9 Longituding! mulus CE, 1 dor [0 £ 45/90), carbon bherepory resia laminates.
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Figure &.10. Major Poissory ratio for 104 £ 45904 curbon fiher/epoxy resin laminses,
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Laminate code
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Figure & L% Examples of liminate sequences Galter K. T. Kedward).
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'—-' ' Thermal expansion

small uniform emperature change AT

hamogeneous deformation

cocthcients of expansion a,,

symmetrical second rank tensor

orthorhombic symmetry

e, = a,AT
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- ay, 0 0
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) 1
te)
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[sutropic fibers (glass) in an isolropic matrix {resin)
—— an, = Eieyn + Enantt — g
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1 1 uniaxia! composites:
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glass/epoxy n = 1/2)
3 Ll
o = 58 x 10*K!
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Warping du¢ 1o thermal expansion

Carpet plot '..
|
{0/ + 45/90],
% 0°* PLIES
00 80 80 0 60 S0 a0 3o 20 10 Q

» iy . . . ) . ) need symmetrical and balunced laminate
a k)1

0y

Conditions for zero thermal cxpansion

% 1 45° PLIES

Figure 7.) Lineur voetlicient of thermul expansion o, for J( £ 4590], borun fibericpuzy laminates.

sphere — ellipsoid
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)

Figure T4. (s} ustrating the general case of non-planac kiops of inersection hetween u sphere and
the elipsoid 10 which is deforms. (b) The special case where one principal strain is zer. )

-

fines that do not change their lengths

b}

H

lines which end up as radii to the loops of intersection, may have come from other radii within the sphere

if one principal strain is zero, the loops of intersection are circles and we now have planes of zero expansion

two conditions for this
€ s 0

&g =0



Printed circuit boards -

wave soldering -

260°C

Y4 \/
multi-layer circuit boards (MLB)

plated-through holes U \j

5 0 5mm

Figure 76 Normal displaccment w across a dismeter of the patiern of inkerference fringes seen in
Figure 7.5. and the first lour differentials of w.

Figure 1.5 Develog of the dinpl field around a plased-thrsugh hole in » multi-layer cir-
cuit bourd during 2 3 s soldering operution {adier D. A, Tinsclh,




ermal cycling of metal matrix and ceramic marix composiles

¥l

(- ‘ Fracture and fracture mechanles
+

Fundamental criticisms of critical stress and critical strain to fatlure criteria

Griffith’s solution to the dilemma

"if the sysiem can pass from the unbroken 1o the broken condition by a process
invoiving a continuous reduction in overall work done, then the equilibrium state

must be one in which fraclure has occurred™

AW, . <@

(R

EREE

fe}

L

Figure 8.1.
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constant forces

N W
. 7 B Cedd =B
0 L]
plate guins energy
' aw = ot hrcal
T

Bu

strain energy density equals half the work done

Figure &2,

3o DISPLACEMENT

(p+ Dxca® = 16py

tensioned between fixed grips

plate loses energy!

eaternal forces do no work since they don't move

(p + Drce® = 16uy

Grifthith strength

2Ey

a0 — »)re

plane strain

2Ey

T

-
]

plane stress

critical Griffith crack length

NDE

L]



Suatistical concepts

Weibull

“risk of fracture”

wa-(]

I'wo suatistical distributions penaining to fiber bundles

listribution of fiber strength

listribution of fiber slack

92

10!

o)

10

10

M= 10

M = 15

M= 25

015

02 03 04 06 o8

Figure 4.
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3 { —(p+ hxete — where does the sirain energy (that is released during fracture) come from?
% o +4cy] =0

Irwin

strain energy release rate &

=2y
in @ composite, where (mainly in the fibers or mainly in the matrix) is the strain energy stored?
LEFM
@ 8(1 — »*
= v M2
—_¥Yid YV V1 VA v
R fa)
stress intensity facior 9§
Figurt £58, Maxwell clement.
A
4 o= Ef [{ IS ‘ | ’

T

fracture toughness

toughest laminates are the symmetric cross-plies

thermoplastics are tougher than thermosets

l

o)

Figure §.5b. Voight clement,
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and where in the case of an adhesive joint? — metals —dislocation generation, multiplication and entanglement

LI I

Origins of toughness

&= “(T + Tpluu-q,)

the meaning of toughness is possession of some physical mechanism(s) for rendering cracks non-disastrous

S O

wlymers — configurational entropy, crack-bridging by pulled-out molecules

PP

Figure £7. The yickled zone. ahead of a crack, responsible for the toughness of metals.

Figure 86, llluvirating 2 polymer lamelfa single crysul. In polyethylene. the fold fenyth conwins
abuul KN carbon atoms,



ceramics —frec space

fiber reinforced materials—matrix mechanisms, fiber pull-cut

Figure 836, Fiber pull-outs and sockets created during tensite facture of glasstiber reinforced epoay
rewn (afier A. Kelly).

FIBER
PULL-OUT

/L_

CRACK

FIBER

FRACTURE

>

FIBER TENSIONED
CLOSE TO ITS
FRACTURE STRAIN

Figure &ML Fibers bridging s crack.



p o p S hax “*‘ rubber toughened epories

T t)
stn A va 2
[]
MATRIX CRACK
| _\ _______ ! .
x 4 ' [ '
in
FIBER /
CROSS SECTION, A
| |
metal toughened ceramics

Figure B.AL Hiusirating ber pull-out.



Fracture in two-dimensional stress fieids _ floy + ay)sinh 200 + {0, — a3)let=e cos 2{¢p — ) — cos 29}
r- ] ' o = cosh 20, — cos 28

stress criterion is differentially related 1o Griffith's energy criterion

.
< > _, 4y
7=
fa)
/P &5 $00n a5 it has any shear acting on il, & crack changes direction

L~

¥ |
) L]
Figure LL3.

Figure 8,36 Crack propagstion from the surface of an elliptic hole Ipre-existing crack in & plaie sub-
Jeeied o Biaxial stress.
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vo fracture criteria
D30y + 0, >0, fracture if 0; > Kand ¢ = 0
(ii) 3a; + 0, < 0, fracture if (0, — ) + 8K(o; + 0,) = O

(8; — a)

and cos 2¢ = —% (0 + o)
z L}

cture in lorsion

O

Figure 830, (») Brittke failure in torsion. (b) Longisudinal failure in uniaxial pression between
unlubricaied ptatens. (c) Fiber buckiing modes in uniaxisl composite subject 10 unianial compression
purallel 1 the fiber direction.
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compresson strength is eight times iensile strengih

fracture in purc shear with superposed hydrostatic pressure

bi-stability of fracture under combined lension and shear

{e. 7}

NORMAL STRESS

e -1

TIN semones

Figure £.32.

Sx gl 4+ 7?
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fracture modes, I, II, HI

Y
)
13
v
z - -t X
fa)
4 i ® @ ®
e ® ® ®
- |t == 5 66
¥ -— ® @ ©
MODE | DEFORMATION MODE Il DEFORMATION MODE 1l DEFORMATION
TENSION SHEAR SHEAR
PLANE STRAIN PLANE STRESS ANTIPUANE STRAIN
m)

Figure R9. (2) Plute containing a crack. {b) the conck in {3) could be opened by any of the three

systems of forces shown here.



fracture surface energy is different for modes I, 11, 1il - Hertzian fracture

Tusteated atoms

Jrowan's failure envelope

05 mm

Flgure 818 Cone extracted from a Hertzian crack in quartz (after ). W. Hegvens).

Figure L17. Failure envelope for the propagation of » Griffith crack in twa-dimensional stress fivk
Nane that the envelope is open in the compression-Compression gumlram.

o physical justification for closed failure envelopes

109



fracture in strongly inhomogencous stress fields

CIRCLE OF o
CONTACT

Auerbach's law

P.
= constant

fa)

DIAMETER OF CONTACT

P "
Ly |
g v
~
”
P
Pl o -
' ’
| )
' Figure £.I0 (4} Herizian stresy ticld. Directions of principal siress just outside circle of contact, (b)
IL Full lines are contours of constand o, Broken lines indicuie the direction of ¢,. .

Figure £19. Relntionship beiween normial force P and rudius ¢ of & spherical indentation.

110 = m



pact demage (.' U=V =elv — u)

yield beneath a Hertzian indenter

fiicient of restitution

/
/ \ —_——
\ TR~ ———
/ \
/ \ - -
,’ \ ~
/ \ -
! \
- J\‘ - S
f
\\._., ™1 I?I \h.—”

Figure 823 Newion's cueflicient of restitution experiment.

Figure 824. Mudilicution of the Mentzian siress licld by yiek! beneath the indemtor, Continuous lines
denete contours of constainl compressive stress, broken lhnes conioyrs of cohstant temsile stress.

112 L /
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densification beneath a Hertzian indenter

delamination beneath a Hertzian indenter

'
res
— /
e
— i S DELAMINATIONS
Figure .25, Internal delami damage. The imp J suriace oy reveal no sign of the damage.

The far surfave may show signs of dumage but js ofien inaccessibic,

114

FAILURE STRAIN

005

0010

0005

reduction in in-plane compression strength afier impact

INDUSTRY A Asanzzos -
[\3 ———— NASA O Asers245C
\
\ O cHsnsos

10 20 30 40 50

IMPACT ENERGY (N m)

Figure 8.2& In-plane comprewsive strain o filure after impact (afier 1C. Halpin).
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ititching

— . p———

— e ———— - —

. i — . {y ——

— - -

HORIZONTAL STITCH

it -

Z1G-ZAG STITCH

LY
~
~

“~

NN\

A

impact at ballistic velocities
()

Erosion

cavitation

waler erosion

DIAGONAL STITCH

]
-4

---}.--

i

+
{
]
_——da o d

CROSS-STITCH

Figure 8.27. Examples of stiching patierns vsed 1o guurd aguina delanvnation by impac)

Figure 820 ustrating cavity erosion.
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hammering

solid particle erosion

. Ablation

fiber creasing in carbon/carbon compaosites

Figure £29.

L

stress cracking in polymers

sub-critical crack growth

<| ¥

#e e

Figure 8.33. Graphival representation of the integral | _ﬂ: 4K
v
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(Nm-15)

*
v

Figure RIS o iv verus & data for wende 11T Tractare of svla dime glass taficr DA, Tossclly

“al
10— LT
101 }—
w
§ u.
1> 4o - .
Lo .
10!! —
Ll i e 01 Lt d L ity
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Figuee K34,
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Anisotropy of strength - loaded cantilever beam

. '
d 9
Airy stress functions ¢ *
@y a'y
St
]
I
dy =0, = = axdy Figure 9.1, Lowded cantilever beam
A M
' ' 5 a,dv = W
"
&
'
.
a L]
¢ b
two-dimensional stresses
10 30 [ 50 0 w
20 “0 s L] 0 H

Figure 9.2, Contours of comstant x in e wir between the members of Figure 9.1
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ensioned cross-bow

) *

x=1

Figure 94. Dewil from Figure 93, Axis Oy is parallel o the x contours,

Figure 3.3, Tensioned cross-bow. Mor = x0 — x»r

124 L"| ’
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curved beam subjected 1o bending moment tending lo straighten it —

k
C) o =( i o

1
> M

H 2

1
; B
; T, + 2 h
x = constan| = 2 M ¥y t
¥ i
B
t
|
x |
Ay |
L]
|
wt '
o A () a |
O = -
Q o’ I
Ul = -1
L o x = constant 3M ";&. I ! I
%
‘&:, Figure %4 Variation through the thickness wt AB in Figure 9.5 of 3 and ils fiest and second dif-
lerentialy,

Figure 9.5 y-map tor & uniformly curved beam with a uniform bering moment M ieading 10
wraighten it

thru thickness tensile strength

4%
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nterlaminar shear strength

NE.

\ INTER-PLY MATERIAL [EXAGGERATED THICKNESS)

G

o

L

- A el

i

(L]

Z[ - /-—\ < AVERAGE SHEAR STRESS

fc)

Figure 99 Longitudinal distribution of interlaminar shear siress.

itribution of mid-plane shear stress

128

short beam shear test

P

'4———"2-—-—-

pi2 Pf2

Frgure 9.0, ASTM D-2344 short beam shear test-pieve 14 = 4.

ir l
= a where h o 4
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Airy stress function in the air for deep three point bending -~ Delamination

a>b>c

theary of propagation of sheur cracks

b LA
e~ (27)

transition 10 Fast delamination

A2abdb + b7days

o &~
7
‘ ' junction of delaminations
L ]
x = consiant = 0
Figure 8.1). Airy siress funclion in the air x-diagram for deep thice-point bending (x-scale
arbitrary).
[
= —— where |’ > {
4
apparent dependence of interlaminar shear strength on fiber volume fraction
fa) L] [
Figure 9.12. Shawing the junction of two del ing ~ide by side in the same plane.
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ide by side

)

1)),

fa) ) (c)

Figure .13, Union of two delaminations which are not enacily side by side or end 10 end.

132 ‘ '

other unions

a)

—rfle.
et —
e
i
[ —eiteams ——
[ mnne——
e

Figure $.M4.
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Initiation of delaminations at sources of out-of-plane stresses

< < >

A A Y

— — — — -

Figure 9.15. Sources of out-of-plane siresses (alicr K T. Kedward).

14

Anisotropy of plasticity in metal matrix composites

fa)

m)

oo b

o)

Figure 9.16 (a) A dislocation, gliding from op 1o botiom, begins 1o buw out between two fibers. (b)
The segmcaty of diskncation {ue with opposite sign begin s atiracl each other {arrowed). (¢} The dis-
Incation escuapes leaving aph Ovowan loop sround cach fiber.
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Fatigue damage accumulation

oD

N

& {0, }l 1

Flgure 3.1 JHusrating ply drops in a tapered laminaie.

"" Environmental degradation

Hostile environments

Degradation in the Eanth’s atmosphere

UV degradation

10um

corrosion of metal matrix composites

Swelling due to water uptake

137



Figure )01, Wattr uptake through the thickness (upper ow) amd assoviated in-plane stress distribu-
tion (hwver row) for a slab of neat resin, ws 8 function of time of
tulier D. Puiz).

pu W g env

138

inhomageneous swelling — internal stress

Figure W0.). Dimensional chunges that the resin between fibers would like 40 undergo during water

uptake.

(

AN

139



sss-enhanced water uptake - Osmosis

Jdwa . _ AE
Fapun KT

— RESIN POT

140 L'

141



disc-shaped cracks in neat resin

-
Figure Mk, Ti insion oplical microgruph of disc-shaped cracks in neal polyesier resin. Note the
ttal inteenal reflecrion from whe central {air-filled) portion of one of these cracks.

Figure MLI& Potyesier resin cracks sccompanying debunding of fibers treatcd with a coupling agent.
Specimens immersed in builing water for 20 hours: (#) E glass, () C ghass.

142

Figure M0.21(a). Edpe-un view of growth of single penny-shaped crack ~ 0.2 mm below the surfuce
in cpuxy resin.

;‘-—- u-

i~ v

Figure M.21th). Edge-on view of growih of single pennny-shaped crack ~ 0.2 mm below the surface
in pulyeater resin.
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squilibrium shape of pressure-filled voids |_ | 150
}
xEy
PR & 2 S
T 20 - &
T CaCl, in C,H,OH (ALCOHOL}
= 0 CHO AICH, In
o 100~ ° CoQC,
c o (PHOSGENE)
0
7]
@ ° s
o
Q 50t~ ° y;
= o
o
. . Nal in C,H,0 {ACETONE)
agnitude of osmolic pressures 0 i h |
0 10 20 30
CONCENTRATION (WT.%)
00 Flgure J0.HL Osmotic pressures for solutions of inorganic salts in organic solvemts.
250}
1)
200 o
Q.0 Q_ o
g e o o
% 1508
e
© N9, 50, (WUFFE)
b ® N#,50, {(BODENKORPER)
£ Nm,50, TH,O (WUITE)}
[1Ne,50, 10H,0 (WUITE)
W N8,50. 10H.0 (BODENKORPER)
sof
0 1
P R I M I B B R ~ 500 bars

TEMPERATURE (°C}

Figure W9, Osmotic pressures for salutions of Glauber'’s sali.
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reversibility of crack opening displacement of disc-shaped cracks

L

- -

Figure L. (a) Penny-shaped crack in KCl-doped epoxy resin photographed edge-on, 340 b immer-
SKHL i wateT at 94°C. 1) Sumw crack aftec drying in wir for | hat K0°C. (c) Face-on view alicr dry-
ing sharwing anly three inericrepye fringes. that is & permanest opening in the middle of (ke vrack
of unly thice hall wavelengihs.
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stress inlensity factors at which osmotic pressure filled cracks grow

= 023 10 0.9 Mrm-?

v=3pms'wl ams’
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tection of loss of load transfer due w osmosis al fiber/matrix interface

Pttt

RRERXE
ttit4td

T — v — At — v A — —

RERIRR

Figure HL11.

coshﬁ( ! -2
= F, | - ,ﬂ__.z._,
e = ,tl cosh g

s

Figure M.12. Graphite fiber in epoxy rexin matrix ufier hot water exposure showing two regions of
mugrating resin hirclringence {arnmed). Countesy of E. Waleer.
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Figure 108 Encrgy dispersive analysis of the deposit shown in Figure 10.7.
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i Figure 10,17 Tramnussion optical micregpraph shuwing dise debanding o an E plass fiber
treated with u coupling agent: (a) wrdinary Jight, {bh between cramsed polaroids with compensator set
i ufudy oo - 1 enhunce the difleremce in biselringemce,

120 180
TIME (h) U

Figure K14 Optical retardation chanpes during immersion in waier a1 20°C. Untreated E glass Aber

i palyester resin % load wransfer index. . retardation in resin wdsacent ks fiber ends, @ retardation
through fiber center.
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- waler-solule phase diagrams

Water of hydration
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Figure W22, Equikibrivm diugram Fr the system H, (- Ca$8),
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timation of water of hydration pressures at impurity inclusions

q' v behavior of water occlusions during thermal spike
~ ") hary

LIQUID + vAPOR A

AN

Flgure W23

# heaving

P~ 20 bar at -20°C

Figure .24,
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Fiber coatings - Post-debonding damage during prolonged exposure 10 aqucous environments

{ )

silanc coupling agems

- fF

Figure HL25. Growth of indentation cracks following Jdebonding of shon fibens. Unircuted E gilavs
fiber/pulyester resin compuosite |52].
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Figure .26 Tremmisaon optical inweographs o indentation cracking: (a) ordinary light. th)

between crised poluroids showing high birctringence sin adjacent resin due 1 extensive Plastic defor-
malon.

Figure 0.7, Scanming eleciron microgeaph of w Klum diameter fiber protruding through the inne:
surlace of an indentaton crack. Untrcated E glass liberpolyester resin compasite expised W boiling
water lor 00 howes [52).
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Joining and repair _ . ) = .

Figure 1L Lapped ~ ard juint

incfliciency of joints

L7 §

evolution ofjoinl dcsigns Figure 114, Splayed searl pnt,

=N o — Sy e = P i I
i A D, E A T
Figure 11.1. Halved and notchod joimt, C F B D B \-J
e - — o " — ~ =
faj b}

Figure 11.5. Tubled warfing joints,

O TP

Figure 11.2. Scarfed joim
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echanical fastening - Adhesive bonding

C )

elal corrosion at joints invelving carbon fiber composites

stress distribution in single tap joint

SALINE SOLUTION

Fe* -
- OH

\ ELECTAONS
CARBON FIBER
REINFORCED PLASTIC

IRON

Figure 114 Galvanic corrosion between inm amd carbon fiber reinfirced plastic.

Fe**

2e
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Figure 118 (u) Singhe lap juint. th) distribution of mid-plane shear siress along the length { of ().
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Joints would fail a1 the same load.

o
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peel strengih
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Figure tLI0. S-wise rodation in # iensioned single-lup bonded pinl.
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clamination beiow the bond-line

Figure 3111, lustrating locatized del

168

I h une end of & Iap joint,

‘ : > inhomogencous swelling associated with water uptake by adhesive joints
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Flgure 11.12. Formation of edge cracks due to inhemogencous swetling of 3 butt joint.
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Physics of adhesion . _ /

{ }
! /
/
v
. L
van der Waals forces [}
S
Figure [1.M,

Youny's formuia

Lennard-Jones potential
Tsv — Tae
€0s = ——7"""
‘7IV

2] »
r r
welting phenomena
Yov =~ T < Yav

elc.

POTENTIAL ENERGY (ERGS = W)
)
-

Figure 11.17. Near-fiekd and lar-fickd angles of contact.

Figure L3 The poteatial encegy of pairs of incn gas ams as a function of their diswnce apan in
Angsteoms (ufier Leanard-Jones [61]).
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Ivanced designs for joints

4 =

METAL INSERT

Figure 11.18a. [llustrating the use of mewl inserts in joints.

1
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YL 777777777 77

METAL

COMPOSITE

Figure 11.M%. Joim between a compusite drive shalt and & metsl differemial.
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encapsulation

COMPOSITE

Figure TL19. Siepped lup bondew/bolied joimi.
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Welding of metal matrix composites . Mechanical tests

I

Welding of thermoplastic mairix composites

fa)

Figure 1.2} (a) Unich ) ouser 16 S

- Viscoelasticity ‘ ' '
g = ce + né

)

<)

non-linear behavior

Figure J1.23 (b} snd (¢) Two dilferent modes of upplying icating forces in the tnuser 1est.
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“peel test () Repair

ADHERENDS
cleaning of surfaces to be repaired

P’!!'d. [—]
\/\ p =°

physical differences between the repair and the rest of the structure

ADHESIVE

Figure 1124, T-peel test. pre-cured patches
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IMPACT
t A

METAL
{PREFERABLY
TITANIUM)
PATCHES

CONE-SHAPED CAVITY, . . L
LEFT ASFI'EFI REMOVING Figure 11.21. Meisd paiches 1o be riveied ino position,

DAMAGED MATERIAL
/

\
T~gzrrzrrrrn FILM ADHESIVE

277777777 7ITT

L7777 77277 7273

PRE-CURED PATCHES

Figure J1.2& Application of adhesively bonded pre-cwred luminate patches o replace the cone-
shaped regions of damage produced by inpac
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lon-destructive testing - Ultrasonics

'isual inspection

iquid penetranis

CRACK

s
COMPONENT
—
GENERAL LEVEL 1cm
OF LU .
Figure 12.2. Photoclasiic visuslization of ul X fi in glass (courtesy of T. W. Turner).
Figure 12.1. Componcnt containing crack immencd in liquid penetrant.
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xeg 2 8
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pulse-echo

C-scan

TANK FILLED
WITH WATER

LAMINATE

; PROBE (XY SCANNED)
-

%
7)

?’/’//7//7(’///

DELAMINATION
TRANSDUCER

Figure 11.}. C-scan upparatus.

182

LAMINATE 4 ]

CONTAIMING SMALL
REGION OF B z
DELAMINATION —_—
AEFLECTION FROM
REFLECTION|FROM FREE SURFACE
FECT
o \ /
— )I — — — THRESHOLD
THE (= 7]
n
4
]
TIME (=2}
¥
) OIGITAL MMAGE OF
q REGION OF DELAMINATION
» X
Figure LI A. Showing the formation of (u) A-scan for whichx = y = 0, (b) B-scan kv whichy = 0,
and (c) C-scam for which 2 = 24 & 2.
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aticnuation of ultrasound X-radiography, y-radiography and neutron radiography

absorption coefficienty

dl
;= — pelx
‘ [ ] ‘ half-thickness
069
Xpg = 0
u®

Jetection of cracks by velocity ratic measurement

penctrant enhanced radiography



liquid crystals

WFRARED
RADIATION T

fay

f)

Figore 12.5. (2) and (b) Application of liguid crysa) thermography 10 composile materials. The
liqusd crystal film has %0 be held in cluse pronimity w0 Ihe surface remote from the incident heat.
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/ LIGUID CARYSTAL FILM

/ LIQUID CRYSTAL FILM

Adiabatic heating

\VAVAVATA VAN

Figure 126 IHusiraling adiabatic hesting of a fiber,
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Fiber oplics



