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STRUCTURE DETERMINATION

A course of five lectures describing the techniques
available for elucidating the structures of ceramic

materials.

P.D. Battle

School of Chemistry
Leeds University
LEEDS

LS2 9JT

England

During this course of five lectures I shall describe
various techniques which can be used in structural studies
of ceramic materials. The technique to be used in any
particular case will be determined by the nature of the
gsample and the type of structural information that you wish

to find out.

The most powerful technique aéailable for structural
studies of solids is single-crystal X-ray diffraction.
However, as the name implies, use of this method requires
the availability of good quality single crystals, with a
typical linear dimension of ~0.5mm, and these are not always
avalilable when a ceramic is to be characterised. We usually
find that we are working with powdered, polycrystalline
samples, and I shall, therefore, start by describing the
sort of information that can be gleaned from X-ray powder
diffraction (XRPD) measurements. Before I dc that though,

I want to say a few words about crystallography and the
general principles of diffraction experiments. In any such
experiment an incoming wave is scattered from a number of
reqularly spaced centres. In certain directions the scattered
waves from all the centres will interfere constructively

and these will be a maximum in the obseerved intensity. 1In
other directions, destructive interference will lead to zero
observed intensity. The positions of the maxima are
determined by the separation of the scattering centres, and
the width of the maxima is determined by the number of

scattering centres (more centres, narrower maxima). The



diffraction pattern is also modified by the relative size
of the individual scattering centres compared to the wave-

length of the incident radiation.

In an experiment which uses the regularly spaced atoms
in a crystal as the diffraction grating, then the situation

can be represented in the diagram:

pde! | scalbred
bear

The path difference between the wave scattered from the
top plane of atoms and that scattered from the middle p\dne
is 2x = 24 gin 8, so that for constructive interference
A = 2d sin 9. This 1s BRAGGS'S LAW and it determines the
angle at which diffraction maxima occur. Note that the angle

between the incident beam and the scattered beam is 29, not 9.

Knowing that sin 8<1, it follows that the wavelength of the
radiation used in a diffraction experiment must be of the
same order of magnitude as the spacing between the planes of

atoms in the crystal (or smaller).

Now I must introduce the system used to label the
different sets of planes in a crystal structure. Such a
structure can be thought of as being made up of a large
number of small, 3-dimensional building blocks. The smallest
block which, when repeated in 3 dimensiona, can be used to
build up the crystal structure is known as the unit-cell.

The planes we are talking about in a diffraction experiment
are defined within the unit cell. They cut the unit-cell
axes in fractional parts (1/h, 1/k, 1/1) and are referred
to as the (hkl) planes. The examples given below show the

(222} and (223) planes in a crystal of cubic symmetry.




All the planes in a particular (hkl) set are parallel and
therefore at a constant distance, dhkl’ apart. The Bragg

equation is thus more fully written as A = 2d sin §

hkl hky’
where the relection (ie diffraction maximum) from the (hkl)
planes, separated from each other by a distance dhkl' occurs
at an angie of zshkl to the incident beam. For a cublc
crystal, with a unit-cell parameter (ie the length of the

gide of the unit-cell) equal to a_, it can be shown that

dhkl = ]

s0 substituting into the Bragg equation

A =2 a sin 8y,

J;2+k2+12

2 _ 2
or sin 9hk1 = A 5
da

[+

(h%+x%41%)

The above treatment is applicable for all crystalline
materials having cubic symmetry - it is in no way specific

to X-ray diffraction, nor to neutron diffraction. The

expression relating dhkl to the unit-cell parameters becomes

more complex 1f the symmetry of the crystal is lower than
cubic, but the general approach is still valid. (see D'eye
and Wait p.135).

It ia clear from the above equation that if we can
neasure experimentally the scattering angle zahkl (and hence
shkl) for a number of diffraction maxima and determine which
set of (hkl) planes give rise to each maxima, then we can
calculate the size of the unit cell of our sample material -
the first atage of crystal structure determination. N.B.
the size of the unit cell is determined from the positions
of the diffraction maxima alone, not from their intensities,.
The experiment to determine the 23 values of the diffraction
maxima is easily done using a polycrystalline sample of a
ceramic. Indeed, it is one of the most basic measurements
that are routinely done in solid state chemistry and
ceramics. The apparatus used is either an X-ray powder
diffractometer or an X~ray camera (eg Debye-Scherrer camera
or Guinier camera). The Debye-Scherrer camera is very
simple and will be used to illustrate the principle of the
method, but for serious work a Guinier camera or a
diffractometer is used nowadays. These have a higher
resolution than the DS camera because their geometry is
arranged so as to focus the diffracted X-ray beam. A Debye-

Scherrer camera is shown in the diagram.

Motor v rotating
prvimen




A finely ground polycrystalline sample is aligned along the
axis of a cylindrical camera and rotated. An X-ray heam
entering through the collimotor is scattered by the specimen,
with maxima in the scattered intensity in those directions
which satisfy the Bragg equation. These maxima are recorded
on the film which lines the inner wall of the camera. The
camera is made with a diameter of 114.6 mm such that 1 mm

on the film corresponds to 1* of 28. Thus by measuring the
postions of the maxima on the film, we can get 23 and hence
uinzs for each Bragg peak. Then we have to index the lines,
ie determine which set of hkl planes gives rise to each
maximum. Having done this we can then calculate the size

of the unit cell, using the equatien

2
sin Bhkl = X

4a°

2 (h2+k2+12)

Examgie
The first eight lines in the X-ray diffraction pattern
of a polycrystalline material, known to possess cubic

‘symmetry, correspond to the following values of ain29:

0.0132 0.0256 0.0391 00,0514 0.0644 0.0769
0.1020 0.1150

Index the lines and determine the size of the unit cell.

(A = 70.8 pm}.

What you need to do is to look at the sinze values and try

to spot the common factor. 1If you are dealing with real
experimental data you must be prepared to allow for small
discrepancies. Looking at those values, I hope you can see
that there is a common factor of -0.013. If you go through

the eight lines and divide by 0.013 you get:

line number sin29/0.013 h2+k2+1? {hkl)
1 1.015 1 (100)
2 1.969 2 (110)
3 3.008 3 (111)
4 3.954 4 {200)
5 4.954 5 (210}
6 5.915 ] (211)
7 7.846 8 (220}
8 8.846 9 (300) or (221)

The result of this division is always close to an integer,
particularly for the early lines, It is reasonable to
expect greater deviation further down because 0.013 is not
that accurate a value and the error begins to show through.
The agreement here is good encugh to suggest that you have

2,x2412

found the common factor. You can then assign h
values, ie the nearest integer, to each line and it is
comforting to see that 7 is missing - there are no three
integers whose squéres 4dd up to 7. Then you can break the

h2+x2412?

values down into (hkl) triplets. When you have
done that you have indexed the lines. Now all that remains

is to determine the size of the unit-cell. The most



satisfactory method would be to plot a graph of sinza vS. but as long as the sample is small compared to the length
(h2+k2+12) and find the gradient which will equal x2/4a°2, of the arc, there is a pseudo-focussing effect.

and hence ao. This is a very simple example based on a
cubic material. The process gets more difficult, but is
still possible, for materials of lower symmetry. There are
now computer programs that can automatically index a
diffraction pattern for you if you feed in sufficiently
accurate sinzahkl values. There are also computer programs
that will refine the size of an approximate unit cell to
optimise the agreement hetween observed and calculated sin28

values.

As I sald before, the Debye-Scherrer camera has a very
simple geometry and is easy to understand, but most modern
laboratories now use a focussing camera (eg a Guinier camera)
or a powder diffractometer, which has a pseudo-focussing
effect. The use of focussing means that a greater proportion

of the incident intensity is useful in the experiment which

consequently takes less time to perform. The basic
principles of a powder diffractometer are shown in the
diagram. The geometry is such that the incoming X-ray beam

passes through a slit and subsequently diverges until it

otz
hits the specimen which is in the form of a flat plate, o
tangential to an arc which passes through both the source
slit and the receiving slit. The X-rays are then diffracted
and effectively focussed onto the receiving slit. In order During the course of data collection, the counter rotates
for true focussing to take place, the specimen would have 80 as to sample the intensity at different 28 values and

to be curved along the arc joining the two slit systems, the sample rotates by half as much so as to maintain
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the correct geometry. The usual way to operate one of these
instruments is simply to set the instrument up to scan from
say 10° to 80° at a speed of perhaps 1°28 per minute. The
diffraction pattern is output onto a chart recorder 28 vs.
intensity. For accurate work - remember you are going to
want to measure the angle 29, and from it calculate the unit-
cell parameter, you need either a focussing camera or a
diffractometer. Which you buy probably depends on whether
You prefer to scrutinize short lengths of film, or spread

1 m lengths of chart recorder paper out over the floor and

crawl around looking for peaks.

Until this point, I've talked only about the positions
of the lines in the diffraction pattern - I've gaid nothing
about their intensities. The scattered intensity for the

(hkl) reflection in a powder diffraction experiment is

given by
2w
_ 2 hk1
Thiy = KP) pyeydngsFhir © Ank1
where
Ihkl is the observed intensity of the ({hkl) reflection

(Lp)hkl is the Lorentz-polarisation factor

jhkl is the muitiplicity of the (hkl) planes
Fryi is the structure factor of the (hkl) reflection
"hkl is the Debye temperature correction factor

11

hk1 is the absorption factor

K is a constant for all {hkl) values in a given
experiment. It depends, among other things on

the amcunt of sample used.

Fpk1 — the structure factor for the (hkl) reflection
containg all the information that chemists want to get at -
ie the structure of the compound, where the atoms are within
the unit cell, and hence how iong the chemical bonds are,
the shape of the molecule, how the moleculas pack together
to form a solid crystal etc. The structure factor can be

expressed as follows:

Fykp = I I fi cos 2n(hx1+kyi+lzi)

wll basis
lattice
points’

where f1 is the scattering factor {sometimes scattering
length) of the 1th atom, which has fractional coordinates
(xi, Yy zii. In the case of X-ray diffraction, the
scattering factor is related to the number of electrons

that scatter the X-ray - and it falls off with increasing 8

™ 2

Sen §



12

The equation I've given you for the structure factor is

not really complete. There should be a term

+ j fi sin 2n(hx1+ky1+lzli

in addition to the cosine term, but I am going to ignore
it so as not to complicate the arithmetic. For all
centrosymmetric crystals, the sine term is zero, so I am
not cheating - I'm just restricting this discussion to
centrosymmetric materials. (A centrosymmetric material is
one in which for every atom  having coordinates (x,¥,2)

there is an identical atom at {-x, -y, -z)).
Let me show you an example of how you can use the

structure factor. Consider a crystal of a metal which has

a face centred cubic structure, eq Ca

0

Q

O
-2,
9

e

There are 4 lattic points in this unit cell, at (000) (Okk)

(%0%) and (L%0). The basis consists of one Ca atom located .

at each lattic? point.
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.. F = fc

hk1l cos 2n(h.0+k.0+1.0)+-fcacos 2n(h. 04k . k+1. k)

a

+ £,,008 2n(h. h+k.0+1.%) + £__ cos 2n(h.4+k.}+1.0)

= fca[coso+c05 n{k+l) + cos nih+l) + cosn (h+k)]

e Fhkl = 4fca if h,k,1 are all even or all odd

0 otherwise

S50 in a face-centred cubic material you only see a reflection
for a fraction of (hkl) values. So when you are indexing

2+k2+12,

your powder pattern, and locking at the value of h
instead of seeing the sequence 1,2,3,4,%,6,8,%9 ...... as from
a Primitive material, you will see 3,4,8,11,12,16 .veuass

You can do a similar calculation for a body centred material
and hence show that only those reflections for which

h+k+l = 2n are observed, ie hZ+k?+1% = 2,4,6,8,10 .......

The absent reflections are referred to as the systemic

abgences.

Until now I have really been talking about X-ray powder
diffraction. If you want to reap the full benefit of X-ray
diffraction and locate the atoms within the unit-cell, then
it is usual to perform your experiments on eingle crystals.
The equation I gave you for the intensity of the hkl

reflection, I is equally valid for single crystal

hkl’
diffraction. The geometry has changed so the Lp correction
changes, but that is not a problem. The multiplicity also

changes. Whereas the large number of randomly orientated
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crystallites in a polycrystalline sample give rise to a

continuous distribution of intensity on the surface of a
cone of angle 2P, each particular crystallite gives rise
to an individual spot. The line on a Debye-Scherrer film
is thus made up from an apparently continuous distribution
of spots, When you use a single crystal you see the

individual spots.

The thing that does not change, even in a trivial way,
on going from powder to single crystal is the structure
factor. If you measure the intensity of the (hkl}
reflection, you have a measure of the structure factor, or
at least its square - an important point that I will come
back to. Why is it important to know the structure factor?
The electron density in a crystal, at a point (x,y,z}, is

given by

pix,y,z) = 1 )X I H Fhkl

h=== k=—= l=—=

o

e2ni(hx+ky+lz)

or, for centrosymmetric structures

pix,y,z) = 1 I F cos 2n(hx+ky+lz)
v hkl
k

h,k,1

So, If you know V, the volume of the unit cell and you

measure Phkl for as many (hkl) triplets as possible, then
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you can calculate the electron density at every point (x,y,2)
in the unit cell. Clearly, the electron density will have
a maximum at the places where there is an atom, so what you
are really doing is determining the locations of the atoms
within the unit cell. The only problem is that you do not
measure Fhkl' YOou measure Fﬁkl’ and hence you can calculate
thkll but you don't know whether it has a + or - sign in
front of it. This is known as "the phase problem in X-ray
crystallography”. You will realise that the calculated
electron density will vary encrmously depending on the sign
assoclated with all the Fyx) coefficients. What I want to
do now is to go through the experimental procedure that is
followed in order to get a set of X-ray single crystal
diffraction data, and then I will go on to describe how to

solve the phase problem.

The first thing you need to do is to grow a suitable
crystal having a typical dimension of -0.2-0.3 mm. The next
step 18 to determine the size of the unit cell and the space~
group. (The space group is the formal, correct way for
saying 'the symmetry of the crystal'.) Once this has been
done you can use a computer controlled diffractometer to
collect a set of intensity data, that is to measure Ihkl for
several (often 2000) (hkl) values. You then have to solve

the phase problem.

If you have a set of X-ray single crystal diffraction

data on a compound, le a set of hkl:Ihkl values, and you
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know nothing about the compound other than its empirical

formula, then there are two ways of sclving the crystal

structure. The first is the Patterson, or heavy-atom method.

The X-ray scattering power of an atom is proportional to
the number of electrons it has. This means that if a
compound contains one element that is much heavier than
the rest, then that atom will tend to dominate the X-ray
scattering. So if we can locate the heavy atom, and using
the formula

1
F;;: = cos 2m (hx,+ky +1z,)

calculate the structure factor, both modulus and sign,
which would be correct if only the heavy atom was in the
unit cell, then for a large fraction of the reflections we
will have found the correct sign, or phase, for Fhkl' This
will be true in particular for the strongest reflections.
S50 how do we locate this heavy atom, and hence get into

a position where we can assign a phase to each of the

reflections? We calculate the Patterson function

pfu,vow) =1 I I I |F;?1|20032n(hu+kv+lw)
v

ha-= kn~= 1s-m

for 0 < u,v,w < 1. This function relies on |F®* 12, which .

hkl
we can measure in the experiment. Patterson showed that

the maxima in this function correspond to interatomic vectors,

ie if the Patterson function has a maximum at {u,v,w) then
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there are two atoms in the structure at (xl'ylle’ and

(xz,yz,zz) such that

U= xl - X

2
Vey -y
W= z, -z,

You have to look at the list of peaks in the Patterson
function and attempt to assign them to the correct atom
pPairs. Remember that the strongest peaks will correspond

to vectors between heavy atoms.

S0 now we know where the heavy atom is -~ what next?

We calculate F;ﬁi for each reflection assuming only the

heavy atom contributes - this gives us Fﬁ:;, complete with
its sign. We then assign the same sign to IF::II, ie the
square root of I°™, and so we have both F::I and F::i for
each reflection. They will be different because the
calculated structure factor only includes the contribution
from the heavy atom whereas the observed structure factor
contains contributions from all the atoms. The idea now is
to find the rest of the atoms so that when we include them
in the calculation agreement between F::I and Fgﬁi improves
as much as possible, How do we find the rest of the atoms?
Some time ago I told you that what we are really doing in
an X-ray diffraction experiment is determining the electron

denisty at every point in the unit cell

plx,y,2) =1 [ Frky €08 2n (hx+ky+1z)
Y hk1
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let me now be more specific and write

POM(an,Z) =15 F™ cos 2n (hx+ky+1z})
v hk1
and
calc celc

poix,y,2) =1 Friky €08 2athx+ky+lz)
v

So if we calculate the difference function

(xoy,2) =1 I (FPR =~ Fil®) cos 2n(hx+ky+1z)

hk1

pohl{x'y’z) - pt.'ult.'

this bifference Fourier function should have maxima at the
positions of the missing atoms. 1In practice this is a good
way of finding the next heaviest atoms. It is then necessary
to vary the positions of the located atoms slightly to
maximise the agreement between ngl and Fﬂﬁi, te the
positions that come from Patterson and Difference Fourier
calculations are close to being correct, but not quite,
Computers are used to do all these calculations using
packages of standard programs, The atomic positions are
refined using the method ;f least squares until the agreement
between F°™ and F**'® 1s optimised. The level of agreement

is judged using the R-factor

Ro= [|(|F™] - Jpeeie}y|

I ( |F°b'|}

calc
hk1l

and another Difference Fourier is calculated. Hopefully

Once the R-factor has been minimised, F is recalculated
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this will reveal the next heaviest atoms. The Fourier/least
squares sequence is repeated until there are no major
features left in the difference map and the R-factor is down
to -5%. At that stage you can regard the structure as
solved and fully refined, and you can start to calculate
bond distances and bond angles, and you can beqgin to ask
"Why does it have this structure? What factors dominate
the chemical bonding in this material?"™ When asking this
sort of question, you should always remember that the final
atomic coordinates (x,y,z) will have a standard deviation
assoclated with them, and you must never interpret your

results more deeply than the errors permit,

Well, that's one way to solve a crystal structure, and
it works well when one or two atoms dominate the scattering.
What happens when all the atoms in the unit cell have roughly
the same X-ray scattering power, as is the case in many
organic materials containing oniy C, N, O and H? In that
case we use the technique known as Direct methods to solve
the structure. This is a statistical method for predicting
the phases of the different reflections and it ideally
requires (i) that all the atoms have the same X-ray scattering
power and (ii) that the distribution of atoms within the unit
cell 1e quasi-random. The mathematical basie of the method
was developed by Hauptmann and Karle in -1950; they were
rewarded with the Nobel Prize for Chemistry in 1986. The
method is little used in the study of ceramics and I shall

say no more about it now.
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Before I leave X-ray crystallography, there are two
polnts I want to make. The first concerns the time taken
to do an experiment. The way I just described it, the
answer is 3 or 4 days. However, it is possible to ask the
question in a much more fundamental way - how long does it
take for an atom to scatter an X-ray photon? This is what
is properly referred to as the timescale of the experiment.
It is easily calculated in this case: the X-ray photon
travels with the velocity of light, ¢ = 3 x 10° ms~!. The
distance travelled by the photon during the scattering

process is equal to the atomic diameter, 10-10

m.
Therefore

10
[

T= distance = 10
speed Ix10

S t=0.33 x 10718 5,

Every experimental technique has a timescale asscclated with

it. 1If the system changes between twoc states with a

frequency greater than 1/t, then the experiment cannot

resolve the two states, but instead sees an average. The
-4

XK-ray timescale is very short - cf T ~10 a.

The second peoint I want to raise concerns the question

"How big does a crystal have to be before I see a diffraction

pattern”. Imagine a polycrystalline sample where each grain

of powder consisted of only, say, 2 unit cells - would I

see an X-ray diffraction pattern? The answer is no. Each
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crystallite must be several wavelengtha in diameter - you
won't see an XA-ray diffraction pattern Lif the crystallite
size is less than about 200A (20,000 pm). This constraint
arises because of the coherence length of the X-ray wave
pPacket - a piece of physics that I do not want to go into
in any depth. Just remember that when you say "there is
no impurity in this sample because I X-rayed it and didn't
see any extra diffraction lines" what you are really saying .
is "any impurity in this sample has a crystallite size of
less than 20,000 pm®. Another way to look at this is to
say that the X-ray experiments take a structural average
over a distance of 2003. If there is no coherent structure
over this distance, then you don't see any Bragg peaks.
There ie one intermediate caase which 18 being recognised
in more and more materials, that is when structural micro-
domains occur. Consider a material with an orthorhombic

unit cell

You can imagine small regions within this unit cell, packing

together as follows
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ie with small (<200£) orthorhombic regions packed together
in a disordered way. The local symmetry 1s everywhere
orthorhombic, but over a distance of -ZDOR, the averaqge
structure, as seen by an X-ray beam, 1s cublc, because of
the disordered way in which the orthorhombic regions {or
microdomains} are packed together. So you do see an X-ray
diffraction pattern, but it will show cubic rather than the
true orthorhombic symmetry. If you were to use a radiation
with a shorter wavelength, and hence a shorter coherence
length, you could see the true orthorhombic symmetry. This

is the case in an electron microsccpe.

1 am going to leave X-ray diffraction now to look at
neutron diffraction. The neutron is a particle which can
be regarded as a wave according to the de Broglie equation
A = h/mv. If you want to do an X-ray diffraction experiment
you simply walk down the corridor and there's a diffractometer
waiting to be used. If you want to do a neutron diffraction
experiment you need a 60MW nuclear reactor. The neutrons
are produced in nuclear reactions in the core of the reactor.
Thelr energies are moderated by a volume of heavy water that
surrounds the core. The neutrons are thus brought into
equilibrium at a temperature T, characteristic of the heavy

water. Their kinetic energy is thus given by lmvz = ngT.
2 2

Substituting from de Proglie'’s egquation Az = h2/3kaT 1=}

for T = 0*C, A = 1.55; T = 100°C, A = 1.335, ie wavelengths

suitable for @iffraction experiments., The actual profile
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of number of neutrons vs,. wavelength locok something like

this:
de Broglie: A = h
UT%O- ) mv
because of moderator
nehrons

temperature, these
are known as ‘*thermal
neutrons'

Fl A 1
¥ ¥ ) ——p []

! 2 1 ra R
A monochromatic beam is produced from this distribution by

allowing the neutrons to hit a single crystal monoechromator,
often germanium. In a neutron diffraction experiment the
heutrons are scattered by the ahmmxmubé. This has two
important consequences, firstly in the X-ray case the size
of the scatterer - the electron cloud of an atom - is of the
same typical dimension, ~23, as the wavelength of the
radlation. This means that the atom does not act as a peint
scatterer and consequently the scattered intensity falls off
quite rapidly with increasing 29. 1In the neutron case, the
Ecatterer i1s a nucleus, several orders of magnitude smaller
than the wavelength of the radiation and therefore acting

as a point scatterer. The scattering does not fall off
rapidly with increasing 28. So the diffraction pattern from

a metal might look something like this in the two cases:

I y- "“3"*

Jo Ah__ﬂ LA

29 —
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-

Neulron

19

The conseguence of this i8 that you often see more observable
reflections in a neutron diffraction pattern than you do

in an X-ray pattern, and 1f you are trying to solve a
structure, then the more reflectiohs you see the better.

The second consequence of the difference in scattering
mechanism concerns the relative ability of X-rays and
neutrons to distinguish between different types of atom.

The scattering power of an atom with respect to X-rays is
directly proportional to the number of electrons that it
has, ie uranium scatters much more strongly than hydrogen.
On the other hand, the neutron scattering power depends on
nuclear properties which change only over a very small range
throughout the periodic table, ie the neutron scattering
power of hydrogen is roughly the same as that of uranium.
Furthermore, the variations that do occur are essentially

random. This is summarised in the following graph:

X-r - wnd/)~os
Sc“““‘"j L oy . m:}s(.; /x~05)
power

nhnWC ng]k}
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I've plotted atomic weight on the horizontal axis, rather
than atomic number, to help make the point that isotopes of
the same element can have different neutron scattering
powers, for example deuterium is a better neutron scatterer
than hydrogen. Their X-ray scattering power is, of course,
identical. The graph shows clearly why neutrons are
preferred to X-rays when the problem is to locate light
atoms in the presence of heavy ones. The X-ray scattering
from a rare-earth hydride would bg dominated by the rare
éarth to such an extent that the scattering from the protons
would be lost in the experimental noise. On the other hand,
in a neutron experiment the two species would contribute
almost equally to the scattering. Although all elements
scatter neutrons to roughly the same extent, the random
variations in scattering power can often be useful. For
example, in the compound NiCozo‘, X=-rays could locate the
metal atoms but they could not tell which were nickel and
which were cobalt - they are next to each other in the

I+ and Co2+

periodic table and Ni are jisoelectronic -they
have the same number of electons. Fortunately, the neutron
scattering power of nickel happens to be four times greater
than that of cobalt, so there is no difficulty in
distinguishing the two types of atoms in a neutron
diffraction experiment. This sharp contrast in the
scattering power of neighbouring atoms is particularly

marked in the first transition series.
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There are two further factors which can, on occasion,
make it preferrable to use neutron diffraction rather than
X-ray diffraction., Firstly, the abscrption of a neutron
beam by most matertals is very low. This means that it is
much easier to do experiments at low temperature with the
sample mounted in a cryostat, or at high temepratures with
the sample mounted in a furnace. The housing of the furnace
or cryostat will not absorb the neutron beam to any great
extent. The absorption of X-rays is much greater and
measurements at temperatures other than ambient are far from
routine. Secondly, the neutron has a magnetic moment which,
during the course of the scattering process, can interact
with any magnetic moment that the sample may possess, le
You can probe the magnetic properties of transition metal
compounds and look at the properties of ferromagnets and
antiferromagnets, The X-ray photon does not have a magnetic
moment and so only very weak magnetic scattering, too weak
to be of any use, is seen in the X-ray diffraction pattern.
These then are the fundamental differences between X-ray
and neutron diffraction. The most obvious practical
difference is the inconvenience and high cost of doing a
neutron diffraction experiment compared to an X-ray
experiment. Consequently it is usual to use X-rays whenever
possible. If you make & new compound in the form of a single‘
crystal, the way to begin its structural characterisation
is by single crystal X-ray diffraction. That will probably
enable you to locate all the atoms. If it cannot locate

the lighter atoms, and their positions are crucial to the
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understanding of the material, for example if you cannot

Afind the protons when you are making a study of hydrogen

bonding, then you might do a single crystal neutron
diffraction experiment in order to locate the all important
hydrogen atoms. If you can only make your new compound

in pdycrystalline form then you can study it by X-ray
powde; diffraction and hopefully find the unit-cell
parameters. However, it is difficult to get structural
information, ie atomic coordinates, out of a powder pattern,
but what success there has been has been achieved largely,
though not entirely with neutrons: if you cannot grow
single crystals and have to rely on powder diffraction, you
may be better off using neutrons rather than X-rays. Let
me first explain why it is difficult to determine structures
from powder data alone. It is essentially because all the
data have to be represented in one dimenaion in a powder
pattern, so that in a cubic crystal for example the (221)
reflection lies directly on top of the (300). Thus, you
cannot assign an intensity to each individual reflection.

In a single crystal experiment the two reflections would
occur at the same 28 value of course, but at different points
in space - there is always a loss of information when you
go to a powder eample. There are, perhaps, two reasons why
powder diffraction has been more successful with neturons
than with X-rays. Firstly, because neutron scattering does
not fall off with increasing scattering angle in the way
that X-ray scattering dces -~ there is no form factor in the

neutron case - you can record diffraction maxima out to



28

higher 28 values in the neutron case (-160"') and hence get
a larger data set. Secondly, because the data set is
compressed into one dimension, for compounds having all

but the highest symmetry and the smallest unit cells, there
is a considerable degree of reflection overlap. I don't
just mean the unavoidable overlap of cubic (221) and (300)
reflections, but if you have an orthorhombic material with
say a = 5.50, b = 5.47, ¢ = 7.75 then you will find that
the {(200), (020) and (112) reflections occur at 28 values
of 32,56, 32.74 and 32.66 *. Given that the instrumental
linewidth is about 0.3* (28) you cannot resolve these three

reflections -~ you observe something like this:
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If you have a diffraction pattern that is full of overlapping

peaks like that and you want to analyse the intensities

©of the Bragg reflections then you have to be able to aportion
the intensity under a broad, unresolved maximum into the
individual peaks that contribute to the maximum. You (or
your computer) can do this if you know the shape of the
individual Bragg peaks. This is where neutrons have scored
over X-rays, because the peaks in a neutron diffraction
pattern have a Gaussian shape that is easily modelled,
whereas those in an X-ray diffraction pattern have a more
complex ghape which 18 difficult to model mathematically.

The convenient Gaussian peak shape has led to the development
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and widespread use of the Rietveld profile analysis technique
in structure refinements based on neutron powder diffraction
data. However, you must remember that this is a technique
for structure refinement rather than structure sclution.

You need to know the basic structure of the material, and
then you can fine-tune it using profile analysis, If you
know the positionSEOfall but one atom you can probably
locate that missing atom, or you can determine the magnetic
structure (ferromagnetic or antiferromagnetic) if you know
the crystal structure already. Profile analysis is a very
powerful technique, but I only know of two crystal structures
that have actually been solved, as against refined, from
powder neutron data. The loss of information in the one-
dimensional data set is generally too great for Patterson

and direct methods to work.

Having said that X-ray refinements using powder data
have lagged behind those done with neutrons, I should point
out that the situation is beginning to change with the
increasing availability of X-ray powder diffractometers on
high intensity beam lines at synchrotron radiation sources,
such as that at Daresbury in Cheshire, England. These
instruments have a resolution ~30x better than a neutron
powder diffractometer (~10x better than a laboratory X-ray
diffractometer) and so the extent of peak overlap is
minimised. It then becomes possible to assign intensity
to individual Bragg peaks and to actuwally solve structures

by Patterson methods. People have alsc been putting a
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lot of effort into characterising the X-ray peak shape, and

with some success. At the moment it seems that if you have
to work with powders, then you might be better off using
X-rays to solve the structure, particularly if a heavy metal
atom is present, but neutron diffraction with its larger
data set spread over a wider angular range 1s probably still
superior for structure refinement. The first real structure
determination done using a polycrystalline sample and a
synchrotron X-ray source was that of u—CrPO4 by Attfield,
Sleight and Cheetham (Nature 322, 620 (1986)).

Another example is MnP04.H20 done by Lightfoot, Sleight and

Cheetham {Inorg. Chem. 26, 3544 (1987)).

Finally, on the subject of neutron diffraction, I want
to introduce you to a technique which has only been available
for the last five years, but which holds a lot of promise for
the future. This is time-of-flight neutron scattering., 1If

we go back to Bragg's Law, kA = 2dhkl sin shkl’ then all the
experiments 1've desribed so far have involved holding )
constant and varying § to detect the maxima in the scattered
intensity. You can do it the other way round by holding 9
congstant and varying A. 1In the experimental arrangement,
protons are accelerated in a synchrotron to something like.
500 Me¥ and they are then allowed to collide with a heavy
metal target to produce a burst of neutrons in a spallation

process. This pulse of neutrons is then guided to the sample,

k)|

without any form of monochromator. The sample is thus
bombarded by a pulse of neutrons with a continucus
distribution of wave-lengths. Each set of (hkl) planes in
the sample will diffract different wavelengths to maxima

at different angles. So if you g8it with your detector at
one particular angle you will receive maxima from all the
different sets of (hkl) pPlanes, but the maxima will be at
different wavelengths for each set of Planes. This means
that the neutrons arriving at the fixed detector after
scattering from the (111) planes will have a different wave-
length from those arriving after scattering by the (200)
planes, They will, therefore, have a different velocity,
from de Broglies's Law, and they will, therefore, take a
different length of time to get to the detector. So If

you measure the time of flight between sample and detector
You can calculate the wavelength and hence the d-spacing.
This tof neutron scattering promises a new generation of
high intensity, high resolution diffractometers. A facllity
based on this technique opened at Rutherford Appleton

Laboratory in Oxfordshire during 1985,
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