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Lecture 1 Simple Microstructural Models for Deformation and
Radiation Damage

1.1 Introduction

The strength of crystalline solids is almost completely determined by the
movement and interaction of defects in the perfection of the crystal lattice. The strength
of perfect crystals is inherently large and is estimated to be of the order of 11 of 1he
shear modulus (Kelly and MacMillan 1986). The production of single crystal
whiskers, that are essentially defect free, enables such strength limits to be approached,
but although whisker re-enforced composites are useful large perfect crystal struciures
are not atiainable. Reducing defect concentrations is the route chosen in the
optimisation of fabrication techniques for ceramics but metal alloys for engineering
applications are’ cockiails of components with several phases and complex
miCrostructure.

Defects form a hierarchy of types: (i) poimt defects which include lattice
vacancies, self imerstizial atoms (which we will refer o simply as interstitials),
substitutiona! foreign atoms and interstitial foreign atoms; (ii) dislocations which are
line defects in character; (iii) two dimensional defects which include stacking faults,
grain boundarics, twin boundaries and we may also include free surface, cracks and
interfaces with other phases; and (iv) three dimensional defects such as cavilies,
bubbles and precipitates. In the second lecture of this course we will consider defects
in class (iv) in some detail, but there is no space to draw attention 10 morte than a few
important aspects of the behaviour of the other defect 1ypes. A general text book on
physical metallurgy will provide any background if required (e.g. Cahn and Haasen
1983 or at a more elemeniary level Wulf 1964). The properties of dislocalions are
particularly rich in detail and as the motion of dislocations generates the plastic strain in
crystals, under most circumsiances, some understanding of their nawre is needed here
(e.g. see Nabarro 1967). Before we discuss microstructural modelling we will briefly

review some of the main features of dislocations.

Fig. 1.1 shows a dislocation glide
loop, i.¢. a closed dislocation loop

brparct where the Burgers vector lies in the

INIING b
?’*— — slip plane. An arbitrary stress in the
N Eeeenreyas material will produce a force per
\—_—__.7—-——“ . )
~ O oot unit on the dislocation of (Peach

Fig.1.1 and Koehler, 195()



F=baxs.
(n

A shear stress t5 lying in the same plane as b and s and in the direction of b
will produce a glide farce of magnitude b 1, that will expand the Joop propagating slip.
A plide ioop will have some parts which are predominantly edge in character and some
parts predominantly screw, Edge dislocations are constrained to glide within the glide
plane and any motion away from the glide plane requires emission or absorption of
point defects, i.e. cfimb. Screw dislocations may move on glide planes other than the
principal one, which is termed cross siip. The force on the dislocation is a virtual force
that ¢comes from the work done in displacing the material about the slip plane by a
distance b.

Dislocations have an associated elastic field that is dependent on the orientation
of the Burgers vector to the dislocation line. Both the stress and strain fields are
inversely proportional to the distance from the dislocation line. The stress field can be
expressed generally as:

_ b1, (8)
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(1.2)

For an edge dislocation the stress field has dilational and compressive parts below and
above the dislocation line, see Fig. 1.2. The components of stress are given by:

£ () = fog (6) = sin@/(1-v), f5(8) = cos 6/(1-v)
and f, = - vsin 8/(1-v),

(1.3)

- - where z is the direction along the
dislocation line. The stress field
around a screw dislocation is purely
shear in character, where:
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The self elastic energy of a dislocation is complicated by the stress singularity at
the core. If it is assumed that the core energy is small and a cut off is made at a distance
of 1 atomic spacing then the elastic energy is approximately:
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where R is the dimension of the body containing the dislocation, K) = 1 for screw
dislocations and K = (1-v) for edge dislocations. This energy is large and dislocations
are thermodynamically unstable as the configurational entropy is (0o small to provide an
offser. The dependence of the dislocation energy on the square of the Burgers vector
means that normally dislocations have Burgers' vectors corresponding to the smallest
lattice veetors, i.e. in the closest packed directions. Occasionally distocations are
formed, from dislocations or point defect reactions, with other lattice vectors but they
tend to be unsiable, although some materials are found with several types of stable
dislocation. Super dislocations are also unstable unless they are forced together by an
applied stress against an obstacle. In some materials the dislocation may split into
partial dislocations which are separated by & stacking fault. If the dislocation has an
initial Burgers vector b and splits into two partials by and by (determined by the lattice
structure) then the separation is given approximately by:

dp = ubdy 2Ky T
(1.6)

where I is the stacking fault energy. For Al and bec iron there is no energetic
advantage in such splitting, but it is an important phenomenon in austenitic stainless
steels where the dislocations can separate by up to 50 atomic spacings.

A useful concept in developing microstructural models is the dislocation
density, pg. This is defined as the number of dislocations per unit area intersecting a
random cut made in the material. In real materials after deformation the dislocation
density will be an anisotropic property but for many purposes we can assume that it is
isotropic. The concept of dislocation density also has some assumption of a balance
between dislocations of opposite signs. If this is the case the material will have no long
range elastic field as statistically the fields of the various dislocations will cancel. If
dislocations of a particular sign predominate one of two things can happen. If the
material is constrained, c.g. if & region of high dislocation density is buried in
dislocation free crystal, there will be a large self elastic energy and a long range elastic



field as if the material contained a super-dislocation. If the material can relax the crystal
will exhibit a curvature of the lattice (Kroener 1958).

The motion of a population of dislocations of a particular rype (but they could
be of both signs) with a density pg are related to a strain € by the Orowan relation:

€=pgbL,
(L.7)

where € is the shear strain in the glide plane and L is the average distance cach
dislocation moved (dislocation of opposite sign moving in opposite directions).

A frequent configuration, that is
encountered in the theory of solute
and strain hardening, in dislocation
multiplication and in climb
interactions, is the pinning of a
g\ 2 dislocation between a pair of
obstacles. A dislocation has a line
Flg 1.3 tension which is relaled‘ to the
curvature of the dislocation line

(Friede! 1964):

ub?
= b
R K, In {p, /2b)

(1.8)

where p, is the local radius of curvature. The joop shown in Fig. 1.1 will therefore
tend 10 collapse under its line tension and stress from eq. (1.1) & stress of magnitude:

% = R/p,b)
{1.9)

is required to maintain the loop in equitibrivm. When a dislocation is pinned berween
obstacles, spaced by a distance A, the Jine 1ension will keep the dislocation strain unless
a siress is applied when it will bow out in the manner in Fig. 1.3. For most
applications the logarithmic term may be replaced and we can approximate the radius of
curvature by:

P E pbln

(1.1
The force on the pinning points is given by:
b E
1‘. T = b
70D =
(1.11)

1.2 Low Temperature Deformation

Before going further some definition is required as to whal are low temperatures
and high emperatures with respect 1o deformation and radiation damage. A convenicnt
split is given by the temperature at which lattice se)f-diffusion becomes imponant. For
most materials this is approximately at 0.4 Tm where Tm is the absolute melting point.
Below this temperature some thermally activaled processes may occur during
deformation, but creep strains are not sigrificant and dislocation motion is dominated
by glide.

The main features we are interested in this section are the material flow siress
and work hardening.

From the point of view of mechanical behaviour of materials the most imortant
property of dislocations is that they can move under applicd stresses that are much
smaller than the theoretical strength of the material. In a material with a low dislocation
density and without the complicating effects of soluble impurities and precipitates, the
dislocation flow stress is determined by the energy barrier to move the dislocation
through the lattice. This stress is usually referred to as the Peierls stress after the first
sin'iplc model that was used 1o describe the process (Peierls 1940). Simple estimates of
the Peierls stress are not useful and even detailed atomistic models are as yet inaccurate,
The following points are worth noting from experimental observation. Edge
dislocations gencrally have a lower flow stress than screw dislocations; this is
particutarly marked in bce metals, where the edge components of loops move
preferentially leaving long arrays of screw dislocations. ‘The Peieris stress in close
packed meials is low and usually below 104, which is the value for most bee metals.
The Peierls siress is much higher for covalent and ionic crystals with values of around
10-3y and 10-2p respectively. The motion of dislocations with a high Peierls stress
often has to be achieved by the nucleation and motion of kinks on the dislocation.
Dislocations that split into partials generally have a lower Peicris saess. However split
dislocations are Jess likely 1o exhibit cross slip as there is an energy penalty in having 1o



restore the perfect dislocation before it can move into a new glide plane. Cross slip is
casier for screw dislocations in bee metals and this is seen in characteristic wavy slip
lines.

Adding other types of atoms to materials in most cases increases the dislocation
flow stress. This may be a small effect in solid solution binary alloys but much larger
in ordered alloys where passage of the dislocation destroys the order on the slip plane.
Interstitial solutes or substitutional solutes with large atomic size differences from the
host materials can increase the flow stress of the material even at low concentrations.
This is an important means of strengthening engineering materials. For lower
temperatures the effect of solutes arises mainly from the interaction berween the sirain
field around 1he dislocation and the strain field around the solute atom. There are three
main sources of this interaction. The easiest of these 1o understand is the 'size’
interaction which is proportional 1o the mismatch volume ¢;, which is the ratio of the
solute atomic volume to the host atomic volume for interstitial solutes or this ratio
minus one for substitutional solutes. This type of interaction is only valid for the edge
components of dislocations where there is a volumne strain field. There is also a ‘shape’
interaction where the solute distoris the surrounding lattice in 2 non-spherically
symmetric way, This occurs naturally in anisotropic crystal Jattices but interstitial
solutes can break the symmetry of the lattice in isotropic crystal structure. This type of
interaction couples with shear stresses and thus affects both edge and screw
dislocations. Where such effects occur they usually dominate, The third type of
interaction is called the ‘inhomogeneity’ effect and arises because of the effect of the
solute on the elastic modulus of the lattice (Eshelby, 1951). This type of interaction is
usually less strong than the size and shape effect. Where the bulk modulus is affected
the interaction is only with edge dislocations, but if the shear modulus is affected screw
dislocation components are also involved.

If we characterise the dislocation solute interaction by fg, which could be
identified with ey for the size effect, a simple mode! can be constructed for the effect of
sclutes on the dislocation flow stress (Friedel 1964). For a dilute concentration of
solute atoms lying near the slip plane, which is shown schematically in Fig. 1.4, from
q. (1.11) the stress required to break away from pinning solute atoms spaced A apan
is given by:

L Pfl b/24 .
(1.12)

As the dislocation bows out
between solute atoms it may
encounter a third solute atom and in
this way the pinning distance A will

decrease with increasing applied
stress (Nabarro 1985):

A= uQ/r,CH'"
(1.13)

where Cg is the atomic concentration of solute. The flow stress then becomes on
replacing A in eq. (1.12):

T, =y (f’ /2)3[2 CIHZ
(1.14)

This type of expression for solute hardening is useful for dilute concentrations
of weakly interacting atoms and is termed the Friedel limit. The other extreme is for
high concentration where the size of the soluie atoms is comnparable to their spacing this
is termed the Labusch limit (Labusch 1970). In this case the flow stress is given
approximately by:

% = u(fl ¢ /2
(1.15)

The effective flow stress from the lattice resistance or solute hardening is
strongly temperature dependent even at low temperatures. This is because the
interaction energies are usually much lower than those for lanice diffusion, alihough
this is often not the case for covalent or ionic crystals. A general expression for the
velocity of a dislocation is:

(&-nm]

v, = W,bexp [ T

(1.16)

where Ep, is the energy barrier for migration and V, is the activation volume of the
reaction, From eq. (1.7) we get the smain rate from the moving dislocations:



€= bpsvg
(1.17)
Combining (1.16) and (1.17) and inverting we can express 1((T) as:
1 kT
g fe ——-_]
Van In {p, B2y, /€)
(1.18}

which because of the log term is only weakly dependent on the strain rate, For flow
limited by Peierls force we can re-express eq. (1.18) as:

%=170-TT),
(1.19)

When flow is enabled by kink motion Epy is identified with the sum of the kink
migration energy and the formation energy of a kink pair. When solute hardening is
important the temperature dependence is more complex and there are ofien several
temperature regions with different controlling parameters (Nabarro 1985). For the
simplest maierial, as we have already seen, the activation volume is stress dependent
and there may be other 1emperature dependences of the parameters. The temperature
dependence is frequently of the form:

%= 1, [1- (/TP
(1.20)

For bee metals, and panticularly iron alloys, one of the main effects of solutes is in
inhibiting kink motion. This was used by Suzuki (1971} 1o explain the dependence of
flow stress on c2 and 7-1 in this group of materials.

The dislocation flow stress is not

always identified with the yicld
n i 114 r stress 1o propagate plastic flow over
a polycrystatline material. There is
usually & weak dependence on grain
size that was first explained by Hall
(1951) and Petch (1953). This
requires the concept of the

Fig. 1.5

dislocation pile-up, see Fig. 1.5. The dislccations are emitied from a disiocation source
a distance L from an obstacle, in this case a grain boundary. The dislocations move out
under the action of the applicd stress 1. The first dislocation is stopped by the obstacle
and its elastic field stops the second dislocation and so on. This continues until the
back stress from the pile-up prevents the source ¢mitting any further dislocations. The
number of dislocations in the final pile-up is (Hinth and Lothe, 1982):

Ny = m(1-v)L1/ub
{1.21)

The stress at the head of the pile-up is:

% =Nt = a{l-v)L2/ub
(1.22)

In order to propagate slip into the next grain Tp has to reach some critical level, ¢.g. the
stress required 1o punch dislocation loops out of the grain boundary. If L~dy it can be
seen that the applied stress required 10 propagate yield is proportional to dy- 172, This
leads 10 the Hall-Peich relation for the yield stress of

=% +k /d”2
5 P (1.23

where kp is a constant. This relationship is found 1o hold well experimentally for a
wide range of materials.

In materials containing precipitates, the stress to produce extensive yield must
be able 10 force the dislocations between the precipitates if the dislocations are not able
to penctrate them. This simplest case is for hard incoherent precipitates with a low
concentration, where the spacing between the precipitates, A, is much larger than their
size. The dislocations bow out between the precipitates and if the applied stress is large
enough the adjacent bowed segments join (Orowan 1948). This allows the dislocation
1o break through leaving a small loop around the precipitate behind:

T, = % + 2ub/A
(1.24)

where A ~ 1/cp/3 for a spherical precipitate, Cp being the concentration of precipitates
per unit volume. This expression can be improved 1o take into account the radius of the
precipitates (Ashby 1968):
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There are other types of interaction for precipitates that are coherent with associated
elastic strain fields and for soft inclusions that can be sheared but there is not space to
go too deeply into the subject.

We will now tumn to the topic of work or strain hardening. For single crystals
this occurs in several stages as the dislocalion configuration becomes more complex.
For polycrystalline engineering materials the hardening stans at lower strain values; the
constraint of having to match strains in differently orientated crystals prevents casy slip
and complex dislocation interactions build-up quickly, There are three main processes
which control the hardening rate: limiiations to the dislocation glide distance; direct
interaction between dislocations on different slip planes; and the effect of the internal
strain field of the dislocation distribution. In order to build a mode! of these processes
we will look at strain hardening at its simplest level.

The Orowan equation (1.7) gives us the main expression to develop a work
hardening theory. This is obtained by differentiating {1.7) with respect 1o time and
gives the rise in dislocation density with strain:

dp, €

dt bL. .
{1.26)

There are two main cases of interest. The distance moved by the dislocations may be
fixed by the presence of some obstacles, such as an impenetrable array of inclusions or
grain boundaries. Aliernatively the obstacles may be other dislocations and the average
distance moved by the dislocations will be dependent on the dislocation density. In
practice we might expect L 1o be fixed for low stresses giving €= py and for higher
stresses when the dislocations can bow out past the obstacles or the dislocation spacing
is finer than the obstacle spacing Lo p}’? and £ p}"? .

There are many types of interaction between dislocations and some examples
are listed here 10 show the richness of the subject. Dislocation of opposite sign by
lying on parallel glide planes can interact elastically and stop, forming a dipole. We
have already encountered the concept of the dislocation pile-up, which eventually stops
the emission of dislocation from sources. Screw components of dislocations can cross-
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slip out of the pile-up at the expense of activating a less favourably orientated slip
system but dislocations with edge components are mapped unless they can move non-
conservatively. Dislocations moving on non-paralle] glide planes are either pinned at
the contact points and have 10 bow out between the pinning points or they can cut
throvgh one another which leads to the generation of jogs or kinks at the interactions.
Screw dislocations that have jogs imposed on them in this way are pinned at the jogs
and can only move by bowing out from the pinning points or by emitting point defects
when the stresses are large. Finally the tangle of dislocations will produce a modulated
elastic strain field which will in some areas awtract individual dislocations and in other
areas repel.  This will impede dislocation motion. We will look at some of these
interactions again when we investigate creep and construct a simple deformation model,
but for many purposes we can e¢nvisage an internal stress that opposes dislocation
motion with the form: :

T = aubp'?

(1.2

where o lies between 0.2 and 1.

We can now see from eqs. (1.26) and (1.27) that for fixed dislocation motion
we would expect:

£ = ap(eb/l)?
(1.28)

which give parabolic strain hardening and for dislocation motion of distances
L = Bipt2:

T =apep
(1.29)

which is linear strain hardening. Strain hardening is frequently found to lie between
these two extremes. The yield swess is now given by:

5 o= 4D +%
(1.30)

A special case of strain hardening occurs in precipitate hardened materials when
the applied stress is larger than the Orowan stress 1o break through the obstacles. The

remaining dislocation loops left around the particles by this process repel other

11



dislocations, The strain hardening law in this case is given by (Fisher, Hart and Fry

1953):
to=6ufe
(1.31)

where f}, is the volume fraction of the precipitaes.

Before moving on to creep deformation it is worth noting that strain hardening
eventually saturates at high strain, when the applied stress produces very high
dislocation densities. As the dislocation density increases random anihilation of
dislocations becomes more probable, cross slip occurs freely for screw dislocations and
edge components may be forced to climb by point defect emission. Stress emitted point
defects can also permit limited non-conservative disiocation motion in other
dislocations.

1.3 High Temperature Deformation

This scction is mainly concerned with the phenomena known as creep, which is
the term for thermally activated continuing deformation under a load. We have already
seen that dislocation motion and the yield stress can be thermally activated. At the
lowest temperatures where creep is seen the deformation on the application of the load
decreases continuously with time and because of this is termed logarithmic creep.
Ofien part or most of this is recoverable on removal of the load, i.c. anelasticity. The
strains are limited to a few tenths of a % at most. These strains arise from thermally
activated redistribution of 1he dislocation network acting against the Peirels force or
solute hardening in the presence of obstacles such as precipitates or other dislocations.

Once temperatures are above 0.4 Ty, creep in its proper sense is observed. This
is invariably associated with the commencement of lanice self diffusion as an important
process and the activtion energy for creep has long been identified with the self
diffusion energy for a wide range of conditions {Dorn and Mote 1964). At these
lemperatures a constant creep rate or a quasi-steady creep rate is observed afier some
initial ransient. For long times and high strains the steady creep breaks down and the
creep rate rapidly increases to failure. Thus creep is often divided into three stages;
primary secondary and tertiary, shown schematically in Fig. 1.6, The primary and
secondury stages are frequently expressed as (Andrade 1910);

Erep = 2t 4 5 1,
(1.32)

whcrc;:, is the steady state creep

/ raic and a is the primary creep

// cocfficient, both quantities are

. seionom, / functions of stress and temperature.
i ’ e Aliernatively an exponential form is

primay / tertiary preferred by Garofalo (1965):
e :

t
Fig. 16

Eacep = & {U+ (B/) 1 - expl-tt,)},
(1.33)

where [} is constant for the material and 1, is a relaxation time which may be a function
of stress and temperature, This pattem of three distinct stages of creep is an idealisation
found mainly in pure well annealed materials. Engineering alloys and cold worked
materials are subject te microstructural and microchemical changes at creep
temperatures and this can sometimes result in increasing rather than decreasing initial
creep rales and the failure 10 establish a clear steady state creep rale.

Creep for most of the range of interest results from dislocation movements, but
for low stresses and very high temperatures purely diffusional creep can occur. The
driving force for this is the difference in chemical potential for vacancy formation on
grain boundaries with different orientation to applied stress. If vacancy transport is by
lattice diffusion the mechanism is termed Nabarro-Hemring creep afier the first
proposers {Nabarro 1948, Herring 1950). If vacancy ransport is by grain boundary
diffusion the mechanism is termed Coble creep (Coble 1963). The two mechanisms
can be described by the simple expression:

+ C1Q nd, Dy
= =¥ p,
ST (” 4, J

(1.34)



where C is a constant reflecting the grain boundary geometry and has been given by
various authors between 24 and 40. Diffusional creep at these rates is rarely obscrved.
There are two reasons for this, both of which impose a threshold 10 this type of creep
(Arzt, Ashby and Verrall 1983). Constrainis are imposed on diffusional creep from the
shape changes 1o the grains during deformation. This leads to a back-stress
proportional to w/dy or for dislocation models of the boundary ub/dp. For pure
materials this back-stress is less than 5 MPa. The other constraint is an important one
for engineering alloys where the boundary is prevented from being a good source of
vacancies by the presence of particles or segregated solutes. In this case the magnitude
of the back-stress may be very substantial (up to 50 MPa) and completely inhibit
diffusional creep.

Purely diffusioral creep is linear with stress but for higher stresses and lower
temperatures creep is fcund 10 be very sensitive to stress. At intermediate stress levels
the secondary creep strain rate is found to obey the relationship:

P AHDL (9,)
kT \u
(1.35)

where A is a constant dependent on the material and n lies between 3 and 7 with a
tendency for smaller velues of n at higher temperature. For higher stresses the creep
rate becomes more sensitive s1ill 10 stress, in what is sometimes referred to as power
law breakdown, and the strain rate is better represented by an exponential function of
stress.  Garofalo (1965) has tried 10 combine these two regimes into a single
expression:

£ = Alsinh (bo)]" exp(-Q/kT),
(1.36)

with some degree of success.

In order to explain these observations a there is a rich literature of dislocation
models, which are reviewed in Takeuchi and Argon (1976). Since then there is a
growing concensus tha: simple models based on the balance between hardening and
recovery can explain most of the observations and also provides a basis for models of
transient deformation as well as steady state creep. A number of key observations
should be noted as guides 1o the construction of a model:

(i} Dislocation pile-ups and other debris associated from cold work are not
observed during creep;

(ii) The dislocations form a polygonal network, which nucleates subgrain
boundaries if the temperature is high enough and the subgrain size is inversely
proportional to the applied stress;

(i) The dislocation density is Jow within the subgrains and increases with the
square of the applied stress;

(iv) The creep rate for a given se1 of conditions is higher for a material with a high
stacking fault energy;

V) The creep activation energy is around 0.6 the fauice diffusion value for
temperatures around 0.5 Ty, and increases 10 the lawice diffusion value for
slightly higher temperatures.

These observations support a ereep mechanism based on the limb of dislocations into
subgrain boundaries where they anihilate or have their long range smain fields
cancelled. We can see how this happens by taking the dislocation density growth
equation (1.26) and adding a term that controls recovery:

dpd ;'.' Ve
-3 =~ _gp, 5,
b Py

(1.37)

where v is the rale of climb of the dislocations and h is the distance the dislocation has
to move 1o be anihilated or to join the sub-grain boundary. The dislocation climb rate is
determined by the elastic interaction between dislocations which provides a chemical
potential difference for vacancy absorption and emission at the dislocation. For an
isolated dislocation dipole separated by h the rate of climb towards one another is:

Qu b
Ve -DL'l::l:h—s'-

(1.38)

where s is a scale parameter controlling the absorption of point defects by dislocations,
which is equal 10 the spacing of jogs on the dislocation when climb is jog limited. In
pure materials we expect that L and h are inversley proportional to the dislocation
density. (For a discussion of this point see Matthews (1985)). For a steady-state creep

15



on making the rate of change of dislocation density zero in eq. (1.37) we obtain an
expression for the strain rate:

. b1 Qu 2 Qu
=8 = = B, p" Dy —,
£ Pa h?s kT 10470 kT

(1.39)

where B1 is a constant characteristic of the dislocation arrangement. The condition that
dislocation motion is governed by an effective swess consisting the applied stress minus
the internal stress from the other dislocations, eq. (1.27}, makes the dislocation density
proportional to the applied stress, provided that dislocation glide is much easier than
climb. If we 1ake 0, = pb pl/? then eq. (1.39) is found to give & creep rate of the
same form as eq. (1.35) with n=3. The dependence of creep rate on stacking fault
energy is almosi certainly associated with a reduction in the case of absorption of point
defects on dislocations that are split into partials, as suggested by Argon and Moffat
(1981).

If the dislocation climb rate is controlled by dislocation core diffusion rather
than lattice diffusion eq. (1.38) is replaced by:

Qu b?
ve = 2 —_—
<=0 i i
(1.40)
The creep rate will now be of the form:
5
.£= A u @E E
kT Lu
{1.41)

Typically the activation energy for core diffusicn is around 0.5 10 0.75 of the activation
energy for lattice diffusion which may explain the reduction in activation energy with
temperature,

The breakdown of power law creep and the transition to an exponential
dependence on siress is probably due 1o dislocation recovery becoming a dynamic
process. This means that both the recovery rate and the hardening rate are proportional
10 the sirain rate. In these circumstances the creep rate is fixed by the dislocation
velocity and the dislocation densiry necessary 1o sustain dynamic recovery. As such the
creep behaviour is relatively insensitive to temperature, uniil temperatures are well
below 0.5 Tp,.

These ideas are used in Fig. 1.7 10 schematically illustrate the stress dependence
of creep rate for a pure metal, which gives for an intermediate stress range an apparent
stress power of ~4.5 which is frequently observed. A useful way of showing the
relative imporiance of various creep mechanisms are the deformation maps inroduced
by Ashby (1972). An example is shown for a pure metal in Fig. 1.7. Creep rates
below 10+ 10/s are considered insignificant for engineering purposes.

So far we have concentrated on pure metals. Real enginecring materials are
hardened by solutes and the creep stength is improved by precipitates or dispersal
particles. Let us briefly discuss solutes first. For low dislocation velocities at high
temperature the solutes tend to be drawn 1o dislocations because of their stress field.
Provided the solute does not precipitate on the dislocation core an atmosphere is formed
round the dislocation imposing a buck force to any movement. This solute atmosphere
can move with the dislocation by diffusion fixing the dislocation velocity (Courell
1952). The dislocation velocity is not very imponant in determining the steady state
crecp rate unless the glide rate is inhibited 10 much lower tevels than the climb rate. The
main importance of the glide rate is in determining the timescale of wansient creep, but
the redistribution of microstructure such as the subgrain boundary size is also importamt
and on a much longer timescale.

For higher stress and dislocation velocities the mobile dislocations can break
free of the solute atmosphere and the glide rate will be determined by dislocation
intersection rate or the drag of jogs. There will, however, be a back smess on the
dislocation from the presence of the solute such as that given by egs. (1.14) or (1.15).

The presence of precipitates is also important and alloys for high temperature
applications are designed with dispersion hardened structures that inhibit creep, There
are two main regimes of interest: low stresses where the effective stress on the
dislocations is below the Orowan stress to break through the particles; and high stress
where the dislocations can force their way through the obstacles. In the low stress
regime the distance moved by the dislocation L is now fixed by the parnticle spacing.
Recovery occurs by anihilation a1 the particles or by climb of the dislocations over the
panticles (McLean 1985). This leads to a creep rate of;

. 2y O bD,. (o.)‘
= IAVD = = Al u— (2
€= By pjAb’ D T (A )u Tz
(1.42)
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For the high stress case there is a back stress from the Orowan stress, O, that gives a
strain rate of the form:

3
s A HODL [a.-a.,] _
kT 1
(1.43)

This gives a smress power that is apparently much higher than 3. The creep rate is fixed
by the recovery of the dislocation loops left behind around the particles. An example of
the stress sensitivity of a precipitate hardened material is shown in Fig. 1.9 and an
equivalent deformation map in Fig. 1.10. The map is more complex because of the
effect of a high threshold stress for diffusion and creep.

Twe types of alloys are of paniicular interest for high temperature structures.
Oxide dispersion hardened (ODS) alloys comain incoherent oxide particles that are
particularly effective in suppressing creep. In such alloys the lower stress behaviour is
inhibited almost completely for reasons which are not yet clear. Super-alloys are
formed from high nickel alloys in which there are coherent intermetallic precipitates, Y
consisting of Ni3 Al. These alloys are very important in the construction of gas
turbines. The coherency of the precipitates permits dislocations from one phase to pass
into the other and the precipitates may be sheared. This can only happen when two
dislocations in the ¥ structure combine and are then able to move into the ¥ structure.
There is threshold stress for this process that is a strong function of the volume fraction
of the ¥ (McLean 1985). Super-alloys frequently have 20 to 30% ¥ phase.

In dealing with engineering alloys it is worth noting that the structure of most
alloys is strongly temperature dependent. Siabilised steels, i.e. steel with reactive
elements added that precipitate C and N, and other precipitate hardened alloys will
undergo progressive coarsening of the sccond phases when aged at high temperatures.
In most cases there is a solution temperature where the sccond phases disappear
completely. The recovery of cold work may be inhibited by precipitation but ageing at
high temperature can permit recrystallisation which can drastically reduce the strength
of the material, At high temperature recrystallisation can also occur during deformation
again reducing the strength.

1.4 Radiation Damage Processes

We are concemed here with the effecis of neutron irradiation and to some extent
the effect of energetic charped ions and electrons. ‘Gamma radiation has little effect on
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metals and the effect of ionisation in ionic and covalent solids is mainly of interest for
optical and electronic effects rather than on the mechanical propertics. Neutrons have
two main effects on structural materials: displacement damage where collisions
between neutrons and nucleii displace atoms from their lattice positions; and
transmutation reactions where the neutron causes the nucleus to emit another panticle

changing its chemical nature.

Displacement damage is characietised by the Frenkel reaction where the
displaced atom becomes a self inerstitial atom and the space it once occupied becomes a
vacancy. The energy required to do this in a typical metal crystal is around 30 eV but is
closer to 100 ¢V in covalent and ionic crystals. The maximum cnergy transfers for a
panicle of mass m and kinetic energy E, emitting a lattice atom of mass M is:

Em = 4mM/(m+m)2 Eg = jipm Eo.
(1.44),

This determines the threshold energy necessary to produce displacement damage by a
panticular type of particle. As an example if we assume the displacement energy for
iron is 25 ¢V the threshold energies for to displace iron atoms are:

Type of particle Hm Threshold energy (eV)
238 0.617 41
56Fe 1 25
12C 0.518 43
4He 0.249 100
n 0.069 363
e 3192 x 105 6.38 x 105

If substantially more energy than the displacement energy is transferred
to & lattice atom it can then cause further displacements. The first ion displaced is
referred to as the primary recoil ion as an cnergetic displacement will strip electrons
from the atom. The secondary recoil ions are produced locally over a few tens of
nanometers in a cascade. A cascade is shown schematically in Fig. 1.11. The nature
of the cascade, together with a tendency for displaced atoms (o channel along close
packed direction, is to have a core of vacancics surrounded by a cloud of interstitials.
The simplest estimate of the number of Frenkel pairs formed by a singl primary recoil
can be obtained by simply dividing the recoil energy by the displacement energy. This
is an ovcrestimate as energetic jons can ransmit energy to electrons. A simple rule of
thumb gives the threshold energy for ionisation in keV as 1.5 times the mass of the
lattice jons in atomic mass units. Above this threshold more of the energy goes into
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lattice heating than displacement damage. From these considerations it can be scen that
a 1 MeV electron can only produce isolated Frenkel pairs, bul a IMeV neutren or «-

particle can generale cascades with around 100 displacements. Fission fragments with
energies of
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Fig. 1.11

between 60 and 140 MeV produce a large number of displacements, but the large
electronic energy deposition produces a thermal spike extending over several pm which
is just as important.

Displacement damage is measured in displacements per atom (dpa). Structural
companents in the core of a fast reactore are subjected 10 a displacement damage rate of
around 106 dpa a'! and accumulate displacement doses of 100 to 150 dpa. Core
components in a water cooled thermal reactor suffer displacement damage doses about
an order of magnitude lower and the pressure vessel might receive around 1 dpa.

In a displacement cascade after the initial energy deposition has dissapated, any
close interstitial - vacancy pairs will recombine leaving perfect lattice. The high local
concentration of vacancies also permits the vacancies 1o cluster and hence reduce their
energy. In most materials vacancy clusters will collapse to form a vacancy loop. Such
loops are unstable in the long term as they will collapse by emitting vacancies driven by
the energy of the dislocation surrounding the loop and the stacking fault it usnally
contains. The interstitials surrounding the cascade are more widely separated and will

random walk until they are absorbed by a dislocation line, combine with other

2

interstitials to form interstitial loops or recombine with vacancies (or a vacancy loop).
Interstitials have a large elastic energy and once an interstitial is absorbed by a loop it is
extremely improbable that it will be reperitted. Imierstitial loops are thus very stable.

The chemical rate theory is frequently used to provide a framework to model
point defect kinetics {Bullough 1985). We will use a simplified version of the rate
theory of radiation damage to illustrate some of the main features of the behaviour. The
rate of change of concentration of point defects is given by:

& =K-DK-agc
and
& =K+K -D K -aqc,
(1.45)

where K is the displacement damage rate. The quantities k;2 and k2 are the sum of the
strengths of interstitials and vacancies for all the sinks in the material, ¢.g. point defect
loops, dislocations, cavities and grain boundaries. The thermal emission of vacies is
included with the term K, = I, D, kI, ¢, o where ¢ indicates a particular sink type
and Ef,,, is the thermal equilibrium vacancy concentration adjacent to the sink. The final
term in the eqs. (1.45) is the recombination rate where the recombination rate « is
generally proportional 10 D as interstitials migrate more rapidly than vacancies.

At the start of irradiation the defect fluxes are subjected 10 a transient which is
dominated by the relative mobilities of the inlerstitials and vacancies. This will only last
on average a few hours. Once a dynamic equilbrium is established we can easily find a
steady stute solution for eqs. (1.45):

o = [KEm) - 3R] D
and
1
¢ = [KF(WH 5“']“‘3 D, c,

{1.46)
where

Fn) = /) {[(1 + Kiaky + n]'"” - 1}

and
n = 4aK/D D, kK.



The function F(n} gives the effect of recombination and thermal emission on the defect
populations. At low temperature 1) and K. are very small and F(m)) — 0. In this case
the defect concentrations rise until the quadratic recombination term dominates. For
high temperatures (>1/2 Tm) thermal emission become important and the vacancy
concentration is large, suppressing the interstitial concentration. At intermediate
temperature both vacancies and interstitials are mobile and the point defects are mainly
lost to sinks, 1t is in this intermediate range that most of the interesting and important
radiation damage effects occur. Fig. 1.12 shows the extent of the temperature zones as

! function of displacement dose rate.
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camnotes s The solid lines define the zones for
-3 /
T / ] 2 high sink srength of 106 m'2 and
Cperating .
o o' {freqme tor | the dashed lincs define the zones for
- 47 stenis n tost
pa— I reoster a low sink strength of 1014 m-2,
£ oh _
; Thermal
1] oce * _J .
a8 ® domncts Displacement damge produces a
w0 operating regime for] wide range of effects in structural
I i T . . - . .
- feaciers o materials. These include irradiation

0 0) o+ 05 6B 01 op

o creep, irradiation growth, fast
m

neutron  induced swelling,
Fig. 112 irradiation hardening and irrad-

fation sofiening. All these effects are to a large extent due to the elastic interaction
between dislocations and point defects, panicularly interstitials. Point defect sinks such
as grain boundaries and cavities are frequently referred to as neutral sinks as they only
weakly interact with point defects. The point defects mainly find these sinks by
random walk and there is no large preference for a particular defect type. Dislocation,
however, as we have seen, have a long range elastic field that interacts strongly with
the large mismatch volume of the interstitial. The intersititials are atiracted to the
dilatation region of the strain field of an edge dislocation but are repelied from the
compressive region. The nret effect, however, is a drift of the inersitials 1o the
dislocation and a difference in the dislocation sink strength for vacancies and
imerstitials. We can represent the dislocation sink suchglh by:

=
Y
n

Z py

Z(1+4)py

kvd = Z‘vpd

(14

Zpd.
(1.47)

The sink strength of point defect loops can be handled in a similar manner. For the
effect of dislocation bias for interstitials over vacancies to be apparent a neutral sink
must also be present. We will just consider cavities where:

K. = K, = drr. C..
(1.48)

The net flow of interstitials over vacancies to dislocation is given by:

‘id = kiyDig -k, Doc, + K4 D, 6g.
(1.49)

Substituting the values of ¢j and ¢y from eq. (1.46) and using (1.47) and (1.48) we get:

AF(n)arr. C. K.
@rr. C, + Zpyy (Arr, C, + Pa

:]-IEZPd[ +Dv5va]-

(1.50)

When thermal emission can be ignored the net flux of interstitials 10 dislocations {or
interstitial loeps) is proportional 10 A. The excess vacancies will flow 1o the cavities
and produce swelling, see section 2.4.

Swelling is a direct consequence of displacement damage provided suitable
cavity nuclei are present (helium from transmutation reactions is available for this role).
The other effects are slightly less direct. Radiation hardening arises from the build-up
of a combination of obstucles to dislocation, The first is from point defect loops both
the unstable vacancy loops and the interstitial loops. If no neutral sinks are present the
effect of radiation hardening saturates on the accumulation of a dose of around | dpa.
If neutral sinks are present the interstitial loops grow until they wuch one another. This
can trigger an unfaulting reaction and the resulting dislocations join the dislocation
network. The net flux of interstitials o dislocations in the presence of neutral sinks can
also lead to dislocation multiplication, by new dislocation line length that is generated
when climbing dislocations bow out between obstacles. In well annealed material the
yield stress will always increase during irradiation but thermal recovery witl reduce the
cffect at high temperature. In heavily cold worked materials irradition may soften the
material by accelerating thermal recovery. The cavitics that grow in the point defect
flux also increase the crystal flow stress, unless they grow large enough to weaken the
malerial, sce section 5.3, These effects can lead 10 a long term evolution of the
properties of the muteriul throughout the irradiation. There are also effects from
radiation induced segregation where the point defects interact with solute atoms and
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either accelerate the formation of equilibrium microchemical structures or even generate
structures that are thermodynamically unstable.

Radiation creep is an important phenomenon in materials undergoing
irradiation. A review of the mechanisms that can produce the effect can be found in
Matthews and Finnis (1988). There are basically two 1ypes of creep: SIPA (siress
induced preferential absarption of defects) creep that is insensitive to temperature and
microstructure; and creep that is proportional to the swelling rate or relies on the
presence of some other neutral sink. A number of explanations of SIPA ¢reep have
been offered. The effect may come from the inhomogeneity interaction where the
effective shear modulus of an interstitial is lower than the surrounding host material.
This will result in dislocations with differemt orientations with respect 1o an applied
stress interacting with interstitial differently, The result is a net drift of interstitials to
preferred dislocations (Heald and Speight 1974). An alternative explanation is that an
applied stress constrains the diffusion of inerstitials and this teads to a higher
absorption by preferred dislocations (Woo 1984). For either explanation the resulting
creep can be expressed as:

tecZ2KByrm),

ook
(1.51)

where kn2 is the sink strength of favourable orientated dislocations and kg2 is the
sirength of all other sinks for interstitials. The cocfficient C is dependent on the
material and is found to lie usvally between 0.05 and 0.5. For cold worked steels
where the dislocation sink strength dominates and in the temperature range where
recombination and thermal emission can be neglected:

£= 010 K/
(1.52)

A variety of mechanisms can produce creep that is proportional to swelling.
One example is the creep that results from preferred nucleation of interstitial loop in the
presence of stress. Other mechanisms rely on interstitial driven climb interaction
modifying glide creep processes. A simple example would be where dislocations held
against an obstacle climb so that further glide is made possible. Such climb can also
nucleate recovery by allowing favourahly orientated dipoles to anihilate. This is a
random process as unfavourably oriemated dipeles are driven apart, Other processes
rely on internal stress fluctuations that arise from random climb interactions. Some of
these mechanisms are proportionat 1o the applied stress others modify the thermal creep
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mechanism by reducing the creep stress power by one. Where swelling occurs this
type of creep is substantial and usually is larger than SIPA.

In Figs. 1.13 and 1.14 we show the effect of irradiation on the deformation of a
pure melal or simple alloy. Fig. 1.13 shows the stress dependence of creep at a
temperature near 0.5 Tm. Fig. 1.14 shows a deformation map. The range of
interactions involved in calculating the mechanical propertics of a material under

GLIDE
GLIDE CREEP

THERMAL
THERMAL
DIFFUSIONAL
EMISSION | P CREEP
Muitiplication

& recovery

Asdlation
hardening

DISLOCATION
DENSITY

IRRADIATION
CLIMB

(anisotropic
dislocatlon siruciure

RADIATION
DAMAGE

irradiation are very large. They are summarised in Fig. 1.15. In addition to irradiation
creep there are substantial effccts on thermal creep, which is inhibited by radiation
hardening. In real materials the presence of solutes is very important. The mismatch
strain of solutes provides a binding energy with vacancies and interstitials. Undersized
solutes tend to bind with interstitials while oversized and interstitial solutes tend to bind
with vacancies, The trapping of point defects by impurities results in higher
recomination rates and a reduction in radiation damage effects. Swelling and irradiation
creep are in general lower in impure materials or complex engineering atloys.

Before closing this section it is worth mentioning irradiation growth. This is the
Propenty of some materials to change shape under irradiation, without associated volume
changes. This phenomenon is most imporiant in materials with anisotropic crystal
structures, but some effects are also seen in cubic materials with anisotropic
microstructure produced by cold working, In anisotropic crystals the effect is now
though 10 be due 10 anisotropic diffusion leading to absorption of point defects on

purticular dislocation or Joop types. To be fully effective either two types of disloction
or loop are required or the presence of a neutral sink such as a grain boundary. Growth
i5 very important in the behaviour of zironium alloys used in the cladding materials of
water reactor fuels. Macroscopic growth is observed if the maierial has a texiure.
Growth is also responsible for the degradation of anisotropic ceramic materials under
irradiation, because of the formation of interna! stresses from growth smain mismaich,
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List of Symbols

(NB. some symbols may be used for other quantities, but in these cases the definition
will be made in the text)

Roman

a - crack width for edge crack, crack half width or radivs for intermal
crack.

fa, - atomic lattice spacing.

b - magnitude of Burgers vector.

BL - creep coefficient in expression ;:. = Bg;.

c

[+H - interstitial atomic concentration.

Cy - Vacancy atomic concentration,

DL - lattice diffusion coefficient.

D, - solute diffusivity.

- grain boundary diffusion coefficient.

Dj - interstitial diffusivity.

D, - surface diffusion coefficient.

D, - vacancy diffusivity, Dy =D, C,.

E . Young's modulus, i.e. elastic modulus relating a uniaxial load 10 a
uniaxial strain.

f . packing fraction.

F . Force or force per unit length as appropriate.

h - thickness of section.

I - Moment of inertia.

J - Eshalby/Rice integral used to assess fracture toughness.

K - stress intensity factor.

L - Length of structure.

m - work hardening index in & = {0,/0,)"™ .

n - creep stress index in expression £ = Bg," .



T

Ts

Ha

Yo

number of cycles, Nr number cycles to failure,
grain boundary radius.

cavity radius.

time,

absolute temperature.

melting point.

width of structure, work.

small displacement.

effective width of grain boundary for diffusion.

effective width of interface.

effecti;fe width of surfuce for diffusion.
grain boundary energy.

interfacial energy.

surface energy.

equivalent surface energy for fracture.

hydrostatic strain.

uniaxial plastic strain.

geometric curvature, sum of reciprocal principle radii of curvature.

shear modulus, = Ef2(1+v).

atomic chemical potential,

Poisson’s ration, i.e. the ratio of strain normal 10 the load and parallel

to the load during ¢lustic uniaxial loading.

lattice vibrational frequency, ~ 1012571,

Pd
PD

Po

O
Go
Sp

oy

Tr

dislocation density.
density.

local radius of curvature.

hydrostatic component of stress.
applied uniaxial of siress.

von Mises equivalent stress,

failure stress (uniaxial),

back stress from impurities or solutes.
work hardening coefficiem in & = (& /g, )™ .
yield stress {uniaxial),

applied shear stress. 1, = g,/N3
flow stress (shear).

atomic volume.
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Glossary

Adatoms -

Austenitic -
steel

b -

Burgers vector -

Cleavage -

Climb -

Cold work -

Creep -

Cross stip -

Dead load -

Dipole -

Dislocation -

Dislocation

A surface point defect, where an atom is detached from the surface
and can migrate. Surfaces prefer 1o lie on high density crystal
planes. Adatoms are emitted and absorbed at ledges on these planes.

Ferrous alloys which have predominamly the fcc structure; the

¥ phase in the iron phase diagrams. Ni tends to stabilise this phase
and austenitic structures are seen in stainless steels and high nickel
alloys.

body centred cubic. This is a crystal structure found in low alloy
steels (ferritic steels) and refractory metal alloys (Nb, Mo, W).

The Burgers vector is the vector that characierises the slip
propagated by a dislocation. On making a circuit of the dislocation
by moving from lattice position to lattice position, the Burgers vector
is the vector that is reguired 1o complete the circuit after a seties of
moves that would have completed the circuit in the absence of the
dislocation,

Crack propagation by the separation of the crystal lattice. In some
materials cleavage is constrained to particular orientations that
coincide with planes of high atomic density.

Motion of the edge component of a dislocation out of its slip plane.
This motion is non-conservative, i.¢. requires the emission or
absorption of poim defects, c.f. glide,

Strain accumulated at iemperatures low enough to prevent anneating.
Material in a cold worked siate is ofien used in engineering
structures because of its higher swrength, but this is at the expense of
ductiliry.

The continued plastic deformation of a body on the application of a
load. Creep is characteristic of the high temperature deformation of
materials.

Glide of a dislocation on a new slip plane (i.c. other than the primary
slip plane). Cross slip is only possible with the screw component of
a dislocation, as the motion would be non-conservative (climb) for
the edge component.

A load that does not vary during deformation, e.g. hanging a weight
on a bar or pressurising a tube with an infinite gas reservoir.

A pair of dislocations lying on different glide planes that achieve an
equilibrium configuration through the interaction of their elastic
fields. A multipole bundle is a configuration of three or more
dislocations in this way.

A line defect marking the boundary between slipped and unslipped
regions of crystal. A dislocation is defined by its Burgers vector,
see also edge and screw.,

A dislocation configuration that permits the further generation of



source

Displacement -

damage

Ductility

Edge
Dislocation

Epilaxy

Explicit
calcualtions

Fatigue

fee

Ferritic steel

Flow stress

Frenkel pair

Glide

Global
function

dislocation line length, usually by the emission of dislocation loops.
The simplest type is the Frank-Read source which simply consists of
a dislocation segment between two nodes, which may be pant of a
dislocation network. This segment bows-out and if the applied
swess is large enough it can form a complete loop and the original
segment snaps back to start the process again.

Radiation damage where an atom is knocked out of its lattice
position by a fast neutron, a recoil ion or an incident charged
particle, see Frenkel pair.

The ability of a materiat to undergo plastic strain and is measured by
the plastic or creep strain at failure. The work originally referred 10
the property of being able to be drawn into wire and was one of the
properties that defined a metal.

The edge component of a dislocation is that where the Burgers veclor
is normal 10 the dislocation line,

Growth of a crystal on the surface of another crystal, not necessarily
of the same phase, where the underlying crystal determines the
structure and orientation of the new crystal.

In solving time dependent problems by raking difference
approximations for time differentials, an explicit method s one
where the value of a quantity at a new time is defined only in terms
of values at previous times sieps. The simplest cxample 1s the Enter
backward rmethod where:

9 _a-q

d b

where q refers to the valuc of g ar L.

= f(QO }

“The property of a material to fail by the propagation of cracks on the
application of a cyclic load.

faced centred cubic. This is a close packed crystal structure
ﬁ;equcmly found in stainless steels {Ausicnitic steels) and high nickel
atloys.

Ferrous alloys which have predominantly the bee structure; the o
phase in the iron phase diagram. Cs iends to stabilise this phase and
ferritic structures are seen in carbon steels.

‘The external stress required 1o produce dislocation glide motion.

Displacement damage produces Frenke! pairs which consist of two
point defects: a vacancy and a self interstitial atom.

Motion of a dislocation within its slip plane. This motion is
conservative, i.e. does not require the emission or absorption of
point defects, c.f. climb.

A function that describes some field quantity for the whole of a
body, c.f. piece-wise function.

Grain
boundary

hep

Hot pressing

Implicit
calculations

Intergranular

Interstitial

Interstitial
solute

Intragranular

Jog

Kink

Latice vecior

Mixed
dislocation

Neutral sink

Packing
fraction

A two dimensional defect which separates two regions of differently
orientated crystal.

Hexagonal close packed. This is a close packed crystal structure
with hexagonal symmetry found in Mg, Ti, Zr and other non-ferrous
alloys.

The consolidation of a body composed of separate panicles by the
application of an external pressure. Hot pressing is also used 1o
describe pressure driven reconfiguration of pores within a material,
c.f. sinrering. HIP, hot isostatic pressing, is an important new
process for producing components from metal powders that would
otherwise not be possible by conventional metallurgy.

Insolving time dependent problems by taking difference
approximations for time differentials, an implicit method is one
where the value of a quantity at a new time 1s defined in terms of the
values at the new time step rather than previous time steps. The
simplest example is the Euler forwand method where:

d_q-a
d St

= flqu)

where q refers 1o the value of q at t+8t and g refers 10 the vatue of
gatt.

Between grains, i.e. grain boundary processes, see infragranular.
A point defeci where an atom is squeezed into a position berween
normal lattice positions. Self interstitial atoms are of the same type
as the atoms on regular lattice positions and interstitial solutes are
formed with foreign atoms.

Foreign atoms that lic between the crystal lattice positions.

Inside grains, i.e. processes that occur in the interior of grains as
opposed to processes that occur on grain boundaries, see
intergranidar.

A jog on a dislocation is a step one atomic spacing high with a
component normal to the glide plane, cf. kink.

A kink on a dislocation is a step onc atomic spacing wide lying in the
glide plane, cf. jog.

A vector thai will ranspose a point from one latiice position to
another.

A dislocation with both edge and screw components.

A sink for point defects; the sink strength does not distinguish
between interstitials and vacancies.

The volume fraction of solid matter in a conglomeration of particles.



A dislocation where the Burgers vector is not a lattice vector as
opposed 1o a perfect dislocation.

Local shear of crystal when there is a relative movement of the
material above and below the slip plane that is parailel to the plane.
In crystals slip is confined to particular oricntations usually
coinciding with planes of high atomic density. There is usuaily a
hierarchy of slip systems that are activated by increasing loads. -

Peierls stress - The local shear stress required to move a dislocation. )
Stacking - A two dimensional defect where the normal sequence of close

a set of functions that apply over elements (or zones) that cover the
whole of the body. In a piece-wise continuous function each of the
functions in the set is continuous at the boundaries.

An assumption that permits problems where onc dimension is large
compared to the others to be reduced to two ditnensions and
axisymmetric problems to one dimensior. The long dirension is
assumed to be infinite and strains having components in that
direction are assumed to be zero. In generalised plane strain uniform
strains in the long direction are permitted if they are uniform over the

Stiff equations -

Piece-wise - A function that describes some field quantity for a body in terms of fault packed planes in a lattice is disturbed. A stacking fault is bounded

by pardal dislocations and in some cases,when stacking fault
energies are low, perfect dislocations dissociate into two partials
separated by a strip of stacking favlt. Stacking faults are also often
formed when point defects precipitate on planes.

In solving time dependent problems, usually parabolic in character,
the resulting systeins of equations are termed stiff if the time
constants governing changes in the system vary widely over the
domain of the calculation, i.c. the eigen values of the equations have
a large range. Such problems are frequently encountered in chemical

cross section, rate theory and in creep. Implicit methods are required to provide
stability to the calculations.

Plane stress - Anassumption that permits thin plaie problems to be reduced o two
dimensions. Stress components which act on the plane lying parallel Stress - Anintergranular failure mechanism where a crack extends under
to the plaste are assumed to be zero. cotrosion a load by progressive dissolution of material at the crack tip.
cracking
Principal - Any arbitrary stress state of a body may have finite values of all the . .
stresses stress components gjj. 1t can be shown that by choosing a suitable Sublsmmia[ - Foreign atoms that replace the host material on lattice positions.
. solute
co-ordinate sysiemn a siress tensor with gjj =0 fori = j can be
found. The finite components of oijl fir i = j are known as the Super - Dislocations with a Burgers vector that is a mulitpie of a lattice
principal stresses. dislocation vector.
PWR - Pressurised water reactor. Superplasticity -  The property of some metals and ceramics to undergo very large
plastic strains (>1000%) under tensile load. This occurs usually in
Recovery - The process where the internal energy of the microstructure is the creep regime and often with two phase structures.
teduced by dislocation anihilation or by the formation of low encrgy . - .
configurations such as subgrain boundaries. Texture - In a polycrystalline material if the crysials are not alligned completely
randomly, the material is said o have texture.
Recrystallisa- - The lowering of the internal encrgy of the microstructure by the .
tionry sweeping a\\!';ay of the old swc!gz by the formation of a ,,Zw grain Trial function - A function used to describe some field quantity for a body. This
structure. This occurs in two stages: primary recrystallisation where function has the correct symmerry and some degrees of freedom that
a new fine grain structure is formed from a high dislocation density; are used to fit the function to the desired sotution by a minimisation
and secondary recrystaltisation when this structure coarsens by grain procedure.
growth further reducing the dislocation density. . . . . .
Twin boundary- A two dimensional defect which separates two regions of crystal

The screw component of a dislocation is that where the Burgers
vecior is parallel 1o the dislocation line.

Preferential concentrations of components of an alloy or impurities at
an interface or a dislocation.

The consolidation of a body composed of separate particles by the
formation of continuous material at the points of contact driven by
surface energy. Sintering may or may not result in densification of
the resulting body depending on the mass transfer processes
involved, Sintering is also used to describe surface energy driven
reconfiguration of pores within a material, c.f. hot pressing.

where there is reflection symmelry of the lattice across the boundary.
By their nature twin boundaries are planar and the oriemations of the
crystals with respect 1o the boundary are fixed. Twinning occurs
frequently in hep and bee crystals during deformation because of
constraints on dislocation slip.

A point defect where an atom is absent from its lattice position.

Applied uniaxial stress required to produce significant macroscopic
yield. This definition requires that some threshold plastic strain is
defined for the yield stress to be determined experimentally, ¢.g.
0.2%.



Lecture 2 Internal Interfaces
2.1 Interfacial Energy

In this Lecwre we describe processes that are largely controlled by interfacial
energies. These processes are central to many engineering and metallurgical problems,
but the area is generally neglected. The subject is particularly relevant 1o a course on
thermo-mechanics, because at high temperatures diffusive processes of various types
are active making possible the souctural evolutions we are concerned with. A fuller
description of the topic of imerfacial energy and the related problem of segregation can
be found in Hondros and Seah (1983).

There are three types of interfaces we are interested in here: surfaces that may
form the boundary of a structure or the surface of & cavity; grain boundaries; and the
interfaces between phascs, mainly at precipitates or inclusions in an alloy. Each type of
interface has an encrgy characterised by +; the interfacial energy with dimensions of
energy per unit area. Aliernatively ¥; is referred 1o as the interfacial tension and its
dimension can be expressed as force per unit length. This is familiar to us in the
context of soap bubbles. We will use the convention of ¥; 10 refer 1o the interfacial
encrgy of a frec surface and Ygp, to refer to the grain boundary interfacial energy.

A1 the junction of three phases the forces on the interfaces must balance and
thus constrain the angles at the junction. From Fig. 2.1 for equilibrium we must have:

Yz/singy = 4y /sing, = Py /singy

2.1)




A frequently encountered casc is where two of the energics are identical, e.g. where a
grain boundary meets a surface making a surface groove of where s pore or precipitate
sits on a grain boundary, scc Fig. 2.2. In this situation equilibrium is given by

he = 27 cos (§/2)
Q2

where § is referred 10 as the dihedral angle.

Surfaces would prefer 1o be flat and surface tension will pull the network of
grain boundaries in a polycrystal into polyhedra. The driving force for many
microstructural processes is interfacial curvature. To define the curvature of any
interface in three dimensions requires two principal radii of curvature. For a sphere
these radii are the same and equal to sphere radins. For a cylindrical surface one radius
curvature is the cylindrical radius, the other infinite. For most surfaces the radii of
curvature must be defined locally and they vary with position. Increasing the curvature
of the interface increascs the interfacial area and increaces the interfacial energy. In
terms of atomic movements the chemical potential of an atom at an interface is a
function of the curvature. If we define the geometric curvature of the intcrface as

x = 1/p, + l/p; where py and p; are the principle radii of curvature the chemical
potential is (Herring 1950):

o= - 78,
@3

This form of chemical potential will drive atoms from regions of high curvature to low
curvature, leading 10 the equilibrium shape of inclusions, voids and bubbles as spheres,
provided the interfacial energy is isotropic.

Bubbles or inclusions in equilibriumn on grain boundaries are constrained by the
requirement to have the correct dihedral angle and to have constant curvature. This
results in a lenticular bubble made up of spherical caps, see Fig. 2.3. The radius of this
bubble ry, is related to the radius of curvature and the characteristic dihedral angle by:

N = P, sin($f2)
(2.4)

grain Doungdery

i incluston

Grain boundary i / ¥
pore i

A more complex example arises when 8 bubble is nucleated at a precipitate, Fig. 2.4. If
the precipiate is large compared with the bubble and has mass transfer ratcs that are
slower than the matrix, then the bubble will take the form of a spherical cap at the
matrix precipitate interface. The configuration is defined by the angle @ with the
relationship:

Y =%p + hm 0058
2.5

i %p + %im <7 then the bubble will enclose the precipitate as 8=0° but
if 7; + %m < %ip then the bubble will be distinct from the precipitate. These findings
reflect the coherency of the precipitate with the matrix and could form one definition of
coherency. A coherent precipitate is one where there is close atomic matching between
the precipitate and the matrix, which requires near coincidence between the precipitate
and matrix crystal lattices. An exampie of coherent precipitates are the + precipitates in
super alloys (sce section 1.3). At a coherent interface 4y will be low. An incoheremt
interface has little stomic maiching across the interface and hence the interfacial energy
is high and may approximate % + %m . Example of incoherent precipitates are carbon
(graphite) n iron, or generally oxide slag inclusions in metals.

Coherent interfaces, surface energies and grain boundaries all exhibit anisotropy
10 some degree. Anisotropy means that the interfacial energy will be a function of
crystal orientation of the phases concemed relative 1o the interface. Cohereacy berween
two phases is only likely 10 be possible with limited ranges of osientation and this
constrains coherent precipitates to paraliclopipeds, sheets, needles ewc characteristic of
particular combinations of phases. Surfaces are mildly anisotropic in metals with high
density planes having the lowest surface energy. Jonic crystals have very large

3



anisotropics of both grain boundary and surface energy. Small bubbles or cavities in
both metals and ceramics are frequently seen 1o be in the form of faceted polyhedra,
rather than in the form of spheres expected from curvature constraints.

An important point 10 note, before we move on to intcrfacial energy driven
processes, is the imponance of scgregation. The driving force for segregation is
frequently the change in interfacial energy on segregation. 1f a component segregates
preferentially to an interface it will inevitably mean that the interfacial encrgy will be
reduced. This has very large consequences on the fracture of materials where
impuritics or alloy components segregate to surfaces and reduce the surface energy. In
other cases segregation decreases the driving force for sintering and can change the
characteristic angles at interfaces.

2.2 Sintering and Hol Pressing

Sintering and hot pressing arc the main techniques available for the fabrication
of large ceramic components, a situation which is forced by the high melting points of
these materials. More recently powder metatlurgy has become more widcly applied not
only for refractory metal fabrication but also 1o produce alloys and composites that
cannot be fabricated in other ways because of thermodynamic constraints. Sintering
and hot pressing processes are also related 1o the behaviour of cavities that are residual
1o fabrication or arise from deformation. In the past the processes were meated
separately but it is informative 10 treat them together as in most realistic sitvations both
surface tension and cxternal loads have an effect 1o some degree.

It is convenient to split sintering and hot pressing into three stages: (i) the initial
stage where necks berween contacting particles arc formed; (ii) the intermediate stage
where porosity is still interconnecied but the curvature of the pores is basically concave
rather than convex; and (iii) the final stage where the pores are isolated. In the
consolidation of a powder aggregate all three stages must be passed through. Sintering
Processes may or 1oay not resuit in the densification of the aggregate, depending on the
controlling mechanism, but hot pressing always results in densification. The non-
densifying sintering mechanisms just involve the redistribution at surfaces and
comprise: surface diffusion, vapour transport and lattice diffusion with surface sources
and sinks. The hot-pressing and densifying sintering mechanisms involve movement
of material berween the surface and the interior and comprise: grain boundary diffusion,
lanice diffusion with surface sources and interior sinks, creep and plastic flow.
Intermediaic 10 these mechanisms is sintering by means of a liquid or glassy second

#

phase, which produces some densification but also relies on surface redismribution.
This last mechanism is the one that operates in the firing of pottery, but we will restrict
ourselves here 10 single phase processes.

Our undersianding of the first stage of sintering rests on the early work of
Kuczynski (1949) and Kingery and Berg (1955). Here we will use my own
interpretation of the processes including macroscopic deformation (Matthews, 1979 and
1980). The first swage of siniering of hot pressing can be identified by the contact of a
pair of spheres of radius and after some time a neck of radius x is established. The
neck geometrics for the various sintering processes are shown in Fig. 2.5. InFig 2.5

Il].

I8) StNTERING WITH WD in) NOT PAESSING AND le} SINTEAING And WOt 4y SINYER IHG AND WOT
ACCOMPARTING SWRINRAEP BINTENINE WITH PRESSING BY ELABVIC, PRESSING BY PERFECTLY
SNRIRBAGE LINEAR YISTOUS BN PLARTIC DEFORMATION

LINEAR WORR HARBEN-
IR BLFOARATION

Fig.2.5

cases b, ¢ and d involve densification and the centres of the spheres move together by a
distance 28 as the neck is formed. In cases a and b in Fig. 2.5 at the neck a radius of
curvature p, is established. The geometric curvature at the neck is:

K = (1/p,) - {cos a )/x |
(2.6)

The driving force for sintering is the difference in the curvature at the neck and away
from the neck where the radii of curvamre is the original sphere radius:

Ax = (1/p,) - (cosa)/x - 2/a
.7
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The angle @@ = (x- $)/2 where ¢ is the dihedral angle at the interface. If the spheres
were single crystal there would be a grain boundary at the interface and ¢ would be
given by eq. (2.2).

For sintering with no densification the radius of curvature is given to 2 good
approximation (Johnson 1969) by:

p="hxa(l-sina)-x)
(2.8)

but for a first ordtr approximation this may be simplificd and we can replace eq. (2.7)
by:

Ax = afx?
(29)

If the main process is sintering with densification, surface redistribution
processes will still be important in determining the neck shape. The distance the
particles move together during neck growth is given by:

&= x
2.10)

and the next radius of curvature is p, = x*/4a which gives a driving force for
redistribution of:

Ax = da/2
2.11)

In cases where sintering is a combination of densification and no densification the
driving force will Yie between (2.9) and (2.11). The force normal to the interface is
given by:

erJ: G (Ntdr = 2xxy,cosa+E =K
(2.12)

where F, is the applied force normal to the boundary and &, (f) is the local normal
stress at the interface. At the neck the stress normal to the interface is:

g

= 7 [(cos @)% - 1/p:l = - 1/Po
6, = 7 [(cos @) Pol %ip a1y

The distribution of stress over the imerface is determined by satisfying the continuity
equation for the mass flow over the boundary.

When the sintering or hot pressing is controlled purely through plastic
deformation or creep the formation of a curved neck at the imerface through surface
diffusion may be disregarded and the geometry is that shown in Figs. 2.5cand d. The
shape of the neck is determined by the creep stress index (see section 1.3) or the work
hardening index (see section 1.2). if we take n for the creep stress index or n = 1/m for
work hardening the relationship between the movement of the particles towards each
other and the neck size is (Matthews 1980):

5= [20/Qo+ 1P 5 a
(2.14)

For small n (n ~ 1) the configuration is close 1o Fig. 2.5¢ and for large n (n — =) the
configuration is close to Fig. 2.5d.

Using these relagonships cxpressions can be developed for the growth of necks
between particles for different mechanisms. These are listed in Table 2.1. Some
explanation is requircd of how these mechanisms were derived. The surface diffusion
mechanism is based on the work of Nichols and Mullins (1965) which showed that a
simple circular cross section for the neck was & bad approximation. h did not predict
the observation of undercutting at the neck and a continuously changing radius of
curvature is required 1o produce surface flow. The flux of material at the surface is

given by:

35(S) = -(B:Dsyy/KT) dids
(2.15)

where s is the distance along the surface following the maximpm gradient in curvature.
The expression in Table 2.1 was derived taking this into sccount (Matthews 1979) and
has & o a*/x3 rather than x = 8*/x® which was the result originally derived by
Kuczynski (1949). The lattice and grain boundary diffusion expressions are those of
Johnson (1969). 1t should be noted that if the neck radius is controlled by surface
diffusion, there may still be significant densification for grain boundary diffusion. The
evaporation and condensation mechanism is that of Kingery and Berg (1955) but it
should be noted that if the pressure of gas in the system is high the vapour transporn
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In most materigls this is the
dominary mechanism at high
empershwes for smal! necks.

This mechanism is rarcly seen
becane of the lwyer surface
diffusion rae.

‘This mechmism is only seen in
waterials with & high vapow
pressure and for Larger paricles.,

This i the dominan mechanism
for most malerials sl lower
ssmperatures with small necks.

‘This mechsanisim it {of many
maTisls & high iemperature
when the neck size is lxge.

This tnechanism usually only

occurs for hot pressing bt can
be imporani if diffusion and

ayoep is significant in lwge
paticles.

Plasticity is the main
mechanism for misial

lidasion during hot
pressing.

‘This is the limiting case for

low mmperiures with no
load.

rates may be controlled by gaseous diffusion rather than cvaporation kinetics. The
creep deformation and work hardening plasticity results are derived from my own work
(Matthews 1979 and 1980). A similar expression was also proposed for lincar viscous
behaviour by Frenkel (1945). The neck radii have 10 be derived by solving the
algebraic cxpressions provided in the plasticity and elastic cases.

The intermediate stage of sintering is reached when the necks berween panicles
become so large that the original curvature of the particles is destroyed. Interconnected
porosity surrounds the particles in a complex catenoidal configuration; an cxample from
Tucker (1981) is shown in Fig. 2.6. This network of porosity will continue 10
collapse, with or without shrinkage, until tetrahedroidal pores are left at the comers, If
the dikedral angle at the interface between the pores is large (i.c. ¢~ 180°) the
network can be thought of as a series of cylindrical sections and the final residual pores
as spheres. Once the porosity is no longer interconnected the final stage of sintering
has been reached. At the end of the
intermediate stage the concept of a
neck radius becomes meaningless.

The problem of the geometry of
pores on grain boundarics during
the intermediate stage of sintering is
formidable. Various idealised
models have been constructed based
on toroidal or cylindrical unnels
and criteria have been derived for
the swability of the tunncls and
whether they collapse centrally or
break into a series of smaller pores.

The simplest way of dealing with the problem is 1o employ the equation for the initial
stages of sintering up 10 a maximum value of x which is defined by the initial packing
JSraction of particles modificd to take into account the shrinkage from densifying
processes. It is also necessary to use a more sccurate curvature of the surface of the
pores. An example of the variation of curvature with densification of a close packed
assembly of spheres by grain boundary diffusion is given in Fig. 2.7 (Matthews and
Wood 1980). Two examples of curvature are given one for a grain boundary dihedral
angle of 180° and one for a dihedral angle of 100°. It is clear that the effect of the
grain boundary encrgy on the geomerry of the porosity is srong and should not be

Fig. 2.6
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ignored. The cffect is similarly important in the final stages of sintering. A

tetrahedroidal cavity left at a corner where four grains meet will have a much smaller

value than that of an equivalent sphere if the dihedral angle is significantly less than

180°, sec Fig. 2.8. The geometry is tedious and expressions for the volume and

surface areas of various grain boundary inclusion configurations can be found in
Clemm and Fisher (1955) for a
dihedral angle of 100° the volume
of the cavity is ~0.155p3,
compared with ~4.19 p3, for a
sphere,

In the final stage of sintering the
surface curvature driving force,
which was reduced to small values
in the intermediate stage of
sintering, now rises again. The
main obstacle to removing all traces
of porosity is the presence of gas in
the pores. Gas is trapped during
the transition from the intermediate

to the final stage of sintering and this gas is compressed during the final stage until a
balance is reached between the external load, the surface tension of the pores and the
gas pressure. This effect can be removed by carrying out the sintering or hot pressing
process in & vacuum, but this is expensive and for many fabrication processes the

Fig. 2.8

20

chemistry of the material has 10 be controlted with either oxidising or reducing
stmospheres. The residual porosity can be minimised or the levels of residual porosity
controlled by influencing the operating mechanisms for sintering. A useful tool in
planning sintering processes is the sintering diagram suggested by Ashby (1974),
which shows the dominant sintering mechanisms at each stage of the process for
various temperatures. Example diagrams are shown in Figs. 2.9 to 2.11 for UO; with
and withoul an applied pressure using the data in Matthews (1979) and for iron using
the datz in Chuang et al (1979). High densitics are achieved by avoiding sintering
processes where there is no shrinkage, i.e. surface diffusion. ‘The objective is to have
as small a value of pore fraction as possible at the time of pore closure. The final
porosity is given approximately by the expression:

p = (47 3)E 3 p. a/8x )7
(2.16)

where pr is the final pore fraction, Ty is the final iemperature, P, pe and T are the gas
pressure, pore fraction and temperature at closure. Other sintering schedules can be
constructed in a similar manner

2.3 Bubbles and Cavities under Tension

In the previous scction we have looked at the collapse of pores during sintering
and hot pressing. No expressions were developed for the final siages of sintering
because in this section we will investigate the reverse process of growth of bubbles
where many of the expressions are identical. We will use the word cavity to refer
generally to the range of different features that include bubbles, which generally arc
pressurised with gas, pores which strictly speaking arc interconnected, and voids
which are empty.

Cavitics are in equilibrium when the forces acting on the surface are in

equilibrium, This is expressed for a spherical cavity as the condition:
F - &, o=0
r‘
217N

where Py is the gas pressure in the bubble, 1 is the cavity radius and o is the far ficld
hydrostatic smess. Deviation from this condition will lead to the cavity shrinking or
growing by plastic, creep or diffusional processes. In the case of faceted cavities an
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equivalent expression can be construcicd in terms of a paramcter related to the inverse
size of the cavity.

The gas pressure Py is related to the bubble volume and the number of gas
atoms in the bubble by the equation of state of the gas. For large bubbles the gas can
be described by the ideal gas law, but for small bubbles the finite size and the cohesion
of the gas atloms requires a more complicated equation of state. An cxample of such an
equation of state is the hard sphere gas law (Brearley and Maclnnes 1980), but for most
purposes the reduced Van der Waal's relation is adequate and it allows the behaviour of
small bubbles to be simply demonstrated:

B, (V. - byn) = n kT
(2.18)

where V_ is the cavity volume, and by is the Van der Waal's consmaint which is around
8 x 10-2m3/atom for noble gases. For equilibrium spherical bubbles the number of
gas atoms in a bubble of radius x¢ is:

_ @nf - o)
3T + b, QR /1. - 0)] ,

2.19)
For bubbles greater than around 50 nm this expression can be simplificd to:

n = %/ - OYAR3KT
(2.20)

Below around 2nm the justification of a continuum treatment for bubbles is difficult.
The energy of the bubble will be a function of the exact configuration of lost atoms and
there will be interactions between the atoms in the bubble wall and the gas stoms.
"There is evidence for such smalt bubbles in metals, below a critical temperature, for the
formation of solid inclusions from inert gases (Evans and Mazey 1985). In these cases
the gas atoms form a lattice that is epiraxial with the host lattice.
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The equilibrium cavity size for a given bulk hydrostatic stress is simply:

. =2nlo,
(2.21)

An increase in load will cause the cavity 10 grow indefinitely and a decrease in load will
cause the cavity to shrink to nothing. The addition of gas stabilises the bubble size to
that defined by eq. (2.19) or (2.20) and changes in load merely result in a new
equilibrium being attained. However, this stability only holds for a range of loads. If
the load is too large the stability is lost. We can see this for the ideal gas law by
examining the differential of @ with respect to r for given nc and T. Therc is a
maximum in the stress that defines a critical bubble radius and applied stress above
which the bubble will grow unstably (Hyam and Sumner, 1962). Thesc critical values
T

T = On KTz 7)'?
(2.22)

Goir = (8/9)2% % 90 k)
(2.23)

So far we have Jooked at bubbles in terms of a fixed number of gas aoms that
are insoluble in the host material and have large vapour pressures, i.e. noblc gases.

W

Bubbles are ofien formed from gases that have some solubility in the material, e.g. Hz
or N2. An increase in compressive load increascs the solubility of the gas but a tensile
load results in further precipitation of gas into the bubble. In such cases the effectof a
tensile load is magnified and the cavity growth rate increased. A related problem is
where there are inclusions which generate gas in order to maintain an equilibrium
pressure. Examples of this are hydride or nitride inclusions in metals which produce
H; or Ny, carbon or carbide inclusions in oxide ceramics which produce CO and COy,
or volatile materials which try to establish an equilibrium vapour pressure, ¢.g. Cs Te
as fission products in nuclear fuels. Provided there are no othet gases present bubbles
generated by such inclusions are slways unstable. There will be an equilibrium
pressure P, which is usually a strong function of temperature. The bubble will grow
indefinitely or wntil the inclusion is deswroyed if [R(T) + ¢] > 25 /r; , where i is the
radius of the inclusion. If [F(1) + ¢] < 27,/r; the bubble will shrink down onto
the inclusion.

Cavities can only change their siz¢ by movement of the host material. This can
either by deformation of the material around the cavity or by the absorption or emission
of point defects at the cavity surface. If the cavity is small compared to the scale of the
microstructure in the material it may grow by punching out dislocation loops provided
the excess pressure in the cavity is high enough (Greenwood, Foreman and Rimmer
1959)

Fo =R -25/c.+0) 2 3.0
(2.24)

For larger bubbles the macroscopic constitutive relations can be uscd. Plastic flow can
occur at a bubble when P, > 0y /2 . The deformation around cavities is discussed in
more detail in Lectures 4 and 5, but an important point t note is that when macroscopic
deformation laws are used the cavity sizc only appears in the excess pressure terms and
the resulting macroscopic deformations are dependent only on the shape of the cavities
and their volume fraction.

The diffusive growth of cavities in most materials is controlled by the
sbsorption and emission of vacancies at the cavity. For inmagranular spherical cavities
the flow of vacancies to and from the cavitics is dependent on the relative chemical
potentials of the vacancies at the cavitics and at other sources or sinks of vacancies.
Without other sources and sinks the cavities cannot grow or shrink. Other sinks may
be dislocation or grain boundaries. In Lecture 1 we introduced the concept of rate
equations and sink strengths. In the absence of radiation damage, we have a very

15



simple rate equation for vacancies (assuming we are always close to dynamic
equilibrium):

Ke-akl =0,
.25

When cavitics, dislacations and grain boundaries are all present we have (Bullough
1985):

E=K+k+4 226

where ki = p,, k2 = 4xr,C, and k) = (0/d,)(2 + K3)'? ; the last term is a
reasonable approximation if ¢ + K3)'? »> d, /6. If the equilibrium vacancy
concentration is ¢, and a hydrosiatic seress is applied the therma) vacancy concentration
al the dislocation and grain boundaries is ¢ exp(afd/kT) . Near the cavities the
equilibrium thermal vacancy concentration is ¢ exp[-(Fy - 2% fr. /AT .

The rate equation for vacancies (2.25) becomes:

& {exp(a RATIAE + k) + expl-B, - 2% /e )UATIE }
‘oM +ig+iQ) =0

@2n.
The net flow of vacancies to cavities is:

Fo=4xD 1, Cloy - o expl- (B, - 2% /i )UKT])

Substituting the value for ¢y from eq. (2.27) we get

5 - oren o R ol 52) o] B0l )
Dy

- 4x-ﬁ_- B@® +0-23/.00

(2.28)
which holds if ., £ << kT which is true for most materials. This gives s cavity
growth rate of:

dr. _ EQ _ DR
d  dxn? kT

(2.29)

The above equation with B=1 is ofien quoted for the shrinkage rate in the final siages of
sintering or hot pressing. 11 is only reasonable if the strength of other sinks is high
enough and the cavities are not on the grain boundarics.

We have already seen in section 2.2 that cavities on grain boundaries have
awkward geometries. This complicates the calculation of their growth on boundarics
considerably. The simplest example is for an isolated cavity lying on a grain face, Fig.
2.3. The radius of the cavity on the grain boundary is related to the radius of curvature

by:

L. = p, sin (¢/2)
e = pe Sin (§ 230

and the volume of the cavity is:

V. =dxan3
(2.31)

where
a = {1 - cos®(@/D]/Esin (@/2)(1 + cos (@/2)].

Calculating the growth rate of the cavity on the grain boundary requires a calculation of
the rate of production of vacancies over the boundary in equilibrium with a
redistribution of normal forces on the boundary. This was first rigorously done by
Speight and Beere (1975). The dismribution of vacancics on the boundary is given by:
L
(2.32)

where f is the vacancy production rate. Whea the process is in dynamic equilibrium P
must be constant over the boundary otherwise the stress distribution on the boundary
would change. Eq. (2.32) is solved a cavity radius . sitting in a circular region radius
Crepresenting the area of the boundary available to the cavity and 2C is spproximately
the cavity spacing. For r=c the dc/dr=() at r=r, the vacancy concentration is that at the
cavity surface:



¢ (r) = & exply sin (¢/Dfr. - R)QAT)
= ¢ {1+[y, sin (¢/2)r, - B ) EVKT})

(2.33)

On the boundary the vacancy concentration is determined by the local stress which
govemns the chemical potential for vacancy formation:

. (1) = & expla, (NELKT]
= ¢} [1+4 G, (r)/kT]

(2.34)

We find P by integrating on(r) over the boundary not occupicd by the cavity to match
with an applied tensile stress 6z, The volume change in the cavity comes from rwo
sources, (i} the direct increase from the absorption of vacancies into the cavity and (ii)
an cqual increase produced by the jacking apart of the boundary when the vacancies are
formed. The final rate of cavity growth is given by:

dr. 2 8,DQ [ - 2 sin (¢/2)/r + 0,]
d o kT q

(2.35)

where 0, is the applied stress normal to the grain boundary and for the Speight and
Beere model:

q = 4ln(c/r,) - {1 - 2/A)3 - 24P

where 2c is the spacing of the cavitics. This mode] assumes no associated plastic flow
around the cavity, the free production of vacancies on the boundary and rapid surface
diffusion to maintain constant curvature over the cavity surface.

2.4 Swelling Under Irradiation

There are two sources of swelling during irradiation: swelling from the
generation of gases from fission or from (n,&) reactions; and swelling due to
supersaturations of vacancics that cause cavities to grow larger than their thermal
equilibrium sizes.

Calculaticn of swelling from gas generation is simple provided we know the
amount of gas in cavities and the density of cavities. From Fig. 2.12 we can deduce

»w

that a large number of small cavities will have a smaller amount of swelling compared
with a smaller number of large cavitics with the same amount of gas. The nucleation of
cavities is thus the critical factor in determining the final swelling. The cavites may be
nucleated on pre-existing features such as inclusions, residual fabrication pores, the
dislocation network or the grain boundaries or fission spikes or displacement cascades.
Alternatively they can nucleate homogeneously by random walk encounters. This last
process requires some knowledge of the siability of small gas atom clusters and simple
expressions for the final concentration of cavities are not easily derived. In general it
can be stated that the nucleation density is inversely related to the gas diffusion
coefficient, giving higher cavity concentrations for lower temperatures.

The subject of fission gas swelling is in nuclear fuels is complex, involving
fission fragment effects. There is no space 10 give adequate attention to the subject
here. Matthews and Wood (1984) and Matthews and Small (1988) deal with the
subject for oxide fuels, including current issues that are yet to be adequaiely resolved.

Nucleation of cavities is also ceniral 10 the problem of swelling in materials
subjected 1o fast neutron irradistion damage. We have already seen in section 1.6 that
dislocations have a preference for the interstitial produced by atomic displacements.
The sink strengths of cavities are relatively insensitive 1o the type of point defect they
absorb and are thus often classed as neutral sinks. Taking the simple modcl for
radiation damage with just cavities and dislocations we find the cavity growth rae is:

dr. _ G [_ AF(nKpd K, i R -2nin)
@ oT [(4zr,Q + PR | @A C. + po) D"“’[ iT ]]

(2.36)

The first part of the expression gives the raie of growth of the cavities from the Frenkel
pair production rate K and the dislocation bias A, The second and third terms describe
the thermal emission terms which will shrink the cavity in the absence of the
displacement damage. When the sink strength of the dislocations is large compared 1o
that of the cavities we scc that the swetling ratc is proportional to the cavity
concentration. For low dislocation densities, which is the case at high temperature, the
selling rate is larger with small cavity densitics. Homogeneous nucleation is inhibited
at highey temperatures and the nucleation of cavities on precipitates with a relatively low
density can lead to a second peak in swelling in some stainless sieels.



We have sccn that the density of cavities affects the swelling rate during
radiation damage but there is also an important incubation effect on the nucleation of
cavities. Before a cavity can grow by absorbing vacancies from the supersaturation it
has to reach a critical size, which is sensitive 10 temperature, the dislocation bias and the
recombination rate. Below this size thermal emission of vacancies will remove any
fluctuations. If the critical size is small enough cavities may be nucleated on vacancy
clusters in cascades. The presence of gas will stabilise the cavity nucleus and also
reduce the critical size. If the critical size is large, which is the case at high temperature
and for materials with strong impurity trapping of point defects, then cavity nucleation
is only possible on coarse precipitates, panicularly if they are incoherent and have gas
associated with them.

2.5 Microstructural Evelution

Holding a material a1 high temperature for long periods inevitably will result in
microstructural changes. We have already met recovery and recrystallisation in Lecture
1, but cavities, precipitates and grain boundaries also undergo many changes,
controlied by diffusive processes.

One of the most important processes driven by interfacial encrgy is Ostwald
ripening, i.e. the coarsening of precipitate strucrures by thermal ageing. The smaller
precipiteies shrink and the larger precipitates grow. This is because the interfacial
energy per unit arca of interface is higher for the smaller precipitates and this increases
locally the solubility of the components. Simple expressions for this process can be
constructed using a single mean size parameter (Lifshitz and Slyozov 1961). For
spherical precipitates where 1p represents the mean precipitate radius the coarsening raie
is given by:

@3N

where @ is a constant generally found to be around 1/3, D, is the diffusivity of the
limiting component a of the precipitate, ¢, is the thermal equilibrium concentration of 2,
Cp is the volume fraction of precipitates and Yy is the interfacial energy at the
precipitate. Ostwald ripening may also take place for cavities, in which case:

dr, 4z, %52
= =3 ST

(2.38)

Coarscning of this type can take place even during sintering if the strength of sinks for
vacancies is small compared with that of the cavities. Such effects urc seen during the
annealing of fast neutron induced swelling of steels (Watkins, 1984).

Similar expressions can be derived for the coarsening of precipitates of other

shapes and for those laying on grain boundaries. Such coarscning is imponant in
determining thresholds for recrysiallisation and in the nucleation of cavities during

Cavities and precipitates arc also

mobile to some extent, by lattice

diffusion, interfacial diffusion and

in the case of cavitics vapour

transport, {See Fig. 2.14). The

diffusion o topic of cavity migration has becn

Mo et e e veviewed recently by Perryman and
Fig.2.14 Goodhew (198E8). The basic

surface
ditfusion

bubble diffusivity from each of the basic mechanisms is:

Lanice Diffusion
Dc = 3D 0/4xT
2.39)
Vapour Transpon
De = 30} P, D, /4XkTR
(2.40)

where P is a measure of the departure from ideality of the gas in the cavity, Dy is the
diffusivity of the vapour in the gas and Py is the vapour pressure of the host material.

Surface Diffusion

D. = 34D, QWi )/2x 1
(241)



and where W(n;) is a factor giving the effect of gas in the cavity. These basic
mechanisms show that small cavities are more mobile than large ones, but there are
other factors which diminish the mobility of very small cavities. Firstly small cavitics
tend to be faceted and this can inhibit all three mechanisms for bubble mobility, as the
adatoms responsible for surface diffusion, the vacancies for lanice diffusion and the
vapour arc most casily produced at defects in the perfection of the surface. In this case
the diffusion rate is limited by the nucleation rate of ledges on the facets giving a bubble
diffusion rate of:

D, = (D,/a)Lexp (- E L{2T)
(2.42)

where L is the length of the facet (~r;) and EL is the energy to form the ledge. This
term reduces the mobility of very small bubbles by surface diffusion. Larger cavities
are not generally affected, as they are not faceted and have more disorder surfaces. The
effect also disappears at high temperatures when the anisotropy of surface energy is
reduced. Lattice diffusion can also be reduced in very small faceted cavities. This is
because certain configurations of small bubbles have lower energies and this raises the
energy 10 emit or absorb vacancies at the cavity.

The pressure of gas in a cavity will inhibit both surface diffusion and vapour
transport, because of direct interaction between gas atoms adatoms or vapour. The
et W(n.) in eq. (2.41) comes from a model by Mikhlin (1979) which was improved
by Nixon and Maclnnes (1981):

Win.) e"“’[ ann [(l-y’) (l-y)’]]

(2.43)

where q is the volume when the adatoms arc excluded by the gas and y is the reduced
density, i.e. ng times the molecular volume of the gas divided by the cavity volume.
This gives a strong inhibition 10 surface diffusion in bubbles less than 20 nm in radios.
The gas diffusivity in eq. (2.40) is inversely proportional to the gas pressure and
dependent on the relative molecular weights of the vapour and gas species..

The cavity mobility allows small cavities to migrate by Brownian motion but
larger cavities may move under the influence of an applied force. ‘The cavity velocity in
these casces is given by the Einstein equation:

Y]

Ve= T
¢ = DyFe/k @.49)

where V¢ is the velocity of the cavity and F is the force. The force may be direcily
from a grain boundary or it could be gencrated by a gradient in stress or lemperature.,
Precipitate can migrate in a similar manner to cavities, either by larice diffusion if the
components are to some exient soluble in the host lattice or by interfacial diffusion.
Eqgs. (2.39) and (2.41) apply replacing Dy by D; ¢, (analogous to eq. (1.37) and 8, D
by 5 D;.

The final topic on microstructural evolution 1o be dealt with is grain growth. By
this 1 mean normal grain growth rather than the development of new grain structures
that occur during recrystallisation. Normal grain growth is a continual process of the
elimination of the smaller grains in a distribution and the growth of larger ones. The
process is driven by the grain boundary energy. The driving force is proportional to
To/rp. If the mobility of the boundary is independent of the grain size then the grain
growth rate is given by (Burke and Turnbull 1952)

n =K 1.
T (2.45)

2p - 2o = 2Kt 246

where K, is a temperature dependent coefficient and 1y, is the initial grain size. In pure
matcrials Ky is controlled by the rate of diffusion of matcrial across the grain boundary
{e.g. see Atkinson 1988) but for real materials containing cavities and precipitate the
boundary mobility will be controlled by these obstacles. In many cases the grain
growth rate will be controlied by the mobility of the cavities or precipitates. This can
lead to other types of dependency of the grain growth ratc on the grain size, as particles
accumulate on the boundaries. As the driving force for grain growth diminishes with
increasing grain size the particles may eventually stop grain growth if the mobility is
low. For small grains with low particle fraction it may be possible for the boundaries
to by-pass precipitates by bowing round them in 8 manner analogous 10 dislocation
interactions with precipitates.



2.6 Pores and Properties

The presence of cavities and precipitates have strong effects on properties which
cannot be ignored, particularly when the microstructure is changing during
deformation, irradiation or even during ageing at high temperature. The effect on
thermal conductivity is an important example. A general approach to this problem has
been developed by Shultz (1981) and others. This enables the thermal conductivity of
composites of any shape and property to be estimated, including anisotropic effects.
The basic relation is:

k- -(kb +klb) knb ‘nkb ¥

A-h)= |—) —— |T——
klb (kb'kn) k.'llkb

(2.47)

where k; is the host material conductivity, kg is the conductivity of the inclusion, kap is
the composite conductivity, fp is the volume fraction of inclusions and

m= F(1-2F)
1-{1-F)cos ?ax - 2F(1 - cos2ax }

¥-(1-fycos?ax - 2F(1- cos2ex)

" " 2FQ1- cos?a) + (1-F)oos ’a

(1-F)2F

9= F0-cos?a) + Q-Flomsia

The parameter F gives the effect of the shape of the inclusions, see Fig. 2.15. The
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inclusions are modelled as ellipsoids with axial ration of . For long fibres F tends 1o
0.5, for flat sheets F tends 10 zero and for spheres F tends 1o 173, The angle o gives a

measure of the anisotropy induced by preferred orientation of the inclusions. For
random crientation a value of cos 2 = 1/3 is used.

An important example of the use of eq. (2.47) is the effect of cavities on thermnal
conductivity. For small cavity fractions the cavity conductivity can be taken as zero.
This gives the conductivity of the porous material as:

=k; (1-p)*
ka=ky(1-p¢ @2.48)
X = 1-cos?a  cosla
where 1-F F
For spherical pores this reduces 10
kea = kg (1 - pe)la.
18P (2.49)

During sintering the porosity undergoes a wide range of shape changes and during the
initial stages X will have a larger value. In such cases it is necessary to take into
account the conductivity of the gas in the pores and at high iemperatures the effect of
thermal radiative heat cansfer.

The effect of inclusions and cavities on other linear properties can be derived in
a similar way. Thermal expansion is relatively unaffected by cavities unless there is a
strong texture in non-spherical porosity. Elastic modulii are reduced by the presence of
cavities and often the measured effect is stronger than expected by a (1-pc)!S type of
correction term. Generally the bulk modulus is affected more strongly than the shear
modulus which gives a Poisson's ratio that reduces as the cavity concentration
increases (Christensen 1979).

Onher mechanical properties are affected but the reatment of second phases on
the plastic behaviour is both important and difficult. Gurson (1977) has provided a
framework for calculating the effect of inclusions and pores or the yicld stress and this
can be gencralised to work hardening and viscous behaviour e.g. for cavities see
Tvergaard (1981 and 1982). The yield condition for single phase material, that the
yield stress Oy equals the Von Mises stress o, is replaced in a material with cavitics
by:
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ol 3o 1 _
N spocosh (7 -1 -9t = 0
(2.50)

The effect of the cavity fraction on yield condition is shown in Fig. 2.16. For finite
values of cavity fraction yield can occur in purely hydrostatic stress conditions. This
yield criterion can be used to gencrate creep and work hardening plastic flow sules.

Q|2

2.7 Cracks

We wil} be discussing the growth of cracks in section 5.2 as part of the Lecture
on Failure of Structures. This section is included for those who have not encountered
LEFM (Lincar Elastic Fracture Mechanics) previously.

Our understanding of cracking as an interfacial process was stated clearly by
Griffith (1920) in an aempt 1o understand the britileness of glass. In this section we
will follow Griffith and disregand the possibility of local plastic deformation.

Consider an elliptical hole passing though a plate, which is thin enough to allow
us to assume plane stress. The dimensions of the hole are assumed to be small
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compared to the width of the plate; the configuration is shown schematically in Fig
2.17.

L XA

If & uniaxial stress ¢, is applied to

the plaic normal to the long axis of

b <> the hole, the reduction elastic strain

N energy per unit thickness of the

plate from the presence of the hole

' is (Timoshenko and Goodier 1951):
Fig.2.17

V. = 20l fE
{2.51)

If we increase the length of the crack infinitesimally by 8a the elastic encrgy changes
by:
SV, = 2na 0l 5a/E
(2.52)

Now when the crack increases in size its surface area increases and hence the surface
energy. For a thin crack this increase is given by:
dV, =29y 6a
(2.53)

Griffith cstablished his crack growth criterion by proposing that if the elastic strain
energy released by the extension of the crack is greater than the increase in surface
energy then the crack will grow spontancously ie. when &V, > 8Y, . The critical
stress for crack growth og is given from (2.52) and (2.53) as:

6 = QEp/xa)'?
@2.59)

Similar expressions can be obtained for other configurations:

plane strain (thick Plac) o = [2Ex/x*(1-#)"
circular crack in an infinite body & = [# Ex /2a(1- V)2

2



The Griffith criterion is found 1o apply 10 very britile matcrials and can be used
directly w calculate the streagth of defected souctures built from glass or jonic crysials
al reasonably Jow temperatures. At higher temperatures and for most other materials
even if their failure is britde in nature the failure stress under iension is higher than that
given by the Griffith criterion. Despite this the failure stress is commonly found to be
proportional 1o 1/a%/2. This led Irwin (1948) 10 propose an effective surface
energy ¥ to replace % in the fracture criterion. This effective energy was o account
for other processes that increased the work of fracture such as plasticity, but we will
return to this in section 5.2,

So far the shape of the crack has not explicity entered into the discussion. As
we have scen, the introduction of any cavity into a stressed body will locally raise the
stress near the cavity. 1f we retum 1o our problem of an elliptical hole in a plate
subjected to a uniaxial load as the aspect ratio of the cllipse increases the local stress as
the hole increases.

r‘a /a

Fig.2.18

Fig 2.18 shows plots of the swess component in the direction of the load as a function
of distance from the hole for three aspect ratios: {a) 1:1 a circular hole; (b) 3:1 an
elliptical hole; and () w :1 a flat crack. The tensile swess at the bolc may be expressed
as (Kelly and MacMillan 1986):

Oumax = Ox (1 + 2a/b) = 031 + 2(a/pc)'2).
(2.55)

where b is the thickness of the hole and p, is the local radius of curvature at the crack
top. It is clear from (2.55) that the swess concentration becomes singular for the flat
crack. This result was used by Orowan (1949) 1o provide an ingenious second
derivation of the Griffith criterion. For very sharp cracks there is 8 limit 10 the radius of
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curvature at the crack tip which cannot become much smaller than the stomic spacing.
Hence,

Oour = 26,(af8,)'"7
(2.56)

Al the crack tip failure will occur when the material reaches its theoretical strength of the
material. Orowan used an atomic cohesion argument 1o estimate the magnitude of
theoretical strength:
oy = (Evfa)?
2.57

Equating Gmax and Gy, we may obtain an expression for the size of the applicd stress to
produce failure:

o, = (Ey, /427
(2.58)

which is very close 10 the Griffith expression.

In practical terms the processes at the crack tip are not very important. Most
fracture mechanics calculations are made using the stress intensity factor K. Closc 1o
the crack tip the stress field in the surrounding material is defined as:

Gj fi@)

- X _
Qxn2
(2.59)

where r and @ are the polar co-
r ordinates relative to the crack tip
{sec Fig 2.19). The singularity at
the crack tip is of type 1-12 and K
determines its magnitude. The type
of loading we have been discussing
so far is classed as type 1 and with
the stress intensity factor K.
Cracks may also propagaie with shear joading; Ky is for shear loads normal to the

crack and Kin for shear loads parallel 1o the crack. The normal stress component in the
direction of the load for mode I is:

Fig.2.19



K, ' ‘
= @i - 2
%y @rnii cos (6/2) [1-sin (8/2) sin (36/ )]-

(2.60)

The other stress components for mode 1 and the other 1wo modes are given by
Thomson (1983). The value of K is to some extent a function of the configuration of
the structure but in the limit of @ small crack K = o.(x8)'”? where g_ is the stress far
away from the crack and is the appropriate one for the crack loading modes, i.c.

a. = (6,,). for mode I, (G2 2 for mode II and {(Gya)= for mode M. For other
configurations K is multiplied by a factor m (Lawn and Wilshaw 1975, Rice 1968).
For an edge crack of depth 2 in a semi-infinite body m=1.12 and for penny shaped
crack radius a in an infinite body m = 2/x. For a cracks in a plate of finite width W,
m is a function of the ratio of the crack size to the specimen size:

m = [(W/ra)tan (xa/W)]'?
(2.61)

The Griffith criterion can be re-expressed in terms of the stress intensity factor,
which is convenient for application in elastic structural analysis. The crack propagation
criterion is given by the critical values of the siress intensity factors. For the three
loading modes they are for isolated cracks in an infinite body:

KL = K. = 24E/(1-v?); Kl = 2HE/(1+v)
(2.62)




Lecture 3 Thermo-elasticity
3.1 Stresses and Strains

To prepare for our discussion of thermo-elastic and inelastic problem solving
we w  riefly review the main features of siresses and strains. 'We will use the
simplified tensor notation throughout (covariant and contravariant tensors will not be
distinguished). The uvsual conventions will be used of repeated indices implying
summation, i.e. Oj; = 0)] + 622 + 033, and differentiation with respect to spatial
dimensions by a comma, i.e. 6;;x = 90i/dxg. A fuller discussion of background of
stress and strain can be found in Landau and Lifschitz (1959).

Swress is an intensive quantity that describes how forces are propagated through
a body. The most important propenty in formulating our problem is equilibrium. In
reciangular co-ordinaies this is expressed as:

dive =gjjj=F

and
G; = G
(3.1)
where F; represents body forces,
':.*h."_q'..Lzl. boer, gravitation being the most usually
encountered one. The equilibriem
t-‘: 55, 3a, relations can be simply derived by
oein e ' balancing the forces on a body
LA clement and taking the infinitesimal

limit. As an example in two
dimensions we have from Fig. 3.1
the first order terms:

in the x} direction

90
["n + _ax“ 5!1] 8x; + [Onz + g—"—'l&xz] 0xy = 0y;8x; + 6128x, + R 8x, Ox;
1 Xz



in the x3 direction

[ o ax

0y + -é--— 8)(2] 6)&1 + [G” + aﬁl&x,]é‘x; = Q1611 + 01|§x2 + K 5X| 5!2
X2

and the rotational couple

1/2 012 61] 6!2 = 120, sz 8‘1 .

3.2)
This gives the equilibrinm equations on taking 8x;, and dxz — 0.
and
0G12=021. 33)

Strain is an exiensive quantity that measures the deformation of the body. Tt is
related to the dispiacement of points within the body, in rectangular co-ordinates, by the
compatibility relation:

£ = L/2Qu; + vy + Ui i),
(3.4}

For clastic calculations the gradients of displacementi and hence the strains are small so
the first order approximation of (3.4) is used:

g = 1/2(u; +u;;)
(3.5)

Beware of the enginecring convention of missing out the 1/2 in the definition of shear
strains i # j, ¢.g. in Timoshenko (1934). In all our applications eq. (3.5) will be used
and any large deformations will be handled by changing the co-ordinate system as it
deforms. The continuity relation (volume conservation) is expressed by the volume
strain £:

o

E=Lji, 36)

The definition of strain also implics:

€ij = & .

The most common types of problem we encounter are problems which are best
described in cylindrical co-ordinates and spherically symmetric problems. The
equilibrium equation for the cylindrical co-ordinates r, 8 and z are:

30,, laol‘ ao;z O - Oge
P T8 T 0% . F
ar * r o9 * dz * r
90, 100, 9%  Gn
FTRAEE *aiz M
90, . 1 30 o, | 200 _
ar * r o8 +T+ r Fo
(3.8)
The corresponding strain-displacement relationships are:
L N L N L.
s Y] e
171 du, OJdup 1rdu  du,
w35t 50 w3 Gr 5
_ 1(3up g lau,-)
“"dt"“z[ar T Y198 )
3.9

The expressions for spherically symmetric problems in spherical co-ordinates are much
simpler. The equilibrium equation is:

do, + 2(0 - Ops) _ E
dr r
(3.10)
and the strain-displacement relations are
En = ﬂ.‘i s Epg = u_'
ar T T,
aan
&



3.2 Solving Elastic Problems

‘There is only space in this course to consider isotropic elasticity, which is a
good approximation for most polycrystaliine matcrials. The clastic behaviour of
isotropic materials is described in terms of two elastic constants out of a set of four that
are commonly used.

For uniaxial loading of an applied stress o, = 01):

o11 =Eey) =—Eenfv =- vEessv
(3.12)

where E is the Young's modulus and v is Poisson's ratio. We will use ¢jj to define
thermo-clastic strains and from now on reserve gjj for total sirains including inelastic
effects. For a hydrostatic Joading where 011 =02 =033 =0C:

o= Ke = Ke;

(3.13)
where K is the bulk modulus. Finally if a simple shear stress is applied 1, = 612:

Gz = 2uerz |

(3.14)
where y is the shear modulus.
The four elastic moduli are related by:
E E
= ’ K =
k= 20w 30-2v)
v o BK-2)

23K+

(3.15)

Many of the problems we will deal with include the cffects of isoropic thermal
cxpansion. The thermal strain for each strain component is given by:

e = = = a(TT)
(3.16)

where a is the thermal expansion coefficient and T, is some reference iemperature.
The volume conservation condition is given by:

e=a/K + 3x(T-T,)
337

The isotropic thermo-¢lastic constitutive relations can be conciscly expressed as:

Gi/2) = 6 + 8,5 [vew - a(1+v)T-T)AL-2v) 18

&) = 624 - 8 [ve 200+ v)p - a(T-T))
(3.19)

The elastic field may be described entirely in terms of the displacements by
combining the constitutive relation (3.18) with the equilibrium and compatibility
equations (3.1) and (3.5) to get for rectangular coordinates:

1 Fi (1+v)
U,k + '('l'"_'_;i“i.ij = m + zam'l.'i
(3.20)
of more generally:
1 ) F 2a(+v)
v _ = o 4 ———pgrad T
u + (l+2v)gudd" u u + -2 gra

(3.21)

where V2is the appropriate Laplacian operator for the co-ordinatc system. These
expressions assume that the elastic properties are constant over the body to which they
arc applied. The field equations for material with propertics that vary over the body can
be easily derived but are significantly more complicated to implement. '

‘The system of equations are elliptic in form and require the boundary conditions
to be defined for each displacement component {(Dirichlet conditions); aliernatively
stresses or some linear combination of the gradients of the displacements may be
defined. Another way of describing the elastic field is to define a scalar potential or
stress function, 3 that uniquely defines the ficlds. This may be found for cach co-
ordinate system to give a biharmonic equation (Landau and Lifschitz 1959):

ViVig =0,
(3.22)
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For reciangular co-ordinates we have:

Gj = X . 1=]
G = - Xi-i#]

(3.23)

The stress function was one of the main vehicles for solving elastic problems before the
development of computers and the economic application of aumerical methods.

Problems can frequently be approximated by two dimensional treatments.
These are of two classes: plain strain approximation for long structures where end
effects are not important; and plain approximations for thin plates where deformation
out of the plane of the plate is important. In plain strain the strain components in the
direction normat to the section of the body are made zero. This approximation is
appropriate for an infinitely long structure but a better approximation is gencralised
plane strain where finite deformations in that direction arc allowed but they arc made
constant over the section, i.¢. €33 = w. The thermo-elastic constitutive relation is given

by:

G20 = e + 85 [vien +w) - o (14 ¥X(T-L)1/A(1-2v),
(3.24)

buti and j can be 1 to 2, rather than 1, 2 and 3. The displacement field equation (3.20)
applies, but just for some components. The stress components normal to the section
are given by:

Oy =v(0y + 012} - 20 (1+ ) (T-T) - wl

and
o =0y =0
(3.25)
The normal strain is found by imposing:
[ o308 = s
(3.26)

where Fyy is the total force applied to the section.

In the plane stress approximation the section is assumed to be thin enough for
the stress components normal to the section to be ignored, 033 =631 =032=0. The
strain normal to the section is given by:

= [@@+v)(T-T) - vien +e2))/(1-v)

.2
This makes the constitutive relation:
uf2u = o5 + 6 [ve - a{l+v)(T-T)(1-v)
(3.28)
and the displacement ficld equation is:
o vy F )
““+awﬂw'u+2av)
(3.29)

where i and j can be 1 or 2.

Similar approximations can be made for problems in cylindrical co-ordinates
corresponding to long rods and tubes or thin discs. We will look at the axisymmetric
plane strain formulation as an example. The displacement equation is:

9_12” (1- ZV)F +a(l+w)dl’f
drrdr © (1-v) 2 (1-v) dr
3.30
This can be directly integrated if Fr and T are explicit functions of 1 to give:
G (1-2v) 1 , a(l+v)
we R agrs D o b Al e (R
3.31)

The component of stress from eq. (3.24) is:

e M u,
o, = (1-2v)[(l v)  + v-—— +vw-oa(l+v)(T- '1;)]
du,
Goe = = 2v) [{1 Y- L v s vw - aen)T- 1:,)]

01 = V(G +0e) - (14 V) [a(T-T) - wl.
(3.32)
-]



Either displacement or siress boundary conditions ¢an be applied and for solid rod
problem Cj = 0. The normat strain component w is found by the condition:

2::1 O,1dr = E,.
(3.33)

Two examples we will use later are for a pressurised closed be and for wbes
with a radial temperature variation. For the tube inner radius a and outer radius b with
an internal pressure p; but no external pressure we have Oy =pjata and pi oy =0at b
The axial force acting on the section is Fgx = 1 a2, The stress components are found to

[ (B2-a2) bt 1
p a
G X ]
{(3.34)
The radial displacement is;
p, a2 ¥ (Q+2v)
u = -+
2upP-a)| r (1+v)
(3.35)
and the axial strain is:
_ (1-2v)alp
2u(l+v)b2-2?)
(3.36)

For the wbe with a radial iemperature variation but no external load we have the stress
components:

_ +v) al 1 1y
& = WG [(b=~a=) z-a)la m""]

(+v)f & 1 1y 1
o = w0 [ (5 #) [ e S [ @ tirar- o)
PP LhAl ] NI P - (1-2vXT-
& = o T o [ @ Dyrar- a-2ar-m)

(3.37)

)

The radial displacemenit is:

(1+v) 1 & (1-2vy) g 1
TR [(bw) (7" um)f. “""”‘”;L“""d']
(3.38)
and the axia) strain is:
a (1-2v)
W= —b(bz-az)__(l-v) f(’l‘-'l;)rdr. .
(3.39)

Another approximation of interest is for thin shells or membranes, where
pressure differentials across the shell are batanced by forces in the plane of the shell,
permitted by the membrane curvarure. The simplest case is that of a cylindrical shell or
thin tube where:

O = R(R-F)/h
(3.40)
where R is the shell radius, h is the tube thickness, P; is the inner pressure and Py is the
ouler pressure, or more accuraicly:

Ogs = (8 -bF,)/(b-2)
(3.41)

2 Thesc approximations can be used
to produce reference stresses for
= 00340 quite thick shells, with reasonable

accuracy. This can be seen in Fig.

k2]
\ 3.2 where the thin shell
%’2 eq3 41 approximations arc compared with
\ the value of o,y from eq. (3.35)
0q3.35 for the case where b/a = 1.5.
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The bending of clongated and plate-
) . . - . like structures are also of frequent
' b 12 13 h g interest in structural calculations.
e Let us consider a prismatic beam
Fig.3.2



of arbitrary cross section, but long compared with its thickness. ‘We will only consider
deflections of the beam that are small enough for the planes in the section 1o remain
plane and that bending only takes place in a single plane. If the beam is aligned along
the x3 axis and bent in the X3, x3 planc at a point the originally straight beam isbenttoa
radius of curvaturcon the neutral surface that passes through the centroid of the beam
section. On this neutral surface the material expericnces no deformation in the xz
direction. If we measure z as the distance through the section in the x3 from the
centroid we find

€ (2) = za

2y
ax, = 2P
{3.42)
and the soess in the section is simply
a?
O = 2 3:22 = 2E/p..
(3.43)

This stress when averaged over the section of the beam is zero. We can now define the
bending moment M as:

3 E El
M= .['“ a,,zw(z)dzs;cjz’w(z)dz=;

*
where 1 the moment of inertia of the section and w(z) is the width of the section, see

Fig. 3.3. This simple relation can

be used to analyse the bending of

wiz) arbitrarily shaped beams. The

z magnitude of the bending moment
can be found for point forces by

centroid
calculating the couples or momenis
x
! with respeci to support points, The

X, problems are frequently complicated
iq. 3.3 by the direction of the applied force
Fig. 3. changing as the beam deforms.

nautral axls

The linear natute of glastic fields means that both stress and displacements
resulting from different types of loading can be super-imposed. This is useful for

A0

Lo B

thermo-¢lastic problems which can be solved scparately from the deformations
produced by external loading as from body forces. This property also permits another
approach to solving elastic problems. Applied stresses at surfaces or body forces can
be described by a distribution of poinit forces using Green's functions. This is
particularly useful for problems with local stress concentrations which can be treated as
semi-infinite bodies. Often only the surface displacements are required or altematively
the surface stresses resulting from applicd displaccments. As an example we will look
at the classic problem of the elastic indentation of a surface by & rigid sphere,

The displacement at x produced by a point force at x' in an infinite body is
given by:

y; (x) = Gj; (x-x) P (x")
(3.45)

where G;; is the Green's tensor. The displacements on a surface given by a distribution
of point forces on the surface are agiven by:

w@) = [ G, @-x")B (x")ds,
(3.46)

For the spherical indentor problem we are only interested in displacements and forces
normal w the surface and in this case the Green's function is (Landau and Lifshitz
1959);

(1-v 1

Giq =
T a0 -x P + (G RIR

(3.47)

» The displacements are fixed for the
problem by the sphere radivs R and
\M the depth of the indentation h, see

. Fig. 34. We get the integral
Fig. 3.4 equato:

h- (‘1 +x1) (1 ‘0 JI B(x.||x.2)dx.| dx':
270 N G P + g PR
(3.48)
A
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This has the solution

B() = 3R (I-21)2ma? |
(3.49)

where a is the radius of the indentation:

a = (3K (1-v)i$)'?
(3.50)

F, being the applied force and r = (x} + x3)'2 .
3.3 Numerical Approximations

Many elastic problems may be solved in terms of series solutions of harmonic
functions or in terms of Besscl's functions or other special functions for other co-
ordinate systems, but even for simple problems the solutions are complicated and slow
to evaluate numerically. There are advantages in closed form solutions in enabling
important features of the clastic field to be identified, but this may ncarly always be
done by simplifying the problems and directing the solution at the key issues.
Examples of this are the characteristics of stress concentrations and the definition of
reference stresses for structures. The nature of the boundary conditions, the coupling
10 other interacting systems (e.g. thermal or fluid dynamic), the complexity of shape of
the structure, composite smuctures and heterogeneity of properties are faciors that Jead
inevitably 10 the choice of numerical approximate solution 1o problems. The drive is
cven stronger when inelasticity also has to be coped with.

An example of how complex the anafytical solution can be for a relatively
straightforward thermo-elastic problem can be found for the distortions of a free heat
generating finite cylinder. The analytical solution in terms of ordinary and modified
Bessel functions is fiercely complicated and expensive w0 evaluaie (Valentin and Carcy
1970). This can be compared with the simplicity of a finite-difference approach 1o the
problem (Matthews 1970),

The finite-difference method was the first numerical approximation applied 10
clastic and thermo-clastic problems. The usual way it is applied is to make the
approximation on the second erder equations for the displacement field. For problems
in ectangular co-ordinates the structure to be analysed has & rectangular grid of points
super-imposed on it; less regular grids produce difference approximations of

»n

.

undesirable complexity. Some degree of refinement is possible by varying the spacing
of the grid. The differential equations are then approximated by differences waken at
each point on the grid. Most rigorously central differences should be used and a
regularly spaced grid is required for confidence in the approximation, Only the lowest

order difference approximations are gencrally ue As an example we may take
differences for &g. (3.30). The grid spacingisdranc  grid radii are labelled r (I) and
the displacements ug (T):
~2uiry
@+ Dl ud-1) | w0+D)-ud-1)  w
[713 2811(}) (2

- 1+ 2v) E®) . a(l+v) [(TA+1) - T(-1)]
a-v} n (1-v) 26t ’

(3.51)

The boundary conditions are applied direcdy at boundary grid points; forward or
backward differences are applied as appropriate. The outer boundary condition of
O = Py would be given by:

1o vy L) - wN- 1) vu;((]m

3y +vw-a(l-vXT(N) - )
(1-2v)

=P° 2#

(3.52)

where r(N} = b. In this case the coefficients of the linear equations for u(l) form a mi-
diagonal matrix that can be solved very quickly for Gaussian elimination. The
unknown axial strain w has 1o be simultancously calculated from numerical intcgration
of eq. (3.33) which provide an additional lincar equation that can be incorporated into
the Gaussian elimination without destroying the overall sparsity of the problem.

The above finite difference formulation does not permit the elastic moduli to
vary with position. This can limit the uscfulness of the method for problems with large
temperature variations or when the characteristics of the material change within position
from variations in porosity etc. This handicap may be removed by taking differences
only on first order differential equations, but at the expense of larger number of
variables. The differences are taken on the stress equilibriom equations and the
compatibility relations, An alternative is to derive a second order equation taking
differentials on all of the ¢lastic moduli, which leads w very complicated cocfficients.

A3
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The other main advantage of the low order method is that it provides values of stresses
as well as displacements at the grid points without need of further calculation.

The other main group of methods of tackling elastic problems is the use of trial
functions to describe the elastic field. One way of approaching this is to use a
variational method (Rayleigh - Ritz method). For elastic problems this corresponds o
minimising the strain energy of the system. This can be shown simply using Euler’s
theorum. If we take a function:

x= J f(x;, uj, u;}dv + I (@ v + & ul/2ds
(3.53)
which is to be minimised and vary the displacements, the variational principle can be

expressed as:
af o ( df
- [ o5 - 5% (55 )]
+ L dy [l, +au + n,-;—u:j]ds

(3.54)
where n; are the direction cosines of the co-ordinate system with the normal vector 10
the surface. For a minimum 10 be achieved for an arbitrary variation of Su; we have in
the interior of the structure;

(o) g
Bui Bx,- aui.,- -
3.55)

and on the boundary:

a + 80 +n =0

é 0 ;
(3.56)

If we use the stress equilibrium, the compatebility and constitutive equations to define
the field, permitting the elastic moduli thermal expansion coefficient to be a function of
position we find:
f=uyF-12¢; &
(3.57)

The variational principle can now be expressed as:
M

~

8X = 8]‘ (llzeu = E) dv + J.‘ O':j n; u; ds
(3.59)

whes  *jindicates that the stress is an imposed boundary stress and s’ indicates that
port. + the boundary where the stress boundary condition applies. Displacement
boundary conditions are normal directly imposed on the trial function.

To show how the variational approach works in practice we will use our
axisymmetric plain smain example. The variational principle is given by:

e ol (@) () v ey Gt J])

{[+M¢x(’l‘-'l:,)(ﬂ + -l-'rl + w)] - u F.}Zxrdr

(1-2v) dr

+ 82x[ay, (R + by, ®E] = 0.
(3.60)

Some function with unknown coefficients is used 1o describe the displacement field.
The trial function should reflect the symmetry of the problem and normally consists of a
set of independent functions such as a harmonic or polynomial series. The more
degrees of freedom the function has the better the anticipated result. For our example
we will use a polynomial for u, up to order 3:

ur=bo+bir+brr2 ¢+ by
(3.61)

Substituting (3.62) into (3.60) and integrating explicitly we obtain an equation which is
quadratic in the coefficients byj. This is differcntiated with respect to each coefficient in
turn and a set of lincar equations is found which may be easily evaluaied. Additionally
an equation giving the axial force (3.3) must be included so that w may be determined.
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Fig.3.5

We have done this for P = 0 and with no temperature field and compare the resulting
displacements and stresses in Fig. 3.5 with those obtained directly from egs. (3.34)
and (3.35). In these plots resuls are shown for various orders of polynomial in (3.61).
The displacements are reasonably estimated even for a first order trial function. The
stresses are more difficult. A sccond order trial function is required to a reasonable
teprescntation for the hoop stress,but the radial stress is poorly represented even by the
3rd order function.

There are many disadvantages with this method of solving problems for all cxcept the
simplest configurations. The method tequires large numbers of terms which are slow
10 evaluate directly and difficult to write as algorithms. Itis almost impossible 10 cope
with structures with low symmetry and indented boundaries. Such trail functions
which extend over the whole structure arc termed global functions. A solurion to the
problems of the variational method is the use of piece-wise trial functions and finite
clements. A brief inroduction to the background to finite elements may be found in
Owen and Hinton (1980) and the best comprehensive treatise is by Zienkiewicz (1971
and 1989).

The structure is divided into an assembly of conveniently shaped regions,
termed elements and the wial function is defined by some simple function in cach
region. The functions in cach element are constrained to be continuous (o some cxient
with its neighbours. Various degrees of continuity have been experimentied with, €.g.
the use of cubic splines which are continuous to the second onder have been tried. The
finite element method has developed by using low order polynomial functions that are
defined by the displacements at nodes. Where these nodes lie on the boundaries
between elements contnuity is ensured. The simplest functions are lincar with the
nodes defined only &1 the boundarics between the elements for one dimensional
calculations, with nodes at the comers of wiangular elemenis in two dimensional

6
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calculations and at the comers of tetrahedral elements in three dimensional calculations.
Higher order trial functions require additional nodes. For a second order trial function
in one dimensional problems an additional node is added in the interior or the element.
For two and three dimensional calculations the nedes may be added at the interior of the
element or on the boundarics. Frequenily the clements used in v - and three
dimensional calculations are simple straight sided blocks, tetraheds iangu! -
prisms, but curved elements may also be used at the expense of a signific.. ncrease .
complexity. The use of straight sided clements means that curved structures have to be
approximated by polyhedra and a large number of elements used make the
Tepresentation adequate.

The displacements at the nodes become the unknowns in the problem. The
simplest example is the one dimensional case where within an clement defined by the
radii r; and 1, the displacement is given by:

® = [0 (a1 Xhivs - ) + b (0)(F -1i))

b (Tie1-1)

(3.62)

More generally the displacements can be represented in terms of the nodal
displacements by:

u = [N] {u}*
(3.63)

where (u}¢ signifies the set of nodal displacements defining that element and [N} is the
corresponding matrix of functions of position called the shape function. Equation
(3.63) can be extended 10 represent the whole structure rather than just one element by
defining the valves of the components of {N] to be zero outside their relevant node.
We can now use (8] 10 represent the whole ensemble of nodal displacements in the
structure. We can generate a matrix of functions [B] which relaic the strains at any
point with the nodal displacements:

e =[B] (u}. 360

For our one dimensional example for the element lying berween r; and ri4) [B] is given
by:

..qo -



_ -1/67, , 1/87; (ur(l'.',:))
(Cnr €a0) = [-(l-ri.llr)lc?ri.(l-r-.ll')ltsl'i] ) J

(3.65)
The stresses in the structure are related to the strain by a matrix of elastic moduli [D):

o = (D] (e - &),
(3.66)

where e, are termed prior strains and correspond here to the thermal strains. Equation
(3.66) is simply an alternative way of writing the constitutive relation eq. (3.28) but is
more general as [D] can be formulated for materials with anisotropic elastic and thermal
expansion behaviour. We now substitute (3.63), (3.64) and (3.66) into the variational
principle (3.59) and after differentiating with respect to the unknown nodal
displacements we obtain a sct of lincar equations:

[Kl{u] + [F); +{F}, + {F}y = 0

(3.67)
where the stiffness matrix is:
(K] = X [B'(DI(B] ov
: (3.68)
the nodal forces from body forces are;
(Fl = 2 INI"Fav
' (3.69)
the forces from prior strain are:
(Flo = 2] (BI'D}e, dv
) (3.70)
and the nodal forces from imposed boundary stresses are:
(R} = X[ INonds-
- (3.1
18
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For structures described by many elements the stiffness matrix is sparse and symmetric
and generally quick to solve, bul care has to be taken to ensure that the solution method
takes advantage of these characteristics.

The finite eleme  nethod can be derived by scveral other means besides the use
of a variational principl. The most usual method i» that of weighted residuals using
the wial functions themselves as the weights; the Galerkin method. This is somewhat
more general and can be applied to problems where a variational principle cannot be
derived.

Finite element techniques are simple 10 write as computer algorithms and
provide rapid methods of coping with the deformation of complex structures. It is
relatively straightforward to treat stress concentrations by having 2 local fine aray of
clements. Finite element calculations can be made casier to implement and quicker to
evaluate by making approximations to the integrals in egs. (3.26) o (3.71). If an order
of integration is taken one lower than the order of the trial function there is little loss of
accuracy and in some cases the quality of the result is improved provided sufficient
refinement of the elements has been taken in the first place. So for a linear trial function
a single point intcgration is adequate, i.¢. the values of the quantities to be integrated are
1aken at the centroid of the element and maltiplied by the volume, area or length of the
element as appropriate. There are drawbacks, however. The gradients in
displacements are discontinuous at the boundaries between elements so the stresses are
only well defined at the integration points. It is thus necessary during calculations to
out-put stresses from these positions and then interpolate if values are required
elsewhere.

Before moving on to examples and the implementation of finite differences and
finite elements to thermo-elastic problems we will briefly mention the boundary element
method. This method has proved particularly successful where the main interest is the
displacements at the surface or where the distribution of loads on the surface is
complex. A description of the basis of the method and how it is used for a wide range
of problems can be found in Banerjee and Butterfield (1981). The basic relationship
that underpins the method is that:

(%) = I {u; (x, x') Ga ()M - Tj(x, x)}u(x')ds

+ Ju VR @y + f 2050 (x, )R () v
(3.72)
"
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where u;j is the function that gives the displacements in the i direction from 2 unit point
force in the j direction, similarly Tj; is the function that gives a traction in the i direction
from a unit displacement in the j direction. The forms of these functions for two and
three dimensional problems can be found in Banerjee and Butterfield (1981). The
displacements and wractions on the surface are represented by nodal values for an armay
of elements covering the surface. Eq. (3.72) then gives on integrarion a series of lincar
equations in terms of these nodal values. The prior strains, including thermal
expansions, and body forces have to be integrated on a mesh over the interior of the
structure, but where these are absent the integrals are confined to the surfaces. The
resulting set of equations is gencrally lower order than that for the finite element method
for the same accuracy, but the matrix of coefficients is not sparse. The boundary
element method is more complex to implement than finite elements for most problems,
but is superior in performance in many cases. Axisymmetric problems are more
difficult than most other configurations to mode] using boundary elements. This is
because the stress distribution functions contain elliptic integrals which are slow to
evaluate and difficult to manipulate,




Lecture 4 Plasticity and Creep
4.1 Deformation under Multiaxial Siress

In the first three sections of this lecture we will use some very simplified
models of plastic and creep deformation and in the fourth section we will briefly lock at
more complex and hence realistic models. In some cases we will look at concurrent
inelastic and elastic deformations but in many cases we may ignore elastic effects and
simply lock at inelastic consitutive relations.

The simpiest mode] of plasticity is the perfectly plastic material, where for
uniaxial loading the material yields when o, = 0y. Most materials exhibit some degree
of work hardening so we will express this generally by:

Gy =0y + H(Ep].
{4.1)

For creep deformation we will make the strain rate a simple function of the applied
stress:

£ = f{a)
(4.2)

We will assume that the sign of the stess is not significant, with complete reversability
and that the plastic strain €p in (4.1) is obtained by integrating the modulus of the
strains.

Most real problems require the treatment of multiaxial siress states and changing
stress states. Some method of coping with this problem is needed. A discussion of the
formulation of plastic problems can be found in Hill (1950) and a very accessable
treatisc on creep problems is provided by Odqvist (1974). Further assumptions are
required 1o provide a sufficiently simple framework for problem solving. The first is
that the material is completely isotropic, which is initially a good assumption for many
polycrystalline engineering alloys, but as we shall see not so good afler large
deformations. The second is that plastic and creep deformations are volume conserving
and are insensitive to the hydrostatic components of stress, This again is a good
assumption for materials that do not contain significant volume fractions of cavities.
For very porous materials a new form of flow rule is required, as has already been
discussed in section 2.6.



The rate of work done during plastic deformation is:

W=0ij:€i3'.

43)
We define the stress deviation tensor or deviatoric stress as:
S =0 - 8 q/I =g -0
(4.4)
Volume conservation requires :L‘n = 0 so we may rewrile eq. (4.3) as:
W=ys8,
(4.5)

It would be desirable to describe the plastic state of the body in terms of some scaler
quantity and this might be found in the invariants of the stress tensor. Any second
order tensor has three independent invarianis these are:

h=ow=30;:12=112 8ij sij and
J3 = 1/3 53 sjk Ski-
(4.6)
We have already excluded the possibility of 1) controlling plastic strain so we are left

with J2 and J3. The next simplest possibility is that J3 provides the criterion. This
corresponds to the von Mises stress o, where:

0% =3 sij sijf2.
4.7
This has some justification as 6, is a measure of the state of shear in the body as it
comresponds to the shear stress acting on the octahedral planes {the octahedron referred
to is that superimposed on the axes of the principal stress system). Yield results when
O¢ reaches oy, We would therefore expect \FV 10 be a function of g, hence:

(4.8)

All we need do now is constrain W 10 make eq. (4.8) give the appropriate value for
uniaxial deformation, when 0, = 6y = a,, 517 = 2011/3 and 532 = 833 = -6)/3. For
creep we have:

=2 2290 g
LR g S (o)
(4.9)
so that
aw
— = f{e)
do,
.10
and
. 3. (&)
Gi=at g b
(4.11)
For plastic deformation when oe = oy:
. d .
g1 = — =gon) o
dao,
(4.12)

where g(a,) is obtained by replacing Gy by 0, in ¢q. (4.1) and inverting 10 give the
accumulated plastic strain as a function of applied stress. The final expression often
referred to as the Reuss equation is:

(4.13)

Equations (4.11) and (4.13) will form the basis of our problem solving in the next iwo
sections.

Before moving it is worth defining a von Mises equivalent strain € as:
7 2
£, = 3 £ &+
(4.14)

with the additional requirement that there is no volume strain arising from €;j. The yield
condition is redefined for muliiaxial siress states as:

G =0 =0, + H(Q-pinui:).
(4.15)

~



4.2 Solving Creep and Plasiic Flow Problems

Before going on to describe the numerical implementation of inelastic
deformations in structural analysis it is worth looking at the direct solution of some
cxample simple problems. The range of problems that can be tackled in this way is
small because of the intrinsic non-linearity of plasticity. There is, however, the
advantage that the condition of incompressibility gives on constraining the form of the
strains and displacements.

Let us first of all look at the deformation of a pressurised thick cylinder. If
plastic flow has propagated threugh the section of the tube and if elastic strains can be
ignored the form of the radial displacement is fixed by the volume conservation
condition;

& = % + = =0,
dr r
(4.16)
which may be integrated to give:
<
u = —
T
.1

It should be noted that the axial sirain is zero for an internally pressurised tube during
incompressible plastic or creep deformation and that this arises automatically from axial
force balance considerations. The stresses of interest in the problem are:

1 1
O = 5 (ql + 099) ' S = - 5 (099 b a")

1
S22 = 0, 500 = 5 (Gpo -G and o, = ({3/2)(Gos - Gn) |

4.18)
The stress equilibrium condition is given by:
% + (qr'o-ﬂﬂ) =0.
dr r
(4.19)

From eq. (4.17) the plastic strain components are:

p

& = -G /0, £ = o /0
and g = 2¢, /{3 7.
(4.20)

If we take a particular formn of the flow rule (4.15):

o = ¢ = (g, + G&), )

where O,, Op and m are materials constants. From eqs. (4.18) and (4.20) we have

%o - 0 = (2/3)[0, - 6 (2c1//3)" "] )

and hence from (4,19):

(4.23)
Integrating and setting Gpr = O at r = b and Gy = -Py ai r = a we find:

[(V372)m -q,ln(bla)]( T )

(@im - p2m) im  pim

o, = i -6, In (b/1) -
3

(32) R -0 1n (o1a)] ((Zm- D, 1 )

(a2m - pim) bem

) [
Ggp = 7_5 G, [1-in (b/t)] + r2m hIm

U = ? 2m [(m) Bi-a,ln (b/a)]
r

o (a-lm . b-zm)

(4.24)

This expression is only valid for reasonably small strains (<10%), but shows how the
character of the stress distribution changes when work hardening becomes important.

A similar distribution is found for creep deformation and for a creep law of the
type £ = Boj the distribution is identical for work hardening with m = 1/n and the
initial yield swress zero:



o, = - PI (r-'.’n‘n _ b-ZIn)/(a-Zln _b-ﬂa)
Ges = P[(@m-1) £+ p20 a2 p2i)

{4.25)
3 The effect of the creep or the work
hardening inex on the hoop is
s 1 pe-iecth, shown in Fig. 4.1 for the example

Nl pIgstic
- : ) previously used where bfa = 1.5,
B The effect of increasingly non-linear
2

2y /‘g
5 - deformation is to shift the maximum
\ normal stress from the inside wall

of the tube to the outside.

1 — To evaluaie panial yielding it is
necessary to include the effect of

clasticity. The initial elastic state of
the wbe is given by eqs. (3.34).
The von Mises stress dismibution through the wall is given by:

Fig.4.1

o - y3R a’bz'
(b?- a?)r?
(4.26)

so the yiclding will start at the clad inside surface when the internal pressure reaches the
threshold value of:

B = ' -a)a, /307
(4.27)

Calculating the progression of yielding through the tube wall is more difficult because
of the complications arising from the axial loading conditions (Hill 1950}. The problem
can be solved easily if the axial component of axial strain remains zero throughout the
propagation. This is not a bad approximation and is correct at the start of yiclding, as
€qs. (3.34) give sz = 0, and this is also true once the whole of the tube is undergoing
plastic strain. The approximation also coincides with the Tresca yield criterion. We
will therfore assume that egs. (4.18) hold in the plastic region throughout the process
we will sturt with the internal pressure at the threshold value given by eq. {4.26) and
then increase it. The plastic region is bounded by the radius ¢ which stars at the inner

¢

radius a and reaches b when yield across the section is complete, In the plastic region
I=C eq. (4.19) together with (4.18) and the yield condition gives:

49, _(Gee-G) _ 2 0, _ 2 g
dr T ¥ '

=

(4.28)

On integration and matching with the elastic solution at r = ¢ the stress distributions in
the elastic and piastic regions can be found.

Elasticregionc<r<b
A L )
B (rz :
Tgp = & i [[_)2— +])
AV
g ¢
O = —= —
ﬁ b2
4.29)
Plasticregiona <r<c
2 o 1
Oy = "J";oy[ﬁ; - 5 -lﬂ(C/l')]
2 ¢ 1
Ogg = —= 04| — + - - ln(clr)]
ﬁ [2b2 2
2 ¢
0y = — & — - ln(c/r)]
9|3
(4.30)

The relationship between P and c is found by 1aking the values of Gy from (4.30) for
r=a
ct
B =22 [1 -5 +ln(c/a)]

ﬁlbz

{4.31)

and propagation of yielding through the section is complete when



ha

O,

B =20
3

[m (cfa) - %] ‘
4.32)

1z Comparison of 6z, calculated from
. e 5'35“/ eqs. (4.29 and (4.30) reveals a

e /\ discrepancy at r = ¢ which arises
[ oplastclearic /

from our assumption of no axial

o i / \ deformation. The redistribution of
;5;[&_ /// \\ hoop stress across the tube wall

/(’ during propagation of yield is
shown in Fig, 4.2,
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Fig.4.2

This example of yield propagation in a structure is one of the simplest cases 1hat
we cncountered.  More typically yield propagation has to be modelied in terms of
incremental elasto-plastic constitutive relations. These are rarely soluble analytically.
The resulting equations are hyperbolic in character and the solution method has 1o
reflect this aspect.

Befare turning to other structures, it is convenient to use the pressurised wbe
example 10 illustrate another aspect of creep deformation. This is that creep is very
sensilive lo temperature and structures undergoing creep may have large variations in
creep strength if there are temperature gradients. As a thermally activated process creep
may often be described by an equation of the type:

£ =B, exp(-Q/Ta]
{4.33)

If the temperature varies through the thickness of the tube wall, the hoop stress given in
eq. (4.24) would change 10:

Tpg (1) . ¥ explQ/T] - [P r2™ exp[Q/nTin)idr
R f& T explQ/T(n)]dr

(4.34)

In Fig. 4.3 we show the examples
of the variation in hoop stress for a
i tube with a linear variation of
lemperature resulting in a factor 2
and 100 increase in crep rate for a

25} DO variaticn

given stress. The main effect is to
in;reep strength

increase the stress in the outer
regions of the tube where the
material is stronger. A reference
stress and temperature can still be

used to characterise the rate of

° e T diameter increase of the tube, but
/s these will not be a good guide to the
Fig.4.3 local stresses which could

determine failure.

The growth or collapse of spherical cavities by plastic deformation is of great
interest for the theory of both hot pressing and failure processes. The weatment of
creep deformation is simplest as we can assume that the whole of the material is
undergoing creep. We have a cavity of tadius a and an internal pressure P; in a medium
with a uniform hydrostatic pressure . The radial displacements centred on the cavity
are determined by the volume conservation condition.

;.’,,+2'Egg=ﬁl+2—ut=0'
dr r
(4.35)
which on integration give displacements of the form:
|:, =0 /]'2 N
(4.36)

The stress components gives of interest are:

Spp = '(2/3)(099'0")! Spg = (1/3}(099'0n)
and g, = 10gg -0, |

For power law creep and using the spherically symmetric stress equilibrium equation
(3.10) we find:



dO'" _ 2(080 - O-rr) _ (ZCI )l.fn 1

B sl
dr r r @.37)
On integrating and vsing the boundary condition of g = -P) atr = a we get:
2n (203 ] i
o en 3 (5" G )
31 \B T
(4.38)

Examination of the solution reveals that the hydrostatic swess is constant and
undetermined by this procedure. Another condition is required to fix the solution. If
we consider that the cavity is part of a volume concentration of cavities Cg then one
model of the system is 10 surround our cavity by a sphere of radius R = (3/4rC)}/3
and make Oy = © a1 the surface of the sphere. This fixes the value of Cy:

C]_ - E[ 2n(0-P|) ]n.

2 | 3(a3m . R3m
(4.39)
Defining the volume fraction of cavities as:
ir 5., _ &
Pe = T a Cc = E‘i‘p
(4.40)
the rate of change of porosity is given by:
dp. _ B[2n(o-P)7
dt 2 {3pim-1y]
(4.41)

Equation (4.41) is a useful expression to put alongside the others in section 2.3.
Plastic yielding around cavities is a much more difficuit topic and discussions

may be found in Hill (1950) and Gurson {1977). Amongst the results one that is useful
is that the internal pressure required 10 expand a cavity in a thick shell is approximately:

2 E
g '50’[”'"(30-\»)@]]'

and the ratio of plastic rudius 1o cavity radius is approximaely:

(4.42)

o

¢ _ E 173
a 3(l-v)6,] _

When work hardening is present eq. (4.42) still holds, but with an additional hardening
term.

(4.43)

Despite the complexity of non-linear creep and plastic stress distributions,
simple expressions can be obtained for the bending of sections. Following the same
notation as section 3.2 the rate of change of strain in the x7 direction is related 1o the
deflections in the x3 direction by:

* 6‘ I:ln
= = Boj
& 5z 3 x} 12
(4.44)
The equivalent 10 eq. (3.44) is:
22 _ L 33;12;
M= L, on 2wz = o o
(4.45)
where I, replaces the moment of inertia of the section and is defined by:
I, = J'” 21" w(z) dz.
-t
(4.46)
The rate of bending of the section is given by:
& _ BM
ax} I,
(4.47)

This simple expression is integrated over the length of the section according to the
loading conditions in the same way as for elastic structures. Similar cxpressions may
be derived for work hardening deformation.



4.3 Incorporating Creep in Structural Mechanics Calculations

The most frequent and direct approach 1o incorporating inelastic deformation
into structural mechanics calculations is to simply add the strain from this source as
prior strains and for this reason is referred to as the initial strain method. To do this we
split the strain into elastic and inelastic parts:

1
G =+ =3 (uij + i)
(4.48)

Wherever elastic strains are encountered in the formulation of the structural analysis
they are replaced by €; - ¥;, hence the constitutive relation (3.18) becomes:

G = & - % + & [Vei - a1+ vUT-TN/(1-2v)
(4.49)

remembering that yy = 0. By doing this inelastic strains can be incorporated into an
existing method of solving elastic problems - direcy, finite difference, finite element or
boundary elemenit.

As an example we can take the case of the axisymmetric plane strain case and
replace eq. (3.30) by:

ERE T o d PR L ARy
da r dr (1-v) 2u {1-v) dr (1-v) L dr r
(4.50)
which is integrated 10 give (neglecting body forces);
_ G a(l+v)
u = T + Gt + -; v J(T-'I;)rdr
a-2zvri (% + You)
METTEY) [r _f (¥ + Yop)rdr + r-[_r_"_d']'
(4.51)

Alternatively the finite difference formulation replaces the difference equation (3.51)
with:

u I+ 1)2u, 1)+ ufl-1) + u(d+1) - uI-1) R P,_(H
o 28 r (I} )2

o (LW ED e +v) [(TA+1) - Td-1)]
T (-v) 2571

+ (-2v) %0+ - % {d-1)] + (1-2v) [%:(0) - 740D}
(1- v) 251 (1-v) ) )

(4.42)

Similarly and more generally for finite elements we extend the definition of eg in eq.
(3.70% to include the inelastic strains. The same is done for boundary elements in eq.
(3.72) and the inelastic strains have to be integrated over the volume of the structure
{Mukherjee, 1982).

Once the elastic-inelastic problem is formulated in one of the above ways the
inelastic strains are determined incrementally. For an elasto-plastic problem the stress
distribution is first calculated from a purely elastic constitutive relation. These stresses
are then used to estimate the plastic strains, ¥ j» which are then used to re-estimate the
stresses.  The procedure is iterated until hopefully a converged set of stresses and
plastic strains is obtained. The method is reasonably reliable for materials showing
significant work hardening and where the plastic strains are small. Itis often necessry
to carefully increment the load and to iterate on each increment. For creep, the creep
strains are incremented over a time step using the stresses obtained from the previous
step. This can be done explicitly by just retaining the strains from the soesses from the
previous step or the result can be iterated to obtain an implicit or semi-implicit value for
the strains. Where creep strains are small this method is both reliable and efficient, as
the numerical solutions to the stiffness matrix or its equivalent (usually in magnularised
form) can be re-used on each time step. The method, however, is limited in the amount
of creep strain that can be accumulated and in some cases it is difficult to obtain a stable
solution,

The most important limitation to the use of the above method of implementing
creep deformation in structural calculations is where the creep strength is Jow and
particularly where there is a wide range of creep strength across the structure giving a
stiff problem. If we have a structure with a part which is relatively strong and a pant
which creeps rapidly, on loading the stresses redistribute rapidly in the weaker part, but
over a longer time the overall deformation will be determined by the stronger part. One
could imagine taking small timesteps to cope with the initial transient and then increase
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the timesteps once the system had settled. However, when an explicit scheme is used
any stress errors generaled in the weaker section result in large errors in creep strain
and the timesteps have to be kept small. The usc of iteration 1o provide an implicit
scheme is only partially successful as some form of explicit estimate is required to start
the iteration and frequently a stable procedure cannot be found. One useful technique is
not extrapolate stress but rather the total strain. This is then used with the constitutive
relation to generate a stress estimate for the new timestep and from that the next inelastic
strain increment. The stress estimate can be used to provide a prior stress value 10
make up the difference between the stresses from a purely elastic calculation and the
new estimaic, for this reason the method is sometimes called the initial stress method.
This scheme works adequately for problems where the loading is internal (e.g. from
thermal expansions} or is controlled by imposed smrains, but is of limited success with
gas pressure or deadloading. There is also a penalty in materials with complicated
constitutive relations as a relatively slow numerical procedure is required to relate the
new siress estimaies to the total strains.

The most satisfactory way of dealing with creep problems is sometimes called
the sofiened or variable siiffness method. If we confine ourselves to volume
conserving creep deformation we might describe an increment in the shear strains in the
maierial by;

& s
8(£gj-8,j—3ll-)=—ij+5tﬂsij .53
(4.53)

where H is a measure of the creep strength of the material. The shear modulus could
then in the elastic calculation be replaced by a reduced value G where:

G=Q2&8H+u'
(4.54)

This formulation is straightforwatd if we are dealing with a linear viscous material but
generally creep is non-linear, 1f creep is described by equation (4.1 1) then some means
of linearising the problem must be found. For some cases all that is NECessary is 10 use
estimated values for the von Mises stress i.e.

B o= e
'Hj-z de 3)

(4.55)

M

where o'c is an estimated value of g, from a previous calculation. Once implemented
the calculation can be iterated to convergence. This procedure does not work well if
creep is very non-linear in characier. It is more satisfactory 10 make a first order Taylor
cxpansion (Matthews 1985)

. 3 .
Yi = = |fld)s; -

: df(d) . . 3 dfG) s,

P+ s s |
dﬂ'; i) 2 dO’e O:(H kl.)

(4.56)

This looks complex but it is straightforward to introduce into finite difference or finite
element procedures. In some cases the initial stresses at the start of the step can be used
for o’ but for most non linear creep problems a predictor corrector method is necessary
with iteration to convergence. The use of the softened stiffness method enables long
time steps to be taken for the most extreme cases once the initial mansients have settled.
Work hardening plasticity using the Reuss equations can be implemenicd in a similar
manner {Ford 1988).

When plastic and creep strains become very large the usual elastic methods
become less adequate. The infinitesimal strain approximation becomes invalid and also
the stiffncss matrix, or the equivalent matrix of coefficients in the finite difference
approximation, becomes increasingly ill-conditioned. This arises because as volume
conserving inclastic deformation becomes dominanat the effective Poisson's ratio tends
1o 0.5 and the (1-2v) term in the constitutive relations make the stiffness matrix go
singular. In order to overcome this problem Herrmann (1965) proposed that the
continuity equation is added explicitly to the st of equations and a new variable, o, is
added 1o the displacements for solution. Firstly we modify the stress equilibriom
equation (3.1) to scparate the hydrostatic stress component:

o + 5 =K.
4.57)

The continuity or volume conservation condition is given by:

R A

=la

(4.58)

where g% are prior votume strains such as those arising from thermal expansion. The
constitutive relation is given by:



5ii2G = gj; - €;;° - &;; 0/3K,
/2 = € - €° - §jj 4,59
where G includes the effect of inelasticity and the prior strains € - &3 /3 include any

strain components arising from the linearisation of the inelastic constitutive relation.
Substituting eq. (4.59) into (4.57) gives:

(1-2G/K) ag; + ZG(UL“ + uj.ij) =F + 266.:,
(4.60)

A variational principle can now be generated from eqs. (4.57) and (4.60) using Eulers
theorum:

81 = 5[ [G&ytei-57) + (1-26/3K) 0 (6 -43) - (GP/2K) - uF] dv
+ L o;', nj 1; ds.

(4.61)

Herrmann's method is implemented by provided a mial function for o as well as
u. For one dimensional problems this is straightforward and has formed the basis of
the TRAFIC fuel performance code (Martthews 1984). A linear picce-wise trial function
for displacements is usually paired with a point discontinuous function for o. Higher
order displacement functions would be matched by a function for ¢ one order lower.
The problem is not so simple for two and three dimensional problems. Adding the
constraint of the continuity equation reduces the number of degrees of freedom of the
system. In practice using point values of & with lincar triangular elements over
constrains the problem. This has been analysed by Trecharne (1971) in terms of
Lagrange multipliers. The solution is to provide more degrees of freedom. This can be

done by either using higher order trial functions for u or by grouping elements and then
fixing o as a point value.

For comparison with eq. (3.60) the variational principle for the axisymmetric
plane strain example is given by:

b du, \? UV du, . 2u,
o= ¢ {G[(T) () 2. 'TE“]

1-2G du, . a?
+(3—k) [a(—dir + uT + W - qﬁ) - i-] - u,F,}27:rdr

+ 621!{— a2 R +by(b)P] = 0
(4.62)

Another consideration is the effect of Jarge strains on the znalysis. Imposing
the full compatibility refation (3.4) is not practical. The most effective solution is to
reformulate the analysis in terms of displacement increments instead of displacements
and 1o then adjust the positions of nodes during deformation. This technique is also
maore satisfactory, from the point of view of accounting for the change in boundary
conditions from large strains, than iterative techngiues.

4.4 More Complex Deformation Models

The inelastic behaviour of real materials is unfortunately rather more complex
than the simple forms we have used 10 illustrate the analysis of the deformation of
structures. The complexities are of two sorts: the way the material deforms evolves
during deformation due 1o changes in the material microstructure; and the model of
isotropic response to multiaxial and changing stress is at best an approximation but for
many materials misses important aspects of their behaviour.

One problem that must be faced is the limitations imposed by available
measurcments of deformation on the matenial of interest. Measurements tend to be of
two kinds: (i) tensile tests at fixed strain or displacement rates; and (ii) creep tests under
constant load, often done coincidentally as part of creep rupture time determination.
The results are usually forced to fit well established relationships that reflect the nature
of the testing more than the applications 1o which the results are applied. Sometimes
the results are cxpressed in ways that prevent consistant application. Creep cffects are
often confused with tensile tests particularly if the testing is done for slow strain rates at
high temperature,

An important example of the difficulty in implementing experiment deformation
expressions is primary creep. Creep expressions are often fitted (see section 1.3) to
expressions of the type



= w4

Caccp = Bl + 1 (4.63)
where ap is experimentally determined primary creep coefficient and ;:,, is the
secondary or sieady siate creep rate, both are functions of stress and temperature. Fora
constant load and temperature there is no problem and (4.63) can be used o calculate
the creep strain in structures. Most problems have loads that vary, often in complex
ways, and temperature changes also have to be accommodated. To overcome this we
would use a strain rate applicable to conditions for a panicular time. Unfortunately
there is no unique way of doing this. We could directly differentiate (4.63) to get a
creep rate:

z‘cu:p = ap/(sllﬂ) + .Eu-
(4.64)

This gives a 'ime hardening' law. Allermatively we could imagine that the accumulated
strain was a beuter guide 1o determining the creep rate, as time is more usually
associated with sofiening or recovery processes. Substituting eq. (4.63) in (4.64) we
get a 'strain hardening' law: .
Eep = B/E% + &y
(4.65)

Which strain is used is not clear, but the accumulated primary creep rate is the usual
measure. To show that the difference between time hardening and strain hardening
matters, we demonstrate the effect of i incrementing the applied strcss after a period of
deformation at constant load in Fig. 4.4, A creep law where ap and t;. are proportionat
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to 6, was used and it was assumed that there was no significant time independent
plastic strain. The time hardening Jaw predicis significantly lower strains than the swain
hardening law. For caloulations where an upper limit to the creep strain is required for
design purposes, the maximum value of the primary creep strain can be estimated for a
particularly stress and terperature and this value is applied as an instantaneous initial
strain every time the conditions change. This is also shown in Fig. 4.4 and unless
times are long this substantially overestimates the creep strain.

The only real solution to the problem is to formulate a retiable model
incorporating additional structural variables, as was discussed in section 4.1. The
simplest isotropic model with a single structural varaible would be of the form:

.E:rup = {(a,T. &) .
(4.66)

and

= eh(Ta) - r(T,0) = w(a.T,a)
(4.67)

where @ is the struciural variable, h is the hardening rate and r is the recovery rate.
Such a model which gives £ o of was chosen to reproduce the primary creep
behaviour under steady load of the other example. The response of this structural
model is to the load increment is also shown in Fig, 4.4. The response of the structural
variable 10 the change in load produces a significantly larger initial strain rate and total
strain than the time and strain hardening assumptions. This is in general in agreement
with experiment. The main disadvantage with this approach is that much more
experimenta! information is required to characterise a structural mode) and previously
gathered information is usually inadequate.

Simple structural models have a disadvantage in that they cannot describe &
variety of effects, where the strain rate is not co-axial with the load. These effects
include reverse deformation on removing the load (anetasticity), the Bauschinger effect
where the material has a lower yield stress on reversing the load and other changes in
the yicld surface when the stress axes are rotated. One type of model that accounts for
such, describes a kinematic hardening, where the yield surface is displaced relative 1o
stress system, in addition to changes in the yield surface normally associated with
isotropic hardening (Robinson, Pugh and Corum 1976). in this model the von Mises
stress and the stress deviants are replaced by new quanties:
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and

(4.68)

where s} is a tensor internal stress deviant and o is an isotropic salar structural

parameter with dimensions of stress. The multiaxial creep rates are now given by:

& = f(al, T)s}/cl,
S = 8 Nols 85) - Tt (55, 53,10,
a = (o, D hy (@) - ta (@,T).

(4.69)

There are many variations on this type of model, but as yet none of the available models
have been put on a sound physical basis.

Krieg (1977) describes how these types of models may be used in structural
mechanics caleulations. The large number of variables involved make this a far from
simple taks. It is frequently necessary to use a fully implicit calculation, in which case
the various rate equations describing the evolution of the various structural parameters
are partly solved using the Newton-Raphson approximation and the solution completed
after the structural calculation is done and the stresses are known. To see how this is
done we will look at the simpler model given by eqs. (4.66) and (4.67) (Matthews
1983) for multiaxial stresses eq, (4.66) becores:

.Ei.i = f(oe)sijlo;: and;:, = f{a.).
(4.70)

During the calculation we have 10 solve for both the stresses and a. First of all we
define ‘¥ from eq. {(4.66):

¥Y=a-a°-86t¥(0,a)
@4.1

which is the residual from the forward difference approximation from the estimates of

o and G indicated by the primes. A new estimate o is found from the Newion-
Ralphson approximation;

2

a=a"['*'*i.a—-‘?’(gsush-03)
A

¥
T3 o |

oo
(4.72)

A Taylor expansion to first order in o and sij is made for the strain rate {4.70) and
(4.72) is then used to eliminate o

Jf  o¥

2‘1'1' = f(o:hal) 5 - S‘ij 5 ‘le

L[20 T AW L 3
35, o 9@ ij O 3 g S

(4.73)

Eq. (4.73) can be used in the same way as eq. (4.56) to construct the stiffness matrix
of a finite element calculation. ‘The value is then determined from ¢q. (4.72) once the
siresses have been calculated. When more than one structural variable is used or when
the structural variables arc tensors a set of equations like (4.72) as used 1o form a
Jacobian matrix. This can be very large and some simplification is possible by finding
scalar quantities to apply the Newton-Raphson approximation to (Kreig 1977).

Onec aspect not yet discussed is anisotropy of propertjes. This is usually related
10 intrinsinc anisotrepy in the crystal structure of the material, although anisotropic
microstructures may develop in cubic materials with high isotropy and these may result
in anisotropic properties. The von Mises stress for an anisotropic material is given
generally by (Hill 1950):

G = F(0y) -633)" + G(0yy - 03;) + H(hs -0, )
+ 2Lol; + M, + 2N,
(4.74)

where F, G, H, L, M and N are anisotropic coefficients that have to be determined
experimentally. In polycrystalline anisotropic materials the macroscopic anistropy
resulls from fexture of the crystal structure that results from the fabrication of the
component. During deformation the texture will change as individual crystals rotate as
they shear. The description of this compticated topic is outside the scope of these
lectures. In applying eq. (4.74) it is found that not orly are the strain rates different in
different directions, but the sirain rates are not co-axial with the load. From (4.8) we
can find the components of strain for creep in an anisotropic materjal:
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&1 = GIDNGIIE+H)S), - FS3; - HS33)/0.

&2 = (IDNGLIIEF +G)Szz - F8yy - GS33)1/6

&3 = (D0, NG +H)Sy; - HSy, - GSp2)/a,,

&2 = (3/2M(0.,)L 8,2 /G,

&3 = (312M(06,, )M 834 /0,
and
S31 = B/Df(GIN S, /G
(4.75)

Reuss equations for plastic flow of anisotropic materials can be formulated in a similar
manner,

Another complication that arises is the inter-dependence of the shear
deformation and volume changes in materials that contain cavities. We have already
scen the form of the flow rule for such cases given by eq, (2.50). This type of flow
rule can be used to produce creep and plastic flow expressions thar are dependent on
both the von Mises and hydrosiatic stresses.

Finally we should mention the effect of cracking on structural mechanics
calculations, although not a plastic phenomenon it does lead 10 inelastic deformations.
The propagation of individual cracks needs the use of a crack tip element, in finite
element calculations, that can cope with the stress singularity at the crack tip. Whether
the crack propagatcs or not depends on whether the stress intensity factor reaches a
critical value, see section 5.2. Of more interest here are structures containing materials
that cannot suppart large tensile loads, such as ceramics, concrete or rock. To model
these types of material in a finite element scheme it is necessary (o modify the stiffness
matrix in some way. Methods that use initial stresses or strains are never really
satisfactory. There are two main ways of introducing cracked regions in a continuum
manner. The first is to simply make the elastic moduli depend on the sign of the
stress. A scheme must be devised to change the [D] matrix (3.66) whenever a normal
stress component changes sign, the Young's modulus is set 10 a very small value for
elements of the {D] marrix which are positive. This method is very simple to
implement and causes the least disturbance 10 the rest of the finite element algorithm,
but it has the disadvantage of not giving direcily a value for the internal voidage
generated by the cracking. A more satisfactory method is to set up speciai clements for
the cracked material, which set the appropriate normal stress 10 zero or some reference
value when a cracking criterion is transgressed. This provides additional degrees of

2

freedom to the element which are eliminating by calculating the volume occupied by the
cracks when open, Both methods are stable when used with a reliable sysiem for
setting the staie of each element and convergence is guaranteed for linear elastic
problems. Coping with simultancous cracking and yicld is something of a nightmare
even for one dimensional calculations.
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Lecture § Failure of Structures
5.1 Ductile Faiture

Materials that deformn easily by plastic or creep deformation fail at high strain.
The ductility may be high over the whole specimen, the extreme case is superplassicity,
or may be localised by extreme necking of the structure for tensile Joads, by shearing
off along a slip band or by ductile tearing. 'When voids or precipitates are present the
ducility may be even more local with small scale necking, tcaring and slipping between
the heterogeneities.

Let us look at failure during time independent plasticity first. Tt is simple to
establish the failure conditions for a perfectly plastic or an elasto-plastic material. As
soon as plastic flow propagates through the cross-section of the structure failurc
follows. The flow is very unsiable and any minor fluctuation in the load bearing arca
or the material properties will result in local failure. The local ductility may be infinite
but the averaged strain to failure is small. Fortunately real materials display some
degree of work hardening which stabilises the deformation. To illustrate this let us
look at the deformation of an idealised work hardening material with a stress strain
relation:

€ = (o..,q)"-
(5.1

where £, is the plastic strain in the direction of the load, 0y is a materials constant and
m is the work hardening coefficient. These properties are measured using true stress
and strain values, Let us now take a bar of the material with a uniform cross sectional
arca A and apply a dead load which provides a force F. If the original length of the
specimen is Lo and after loading L, the truc strain is given by In(i/Lg) and the true
stress is given by FL/Agl, where Ay is the original specimen cross sectional area.
Substituting into eg. (5.1) we get the force displacement relationship

F = (G A Lo /LYIn(L/A, )"
52)

If we differentiate F with respect to L we find that the rate of change of displacement
with force is infinite when the true strain is equal to m or the engineering strain is equal
to exp(m)-1. At this point the deformation becomes unstable (see Fig. 5.1 which
illustrates this for parabolic hardening i.e. m=0.5).
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It is clear how this instability arises for dead loading, but the criterion is similar
for a strain conmrolied load. Let us assume that our bar is long compared to its width
and that at some point there is a small defect that reduces the load bearing arca
by (1 -8} . If this defect is short enough to not too greaily affect the overall extension
of the bar the force on the defected region is controlled by the average strein ot the bar,
We thus have a fixed loading condition at the defect and the instability condition will
apply when the strain reaches a value of m. We can now delcrmine the strain in the
undefecicd part of the bar as the Joad is the same in the defecied and undefected regions:

a,LA., = m" exp (-m) (1-8) - &™ exp {-¢)
(53

We may solve eq. (5.3) to find the uniform strain to failure €7 by using a simple
Newton-Raphson procedure (see Fig. 5.2 for an cxample where m=0.5). The uniform
failure strain is relatively insensitive to the size of the original defect and in the limit
of §— 0, £becomes m. Thus any minor defect in the cross sectional arca will lead 10
necking and local failure,
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coefficient. Fig. 5.3 shows the effect of m on the uniform strain of & rod with a defect
of just 1% of the area (5 = 0.01) . The uniform strain to failure decreases faster than

2

the strain to initial the instability (m) as m is decreased. Notch sensitivity is not just a
problem for brittle materials, but also for materials with minimal work hardening. It
should be noted here that the strain required 10 induce plastic instability is not the local
strain at the failure site. This could be very high and some materials can exhibit
hecking down to essentially a point.

Cold working is well known for decreasing the ductility of a metal and the
reasons for this can be easily shown repeating the stability calculation using the
following stress-strain relation instead of eq. (5.1):

& = (G/g)"™ - g,
* (5.4)

where £, is the cold work simain. The plastic instability is found to stan
® m- &, rather than m. Similarly other forms of hardening, such as solute hardening
also decrease ducility, €.g. for a stress-strain relation of the type:

& = [(a,-6)/q, )™
% (5.5)

where @) is the new flow stress arising from the hardening. The two types of
hardening from eq. (5.4) and (5.5) are compared in Fig. 5.4, where the value of the
cold work was taken 10 be 20%, o) was chosen to give the same yield stress as the cold
worked case and m = 0.5. The ductility of the material obeying cq. (5.5) is smaller
than the cold worked case, but the cold worked material is more sensitive 1o the size of
the defect.
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Ductile faiture under creep deformation is defined by the time a structure takes
to fail. For a perfecily ductile material even though the strain to failure is infinite the
time to failure is finite. This can be expressed in closed form for simple power law
creep of the type:

& = Bann
(5.6).

Retuming 1o our bar of uniform cross section and applying a dead load F the
deformation rate is;

L/L = BFL/A,L,) .
(5.7)

The time to failure can be found by integrating eq. (5.7) for L between Lo and s :

Y= L
B

(A.,L,, "J- dr 1 L]
F ) L L®0 T GB(F/ALY | e .8
(5.8)

where ;'.,, is the creep rate in the original configuration. This relationship was first
pointed out by Hoff (1953).

The Hoff time to failure is very similar to the empirical observation by
Monkman and Grant (1956 that the product of the steady state creep rate and time to
failure is approximately a constant for a particular material, i.e.

&y =C
(5.9

where C is in the range 0.1 10 0.3. As the creep index of most metals and alloys (see
section 1.3) is between 3 and 7, eq. (5.8) and (5.9) arc essentially identical. For any
material with significant ductility in creep, the ime to failure is determined by the plastic
instability. This can be seen by integrating eq. (5.7) to a finite L:

4 = [t-exp(-ng)l/ng,, .
(5.10)

In Fig. 5.5 we plot ;:.. against failure strain for different values of n.
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The sensitivity of ductile creep failure depends on the stress sensitivity of the
crecp. Taking our example of a long bar with a defect reducing the cross sectional area
by (1 - &) we find a new Hoff failure time of

¥ = (1-8)0/n&,, .
(5.11)

If eq. (5.10) is equated to q. (5.9) an estimate can be made of the uniform failure
strain away from the defect at the time of failure:

& = (1/n)In(1/[1-(1-8)"]) |
5.12)

The uniform failure strain is plotted as a function of m for a 1% and a 10% defect in
Fig. 5.6). It is clearly seen that & is highest for low n and that for n=1 the failure
strains are extremely large. This is the basis of superplastic deformation. However,
other conditions have to be fulfilled and in particular the formation of cavities on grain
boundaries has to be inhibited. Superplasticity is frequently found in materials where
there is a second phase that prevents grain growth, thus enabling diffusive crecp
mechanisms 10 operate, and also lubricates the grain boundaries to permil grain
boundary sliding.

The criteria for instability during work hardening and crecp deformation can
also be derived for thin cylindrical and spherical shells. These only differ from the
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results for our bar example by a geometric facior. For example the Hoff time to failure
for a pressurised twbe isy = lIan‘“ where E‘M, is the inidal circumferencial strain
rate from the pressure. The analysis of thick shells and other more complex
configurations such as the bending of prismatic beams is more difficult. Odgvist
(1974) gives some examples for the simple power law crecp cxpression and also
accounting for primary creep approximated by work hardening deformation.
Fornately elasticity can be neglecied in these problems as the strains are high.

Let us briefly look at the effect of adding work hardening deformation 1o the
creep of a bar under dead loading. Combining the egs. (5.1) and (5.6) we get the
constitutive relation:

dit\ g
(5.13)
For a fixed load F at any time during the deformation
l ‘di-‘ . 1 FL 1im +B FL )-
Ld d\ALg (A.Lo
(5.14)
which, as only L is varying during deformation, may be re-written as:
1dl  BEL/ALY
Ld  [1-(/mFL/ALg)m)
(5.15)
Failure will thus occur when
( FL )lln
— =m
Al.g,
(3.16)

i.c. when the previously established plastic insiability criterion is reached. Integrating
(5.14) to obtain the time to infinite extension we find:
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where 0, is the load in the initial configuration and which holds provided n>1/m. An
example of the failure time appropriate for annealed 316 stainless sieel at 700°C is
given in Fig. 5.7 where m=0.5, @, = 10° MPa, n=6 and B=10-16 MPa-'hr-). This
simple model reproduces many of the observations in creep rupture 1ests, but tends to
over-cstimate the failure time at low stress as it neglects other failure processes, see
section 5.4,
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Fig.5.7

Calculation of failure time during creep deformation in real situations often
means that the applicd load and the temperanme change. To cope with this Robinson
(1952) proposed a cumulative damage law. The failure time is calculated for the current
conditions and this is used in the integral:

d
n-[=
.
(5.18)

When Dy reaches 1 the failure time for the varying conditions is found. This procedure
is valid for simple ductile creep problems and is widely used for both empirically and
phenomenologically based rupture expressions. Approximations are frequendy used in
terms of reference stresses (see section 4.2) to assess creep ductile failure, as finite
element calculations are very expensive with the large strains required to reach stability
Limits. Fortunmely internal stresses, from thermal gradients eic, have litte effect on
failures of these types.



So far we have only discussed stability under tensile loads. The most frequent
problem encountered is the buckling of beams and shells in structures under
compressive loads. The main difference from the tensile load problems is that elasiic
deflections may be large; in fact for most structures the elastic buckling limit provides
the main design constraint even though plastic deformation occurs during the collapse.
A simple description of clastic buckling may be found in Crandall, Dahl and Lardner
(1978). Any clastic structure, with an aspeci ratio greater than 1, has a critical load for
which it will buckle, due to growth of small disturbances in its configuration. The size
of the critical load depends on the way the structure is constrained, but the valucs all
have the form:

E.. = ar’El/4L?
(5.19)

where 1 is moment of inertia of the structure section and & is constant. Typically o=1/4
for & beam free at one end and rigidly supported at the ather, a=!} for a beam hinged at
both ends and a=4 for a doubly supported beam,

Plastic deformation and creep tend to concentrate the deformation at particular
points in the structure forming plastic hinges. This type of behaviour becomes more
acute in materials with Jow work hardening coefficients or large creep stress indexcs.
The main role of creep in buckling problems is to enhance any pre-existing defects until
the elastic or plastic buckling limit is reached. The time to failure in these cases is
controlled by an expression similar in form to the creep tensile failure i.e.

tra 1/(n-1)Fn
(5.20).

The derivation of limits in these cases is not simple and depends strongly on the shape
of the structure cross-section and the nature of the initial defect,

5.2 Fracture

In section 2.7 we have described how crack propagation criteria can be
construcied for truly brittle materials. Real matcrials, however can fail by crack
propagation when they exhibit significant plasticity. We have already mentioned
Irwin's (1948) proposal that an effective surface energy can be used to account for the
extra energy dissipated in moving a crack in plastic material, but such an approach is
not completely satisfactory. There arc three main problems that have to be addressed:
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(i) plastic constitutive relations invalidate the linear elastic analyses that are the basis of
conventional fracture mechanics; (ii) the processes that control crack advances are on a
small scale at the crack tip where macroscopic plastic relations do not hold; and (iii} in
many engincering structures the region affecied by plastic deformation extends across
the whole section of the structure, i.c. is not confined 1o the crack tip, so some way of
seconciling plastic collapse criteria with fracture criteria is needed. In recent years there
has been a lot of progress in resolving these three problems. We will address them in
order in this section.

To illustrate the effect of plasticity on cracks two types of continuum models are
often used to represent deformation near the crack tip. A fuller discussion of this
subject can be found in Rice (1968). ‘The first is to assume that the material js perfectly
Plastic with a yicld stress ©y. For small scale yielding this produces & plastic zone
ahcad of the crack tip with a diameter D, (Rice 1968):

D, = Kax &
(5.21)

where o is | for a shear crack and a=4 for a tensile crack. Inside the plastic zone the
stress is uniform and outside the plastic zone the elastic stress ficld is shifted as if the
crack were extended by half the plastic zone diameter and lies at the centre of the plastic
zone. A crack opening displacenent may also be estimated from the plastic strain at the
tip of the crack, see Fig. 5.8:

&op = K*/2E oy
(5.22)

been This quantity, as will be seen, is of

_—_% ohasr load some importance in the application
1% . .- of fracture mechanics with

plasticity. The shape of the plastic
zone will be dependent on the type
of loading for shear loading mode
HI the plastic zone is approximately
spherical but for tensile loading
mode I the plastic zone is lobed as
the maximum shear gtresses are at
45° 1o the crack tip,




The sccond is 10 assume that the material work hardens, characterised by a
work hardening index m (as in eq. 5.1). Solutions 10 this problem have not been
found, but Rice (1968) has investigated a related problem of non-lincar elasticity. In
lincar elasticity both the stress and strain fields vary as r -¥2 from the crack tip. For the
non linear problem the stress ficld varics as r -/mX1+0) and the strain ficld as r -{1(1+m)]
where m usually lies betwen 0 and 1. In an elasto-plastic analysis the size of the zonc
affected by plasticity is very sensitive to the magnitude of the external loading, In
tensile loading the magnitude of the tensile stress ahead of the crack is very sensitive to
the work hardening index. For lightly work hardencd material the tensile stress is
greatly reduced.

When the plastic region around the crack Gip is small compared 10 both the crack
and structural section sizes, it has in the past been assumed that LEFM can still be
applied and that values of the fracture toughness K can be determined by elastic
calculations. In many cases, however, yiclding is on a large scale and the use of K in
this way is not easily justified. In order to over come this Rice (1968a) suggested the
usc of a path integral J, first defined by Eshalby (1956), as a quantity that can be
reliably measured experimentally and can be used to define 8 crack Propagation criterion
with plasticity. J can be described as the crack exiension force or the crack energy
release rate and has dimensions of energy per unit area. The path integral defining J is:

1= [ are,s dx - Tox ds)
x, (5.23)

where r represents some arbitrary
path outside the plastic region, (see
Fig. 5.9), Tj arc the componenis of
the force normal to the path from
the applied swess and Uj are the
resulting displacements. For purety
elastic materials J and the fracture
toughness can be directly related:

Fig.5.9
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The path integral definition of 1 is not directly useful, but it can casily be shown
(Rice 1968) that:

J = dU/da
(5.25)

where U is the potential energy per unit length of crack, i.e. J is the energy release mie
as the crack ends. Eq. (5.24) assumes that the applied force does no work, which
means that any displacements are restrained during crack extension. In practice this
energy release rate can be determined experimentally from the load-displacement curve
of a wensile test in a deeply cracked specimen:

I = afFdL/((W-a)b)
(5.26)

where a is a function of the specimen geometry, e.g. @=2.56 for a compact tensile test
specimen, and b is the specimen thickness (Willis, 1980). The compact 1es1 specimen
has a notch and a crack is introduced by fatigue. ‘The same test can also provide a value
of the critical value of J for crack growth, Jic for mode I loading.

Another approach to establishing an experimental measure of fracture oughness
is by the measurement of crack opening displacements. This has the advantage, in a
well constructed test, of not requiring the separate monitoring of the crack extension.
For small scale yielding J and the &:pp are related by (Rice 1968):

8cop = oy |
(5.27)

So far we have only discussed how a crack propagation criterion may be
established for a material that deforms plastically. The continyum models have not
provided us with a method of determining when a material will be ductile or when it
will be brittle or how Jic or Kic are related to intrinsic properties of the material. The
reason for this is that the underlying processes that contro! crack propagation take place
at the crack tip on an atomic scale

&cop = Nb;
{5.28)

where N is the number of dislocation and b is the component Burgers vector sormal 10
the crack plane. The long range stress fields of the dislocations shield the crack tip
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from the external stress, The problem is a difficult one, as the size of the dislocation
interaction has to be solved self consistenly, as the dislocation redistributes in the stress
ficld the crack. The local force balance that determines whether the crack propagates or
not is still the Griffith value, i.e. (2uy)'* , sce section 2.7. Thomson (1978) finds
an estimate for the fracture ioughness of:

K: = 28 Qypu/x ) oo Ve
" (3.29)

where ¢ is the cut of distance for the closest dislocation to the crack. ‘The important
point to note is that even for a material with substantial plasticity the fracture 1oughness
is still proportional to a power of the surface energy or some other parameter
controlling atomic cohesion. This has important consequences in the impact of
environmental or local chemical changes on fracture.

Our experience of real materials is that some exhibit ductile behaviour with
significant global plastic deformation and some are brittle with no significant plastic
strain. In deciding whether a material is ductile or brittle there are two classes of
behaviour: (i) the matcrial may be able to fracture by crack propagation but there are no
defects of sufficient size to allow crack before bulk yield; or (ii) the material may not be
able to sustain crack propagation, rather the material tears plastically at defects with
large energy dissipation. The first catcgory covers bee metals including structural
materials such as low alloy steels. Whether such materials are brittle or ductile in
normal operation depends on both temperature and microstructure, A lower limit to the
defect size can be made with the material grain size. Loca) deformation in individual
grains can occur before yicld propagates over the material (see section 1,2). Pile-ups of
dislocation at grain boundaries can generate wedge cracks that form crack nuclei (Stroh
1954) or intersecting slip bands can also nucleate cracks at the grain size (Cottrell
1958). The yicld stress is weakly dependent on the grain size so we may find a
criterion for brittle-ductile transition by simply equating the yield stress with the crack
propagation stress and the grain size with the crack size, hence for crack propagation:

Kic < oy (d)'"?
(5.30)

Small grain size material is thus expected to be ductile unless larger defects are present.

A similar effect is scen with temperature in bee metals. This is largely because
the yield stress and, inditectly, the fracture toughness are sensitive to emperature. The
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brittleness of materials is often evaluated using the Charpy v-notch impact test, where
the energy dissipated in fracturing a small specimen is measured. Such tests on ferritic
steels and other bee alloys reveal a transition impact encrgy at a particular lemperature,
see Fig. 5.10 for the typical behaviour of a 17% Cr femitic steel (Bagley et &l 1987),

OOFrac:ture Toughness (J/rnz)

Unirradiated
150
100F
Irradiated
o
soh 4-21dpa at 394 C
0 A I L A 1

=100 0 100 200 o 300 400 500
Temperature { C)

Fig.5.10

The transition temperature is sensitive 10 a wide range of metallurgical parameters but
for nuclear reactor applications it is important as radiation hardening of the material
increases the transition temperature, sce Fig. 5.10. Such irradiation induced changes
are themselves sensitive to the alloy composition and metallurgical state. This is
important in the design of PWR pressure vessels, where problems were found in early
reactors becuase of the presence of Cu as an impurity in the siecls (Marshall 1982). In
maodern PWR pressure vesse] forgings the transition temperature can increase by 30°C
over the reactor life, which causes no problems during operations but care has to be
taken to avoid quenching the vesse! under pressure.

‘The second case, where under centain conditions crack propagation is extremely
difficult, is relevant to many materials that are basically ductile but are strengthened by
coherent precipitates etc. To identify the conditions for this type of behaviour Chan
(1989) has proposed the use of the tearing modulus Tg:

Ed
'E‘Ea.
A3

(5.31)
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When TR is zcro cracks can propagate freely if the fracture conditions are met. When
Tg is greater than zero the crack propagates stably; the load has to be increased 1o
continue crack growth. The crack is moved through the material by ductile tearing
rather than cleavage or void coalescence ahead of the crack Gp (see section 5.3), and the
failure plane is not normal (o the loading (for mode I) but follows the main slip
direction, The conditions where this may occur are related to the Jocal smrain at the
crack tip required to produce failure and is related 10 the critical ¢rack opening
displacement.

We now have criteria for crack propagation and for ductile failure, but ofien in
engineering problems failure of a structure is determined by both these processes. If
the defects in a structure are small the load necessary to initiate crack growth may result
in the plastic deformation of the whole section. No completely rigorous approach has
yet been found to the problem, but a practical solution is offered by the R6 design code
developed by the CEGB (Milne and Goodall 1988). Two parameters are used 1o
characterisc the failure of a structure: (i) K, is the crack propagation parameter which
may be defined in terms of the fracture toughness

K, = Ki/K¢c (5.32)

or in terms of some other criterion such as J or &cgp ; (ii) Ly is the plastic collapse
parameter defined as

L = Gulovy .
(5.33)

The two parameters could be applied separately with failure occurring if K; < 1
or Ly < LM%, with K) and being determined by some structural mechanics calculation
and L,™* from investigating the plastic stability of the structure. This may not,
however, be sufficiently pessimistic because of intcraction berween the two processes.
To overcome this the failure assessment diagram (FAD) was developed. This plots K,
against Ly and a function relating the two variables defines the regions on the diagram
where failure is and is not expected. Failure is determined by the relation:

K, 2 f(L,)
(5.34)

where for Option 1 of revision 3 of R6
pre

1 -

f(Le) = (1 - 0.1413)[0.3 + 0.7 exp(-0.65L,)) .

This failure criterion, shown in Fig. 5.11, is an empirical fit for assessments of failure
in structures of various configurations and is valid for a limited range of materials. The
extension of the limit value along the Ly axis is due to the work hardening nature of the

1
failed region
osl intact region
plastic collapse
cutoff
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Fig.5.11

alloys and a scparate LMaX cut off has 1o be applied. Fig. 5.11 should be taken as an
example, other forms of FAD are used for particular applications.

Values of K and 0yr for use in R6 have been collected for many of the
configurations found in engineering applictions (Miiler 1987). Intcraal stresses, ¢.g.
from thermal stress or from fabrication, create 2 problem as they can cause a crack 1o
extend Jocally but are dissipated by the crack extension. The R6 design code sums
stress intensity factors from primary loading sources and from internal stresses, but
intemal stresses are omitted from the determination of plastic collapse.

In assessing the failure of structures using R6 or other methods the size of
defects likely to be present must be known. One way is to assume that defects arc
ptesemwilhuiunl.hclimitoflhclesoluﬁonofmemndesu'ucﬁvelesﬁng echniques
applicd 10 the structure. mkmynubemfﬁciennypessiuﬂsﬁcuhmerdefmmy
be missed. To cope with this probabilistic fracture mechanics has been developed
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which relates the probable distribution of defect size to the realities of testing techniques
and gives the likelihood of failure for a particular load (Cameron and Ternple 1988).
Growth of defects, below critical size, during operation has to be anticipated; we will
look at some of these mechanisms in the last three sections of this lecture.

An important concept in the area of fracture analysis is "leak before break’. If
the critical crack size, on the basis of fracture mechanics assessment for the largest load
likely to be encountered, is smaller than the thickness of the wall of a pressure vessel
then the vessel could fail without waming. However if the crack size is much larger
than the wall thickness then the vessel will leak before it fails. Provided the growth rae
of the crack during operation is slow ecnough for the leak to be detected then a leak
before break argument can be established (Milne and Goodall 1988).

5.3 Cavities and Inclusions

In this section we will look mainly at intragranular failure processes other than
cleavage. Such processes arc plastic in nature, but the microstructure of strengthened
matcrial leads to the concentration of the strain locally, with the result that the uniform
strain of the material is greatly reduced. There are two main types of failure: (i) the
growth of cavities or voids that then coalesce leaving a dimpled failure surface: and (ii)
channel fracture where strain is confined to narrow slip bands resulting in local
shearing-off and failure surface that is sometimes confused with cleavage. Typical
examples of the three types of structure are shown in Fig. 5.12, Let us Jook at cavity
growth first.

Cavities may already exist, .g. from radiation damage or residual porosity
from fabrication processes, or may be nucleated at inclusions or from dislocation
interactions. Failure is characterised by two local strain stages: the nucleation strain and
the cavity coalescence strain. A rigid inclusion will produce & mild clastic stress
concentration; an applied tensile stress will generate a tensile stress at the inclusion
interface of the order of 2(1-v) the applied stress. For an incoherent precipitate this will
be cnough to separate the matrix from the precipitate, but for most materials plastic
deformation is required to concentrate the stress further. An essentially rigid inclusion
acts as an obstacle to plastic deformation and the stress at the inclusion will be
proportional to volume fraction of inclusions and the plastic strain. A cavity may also
be nucleated at an inclusion by the pile-up of dislocations at the interface in a similar
manner 1o the grain boundary crack nucleation mechanisms. Cavities are also nuclezted
in very purc materials with no second phases at very high sirains. This is because the
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work hardencd dislocation structure can generate cavitics or small cracks by
combinations of dislocations forming locked segments in the network (Cottrell, 1958),

Once nucleated the cavity will grow by elongating in the direction of the applied
shear or tensile stress. Brown and Emburg (1973) have proposed that the ligaments
between cavities become unstable when the elongation of the cavities reaches a critical
value of h = (L-2r¢) where L is the cavity separation. Without work hardening this
gives the simple criterion for strain 10 coalescence:

& = b ((Li2r)-1] = n{p;R-1)
(5.35)

where r¢ is the cavity radius at nucleation and pg is the volume fraction of cavities.

Aliematively the growth of cavities 1o plastic instability can be accounted for in
more detail by using a constitutive relation for plasticity in cladding cavities, see section
2.6. A sability criterion comes directly from the applicatior of the yield criterion e
{2.50). The derivation is outside the scope of these lecture notes and it is also
necessary 1o replace p; for a parameter f* which permits cavity coalescence to be
effectively modelled (Tvergaard 1981, 1982):

f*=p when pe < 0.15
£ =p o+ (""0"5)
12%\ 01

(5.36)

Failure occurs at a similar strain to that predicted by eq. (5.34) and is not sensitive 1o
work hardening cocfficient for the range of values normally encountered. ‘This
approach has been successfully employed by Ford and Matthews (1989) 10 explain the
reduction in UTS and ductility in stainless steels containing radiation damage produced
cavites.

Channel fracture is seen in materials that have been hardencd by fine precipitate
distributions and by radiation damage. It is related to slip channelling in heavily work
hardened materials and can be interpreted as a very local dynamic recovery. Fine
dispersion of obstacles, such as carbides in stainless stecls, Y in nickel alloys and small
point defect loops in irradiated metals (Fish and Hunter 1976), are very effective in
preventing dislocation motion, If the load is high enough eventually dislocations can
penctrate the obstacles by cutting through them. The effect is localised because once
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Ductile dimple fracture in
austenitic stainless sieel
(fractured at 230C).

Cleavage fracture in ferritic
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(Scanning electron micrographs cowrtesy E A Littie)
Fig. 5.12.
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one obstacle is cut the load on adjacent obstacles increases and they soon follow. Slip
can then continue 1 occur along the path cleared by the first dislocations. This very
localised slip can then lead o failure by shearing-off of the maierial along the channels.
This failure mechanism is restricted to lower iemperatures, where dislocation climb is
not important and the obstacles cannot coarsen by Ostwald ripening. In applying
failure criterion a stress limit for channel fracture has 1o be detenmined experimentally.
If the bulk yield stress is less than this the channel fracture is inhibited. The effective
strain to failure by this process is very small.

5.4 Creep Fracture

Creep fracture, as opposed 1o ductile creep rupture, is a process that is mostly
concerned with the growth of cavities on the grain boundarics or the nucleation and
growth of intergranular cracks. For temperatures high encugh to support creep, creep
rupture usually dominates the time to failure even if some creep fracture process is
responsibie for the final parting of the material (see section 5.1). Al low stresses the
ductility during creep is much reduced and the failure time is significantly reduced if the
ductility falls below 10%. This type of behaviour used 1o be known as crecp damage
and claborate phenomenological theorics were consaucted to describe this and permit
fitting to experimental observations (c.g. see Odqvist 1973). | prefer a microstructural
approach and there has been a growth in this approach to creep fracture in recent years.
By doing this we hopefully can predict problems in materials with particular structures
and design materials for applications.

Creep interactions with intragranular cavities and inclusions do not easily lead w0
failure because the plastic instabilities are reached a1 very high strain, see eq. (5.16) and
Fig. 5.6. The exception is when the volume concentration cavities or incoherent
precipitates exceeds 20% when failure by crecp in the ligaments between the cavities is
almost immediate. Ductile transgranular failure under creep conditions is almost always
due to the increasc in the section as the arca is reduced in teniary crecp. At the failure
site the maerial starts to yield and local plastic instabilities can develop,

The subject of caviry nucleation and growth on grain boundarics kas too many
aspects for an adequate treatment here. A good infroduction to the subject can be found
in Beere (1982). A number of possible nucleation mechanisms have been suggested.
During neutron irradiation embrittlement occurs during creep from cavities nucleated on
helium bubbles associated from grain boundaries. Most of this heliam comes from
{n,a) rcactions with boron, which segrepates to the grain boundaries. In other
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applications cavity nucleation is associated with deformation. Grain boundary sliding
is frequently though 1o be responsible. Any obstacle to grain sliding will result in a
local stress concentration which could open up a cavity. The junctions between three
grains and precipitates on the boundarics are obvious possible sites. To nucleate a
cavity the shear rates on the boundary have to be much greater than the bulk creep rate
in the material. In order to grow the cavity nucleus has 1o satisfy the Hyam-Sumner
condition, eq. (2.22) and (2.33) modified 1o accouont for the grain boundary dihedral
angle and the hydrostatic stress replaced by the tensile stress normal to the boundary:
G > in sin (¢/2)
3r .

c

(5.37)

The growth of cavities, once nucleated is controlied by surface diffusion, grain
boundary diffusion and creep deformation. In the absence of diffusion, creep will
grow the cavity at a rate (Edward and Ashby 1979):

da, &

1
FI Ba‘[m ) l],
(5.38)

This expression gives a larger creep rate than that given by Beere (1980), but the
reduction in supporting arca at the grain boundary is accounted for. Eq. (5.37) is
derived from a model of the growth of the cavity in a cell of radius ¢ which is
constrained by the adjacent material which is cavity free, The failure time is given by
integrating (5.37) w0 get (with some approximation);

_o -4
“—I'+nir.ln{“_nriilcz}

{5.39)

where 4; is the time (0 nucleate 2 cavity of critical size rc;. This expression was derived
without taking into account the reduction of area of the section during deformation
which would decrease the time 10 failure under a dead load. This can be done by
incorporating tf from eq. (5.38) into a damage fraction rule eq. (5.17) and taking &, as
the bulk strain rate of the material on the assumption that the cavities do not contribute
significantly 1o the final strain of the material. When we do this and if we can neglect
the titne to nucleate the cavities a failure time is obuained of:

- [1 3 ﬂ) L
1~y ) new, .
e (5.40)

Unless the cavity nuciei are large there is little effect on the Hoff time to failure (5.8).
Cavity growth by creep is therefore a process that occurs during testing creep and has
lide effect on the failure time and the eniform strain 1o failure.

The most important role of grain boundary cavity growth is at lower stresses
when bulk creep rates are low. The growth is mainly by grain boundary diffusion
although surface diffusion and creep are important in determining the final growth rate.
We have already seen in section 2.3 how cavities can grow purely by the transport of
vacancies along the grain boundaries. One important consequence of this process is the
redisiribution of stress on the grain boundary., In Fig. 5.13 we show the stress
distribution normal to the grain boundary as a function of distance from the cavity for
cavity spacing of 2c = 10r;. On first applying the load the elastic response of the
material produces a stress concentration at the junction of the cavity with the grain
boundary. Once grain boundary diffusion has redistributed the stress, the stress
concentration is eliminated and the maximum stress is found in the region between the
bubbles. The reason for this redistribution is that for dynamic equilibrium vacancies
must be formed uniformly over the boundary. This constraint and the concentration
gradient necessary to drive the vacancies to the cavity requires the stress to decrease as
the cavity is approached. Grain boundary diffusion in this way decreases the likelihood
that such cavities can form crack nuclei.

Eq. (2.32) assumes that surface

i diffusion is rapid so that the radius

; of curvature over the cavity is
constant and that grain boundaries

are perfect sources of vacancics.

On || ®nstic stiess The first assumption is frequently
/ not fully justified for many
stress distribution engineering materials where surface

:‘:L:?hd‘""""' and grain boundary diffusion rates

~ ™~ _ are comparable for the temperature

C e ranges of interest. Restriction of
the surface diffusion rate means that

e as material is removed from the tip
c
Fig.5.13 of the cavity by grain boundary
diffusion the surface of the cavity
2

“137-



can only redistribute over a small distance comparable with the cavity width. The
surface curvature will be strongest at the interface with the boundary and will
progressively decrease away from the tip. “This results in the cavity being extended
along the boundary in a crack-like shape, see Fig. 5.14. In the limit that surface
diffusion is much less than grain boundary diffusion the cavity growth rate is controlled
by surface diffusion;

d&r,  &D,%Q [ a,c ]’

dC 8AKT(1-12/c2P | ¥ sin (¢/4)

(5.41)

This limit also applies for cases of
rapid cavity growth ¢ven when
surface diffusion is comparable
with grain boundary diffusion.

The other assumption is that
vacancies are freely produced on the
grain boundaries. The main
Fig.5.14 restriction to this is for the effect of
precipitates on the boundaries that
arc not cavity nuclei. A siress
concentration develops near the
precipitates as vacancies are
generated on the boundary. Cavity growth can then only proceed if the material around
the precipitates can deform to relieve the stress. ‘This constraint places an upper limit on
diffusion controlled cavity growth rate of (Beere 1980):

de _zd _ABoy
dt 822 (I-r2/c?y
(5.42)

where A is the spacing precipitates on the boundary. Cavitation becomes much easier at
higher temperaturcs when not only are diffusive processes faster but precipitates
coarscn and solubilities increasc.

The sirain associated with cavity growih is usvally small; the component in the
dircction of the applied stress at failure is given by

“13% -

= 4ac/9,
& * (5.43)

where a is the cocfficient defined for eq. (2.31).

In structures with cracks undergoing creep deformation it is commeonly
observed that the cracks extend at stresses below the critical fracture toughness. The
crack growth rate is often correlated with the stress intensity factor:

da
— aKf

@ (5.44)

where the index p is found 10 be close to that for creep (e.g. see Dimelfi and Nix 1977).
As crecp is normally expected o blunt crack tips and inhibits brite fracture, it is
thought that the crack growth is due to the growth and coalescence of grain boundary
cavities by creep near the crack tip. A rclated approach is used in the CEGB's RS
design rule for high iemperature assessment (Ainsworth 1982 and Milne and Goodall
1988). The crack growth rate is correlated against a parameter ¢ where

C* = Ou EuR .
(5.45)

R being the effective crack Jength (Miller 1987).

The gencration of helium from radiation damage has a large effect on the ereep
fupture propertics of ausienitic steels and high nickel alloys. The effect is not so
pronounced in bee metals. In the higher temperature range (>1/2 Tm) the reduction in
creep life is duc 1o the growth of cavities nucleated in helium bubbles (e.g. sce Baker et
al 1987 and Bullough and Jenkins (1987). For low temperatures there is still a strong
cffect at levels of He where bubble formation is not possible (Shaarfe and Marshall
1983). The reduction in creep rupture life and ductility for 316 steel is shown in Fig.
3.15. Grain boundary cracking is responsible for the failure and it is thought that
helium can reduce the effective surface energy of the material for fracture. The basic
cracking mechanism for cracking is probably that originally suggested by Stroh (1954),
where dislocations piling up against & grain boundary can nucleate a wedge crack. The
dislocations form a super-dislocation which cither open the crack if the fracture energy
is low enough or propagate deformation into adjacent grains, see section 1.2 (Hall 1951
and Petch 1953). The magnitude of the stress concentration on the boundary is
inversely proportional to the square root of the grain size. Large grained material is
found to be more sensitive to this type of cracking.
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5.5 Fatigue

Perhaps the mosi imponant mechanism for the growth of cracks during
operation is fatigue. Almost all industrial plant and engineering sructures have
operating cycles that result in variable loading either directly or from thermal
fluctuations. In order to nucleate fatigue cracks the material must suffer some plastic
strain on each cycle. Once nucleated this is not necessary. In a nominally defect free
Structure an empifical observation is that the number of cycles to failure is related 1o the
amplitude of the imposed strains by (Coffin 1954 and Mason 1954);

N{ = C| IA)'; .
(5.46)

where Cy and q are constants and A%, is the size of the plastic strain on each cycle.
This relationship mainly govems the nucleation stage for large plastic strains. A wide
range of materials, in non-corrosive atmospheres and relatively Jow temperatures, obey
€q. (5.54) with C~1 and g~2. However, this relationship Tepresents an upper bond 1o
the fatigue life as environmental effects (corrosion and creep) reduce the number of
cycles to failure,

Fatigue crack nucleation is known to occur at surfaces and is thought to be the
result of slip bands creating Jedges. A dislocation source operating near a surface can
lose dislocations out the material, which will produce an increment in the length of the
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ledge on each cycle. Stress concentrations at the ledge could nucleate a crack.
Reversible slip could also produce a crack when gas atoms are adsorbed on to the
surface. The adsorbed gas atoms could prevent the perfect reversal and instead produce
a region of imperfect cohesion on the slip band (Thompson, Wadsworth and Lonat
1956). More severe environmental effects remove the need for any nucleation phase,
¢.g. when there is intergranular corrosion.

Once a fatigue crack is nucleated its growth rate is found to be retated to the
variation in the crack swress intensity factor on each cycle AK; by the Paris law (Paris
and Erdogen 1963):

L. G, AK}

dN
(5.47)

where C2 and p are constants. This relationship holds for very wide ranges of stress
intensity factor, but for very small values of AK; there is a threshold below which
fatigue does not occur and there is of course an upper limit imposed by Kjc. These
limits to the Paris equation are in terms of the maximum value of K] during the cycle. It
is necessary 1o introduce another parameter R which is the ratio of the minimum to
maximum value of Kj during the cycle. An improved version of the Paris equation is
then given by (Pearson 1972):

E - C [AK! - Kl.hl (l‘R)IP
dN T [1-R- K /KR

(5.48)

where Ky is the threshold value of Kj to produce fatigue crack growth. The fatigue
crack growth behaviour is shown schematically in Fig. 5.16 for different values of R.
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e Fatigue crack growth is driven by
F ' the plastic blunting of the crack tip,
which produces crack advance on
reversal or reduction of the load.
Alternatively the crack growth can
be described by the partly
ireversible emission of dislocations
from the crack tip or from
dislocation sources near the crack
eq. (5.21) which would give &
value of pincq. (5.47) of 2. In
legav g practice p is found to occur between

Fig.5.16 25
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2 and 6. The deviation from the expected value may come from crecp or environmental
effects but there may also be some sensitivity of p to the work hardening index of the
material.  Austenitic stainless steels obey eq. (5.48) with p = 2 to a good
approximation, but an cven better correlation is found if m is used instcady
of AK,; (Sadananda and Shaninian 1979).

Fatigue crack growth is very sensitive 1o creep effects. Al temperatures where
creep occurs the fatigue crack growth rate increases with increasing temperature and
decreases with increasing frequency of cycling. For such conditions introducing a hold
on the tensile pant of the loading cycle will produce a further increase in the crack
growth with each cycle (Wareing, Tomkins and Bretherion 1983). Fatigue is generally
a ransgranular fracture phenomenon but when creep effects become important the
cracking becomes intergranular in nature. During fatigue cycling, particularly in the
plastic loading range, cavities arc casily nucleated on grain boundary inclusions. The
growth and absorption of these cavities by the growing crack is the main mechanism
for creep-fatiguc inicraction effects.

5.6 Environmental Effects

By environmenial effects we mean chemical effects produced by the
surrounding atmosphere o liquid medium in which a structure operates or those from
impuritics ransported by the fluid 10 the structure. The environments may be oxidating
from water, steam or air, or reducing from hydrogen or liquid metals. The main
contaminanis in water may lead to caustic conditions or acid conditions from various
salts. The subject is vast and complicted and here I will only give a brief indication of
the problem, dealing with general chracteristics.

Let us look first of all at corrosion, where there is litile effect on comosicn rate
from the loading, but there are large implications on the propensity 1o fail. The most
dircct effect of carrosion is the reduction of the load bearing section of the structure,
Corrosion may occur by dissolution of the structural material relatively uniformally.
This type of cotrosion is rare and most oxidative processes leave an oxide scale, which
may adhere to the structure or if it is of low density spall off. In somec cases an
adherent oxide scale may even strengthen a structure, which is the case when zircaloy
cladding wbes react with steam {Hindle, Hasie and Harrison 1987). The rate of
penctration of a structure by corrosion is a very complex and difficult subject depending
both on the naturc of the environment and the details of the chemical and
microstructural state of the material. In particular the presence of a scale and its
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integrity will determine how casily the components of the reaction can come together.
Sometimes pitting corrosion can occur under a scale where the electrochemical state of
the materisl is different. Such corrosion pits have little effect on the strength of the
structure and are not important unless they pencirate a pressurised component.

In some cases corrosion proceeds by intergranular penetration particularly when
reactive inclusions are on the grain boundaries. Oxygen or other reactive elements can
also penctrate via grain boundary diffusion and cause sensitisation of the boundary 1o
cracking by precipitating hard inclusions. Frequently one component of an alloy is
more ractive and is removed preferentially at grain boundaries. In stainless steels this
is chromium which readily reacts with oxygen, nitrogen and carbon. Intergranular
carrosion is a way in which cracks arc nucleated in siructures. Cracks can also grow
during operation of a structure in corrosive environments. In dissolution type
corrosion this can lead 1o the extension of the crack by removal of material at the crack
tip if the electrochemical environment enhances corrosion at this point, but it can also
lead to blunting the crack in other circumstances. An important crack extension
mechanism is oxide jacking where oxidative corrosion in a crack produces a bulky
carrosion product which forces the crack apant, presenting new surface for antack. This
mechanisms is also important in increasing crack growth rates during fatigue in
oxidising atmospheres.

These intragranular corrosion processes are frequently sensitive 10 an applied
stress producing the phenomenon of stress corrosion cracking. In some cases the
material has first to have & crack nucleated by some other process, ¢.g. from fatigue or
the application of a load above some critical value. Most engineering alloys are
sensitive 1o stress corrosion cracking in some environments, examples include; for
brass - smmonia and mercurous salts; for carbon steels - nitrates and other salts; and for
low alloy steels - causic environments (Cowen and Thorley 1983). In the nuclear
industry an important example of stress corrosion cracking is from the fission product
iodine which embrites the zircalloy cladding tubes of BWR and PWR fuel rods
{Garlick and Gravenor 1981). The sensitivity 1o stress corrosion cracking is often
determined by minor chemical constituents of alloys which scgregaic to the grain
boundaries, such as P and S. These elements are also important in the related problem
of hydrogen embrittlement of steels with bec structures hydrogen is highly mobile in
many metals and in hydrogren embrittlement the hydrogen is drawn to the crack tip by
its stress field, where it locally reduces the effective surface encrgy for fracture (Hirth
1980). Hydrogren embrittiement can also take place in other materials by the formation
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of brittle hydrides on the grain boundaries (Bimbaumn 1979) and this is also imporant
for zircalloy cladding tubes in water reactors (Pickman 1975).

Perhaps the most dramatic example of environmental embritdement is liquid
metal embrittlement. Certain combinations of metals with liquid metals can reduce a
normally ductile material to one where brittle cleavage fracture ¢an occor with
essentially zero strain. The classic example of this is Al and its alloys in contact with
liquivm gallium. Ferrous alloys, with both austenitic and ferritic structures, are
repotied to exhibit liquid metal embrittlement with a bewildering range of liquid metals
and mixtures including: Bi, Hg, Ga, Cd, Sn, Sb, Cu, Li, Zn and Pb but luckily not Na
(Old 1980). Zircalloy is also embrittled by cadmium. The degree of embritilement
varics with each combination and is dependent also on the metallurgical state of the
steel. Liquid metal embrittlement in its broadest sense is probably a combination of
dissolution corrosion, corrosion from dissolved oxygen or stress corrasion cracking.
There is however a sub-class of true liquid metal embrittlement which is distinct, is
characterised by failure, some critical stress and gives prompt failure with no ductility if
the critical stress is below the yield point. The embrittlement takes place over a
temperature range defined by the melting point of the liquid metal and by a britile-
ductile transition temperature, above which the yield stress of the material restores
ductility. The embrittlement is thought to be due to a reduction in the surface energy for
fracture at the crack tip.

Of concemn to the performance of nuclear fuel is the question as to whether
liquid metal embrittlement can occur in cladding tubes from contact with fission
Pproducts. The most abundant fission product in metallic form is Cs and this only
produces mild embrittlement in steels and zircatloy (Old 1980). However, mixtures of
Te and Cs with ratios 1:1 produce severe embrittiement in austenitic stainless steels and
high nickel alloys, but not in ferritic steels (Adamson et al 1986). This may explain
reduced ductility of irradiated fast reactor cladding wbes, but as Cs is produced in much
greater quantities than Te some process for concentrating Te is required.

In the related problems stress corrosion cracking, hydrogen embrittiement and
liquid metal embrittlement the susceptibility of a material is related to its hardness or
strength. Optimised engineering alloys are frequently more likely 10 show these effects
than simpler alloys and pure metals.
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