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Interatomic forces in transition metals
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ARSTRACT

This article reviews sonw recent progress in the denvartion ol physical models
lor calculatng e behaviour al defocts i ransstion wmetals by stonistic simanl-
ation B has keng heen recognised thal i is necessary to po beyond the assiemption
W panr-wase sinfenseliams, but this has only eeently been aclneved with the adsent
ol samphbed models which take account ol ahe clectron gas, For d-hissd mctads,
the vglit-binding, model s a wselud picture amd 1 can be applied al various levels of
approsmuitism, The simpl. 4 of these s the seeomsl-momsent approximataen, which
in very ripid to compute. (ther schemes. such as the embedded-atom methad, are
alss very practical far Lurge scabe simubations. These schomes wall be deseribed and
cennpared 1 terms at their phiysical basis

§1. INTRODUCTION

It s commum assumption that the wtal encrgy of o hetal consists of a0 sum ol
pair-wise mleratomic potentials and o volume-dependent lerm, Although only
roughly true Tor a parhicalar class of metals, the simple s, p bonded ones. this has been
i uselul assimption for the progress of theoretical metallurgy, particularly in the fickl
of awemistic simalation of deleets. When one looks o the justification Tor soch a
sumple nunded of The energetics of @ compheated guantum-mechanical system, it rests
on the expressions derived by the linear screening of weak pseudo-potentials in the.
siple, non-transition metids in which the bomding s ol nearly free-clectron type
(YLirrison 166}, For the purposes of atomistic simulation ol defect energies. this pair-
wise piclure cinnot be expected on theoretical grounds o predict the eaergics of
defets such as vacancies or surlaces, even in Lhase metals where lincar sereemng s
pooad Tor the perfect crystal and this Bulure s been well documented in the
hieratwre  Fhe internal inconsistency ol i term in the energy which depends on the
microseopic volume of ghe crystad has abso been widely discussed . Nevertheless, par
potentiily hivve muanntained a role i atomistic sinulation o alb metals, including
Tramsttion melals. becavse there huve been no betler Tounded ways of specifying the
cnergy s o Tunction of contiguration which an the same tme would allow practical
computations, They have also greatly extended ourinsight into the aaomic condigur-
ations and processes which can ocour e detects such as dislocations amd grinn
hosndaries, as will be discussed by others at this symposiuen
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Over the pasi filleen years or so. more sophisticated representations of the energy
have started to make un impact on atomistic simulation. Here we shall concentrate on
the tight-binding model and the effective-medium models. They otfer the possibility uf
trealing realisucally the energetics of internal cavities and surfaces, and also of
understanding chemical trends in a series of alloys. 1t should be emphasized that these
remain qualitative theories, while extending the range of qualities they can represent.
Accurate first-principles calculations are the province of density-functional theory,
which is computationally far more costly than the simpler models and untit secently
had been applied only 1o perfect crystals. With the advent of supercomputers,
progress in atomistc simulation has included the introduction of self-consistent
density-lunctional theory into the relaxation of defect structures, although so far only
vacancies and simple interface structures have been treated in Si and Ge. Thus we are
al kast seeing a meeting of the ficlds of electron theory and atomistic simulation, which
formerly had only a limited influence on one another. For example, the electron
theorist saw only the glaring inadeguacics of empirical potentials but was unable (o
deliver the tractable models required (o improve the situation. 1 is fortunate that
progress has increased the level of communication between the two camps.

It is still necessary to develop semi-empirical methods which bridge the gap
between ub initio density-functional treatments and pair-potential descriptions in
order 10 allow more realistic atomistic simulations of complex structuses, A popular
approach which goes beyond pair polentials is the second-moment approximation of
tight-binding theory. This is closely related to the empirical N-body polentials and 1o
the cffective-medium or embedded-atom model which will be discussed in deail.
Since others are describing applications of the empirical polentials, in this Paper we
shall concentrate on how they are related Lo electron theory. Besides drawing
atiention Lo the approximations and simplifications which must still be made to
obtain tractable models for large-scale atomistic simulalion, this approach will also
indicate where future developmenis can be made.

§2. FROM DENSITY-FUNCTIONAL THEORY TO ELECTRON-GAS MODELS

Density-functional theory, in ils simplest spin-degenerale Form, is here sum-
marized. This development, principally the work of Hohenberg and Kohn {1964) and
Kohn and Sham (1965}, has been of enormous importance 1o solid-state physics by
putting the single-particle picture on a sound theoretical footing. The equations also
provide & basis for deriving more approximate schemes of total energy calculation,
which is the main reason for introducing them here.

The solid is treated as a system of pusitive ions and elecirons. The ions may be the
bare nuclei, as in the firsi-principles caleulations of Moruzzi, Janak and Williams
(1978), or they may be pseudo-ions, in which the core electrons are frozen into an
effective pseudo-potential. The latter procedure greatly reduces the dimensions of the
problem, and in the case of simple 5,p bonded elements the weakness of the pseudo-
potential means that a basis of plane waves provides u useful way of solving the
Schridinger equation (Payne, Bristowe and Joanropoulos 19%6).

The total energy is variutionally minimum with respect to the electron density n(r),
and is written as a functional of it;

E=T[n])+ F[n]. H

To aveid cumbersome notation, ¢ stands for the three-dimensional position, and
integrals over r will be understood 1o be volume integrals. T is the kinetic energy of a

Interatomic forces in transition metaly 145

system of hypothetical non-interacting particles whose density is the same as that off
the actual electrons nge). 11 is commonly known as the kinctic energy of the electrons,
and it is convenient 1o refer to it as such, although it is not in fact the expeclalion
vitlue of the many-body kinetic-energy operator. The non-inleracting particles ave in
a potential V. o be specified later. Their wavefunclions are solutions of the
Schrodiager equation:

[V 4 V(. = e .. @

The charge density is constructed from the eigenfunctions

A=Y ap HrvL(r), 3

where a, denotes the occupancy of the nth cigenfunction. Hence the kinctic energy
funcuonal takes the form

Tn]=Y a.,— ,[M’) ¥ (ridr. 4)

In extended systems, the eigenvalue sum is usually expressed as the integral over the
density of states 1o the Fermi energy:

);a,,c,,= j.“ n(e)de. (5

The second part of the total energy in (1) consists of the classical electrostatic
energy E , and the correction for exchange and correlation £

i

Fln)=E.[n]+E, [n}, (6)
where

E [n]=1 | snetndr+ jn(r}V(r)df +E,, {7

where ¥ is the potential of the bare ions, E;, is their Coulomb interaction energy, and
¢ 15 the Hartree potential of the electrons,

¢{r)=J‘|‘-_—r -dr. (8)

To complete the description of the total energy, und as a4 basis for calculation, it
remains to specily the effective potential F, and the functional E,.. Vs Was shown by
Kohn and Sham (o be equal 1o

Verl#) = VIrk + 9(r) + p, (1), )
where the exchange-correlation potentiat My s the functional derivalive of the
exchange-correlation functional:

oF

“ne

ylczan(”' (]0)

So far the theory is exact, but in order 10 make calculations the local-density
approximation (LDA) is normally made, according (o which E,. is approximated by
the volume integral of its value for a unilorm electron gas (jelhium) at the local
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density, As is by now well known, Lhe resulling first-principles calculations of the
properties of pure metals and alloys such as lattice parameter, bulk modulus and
cohesive energy, are speclacularly successful, cspecially when magnetic effects are
included in the theory (see for example Moruzzi, Janak and Williams (1978) or
Williams and von Barth (1983)),

2.t Charge density. density of states and the Green function
Here we discuss some further formal results and notation which sre of use in the
subsequent discussion. We note that we have introduced the same symbaol » for
clectronic charge density n(r) and electronic density of states n{r). It is appropriate to
do so because both quantities are contractions of the same operator. To see whal is
meant by this, and to arrive at useful expressions for later reference, let us introduce
the local density of states a(r. £) such that

nie)= In(r. £)dr, ()
- I " ir.c)de, (12)

where
a(r.c) =§:¢&(r)¢..(r)6(e —£a). (13)

It is useful to think of n(r,r) as the diagonal element nir.r.c) of an operalor in
r-space, whose general elements are a(r, r'. £). The latter quantity may be written as
nir. v, e)= ! lim ImY ¢3(n) A vair) (14
T M504+ - - (E‘Fié"&u) -
in which a standard expression for the delta function has been used. Equation (14)
can be rewritten in the Dirac notalion (which is clearer for subsequent derivations)

|
n(r.r. )= - lim Imy. {rfm > {ml(s+id — H) Y {mijr' >, (15}
40 ]
where H is the Hamiltonian operator, and with this notation the Schrédinger
equation (2} takes the form
Hin) =e,ln). (16)

The operator (s —H) " is the one-clectron Green function, called G(c), and the limit
50 will be understood but not explicitly written in all subsequent eguations
involving the imaginary part of G. Noting thal the eigenfunctions {n> are an
orthonormal set

alnty =3, an

we can express (13} as

!
alr,r.g)= - . 1YY CrAm><ml Gl {nlr'. (18)
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Noling lurther that they are a complete sel, namely
E“:IH)<"|=|. {19
we can write
nir.r e)= —:t Im {rlG(e)ir'>. (20)
This completes the connection bétween the densities #(r), nic) and the operator G,

In Dirac notation, the operators H and G are diagonal in the basis of eigenfunc-
tions of H, and are weitten

H=Y in>¢,¢nl. n

G=Y Imxe~e) " '<nl. Q22)

Another useful operator is the density, of which n{r) is the diagonal element in the r
representation. The density operator may be written

n=Yy Inya,(nl, 23)
ar
A= _i Im I G(c) de. 24

These operater concepts allow the terms entering the total encrgy to be written in a
basis-independent form, convenient for manipulation. Thus an integral of the form

In{r)V(r)dr {25)
for example, becomes
J.(rln|r'>(r’|l’|r) drdr’, (26)

noting that V¥ is disgonal in the r representation. The integral over r' is analogous to
the summation in a matrix product. The integral over r then gives the trace of the
product of the » and V operators,

TraV, (27)

and in this form it is independent of the representation. Similarly
Y ae,=TrnH. 28)

In this way the total energy equation (1) can be written, by combining eqns. (4) and
{6)-(9) as
E=TralH—Trntde+u,) + E,[n] + E,. (29)

So far we have used two representations, with bascs {|n}} and {ir>}. A third,
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which is employed in the tight-binding model, uses 4 basis of localized atomic orbitals
{1, >}, where flabels the atom und « the orbital centred on that atom. In this case the
Lraces in egn. (29) become conventional malrix products.

2.2, Lecal approximarions and clectron-gas models
We have already intreduced the local approximation for exchange and correl-
ation, the LDA, which replaces the functional £ [n] by

J- Ak, Arydr, (30)

in which ¢,(r) is the exchange and correlation energy per particle of a uniform
electron gas of density m(r). The LDA currently provides the most accurale total
energy calculations for solids. 1t is an approximation which one might expect to be
valid when the electron density varies linle from a uniform value, or is slowly varying,
so its high degree of success even for diatomic molecules is surprising. We are
concerned here with what further simplifying approximations can be made.

The kinetic energy in eqn. (4) can also be castinto a form involving the integral of a
“local’ kinetic-energy density,

T[n)= Jt(r. 1]y de, 1)

where
1tr, [ =elr, [n]) — n(r}¥ 4 ir), (32)
etr, [n])= _[ * entr, ) de. @

It is understood that the kinetic-energy density #(r, [#]) and the local one-electron
energy sum er, [n]) are really non-local quamities, being functionals of the entire
eleciron density. If we approximate #r, [#]) by a local function #*""*®(n(r)) we obtain
the Thomas--Fermi model, or rather since exchange and correlation are included, the
family of Thomas-Fermi-like models, which can be improved by adding gradient
terms 1o 7.

2.3, The rigid-atom model

The postulate that the electron density in a solid is composed of a superposition of
atomic charge densities has long been a starting point for band-structure caiculations,
which may then go on 1o iterate the charge density to self-comsistency. Recently
Harris (1985) and Foulkes (1987} have made importlunt progress by formulating an
approximale expression for the Lotal energy based on this, or a similar, zeroeth-order
charge density. Let us denote the Hamillonian associated with the overlapping atomic
charge densities by H'™, in which the superseript is short for “input’. The elecirostatic
and exchange.correlation potentials are also calculated from the superimposed
zeroeth-order charges, thus

Hin= —1Vigving, (34
where

Vadn = Vir+ ¢i¢) + pittr). (35)
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We suppose that the Schrédinger equation is solved with the Hamiltonian #*, Biving
cigenvatues 13, and from the eigenstates the density 7% is constructed. By expanding
the energy (29) in powers of the deviation of the density from its self-consistent value
7, Harris (1985) and Foulkes (1987) have shown 1hat

E= Eui.-l + 02("11: - "in‘ "n._nmn)‘ (36)

where

Erm =Zu.‘::ul _J.[%nia(':)¢i-(r) +n'"(r)yl';(r)] dr+ E“[”m] + Eii- (17)

which in the notation introduced above becomes
B0 = Tr o™ ' — Ten™(§¢™ + un) + E, (0] + E,. (38)

Comparing this expression with Lhe exact one, eyn. (29), we see that the sum of the
eigenvalues, TraH, has been replaced by the sum of the cigenvalues of the Approxi-
mate Hamillonian, and in the remaining electrostatic and exchange-correlation terms
the input charge density has been used. The important point is that the correction
terms are of second arder in the error in the charge density, which is an effect of the
variational principle, As a consequence, the approximation involved in neglecting
these corrections i1s surprisingly accurate. Harris (1985) calculated the binding
energies, bond lengths and vibration frequencies of 4 number of dimers, numely Be,,
C;. N,. F, and Cu, and compared the results from eqn. (37) with self-consisient
calculations. Among all thesc quantities the worst etror was 21%, which was for the
binding energy of C,, in its double x-bonded ground state. Nevertheless, its vibration
frequency was only 6% 1o high. Tt should be pointed out that the approximate
energy (37) or (38) is not simply the density functional (1} with an upproximale
density 7™, bul includes 7™ in its kinetic energy, which means that we do not have
any guarantee from the variational principte that the approximale energy lies above
the exact energy.
If we substitute for the sum of eigenvalues in eqn. (37) using

Yat= T+ Trevye,, (39)
we can write
Erient _ E["in] +AE-iul. (40)
where
Efr"}=T[n"] + J‘[{n"‘(r}nﬁ“‘(r) + RV ()] dr + E, [A")+E,. (41)
and
AEriul = T[ﬂ“l] — T["jn] + Tl' (nnul — l’li") V:?[. (42)

The correction term of eyn. (42) can be shown Lo vanish 10 second order in the density
diflerences (" — 1y and (" — ™) as Jollows. Neglecling second-order Lerms, eqn.
(42) can be expanded in a Taylor series:

Fi .
AE'..-‘zJ'(5:+ V""") (uml _"m)dr‘ (43]
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where the functional derivative of T[n] s evalualed at n'. Now we see by comparing
with (1} and (6) {10} that the first factor in the imegrand vanishes by the variational
principle at a=n"". 50 this lactor evaluated at n" is of order a* — ', Hence AE"® s
of order (1™ — A — i) Furthermore, since the variational principle tells us
directly that

E[n]=E[#~]+ o[ —nV1, (44

we have also proved the equivalence of Ers* and E[n*] to second order. Finally, we
note that if we insert local approximations for T and E,, into E{n""], we recover the
formula for the encrgy of averlapping atomic charges proposed by Gordon and Kim
{1972), and reviewed by Clugston (1978), which has several variants, Formulae of
cssenlially this type were originally proposed for calculating interatomic forees by
Jensen (1932, 1936) and Lenz (1932) and developed by Wedepohl {(1967). The
Gordon Kim formula for a pair of atoms gives inleratomic potentials which are
especially useful for closed-shell systems, and they have been used o provide short-
range repulsive potentials for atomistic simufation. Further references arc given by
Harding and Harker (1982) who have published a set of FORTRAN codes for
implementing the scheme for any dimer, with various options for exchange-
correlation and atomic configuration.

§3. TIGHT-BINDING MODELS

Tight-binding models of the energy of solids have been extensively applied to
describe the energetics of transition metals and their alloys, and have accounted lor
(he trends across the periodic iable of cohesive energy, bulk modulus, crystal
structure and heats of alloy formation (see the reviews by Heine, Haydack, Bullett
and Kelly (1980) and Pettifor (1983)). Also sp-bonded clements {Chadi and Cohen
1975) and compouads {Majewski and Vogel 1986) and pd-bonded compounds
(Pettifor and Podloucky 1986) have been successfully treated. One does not pretend
to be able to make quantitative predictions of delicale energy differences in these
tight-binding models; the emphasis is on understanding trends. Such a Jimited goal is
worthwhile; il for example it could be generally achieved in metallusgical systems it
would be a scientific basis to guide alloy designers. With the advent of more powerful
computers the application o alomistic relaxation, essential Tor describing defecls,
started to become feasible in the 1970s. Calculations in which atomic positions are
reluxed have been made on vacancies {Allan and Lanoo 1976), distocations {Masuda
and Sato 1981, Masuda, Yamamolo and Doyama 1983, Legrand (985) and surfaces
{Trégha, Desjonguéres and Spanjaard 1983, Tréglia, Ducastelle and Spanjaard 1980,
Terakuca, Terakura and Hamada 1981, Masuda-Jindo, Hamada and Terakura [984).
The first surface relaxations with the tight-binding method were actually for the
group IV semiconduclors and GaAs (Chadi 1979a,b), using a basis of lour arbitals
per alom.

A tight-binding model Hamiltonian represents Lhe electron stales in a localized
energy-independent basis set [¢hj», in which f labels the atomic site and x the orbital
localized on thal silg. Normally for transition metals a basis of tive distinct d orbitals
is used. In fact the orbilals are never explicitly calculated, since the charge density is
never sought in real space (the r representation}, but rather Green functions and
densities of states ure expressed in the ja representation. Thus the integrals over r in §2
become summations over and «, and, analogously to the loca! density of states
nir. €}, there is 4 toal density ol states on a sile and orbital ##(¢). From (24) we obtain
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density-matrix clements

Lt . ,,l Im (FG"“"’ Sde
2 (s} de. (45)

Thei . . .
intersite elements of the density matrix are known as bond orders. The diagonal

elements of the dcnslly matrix represent the electronic char geina pal‘llcl]l;jl’ orbital
a e i
on a par ticular site. Hence the charge on ap atom 1s

F_ mia
¢=Ta (46)

Besides implificati i
comm;nﬂ:e s;‘mp-hﬁcau.on‘of an incompiete basis set, two other approximalions an
o the tight-binding models concerned with energy calvulations, namely )

{I) three-centre terms in th
e matrix elements of H between orbitals
(= lals on atoms i and

('i) the maltrix elements o i
tween different it b i
| ' : " f Hi bc . fi nt orbitals on the same site are

Assu OF Slmpllcli that the basis is 1C| 1¢H ns
It is .!llSI) often med f Y asis is orthonormal, which n
assuming a dldg(!lldl natrix of UVClIdp Illlegldl\.

3.1, The tight-binding bond model
The i i :
e T:;:lcdao;?oe:s ;)r dleflstty-malr.lx clcmcr!ls are the key quantities which enable
e Lo make b e local »and chemical description of the encrgy. Indeed the above
definitions st ply generalize Lo extended systems the ideas of bond order originall
ced by Coulson (1939) to described the chemical bond in hydrofalrll'l:oi

molecules. The sum ol th i alues in e site-or repre! w i)
. e cigenval he s hiti 1
. : b4 t site ital epresentaiion bece mes,

\;a,u,, =Y nH . {47}

iajp

The off-diagonal clements of th i
€ trace are a pi 15¢ i ‘
Sl el the ecvalent Boned ehergy ineqn. {47) are a puir-wise summaltion which we

Ege= Y n*#l, (48)

ia® g

An cquivalcm cxpr ion Tor Vi ener, S T btz TIns
pression the covalent bond j adi i i
‘ ‘ : BY I8 Cddlly obtained in terms ol

E..= Zj‘ " e — H g ) i (49)

Al - . . .
dia;::;?“l:i]fi:saussed defect energies using eqn. {49), in which the subiraction of the
was regarded as a correction f
et ‘ a5 rega ; on for the double counti
:eemuall(or(:i electron interaction. It is the normal practice in the field londl:si ?)2 ‘:ﬁ
inder of the tolal energy as a sum of pair-wise repulsive terms, thus: e e

E=E,,+F
cor t Epep- (500

The m ; i
odel goes on to assume that the elements of # arc transferable between

dilferent situations r 5, JuUst as pair po 5 Wi 5|
b ons, [0 examplc at defects, Just as pai i
ansierablc. ) S pair p Llentials were assumed to be
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Sutton, Finnis, Pettifor and Ohta {1988) have arrived a1 the expression (50} by a
different route. Lt has long been a criticism of empisical tight-binding theory that
much elforl goes into evaluating the sum of one-particle energies but that all the rest
of the 1otal energy is collected in an empirical pair-wise term, which is invariably
assumied 1o be a sum of interatomic Born Mayer repulsions. Thanks Lo the Harris
and Foulkes analysis discussed in §2 we can now understand much betier what this
approximation means. Equation (6) shows that the part of the total energy not
coumed in the one-electron sum is indeed a classical pair-wise electrostatic interaction
apari from the exchange and correlation terms. These can only be approximately
pair-wise, lor example as obtamed by neglecting three-body lerms in an expansion of
the loval exchange lunction p*'*, where p is the superimposed atomic charge density,
and it is hoped that the error is sufliciently small. There arises a problem because this
identification of the pair-wise repulsive lerm as complementary to L, a., does nol
appeur 1o require the subtraction of the diagonal terms from (47). These diagonal
terms include the crystal-field effects on the polential at a given atomic site, and il is
very convenient to regard them also as included in the pair-wise term in order o write
the energy in the form (50) rather than writing, as some authors have done,

E=Larat e (51)
n

By losing the diagonal clements of H in this way we seem to be departing from the
Harris model (38). However, we are probubly doing less violenue to the physical
principles by subsuming the crystal-field terms in a pair-wise potenliat than we would
be by simply ignoring their site-to-site variation in an imperfect crystal. Furthermore,
we dre led 10 a very simple form for the interatomic forces. To compiete the
specification of the model (50), which is what we have called the tight-binding bond
(THBB) model, we add the condition that the atoms should be neutral in all
environments, so that the ¢ of eqn. (46} do not vary with the atomic contiguration.
This imposes a degree of self-consistency on the model, which in practice s achieved
by varying the diagonal etements of H iteratively until the g' converge Lo their initial
constant values (Ohta, Finnis, Sutton and Peutifor 1987, Paxton 1987).

In the two-centre approximation the overlap integrals H,,, are a function only of
the vector R,; between atoms i and /. Slater and Koster (1954) discussed and tabulated
the teansformation rules for #,,,, under arbitrary rolations according Lo the s,p or
d symmetry of the orbitals a und §. For applications it is also necessary 1o know the
radial dependence of the vverlap integrals. In the tight-binding calculations referred
to. H and its radial dependence are fitted to band-structure calculations or are
obtained from canonical band theory (Andersen 1973). To illustrate these ideas we
will describe some covalent bond cnergy calculations using the canonical d-band
Hamiltonian (Peitifor 1977) which is adequate o explain the trends in crystal
structure across the transition-metal series, namely hep. bee hep. Tee,
although it incorrectly predicts b.c.c, as the stuble structure near the end of the series.
With the 2 axis along the bond the matrix ¢lements of the Hamiltonian H take the
simple form (Slater and Koster 1954)

H,,=Hyy=ddd,
Hyy=Hyy=ddn,
Hy=dda,

Hoy=0. a#f

(52)
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ich h owin
The suffixes label atomic 4 orbitals la): a=1,2,3.45 which have the following
symmetry:
QOrbital Symmetry
1 Xy
2 yz
k] X
4 -y
1
. (323 1),
) 2J3(

The overlap parameters vary as the inverse fifth power of the interatomic distance

according Lo
PAYE AN
dda= —6W(5 &)
AYEAY
dd‘5= -1 5 R 1

where § is Lthe Wigner Seitz radius, and W is the nominal bandv.vi_dlh'. \!'hlghl:cn::e r:;
the unit of energy. We assume that the range of the overlaps 18 llm_m: carest
neighbours in the fc.c. and h.c.p. struclures and 10 secc:nd—qcar;sl Eelg:-li}:::::; :}thc
i e recovered a truly pair-wisc Gesc
b.c.c. structure. We have not, of course, ' [ e e e TB.
: ders depend on the local atomic co g -The TBI
. e gy, i ie-wi Iy electrostatic in origio,
i a8 ¢ | paic-wise Lerm, mostly & i

¢l picture of the energy as a classical pate-w! ostly electrosts
E‘:: a 5uantum-mcchanical bonding term 15 still a great simplification, albeit a more
physical one {han the pair-wise force mode!.

3.2. Inferatomic forces in the TBB model ;
For details of the derivation of the expression for_ forces and othe; &;Bldll:l orl' !tl":
TBR model we refer the reader to Sutton, Finnis, Pelllf()l“ apd Ohta (1 _8 ),rw i,:mo.
generul case of pon-orthogonal orbitals is treated. A similar expression for

normal orbitals has been derived by several authors {Moraitis and Gautier 1979,

Chadi 1984, Sankey and Allen 1986, Poliman, Kalla, Kruger, Mazur and Wolfgarten

1986), and otiginally by Coulson (1939). We simply state the result here for the force
on an atom k:
BE = Z bl i

M | Oy (54)
dx,  je 0

0x,

o s ) e the

The attraction of this tormula for atomistic simulation is thal u_does m;)l req;:‘re :he

derivatives of the density matrix, which are not readily available, u; O.h{s e

derivatives of H, which are easy 10 calculate within the qucl. The reasu_r:hc::s Jes

in the variational principle, which tells us that l!‘le cnergy is sl‘a_uundrry rm e ;::carge
variations in the charge density, together with the condition of atem

eutrality. . o

n Iis ilsu altractive thiat eqn. {54} cxpresscs_thc force on a.ndaFom :;:;u:\urk

interalomic or bond forees. The altecnative which ha; been usc Ia:_[;;_:rcmialion *

F ically by numerical ¢i
valuate the force on an atom aumencatly cal el !
:;lzulko‘l:f ;::rgy This procedure requires the evaluation of densities of states on all
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atoms affected by the alom under consideration, which is normally more than the
nearest neighbours involved in the explicit lorce formula {54).

To illustrate the concepl, we return 1o the simple d-band model, in which the
covalent bond energy (47} is a sum of individual covalent bond energies of Lhe form

EY =2dda(n'* ) 4 2ddn(n'*? + n'33) + 2dd(n' " + '4), (55)
From eqn. (54), the radial force associated with this bond is
Fi = - (5/R ) 2ddo(n'*1%) + 2ddn(n'?2 4+ n¥2) 4 ddd(n' )} + 044, (56)

This force is in the sense of shortening the bond distance, in other words it is an
attractive force. In general there would also be a transverse component of the
interatomic force, due 10 the angular derivatives of H, but this vanishes by symmetry
in the perfect lattice.

3.3, Calrulations

We turn now 1o consider some general aspects of methods used for implementing
the tight-binding models discussed above, without going into the details of numerical
and programming techniques which form a large field in their own right. There are
many technical dilTerences between methods, but they all broadly falt into k-space or
real-space classes. In k-space the calcutations have to be done on a periodic system,
which can nevertheless contain over 100 atoms, whilst in real space the recursion
method is favoured. The essential feature of real-space methods is that the calculation
of the local density of states, or more generally the Green-function matrix elements,
only includes the effect of the immediate environment of the atom or bond. For
systems involving a large number N of atoms, the matrix inversion, which is the
expensive part of a k-space calculation, will require ~N* operations, whereas the
time for the equivalent recursion-method calculation will be propoertional to N,
However we do not presently know at what value of N the real-space approach
becomes cheaper, With the recursion method, Green-Function matrix elements can be
obtained in the form of continued lractions, as described for example by Haydock,
Heine and Kelly (1972). 1t can be shown that if # shells of neighbours are included,
then the first 21+ 2 moments, gy ... fiy, , ,, of the density of stales can be obtained
exactly. Precisely how the density of states is then approximated is related to the
problem of terminating the moment expansion (Cyrot Lackmann 1968} or the
continued fraction representation of a Green-function matrix element or resolvanl,
and has been investigated in detail by many authors (see for example the articles and
references in Pewtifor and Weaire (1985)). Although the moments are not normally
explicitly calculated, it is helpful to realise that y, is simply a sum of products of n
Hamiltonian matrix elements, the sum being over all paths of length # which start at
the given orbital and hop 1o other orbitals before finally returning, with a matrix
element multiplied in for each step. Thus lor example. if [0) is the orbital whose local
density of states we wanl, then its sccond moment would be

2=, COH i) CialH10). ‘ (51

The summation extends only to the range of H. which normailly means the nearest
neighbours in l'c.c. or the first- and second-nearest neighbours in b.c.c.

Figure | shows calculated covalent bond energies in an ideal h.c.p. lattice with the
above canonical d-bond model, using the recursion method on a clusier of fifteen
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The ddo. dda and ddd contributions 1o the bond encrgies, in arbitrary units, for a hc.p. erystal

of ideal axial ratio, using the canonical d-band purameters given in §3. Labels 1 and 2
denote neighbours in and out of the basal planc respectively.

shells about the bond, which is large enough to ensute that the sm.all ::.ngrgy
dilferences between the bonds are reasonably wcll_represcntcd. 'These c.alc_u al[?:s
used the method of Beer and Pettifor (1985) Lo terminate _lhe continued fracnc';; e
size of the cluster is a major consideration in implementations of the mel_hoc,i, ¢ l‘apsc
a balance must be struck between accuracy and compuler time, and this f:ak.u dll(;l:l
which effectively includes u,q is much bigger thun one W(_wuld contemplate a5 p'arl ol d{
full-scale atomistic relaxation. The covalenl_ bond energies are bqucn d(v\;; a:,:or‘
ing to the @, 7 or & symmetry of the orbitals, just as the theee lerms in eqn] ( . ). ::32
that the two kinds of nearest neighbours, those in and out o_f the pdsa plane, rave
slightly different bond encrgies, since they have different atomic enwronment's, \.H‘ T;r
would not of course be seen by pair potentials. Furthermore, if we look in 'parl]u.ul !
at the band filling corresponding to the real hel}a‘lgonal metals Ti and Zr: narlr:c )", o
electrons. the out-of-plane 7 hond has a significantly ‘f’Wff energy lh(m_ .l c :\a
plane 1 bond. This would explain why the ohser\fed c/a ratio ol these melalsnss less U _d:
the ideal value assumed in the calculation, Looking at lhe hond force, eqn. { ﬁ)‘. we \T
that the calculated electronic contribution c_nflhe # bond is such as tqpull more strongly
on the out-of-planc ncighbours, thus lending to reduce the ¢/a ralio. - fan
The h.c.p. case raises another point of interest. If only one slhell of nclg_ ours o ld
atom is considercd, h.c.p. and f.c.c. structures are very mm,lar. each having :v:rle ve
equivalent nearest-neighbour honds. Thus the second and third moments, y, and 4 li
of the local densities of states are identical. In both_ fcc and h.c.p.rsl'ruciuAres 'l :.
second shell consists of six eguidisiant neighbo_urs. lying at 1I?e same d|stdncle in eac| i
structure although disposed differenily according to the cubic or hexagona dsg‘rmmeCI
try. A purely pair-wise potential model would therelore have 10 extend t:;);n sccbg:d
neighbours to sec any difference in energy between lh_c structures, Thg i crf:tll‘l nd
angles between the neighbours are only reflected in Ha which distinguishes e
structural energies with the first and second shell of neighbours. Hogvcvc—r. to ge A
converged structural energy difference between hcp. and fcc it has prove
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beg. Few, and hep. e bond energy diflerences, with the canonical d-band model using
only six momenmts (up to p,} of the Green functions (lefi-hand graph) compared 1o the
more exact Gaussian quadrature (rom lifteen recursion levels (up 10 jigy; right-hand
graph). After Glanville ef ul. (1988, 10 be published). The maximum-catropy method was
notL competitive with Gaussian quadrature for more than six moments.

necessary 1o include at Jeast u, of the local density of slates (Legrand 1985). The effect
of the numbes of exact moments on the caleulation of structural energy differences
has recently been studied by Glanville, Paxton and Finnis (1988), who also compared
various methads ol recovering the structural energy from the limited number of
maoments or recursion levels of the bonding and antibonding densities of stales. The
methods studied included the square-root terminator of Beer and Pettifor (1985), the
maximum-eatropy method recently used in this context by Brown and Carlsson (1985)
and the Gaussian quadrature method of Nex (1978), which appears 1o be the best
method for proceeding if more than four levels of recursion can be done (4, or more;
see fig. 2).

A purely bond-breaking model predicts that the vacancy formation and cohesive
energies are tae same (apart from the relatively small effect of relaxation), which
among the elements is only the case (approximately) in the rare gases. Relaxation of
Lthe electromic charge is essential 10 an explanaton of why observed vacancy
formalion energies in metals are much less than the cohesive energy; typically the
vacancy formation energy is aboul one-third of the cohesive energy. Tight-binding
calculations of covalent bond energy show explicitly how bond energies and inter-
alomic forces are modified at defects. For example around a vacancy, there is
considerable strengthening of the bonds compared to their bulk values {Ohta, Finnis,
Pettifor and Suatton (1987); see fig. 3). This vacancy-induced bond energy strengthen-
ing is readily understood al the level of ;. For the clectron energies obtained by
integraling ce) 1o the Fermi leved, g, will scale in any model of the density of states
roughly as \fu,. and us we see from eqn. (57), u, is proportional 10 the atomic
coordination z. Thus the energy per bond scaies as 1/\/2, and this is sirengthened by
reducing z, as around a vacancy. The converse effect as z goes to 2+ | has been
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Fig. 3

The vacancy-induced changes io the bond strengths in Mo. All the boods become stronger, 1o
an extent which is indicated by the thickness of the lines drawn between the aloms. The
bonds nol indicated by lines are littde alfecied by the vacancy. The pair of arrows — - «—
stands (ot the interatomic force becoming more atiraclive of less repulsive, and the pair
of arrows -+ stands for the interatomic force becoming less atiraclive or more
repulsive.

suggested as 4 mechanism of the weakening of melal-metal bonds by hydrogen
(Sayers 1984).

§4. N-BODY POTENTIALS
Motivated by the separation of a cohesive, electronic energy and a pair-wise

repulsive cnergy which appears in tight-binding models. Finnis and Sinclair (1984)
took an empirical approach to describing the total energy, by writing

E=Tf(0)+ Eny (58
(In the original paper a factor A was included before £.) By analogy wilh the second-
moment approximation, p; was understood as a measure of the coordination of alom

i, a generalization of the discrete quantity z. Likewise f was taken to be the square-
root function. The coordination or local density of aloms was writlen

m=;w&m (59)

where the funclion ¢ was assumed pair-wise, and E,,, took the pair-wise form

Er:p = i % V('RU)' (60)

From then on the approach was entirely empirical. Simple shoril-ranged (unctional
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torms were assumed Yor ¢ and V and hitted Lo cohesive energy. lattice parameter,
vlastic constants, and roughly to the vacancy formation energy, for the b.c.c. elements
V. Cr, Fe, Nb, Mo, Ta and W. The cores of the potentials were subscquently
caleutated from an eleciron-gas model, which ensured stability of the models under
high pressure (Ackland and Thetford 1987). Similar modifications have been pro-
posed by Rebonalo, Welch, Hatcher and Bilello (1987). .

Empirical pair patentials alone could never predict the elastic c-onslantslcorreclly
together with the abserved atomic volumne because in a purely pair-potential model
the Cauchy relation holds, which in cubic crystals is

Cyz ~Cae=0. {61)

However, in most real metals the Cauchy relation is violated. A common approach |:s
to add a term in the energy which is a function of the tota! volume of the crystal. Th!s
only has any justification for simple {(non-transition) metals. The N-body potential is
an important improvement over such empirical pair polentials in that the (‘guchy
discrepancy C,; - Cyq is described without recourse to any such volume term in the
energy. Such a volume term presented problems when surfaces or cavities were
considered, since Lhe surface energics could not be well described. Furthermore a term
in the energy depending on the total volume leads to inconsistencies between the
jongitudinal clastic constants or bulk modulus as calculated by the method of long
waves (constant total volume) and as calculated by imposing a homogeneous
deformation.

IT the function f{p) is expanded about some average or perfect-lattice value of p,
which we catl p¥, then the lincar term gives a pair potential which we could add o the
pair polential in E,., to oblain an effective pair potential

Ve = VIR + 20 (p"}p(R). (62
Terms if £ “(p"} and higher-order derivatives contribute 1o many-body forces. It is
instructive 1o write the elastic constants for the b.c.c. crystals in werms of this effective
pait contribution and the second-derivative terms. The independent clastic constant
may be expressed as the two shear constants and the Cauchy discrepancy (or Cauchy
pressure) thus:

0C,, =8V, (ROR, +$V.(RORT+ V(R )R, (60
QU — €y ) =3V (ROR + ¥ (RDRY, (64)
N, - (144)“f”(ﬂn)[g¢'( R R, + 2¢'(R21R2J2~ . {65)

where € is the atomic volume and R, and R, are the first and second neighbour
distances. The expressions [or the two shear constants could be derived as in the old
pair-potential models, as if the pair potential ¥, completely described the constant-
volume distortions. On the other hand, the Cauchy discrepancy is directly propor-
tional to £7(p"). which is a measure of the many-body nature of the lorces. The
experimental sign of the Cauchy pressure is positive, which is consistent with the
concave behavicur ol the negative square-root lunction assumed for f.

We do not expect this short ranged N-body modet 10 give particularly good
dispersive properties, such as phonon frequencies, for which longer-range forces play
an obvious role. For example, particularly in the phonon-dispersion curves in Nb,
there are anomalies that are ascribed 1o interatomic force constants at sixth and
further neighbours. A simple tight-binding model can account for these {(Varma and
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Weber 1974, Finnis, Kear and Pettifor 1984), and il is certainly necessary to include
more than u;. The phonon-dispersion curves with the N-body polentials thercfore
leave something 10 be desired in b.c.c. metals, as the calculations of Rebonato and
Broughton (1987) show, The N-body patentials should rather be applied to simu-
lations in which cohesive properties or sutface energies are important, for example in
radiation damage involving voids and bubbles or in crack simulations. Although the
detailed surface reconstructions seen on the b.c.c. transition metals are not predicted
by these models, as they have been with tight-binding, the general fealure of an
inward surlace layer relaxation is (Ackland and Finnis 1986).

A major advantage of the N-body petentials for atomistic simulation is that they
do not give rise to significantly longer computation times than classical pair
potentials, whereas the more sophisticated tight-hinding models give rise to times
longer by a factor of onc-thousand at least. In many studies, for example on the
possible behaviour of grain boundaries and dislocation cores, insights could be gained
by using simple pair potentials, bl the N-body potentials and the closely related
embedded atom models now offer a somewhat more satisfactory description of the
¢lastic properties, and a further test of the sensitivity of possible contigurations to the
interatomic force laws. Further applications are described in detail by Matthai and
Bacon (1985), Maysenhoelder (1986) and Harder and Bacon (1987). Similar potent-
ials have been developed for the noble metals and Ni by Ackland, Tichy, Vitek and
Finnis {1987). and for Au hy Frcolessi, Tosatti and Parrinello {1986).

§5. EFFECTIVE-MEDIUM MODELS

An expression identical in form to eqn. (58} is the basis of the effective-medium
method, a form of which is also referred to as the embedded-atom model, which was
first applied to a metallic system in a simulation study of hydrogen embritdement of
Ni by Daw and Baskes (1983). The model has subsequently been applied in numerous
studies, for example of surface (Daw and Baskes 1984, Daw 1986, Jucobsen and
Nerskov 1987), phonon spectra (Daw and Hatcher 19§5), liquid metals (Foiles
1985a), dislocations (Daw, Baskes, Bisson and Wolfer 1985), properties of alloys
{Foiles 1985b, Foiles, Baskes and Daw 1986, Foiles and Daw 1987) and their grain
boundarics (Baskes, Foiles and Daw 1987). In the EAM the empirical fitting is done
with a somewhat different philosophy to that of the Finnis- Sinclair potentials, as we
now describe.

In the embedded-atom model one regards p, as Lhe electronic charge density at
atomic site { due to a superposition of atomic charge densitics from the other atoms.
These atomic charge densities are the free-atom densities as calculated from
Hartree -Fock theory by Clementi and Roetti (1974). Fitting to experimental dala and
Lo an empirical pressure-volume curve of the kind suggested by Rose, Smith, Guinea
and Ferrante (1984) are carried out in the most recent vetsions of the method, thereby
delermining the functions f and V. The function f(p) is then described as the
‘embedding function’, and thought of as the energy change on introducing an atom
into an electron gas of density p. The original concept of embedding was developed by
Scott and Zaremba (1980) and independently by Narskov and Lang (1980) and
Narskov (1982) with an eleciron-gas effeclive medium to describe the energelics of
light impurities before being adopted in the way outlined above for the melal metal
interaction. A thorough discussion of the link between the effective-medium or
cmbedded-atom picture and density-functional theory has recently been given by
Jacobsen, Narskov and Puska (1987} which enables une to appreciate the limitations
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sophisticated TBB model. In these cases the (ited pair potential corresponds more 1o
the density dependence of the E_, term. Of course, in an empirical filling procedure
we can only take this physical picture as a guide 1o the functional forms used, since
these terms and the corrections referred to will be absorbed in the fitting in & non-
unigue way. On the other hand in a simple 5,p-bonded metat such as Al or Na, we
know that the changes in the one-electron energies at constant volume are described
by a pair potential, so the non-pairwise embedding function f (p) would be describing
E, ;. as originally intended. The nobie metals fall somewhere in between, their
cohesion depending on the lowering of energy levels due 10 5 d hybnidization
(Christensen and Heine 1985), and the pair-wise stalus of this one-electron part is
doubtful. On the other hand, we expect & strong pair-wise repulsion between the filled
d shells in the noble metals. One hopes that the fitted £ (p) terms represent the many-

body nature of the one-electron energy changes besides simply representing an
embedding funciion E.;

§ 6. CONCLUSIONS

The empirical approaches 1o modelling interatomic forces in transition metals, in
particular the tight-binding model, can now he partially justified ab initio. We have
reviewed some recent progress in this direction in order 10 provide 4 framewark for
appreciating the status of these models. The starting point is the density-functiona)
theory with the local-density approximation to exchange and correlation. A key slep,
due to Harris {1985) is to wrile the charge density as a superposition of alomic, or
atom-like, charge densities, and to invoke the vuriational principle to show that an

encrgy functional of this trial density will be a reasonable approximation to the exact
density. In the Harris scheme, described in §2, the energy functional derived is
actually a mixture of electrostaiic, exchange and correlation e
superimpuosed alom charge densities together with the one-eleciron energies obtyined
from the Kohn -Sham equations. Besides justifying the pair-wise repulsive potential
used in light-binding, this picture enabies one to understand the suecess of electron-
gas models.

For the computation of minimum-energy configurations of complicated defects,
even the simple tight-binding method is more than one-thousand times more
demanding computationally than merely using pair-wise potentials. The second.-
moment approximation in the tight-binding method leads to a functional form which
has been used in an empirical fitting scheme 10 yicld an N-body potential. This is
formally the same as the effective-medium or embedded-alom model in that 1 pair
potential is supplemented by a cohesive term Z.f () which is a function of the radial
distribution of neighbours (bul not their angular distribution), and these schemes ure
as rapid to compulte with as are pair polentials.

The relation of the effective-medium or embedded-alom model 10 the congepl of
embedding in atom in jellium has been described. following Jacobsen e af. (1987). In
the density-functional theory, the Jellium embedding eaergy can be separatcly
identified. However, the empirical f{p) cannot simply be thought of as the jellium
embedding energy, and indeed in the d-band metals it is in the lunction f(p) that the
one-electron energies are represented,

While they may be based on various physical pictures, the different £ (p) schemes
have one shortcoming in common, which arises from their neglect of the dependence
of the encrgy on the relative bond angles. This precludes their giving 4 physical
description of the structural energy differences in the transition metals, where we have

nergies of the
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seen for example that six moments of the density of states are reguired to account lor
the relative fec. hep. stability, whereas an f{p} scheme is only modelling ;.
Structural stabily is an important property of the potentials which should be
established in the filting procedure, bul il must be recognised that the resulting third-
neighbour lorces required Lo achieve this in f.c.c. and h.c.p. will be unphysical. The
higher moments depenc on paths extending beyond second neighbours, not only on
the neighbour distances. Nevertheless, these are likely to remain the besi available
energy functions for arge-scale atomistic simulation of transition metals until more
elaborate tight-binding schemes become computationally cheaper.
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