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- Self Organization in
.G. Ananthakr_is,hna. PhySEcal SYStemS

Quite often the word organization
gives an impression of ordering (at teast
in the physical sciences), What then is
self organization ? To answer this we
will start with the familiar example in
thermodynamics namely the formation
of water from water vapour and ice
from water, This transformation of pha-
=e from one to another occurs when
the temperature of the vessel containin
the material (the sub system} is lowered.:
The temperature of the system is chan-
ged by keeping it in contact with a
reservoir whose temperature can be

_manipuiated at will, At elevated tempe-

ratures the gas molecules move freely.

When the temperature is reduced bel-
ow a certain temperature, the molecules
are within a certain distance from each
other. Motion of any molecule strongly
affects the motion of the molecules in
the neighbourhood. in other words,
the motton of the molecules is corre-
jated. In the solid phase, (below the
freezing temperature) the molecules are
arranged in a particular order. The ga-
seous phase in which the molecules
are free to move anywhere in the vessel,
is the most disordered phase of the
three. In the solid phase, the molecules
are '‘mc:e or less constrained to move
betwei .. deep potential barriers twhich

are seperated by distances of the order .

10~%m.) for which the locations are
positionaily ordered. Thus solid is the
most ordered phase. The degree of
_freedom of movement is, loosely spea-
king, a measure of disorder. In the
technical tanguage of thermodynamics,
one assigns a quantity called entropy
25 a measure of disorder defined by §
= Kg Inp, where Ky is the Boltzmann's
" constant, and p is the number of allow-
ed cenfigurations.

We consider now the transition from

a ferromagnetic phase {with non-zero
magnetisation) to a paramagnetic phase
(with zero magnetisation) as the tempe-
rature s increased. At low temperatu-
res, the elementary constituent magnets
(spins) are aligned in one direction
(with a high degree of correlations)’
resulting in a finite magnetic moment,
whereas at high temperatures they are
_ oriented randomly giving rise to zero
magnetic moment. At high temperatu-
res the spins behave independently of
each other {or are uncorrelated). Exactly
how the high degree of correlation arises
(in the ordered staté) between the eie-
mentary constituents (molecules, spins
etc.) giving rise to the bulk properties.
characterising the low temperature pha-
se of the system, is the subject of

phase transition in the realm of equilib-"

rium statistical ‘mechanics. There are
many examples of such phase transi-
tions, wherein the low temperature pha-.
"se has a non-zero value of a butk
property (magnetization for example}
whereas the same property_is zero in

the high temperature phase> We shall -

call this bulk property the order parame-
ter of the phase. _

For systems in gquilibrium , the respon-
‘se of the system to an applied force is
linear. To understand this consider a

1V

Fig. 1 Free energy as a function of the
order parameter for T > Tc, T ~
Tcand T < Te.

potential as shown in figure 1. (The

curve marked a.} If a ball is displaced
from its equilibrium position X = 0 by
a small force, the displacement will be,
linear (F & x) and the ball will oscillate
periodically in the absence of friction
about % -= 0. In thermodynamics the
role of the potential is taken by free
energy which in the high temperature
phase has a single minimum at the origin
of the arder parameter (corresponding
to zero magnetization, for example).
This minimum represents a stable con-
figuration. Any disturbance or fluctua-
tion remains bounded. Consider the
potential with the flat bottom (curve
b) in figure 1. In this case," it .should
be clear that even a very .small force
can ‘cause a very large displacement.
So the response of the system is more.’
If we release a ball at x # 0 the ball
will fall slower in case b than.in case
a. For the magnetic case near a tempe-
rature called the Curte temperature T,

the free energy becomes flat and hence
the response of the. system becomes
large and fluctuations decay slowly. This
property‘is called critical slowing. (Com-
pare the above mechanical analogy.)
Magnetic’ susceptibility which is a
measure of the response of the system,
becomes very large as T —T (case b
in figure 1). The last case (curve ¢} ix
the double well potential. The state
when x = 0 is no longer stable, A
ball placed at X = 0, with even the
slightest disturbance will end up in one
of the potential minima. This cune

- represents the free energy for T=T.

where the magnetization can assume
two equivalent values. Written in the
Landau form, the free energy F can be
expanded as

Falag+a (T~ ToM+ aM* (1)

where a,, a; and a; are constants and

. M is the magnetization. The phase chan-

ge basically occurs duetoa competition
Detween the internal energy U, and

“the entropy term in the free energy F

= U — TS. Since the temperature of
the system decides whether the system
is in an ordered phase or in a disordered
phase, ail the ordered struciures of
phases are equilibrium structures,

Thermodynamics tells us that for any
closed system, entropy increases reac-
hing a maximum corresponding to the .
equilibrium configuration. For example,
consider a vessel with a wall in between,

“and have some gas in one part of the

vessel in equilibrium. If we remove the
wall, the gas tends to occupy the whole
volume for which the entropy will be
larger than for the initial canfiguration.
It never happens that al! the gas molecu-
les get concentrated back into one part
of the vessel. The point to note here
is that this irreversible change is due
1o the large number of molecules pre-
sent as can be seen by the following
argument. in contrast to the above case
if we have only, say, three molecules,
it is quite conceivable that at some

fater instant all the three molecules

couid be back in one part of the vessel.
Thus a property of mechanics ,namely
time reversal invariance breaks down
when the number of degrees of free-
dom is large.

In the above example a constraint
(wal!) was removed and the order dec-
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reased. The reverse guestion is, can
the entropy decrease if we constrain
the system appropriately ? The answer.

is- yes, but the system will not be in

equilibrium. For example, if we consi-
der a mixture of two pgases under a
thermal gradient, we find that one of
the gases concentrates at the haotier
end and the other gas concentrates at
the cooler end. The entropy of this

Lshomogeneous mixture will be less than

the homogeneous mixture. Yet there

- is-no ordering of this kind in the eq-

uilibrium structures that we discussed
eartier. Neither is there any new mac-
roscopic order in Terms of easily recog-

- nisable spatial patterns, which are pos-

sible as we will see later if the situation
is far from equiiibrium,

There are many situationsin‘daily life
in which an ordered situation can arise
if we supply the appropriate amount
of energy from outside. For example,
regular impulses to compensate for fric-

tion in a pendulum or energy supplied

to.an engine at regular intervals will
sustain their motion. f the energy is
supplied at random, the motion can:
not be sustained. Even in the case
where periodic impulses are supplied
the ordering is due to ‘action from
outside’. Now the question is whether
there can be ordering due to natural
constraints within the system ? This is
possible provided we take what is called
outside influence as part of the system
so that we have to have a knowledge
of how this outside influence evolved.
Equivalently, we have to consider the
influence of the subsystem on the re-
servoir properties also. (This should be

- contrasted with systems in thermod-
" ynamic equilibrium where the tempe-

rature of the system could be altered
by keeping it in contact with a heat

bath of infinite thermat capacity.) Obv- -

iously, if this has to -happen, the
subsystem will have to be moved so
far away from thermai equilibrium that
it starts reacting back on the properties
of the reservoir, which in turn can
apprapriately change the magnitude of
influence .caused by the reservoir on
the subsystem. In other words, there
should be a feedback of information
which acts as an autoregulatory mecha-
nism. Under favourable conditions this

can give rise to a new kind of spatial

and temporal order. The initial disorder-

ed state is homogeneous in space and

time, | P
Under the action of drive parameters

such as matter, energy, fields etc., the
system moves away from equilibrium.

Beyond a critical value of the drive

parameters, the system goes into a
spatially ordered state or may become
periodic in time. The resulting ordered
state has an entropy less than the jnitial
disordered homogeneous state/ These

Fig. 2 Rayleigh Benard instability as seen from above.

transitions do bear similarities to. the
equilibrium phase transitions. However,
-there are two essentiat differences. The
first is that these systems are intrinsically
nonlinear and the other is that they

- are not time reversal invarient in cont-

rast to systems in equilibrium. The for-
mation of the new ordered state under

_ the influence of a drive parameter is

referred, to as self organization, llya
Prigogine' and his school refer to this
new type of order as a Dissipative
Structure, The study of this fascinating
subject has been called as synergetics
by Herman Haken? . Another point to
note is that the ordered state is in
dynamical balance. The moment the
action of the drive parameter is withd-
rawn, the spstem reverts back to the
equilibrium disordered state. Examples
" of self organized systems can be found
in disciplines as varied as physics and
biology. Below are some examples
drawn from different disciplines. In
each case an attempt is made to bring
out the drive parameter, the initial di-
sordered state and the final ordered
state. '
i} Rayleigh-Benard Instability
This instability refers to heat transport
changing from a conduction mode to

a convective mode when a liquid kept -

in a dish is heated. Consider a liquid
heated from below. Assume that the

. .upper layer is held at a constant tem-

perature T, which is less than T, of the
bottom layer (T; — T, = AT). For small
. AT, although the liquid at the bottom
jayer has a tendency to move up, the

- convective motion is prevented by the

viscocity of the liquid. Heat is transpo-

* rted by conduction. However, for large

AT, the input heat energy cannot be
conducted away. In this case the heated
parts expand and move up due to
buoyancy, cooling as they rise up, the-
reby falling back. This gives rise to a
surprisingly regular spatial pattern. All
this happens beyond a critical value of
'AT. The original conduction mode be-
comes unstable giving way to 4 stable
convectivé motion. For a circular geo-

‘metry, viewed from the top, the cells

arrange themselves in a honeycomb
structure (see figure 2). The drive par-
améter in this case is in dynamic state
and emerges out of a campletely disor-

‘dered homogeneous state. If we try to

calculate the probabitity of occurrence

- of such a coherent conversion pattern

involving about 102 molecular via P
—~exp S/kg it would be almost zero.
Thus the convective pattern is essen-

~tially a far from equilibrium situation.

Taylor instability is another example

drawn from hydrodynamics. Here the

fluid is enclosed between two coaxial
cylinders with the outer cylinder fixed
and the inner cylinder rofating at a

_constant angular velocity. For low angu-

lar velocities, high angular momentum
of the inner layers is transported out-
wards resulting in a streamliné flow
spiraling outwards. Beyond a threshold
vatue of the angular velocity this state
becomes unstable and macroscopic vo-
rtices appear.

ii) BelousovsZhabotinski Oscillating Che-
mical Reaction '3

" Normally when we mix chemicals that
can react to form new products, the
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Fig. 3 Spirals of chemical adiw’ry in Belousov-Zhabotinski reactions
. {after A.T.Winfree). .

concentration of various chemicals fol-
lows monotonic behaviour as a function

of time. This need not always be the

case. As the above name suggests, in
the B-Z reaction the concentration of
the chemicals oscillates in time. Belou-
sov, who .first discovered it around
1950, failed (except for a brief comm-
unication) to ‘get the work past the
referees and editors of two journals®,

since his results did not fit"into the -

then existing theories. To begin with
consider the following ‘recipe of oscil-
lating chemical reaction borrowed from
Winfree’. Add 2 ml of concentrated
H,50, and 5 g of sodium bromate 10
67 ml of water. Transfer 6 m! of this
to a petri dish to which add 1 ml of
malonic acid solution (1 g per 10 ml).
To this add 0.5 ml of sedium bromide

solution {1 g in 10 mh and wait for

the bromine colour to vanish. #dd 1
mi of 25 mM phenanthraline terrous
sulphate and a drop of triton X-100
surfactant solution (1 g in 1000 mi) to
facilitate spreading. Mix well and pour
the solution into a covered perti dish
illuminated from below. The solution
turns blue then reverts: to red. This

. happens periodicaily. A variety of spatial . ‘
patterns are possible {Figure 3).

The oscillatory nature of the chemical

reaction can be understood by descri-

bing reactions among tromide, brom-
ate, malonic acid and iron phenanthrol-
‘ine {which serves as a catalyst as well
as an indicator dye). Two set of reac-

-~ tions are involved {indicated in. figure ..

4). The concentration of bromide deter-

_reader can refer to a rece

\P*'V" A » *
N i @,
-
g z g
& [ H %
N ?
]
BROMATE
BROMIDE

BROMO = MALONIC
Atlo

FERROUS PHENATHROLINE

RED
&
MALONIC & M
ALLG é 25
%
B
] -
BROMATE BRAMO-MALONIC
i ACID
bl
BACMIDE a ,
A‘ 3 [P
\ FERROUS PHENATHROLINE Fn
N 4 - &
A}
% 3 n e
LA o 2
L, Wy 0 & !
1. = :
(- L |

~  FERAIC PHENATHROLINE
BLUE

_ Fig. 4 The two reaction pathways in Belou-

sov-Zhabotinski reactions (after A. T.
Winfree).

mines which reaction course is follow-
ed. The first set of reactions is followed until

the bromide concentration falls below a.

threshold at which point the control
switches to the second set of reactions.
In the first set of reactions, both brom-
ide and bromate, brominate malonic
acid to form bromomatonic acid. During
this time ferrous phenanthroline rema-

- ins red (ie. the iron atom is in the

ferrous form). When the concentration
of bromide falls below a threshold value
the second set of reactions starts 10
dominate. The last bit of bromide is
consumed and then bromate takes over
bromination of malonic acid. During
this stage bromate oxidises ferrous phe-

manthroline to the ferric form which is

blue in colour. Later the bromonmalonic
acid reduces ferric phenanthroline back
to ferrous form (shown as dashed line)
releasing simultaneously bromide and
carbon dioxide. As the bromide con-
centration increases, it shuts oft the
second reaction and restaits the first
which brings back the red colour. (Ca-

" tbon dioxide can be removed by stirring
“every 15 minutes.)

At the time when this reaction was studied
by Belousov and Zhabotinski, nobody
could forsee the impact this work was going
1o have on the development of the subject of
synergetics and dissipative structures. The
richness of the model is . enormous.
Topologically different kinds of wave pat-
terns have been studied. The interested
rgrnonsograph by

Winfree and to his other papers™

ji) Formation of Mammalian Coat Pat-
terns

Nature is full of examples of pattern
formation. For exampie, we notice dif-
ferent kinds of coat patternsin mam-
mals. It is interesting to note that such
coat patterns can be described by met-
hods of self organization®. Bard’ has
evolved a mathematical model which
under various initial and boundry con-
ditions generates the complex variety

of coat patterns found in mammals, -

The model consists of a coupled set
of reactive-diffusive equations for two
chemical species (two mophogens) de-
termining the colour. The model pre-
dicts several coat patterns. Figure 5
shows theoretically generated patterns
marked a, ¢ and & corresponding to
the patterns on 2 fallow deer, a masai
giraffe and a cape giraffe. Clearly the
theoretically generated patterns are yery
similar to the patterns found on these
mammals. : . :

Another example of paliern formation
can be found in crystal growth. We

just mention the formation of snow.

flakes and dendritic crystals®.

iv) Repeated Yield Drop Phenomenon .

when a material is pulled at a cons-
tant rate, the monitored load shows a
yield drop. This is schematically shown
by the dashed line in figure 6. A single
yield drop is what is normally observed.

-- However, under certain conditions,ins- . . .
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Fig. 5 Theoretically generat

tead of a single yield drop, several
yield drops are seen (continuous curve
in figure 6). The parameters which give
rise 10 such a change are the rate of
pulling (strain rate), temperature and
other metallurgical parameters. Up to
a certain rate of pulling only one yield
drop is seen. Beyond a critical value
of strain rate, repeated vield drops are
seen. Generally, the deformation is in-
homogeneous when the multiple yiei-
- ding is seen. Here the single yield drop-
which is space-time homogeneous is

- the disordered state,-and the -state of - ¢alled, -can-become unstable-at some—

repeated yielding is the temporally or-
dered {and spatially inhomogenegus)
state, The drive parameter is the strain
rate, : :

*

patter. i:sfcorresponding to a fallow
deer, masai giraffe and’a cape giraffe. fafter].L.8. Bard)

STRESS (kg/mm’)
(¥1 ] P~

o o

i T

b
o
T

1 : 4 1

‘ 1.0 15
STRAIN (%)

" Fig. 6 Single yield drop and multiple yield drops.

SYSTEM O0OBSERVABLE

PUMP

PARAMETER

Fig. 7 Bifurcation diagram,

In the table is listed some cheracte-
ristics of the various examples which
have been considered.

In all these cases, under the action
of an external drive parameter, the
system which may be in thermodynamic
equilibrium. moves away from equilib-
rium through a sequence of steady

-states connected to that equilibrium

state which occurs when the drive par-
ameter is zero, This equitibrium kranch
or thermodynamic branch as it is often

critical value ‘of the drive parameter
with simultaneous appearance o’ new
states {see figure 7). This is similar to
the equilibrium phase transition discus-

Disordered Ordered . . Drive
Phenomenon state - state” ' .+ . parameter
Bernard Conduction . Convective Temperature
instability mode "mode difference
Taylar - Streamline Convective .. Angular
instability Couette flow mode (vortices). . velocity
Belousov Space-time Space-time ' _ Rate
Zhabotinski homogeneous . "~ inhomogeneous - constants .
Reaction - T
Repeated Single - Multiple Strain rater
Yield Drops Yield Drop Yield Drops

sed earlier. Recall that the nature of

the free energy changes from a single .

well shape to double well shape as we

pass from T> T, to T< T, (see figure

7 and the relevant text). X = 0 was
stable under small perturbations for T>
T, with peturbations decaying exponen-
tially. For T< T, %X = 0 is no longer
stable to perturbations. Indeed they
grow exponentially for short times. The
stability of x = 0 has changed and
two new steady states X = X, and X =
X, arise as we change T across T.. This

qualitativé change in the nature of solu- "~

tions (states} of the systern as a function
of the drive parameter.is called bifur-
cation. For the sake of illustration, let
us consider a simple function f(t) =

exp i t. For ) <0, f{t) decays as a

function of time t; for A> 0, f(t) biows
up. The nature of the solution changes
qualitatively as A goes from a negative
to a positive value. L can also take on

complex values and -again the -pature

of solution Ehanges. If A is considered
as a drive parameter, Re A = 0, tm A
= 0 and Re b = 0, Im A+ 0 are both
points of bifurcation. .

4In many cases the bifurcation may .

happen, not just once but for a sequen-
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ttern is realised.’

Iving the above
I the presence of
§ probabilisticev-
1e final realised |
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understand which pattern is realised.
. This would mean solving the above
P nonlinear equations in the presence of
! - small ftuctuations. Thus probabilistic ev-
' olution determines the final realised
pattern. -
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ABSTRACT

we present a theoretical model of repeated yielding
which reproduces many experimentally observed features apart
from demonstrating how the temparal behaviour emerges as 3
natural consequence of the cooperative behaviour of defects.
The starting point for building such a model is our earlier
work on a statistical description of dislocation dynamics
which explains creep in simple materials. The model leads to
an alternate but equivalent description which allows us to
quantify the mobile dislocation density in terms of a coupled
set of equations for the mobile and the immobile components.
we then include another type af dislocation and some
transformations between them. This leads to a coupled set of
nonlinear differential equations for the three <dislocation

densities. we show that for a range of values of the rate
constants, 1limit cycle solutions are exhibited leading to
jumps on crTeep curve. ppproximate c¢losed form solutions are

also obtained. The model ls extended to the constant strain
rate case by coupling the above equations to the machine
equation. The temporal ordering of repeated yielding
naturally follaows. several such features as bounds on the
strain rate, bounds on the concentration of solute atoms, the
negative strain rate dependence of the flow stress, the
dependence of the amplitude on the strain rate, strain etc.,
emerge fram the model. The model also exhibits period
doubling bifurcation with an exponent value same as that for
the guadratic map. finally we report the effect fluctuations
during a single yield dron.

1. INTRODUCTION

Repeated yielding (RY) of materials and their counterparts
in creep and constant stress rate tests have long been addressed
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as some kind of instability. However it is only in the last si«
years Or so0 the word instability has been brought to sharp focus
by the use of dynamical systems method which gquantifies it as a
bifurcation. A complete description of the phenomenan which
includes the initiation and propagation of the bands during RY
appears to be difficult even after a first modest attempt was
undertaken  several years ago [1,2] wherein the spatial
inhomogeneity was ignored, and only temporal oscillatery state
was sought to be ‘described. The analysis did demonstrate that
the oscillatory state was the result of a Hopf bifurcation beyond
a stability limit in the control parameter (the strain rate) [3-
51. It was an important step, since the phenomena was brought
into the general framework of nonequilibrium phase transitions
and pattern formation. Attempts by several authers that followed
in respect to low temperature repeated yielding [61 and formatien
of cell structure during fatigue (7] did demonstrate that other
forms of ordering ({(used in a general sense of even tempaoral
ordering) could be explained within the general framework of
bifurcation theory. Several ather papers in this conference
substantiate the power of the dynamical systems method [8-10].

There have been a number of phenomenclogical treatments [11-
14] which have contributed immensely to the general understanaing
of RY. The best known model is Cottrell's dynamic strain ageing

model or its improved versions. In these models expressions are
derived for such quantities as the critical strain rate, the
dependence af the flow stress on strain rate etc. However,

little attention has been paid to relating these guantities to
the basic dislocation mechanisms. Further, no attempt has been
made to investigate how the temporal behavicur of Tepeateo
yielding could arise as natural consegquence of the basic
dislocation mechanisms.

"In the folleowing I outline our particular efforts to
understand the macroscopic manifestations of dislocation
interactions [15-17] and the consequent emergence of temporal
ordering [t-5].

2. A STATISTICAL THEORY OF DISLOCATION DYNAMICS

The starting point for our study is a statistical theory of
dislocation dynamics which happens to be a natural starting paint
for wvarious reasons, To motivate this consider the conceptua:
dgifficulty in dealing with a constant strain rate experiment,.
From the physicists point of view we are seeking to determine the
stress developed in the sample for which we have imposed a
predetermined response. This is to be contrasted with what we
normally do in physics wherein we look for the response of the
system when a ° force is applied. From this pnint of veiw the
equivalent experimental situation to consider is the creep test,
wherein the instabilities will manifest as steps on creep curve.
Further since our intention is to make contact with macroscopic
properties to the basic dislocation mechanisms, we consider a
simple  situation nf the dynamirs of dislocations in simple
mglerials Llke LIL Q1Y 4710 il Ihe hwope bo Lhal owe will  hie
able to see the macroscopic manifestations of dislocation

E
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interactions which should guide us in modelling the moTe
complicated situation of RY.

The fundamental quantity we introduce is the probability
density ¢(v,t) of dislocation line segments having a wvelocity
v. The continuity equation for ¢ is

APV &) oJ _
3t Tov 7 F ()
where

Je-(Bov-bema -8 2 Jewt) = ~(Av-F+ 9 F )90 ()

is the current. ({Here bg is the Burges vector, B8, 1is the drag
force, b,o, is the force per unit length on & dislocation, M is
the mass of a dislocation of a unit length.) The source term has
the following contri%gtions:

L.}
S=(-x+0V)HV.E) = p [ow-v') POy’ "_LS’""'"”;{“’”JV' (153
- e

The first term corresponds to a loss due to stopping of
dislocations at precipitates, grain boundaries etc., the second
term is the production of dislocations due to the cross gilide
[18,19], the third and the fourth terms correspond to the
interaction of dislocations resulting in the formation of dipoles
etc. (arising out of the reduction of the velocities). For more
details we refer the reader to the original paper [15].

This apptoach wunifies several phenomenclogocal relations
introduced im the literature in different contexts [19]. The
following relations follow immediately (see [19])

N . Z
9% = Cxk+8V)N - pN (2)
and

MY = BV byl —hAN (3)
where N i5 the total dislocation density and v is the average
velocity <v> . The second relation gives an expression for the

back stress Gi in the steady state:
RN SR NC AL VR ML E SN
These two eguations are adequate to obtain a creep law. This

creep law is similar to that obtained by Webster (see [19])}. The
only adjustable guantity is b. Even this is not arbitrary since
it must be compatible with the velocity reducticon due to
hardening [19]. The calculated creep curve fits the experiments
very well as can be seen in figure 1.

A few rTemarks of technical nature may be in order.
Although, eqguation (1) appears to be complicated, it is possible
to cblain exact expressions for the first four cumulants given by

k= «v> =V = (F-AN> sz

f«iz (v"-)--y'z_-; (=29 —th)//’
1"5-_: - )1” <‘v.l.> //L (5}
k= ~hN=<v3>/ 4

LAl ——
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It appears plaussible that k,, n = 3 may have the same behaviour

as kg and kg l.e. &, = -(h/s) N yn-25 . If we assume this, it
is possible to obtain closed form expressions for the
characteristic function of the gistribution [16}. Cne

interesting aspect of this distribution is that for appropriate
choice of parameters, the distribution function can become shargp
i.e. — 0. This feature of the distribution function may have
some relevance in the problem of the formation of void lattice.
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Tumt 141
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Fig.1 Theoretical creep curve:-- Fig.2 Form of Vv

Experimental points: . Ng

SN, NV ang

The above description in terms of a distribution function
glves & natural tool to quantify mobile dislocation density.
Formally writing (v,t) = #,{v,t) + &(v,t) where the subscipts
stand for the immobile and the mobile iespectively, we obtain NV
= NgV + NgVy, wheredv>, o= Vseg . Since V¢ is expected to
be smafl, we have, NV NgVy, . By reformulating the above theory
to account for the produc?ion 0
we obtain

f dipoles (see [17] for details),

. 2
= 8 NN & N (6)

N

Uy = ANt - A NN
Ny = At i =3 (7)
where Ng = N - Ng is the density of dipoles and k is a constant.
These eguations can be solved to obtain the creep curve which
again fits the data equally well as the earlier description (in
terms of N and V). The parameter k = he/B. Thus, the two
descriptions are equivalent. In the later, the entire time
dependence of the flow is controlled by the mobile dislocation
density N, and Vg 1is nearly constant. To the best of authors
knowledge this was the first attempt to obtain the mobile
dislocation density im dynamic balance during creep [17]. The
procedure adapfed is not restrictive and can be generalized to
other more complicated situations if the governing mechanisms are
known, The forms of N, V and their procduct Nv and Neg are shown
in figure 2. It is clear that Nv has the same form as Ng .
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3. A MODEL FOR STEPS ON CREEP CURVE

Coupl~d set of nonlinear equations such as equations (6} and
(7) can lead to oscillatory solutions for suitable choice of the
parameters [20-22), although in its present form they do not
support oscillatory solutions. Under such conditions a stepped
response during creep will be observed [23-28]. It is then very
suggestive to enlarge the above model to account for other
mechanisms and look for oscillatory solutions. The above model
could also be thought of as a transformation between the mobile
(denoted by g) and the immobile dislocations (s). 1In the present
case, we introduce a third species of dislocations (denoted by 1)
whieh is surrounded by sclute atoms [11]. These dislocations are
much siower than the mobile ones, ultimately becoming immobile.

Let N Ng and Ny denote the densities of g, s and i species
respectivefy. The rate equations for these guantities are (a dot
denotes the time derivative):

) 2 .
Ny = aVgNg—PNg - P NgNg +2Ng -l Ny (8)

‘ 2 ,
Ns = Lrl Ns '}" NSNS ")\Ns + of N" {(9)

N, = o Ng =« N; (10)

We assume that #, A , ®& , &’ ,0 andL are constants for a glven
stress at a given temperature. The first two terms in the
equation (8) has been defined earlier except that the rate
constant for the second term has been taken to be (1-kK}}R . The
third term corresponds to the annihilation of & mobile
dislocation with an immobile one and the last term arises from
solute atoms gathering around dislocations. fnce a certain
amount of solute atoms gather around a moving dislocation, 1its
mobility is reduced, and it should be considered as a type i
dislecation (hence the scurce term XNy in equation {10)). As the
size of the solute atom cloud ingcreases, the dislocation
eventually becomes immobile (hence the source term =Ny inm
equation (9)). The terms A Ng comes from the (thermal or
athermal) activation of immobile dislocations. The parametero
is expected to depend on the diffusion constant of the solute
atoms, their concentration and the velocity of dislocations of
type . The parameter e’ is the rate of immobllization, and
hence should be expected to depend on the eritical velocity (k is
a parameter close to unity).

1t is eonvenlent to rewrite rquations (gy to (1) In A
dimenstontess form by sctiing

x = (/i )Mg .7 = ( FlavgdNg  Z 2 (P2 /ae )N (11)

7= 8Vglt oz /gy, b= >\/EV3 , (= o<’ Jesv/g
Then

Adx/g4e = (I1=a)x - bzt . xy + Y (12

il

[ 0
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pb(Rbx = xy -7 + a Z)

il

dr/d‘c (1)

A2/de ~ Cc(x-2) Cre)

gquations (12-14) form 8 coupled set of ponlinear equations.
Under well known conditions {201, these admit periodic gplutions
called 1limit cycles for @ certain range of wvalues cf the
parameters a,b,c and k. The stability analysis can pe carried
out to determine the poundary of instability domain in the
parameter space. Further it can be shown that the system of
equations admits Hopf pifurcation, leading to 8 1imit cycle
solution. 1t is also possible to obtain approximate closed form
colutions by adiabatically eliminating the fast mode X. Thus, Wwe
would have two null clines 24 = z{y) and Z g * x{y) . These
intersect in the negative slope region only for the values of
parameters in the instability domain [1,2]. A plot -of the null
clines is shown in figure 3. 1t is possible tog obtain
expressions for steps on the creep CUIvVe (both numerically and
analytically). geveral features that we obtall such as the steps
appearing in steady state creep situation (27,28}, the monotonic

dependence of the step hight on and the weak dependence of
the period on {26] are consistent with our theory. A number of
other featuTes also follow. For details we refer the readeT to

reference [, and [2] except to mention here that there are upper
and lower bounds on the concentration of solute atams (w) and

temperature T{Vg = Vg(T)) over which the steps are ohserved. A
typical such creep CuIve ig shown in figure 4.
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rig.3 Null clines zi(y) and Fig.4 stepped nature of the
z,0y)- creep Curve
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4. REPEATED YIELD pROP BEHAVIOUR
gur model can be extended to @ caonstant strain rate

experiment by augmenting equations (8-10) with the machine
equation representing the load sensed hy the load cell, namely

& = WlLE b Mg Vglo®)] (15)
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Here £ is the imposed strain rate, X is the effective compliance,

and ao* is the effective stress. The second term on the tight in
equation (15) 1is the plastic strain rate Ep We assume the
power law Vy = Voo e )T, with %= G, - HNY2 where H is @
constant characteristic of hardening and m is 8 veloclity
gxponent. Following @ procedure similar to that of the earlier
section, it can be shown that there {s a domain in the space of
the relevant parameters for which 1imit cycle solutlions exist.
Choosing values of the parameters in the domain of ipstability so
as to be consistent with the expected values of the dislocation
densities and the yield drops, numerical solutions of the system
of equations may be obtained, and various characteristic features
of the RY exhibited may be studied. These appear to be generally
consistent with the experimental results. we list these salient
features: (a) There is a range of € OVEI which serrations are
seen. (b) The model exiiibits the negative strain rate pehaviourl
of the flow stress at a fixed value of the plastic strain. The
inset in figure 5 shows+a typical plot of G VS Ep with 2
minimum . of O, at @ point &y = Emin Curves corresponding to
larger £, are displaced successively upwards. This feature has
been both theoretically [(13] and experimentally verified [12].
(c) Figure 5 shows @ typical plot of serrated yielding. The
serrations are asymptotically periodic. , From a strain Tate
change test {291 it is found that beyond €p the serrations BTE
of type B. {d) The amplitude of the serration increases upto €man
and decreases thereafter. (e) The amplitude increases and
saturates as @ function of £, consistent with experiments [3c0].
(f) There are upper and lower bounds on the parameter & of
gquation (B) within which serrated yielding oCCUrS. Since ¢
the concentration of solute atoms, this implies
the solute atom concentration in which the
phenomenon QCCUTIS. (q) £, (the critical strain), as a function
of £, first decreases and then increases [30]. (h) Beyond the
range of & where serrated yielding DCCUIS, the ‘'normal’
pehaviour of g, (2) is resumed. (FoOT details see [3)}.

W o -
DQHD-ﬂ-aan.:}t-aﬂw-..;,._

L

i

13655 Lugsment)
STRESS | Arb unte )

il A ”\lf;
b b \'ﬂ‘l“l':wl "Illllt‘
1“1\”1”“ Ilm Hllililklh‘rill1lh']l|1 ,HI!HT‘}\“‘[\“ ﬂﬂlll
rate v ' " v " STRAIN 1”.m Units ] ! v

:hine STRAIN 1%
y . . . . 4
Fig.5 The theoretically obtained Fig. 6 rperiod 2 cycle for
multiple yield drop plot. e = 176.282
The Insel SHows 3, V5 gr

[
yimam AatL

(15)

.qub/




364 ANANTHAKR\SHNA

+

¢ that sO far there has not peen any

attemp to derive the negative strain rate penavioul of the flow
stress (which 15 cructal fof any meaningful description of the
henomeno } starting o dislocation interactions. the
existing neories 1 is eithel a ed {131 OF derive (4]
tnrough 8 pnenomenological treatmen f walting times, jnvolving
in any case, indiv gual dislocations. 1 ontrast, t

property emeTrges naturally inhe presept mode Tom a

consideration of

Wwr have nhown that the new temporal order represented by

SEII‘aLt:Ll ylr:ldlng 1s the Conneyueiee uf o« h\rllll'illlll\l'l fyoam A

temporally nomogeneous steady state piastic tiow peyoid Sume

eritical value of the parameters. This order 1% the result of a

palance petwee the energy input (in the form of dislocation

) multiplication) and dissipation (annihilation, immopilisation and
othel processe The phenomenon is obviously from
equiliorium situation ang is af example of 2 self organizéd
gystem , 22)

wWe NOW tuyrn to

a certain range the applied strain

Lhe applied strain rate € e fix the values of all the other
arametels within the instability region study the
bifurcation sequence ith respect to tnhe parameter e =
€/ Yole The regiof where the P iod doubling - pifurcation
pccuT s small, and is 1ocated near the upper €n of the range
of € he dimensionless strain rate) Ovel which RY opserved.
Fo the chosen values of the parameters, ne first bifurcation
from the periodic state with perio to a state with @& period 27
pccurs at €1 % 9,98444, while the successive pifurcation to
gtates with eriod ' yoo cutr 8 1 ® 173.7175, es =
175.8974, o - The exponents = limlen e n-1)/(¢n,i -ep)
appears o be VETY close to ghat %tained y T the 4 dratic
map {34,35): The estimated yalue of € 176.4669 peyon

which WE find chaotic motion. Figures 6 an

of the stress ¥ with time (equivalently, the ctrain) for g =

174.697 (motion with peril aT) and € 28,205 {chaotic motiion)
respectively. log-10Q plot of the projection of the gtrange
attractol in the N plane i how in figure The
associated i mooth rounded max imum gimilar

one-dimen51onal map a S
ept that it is skewed [a).

to -Lhe quadratio map exc
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&. EFFECT OF FLUCTUATIONS
er Finally we briefly discuss the effect of fluctuations during
2. a single yield drop. {(effect of fluctuations on multiple yield
). drops has also been analysed [5].) The particular example
ns cansiderrd here represents the plastic flow in materlals 1like
of Gesi [167. The equations for the density of dislocatlons N and
:2 the stress oy are 3
Y2
-he dN/dt = 2y TQN -bIH (16
as . ) 5/2.
:T:\e dﬁ/d&“: k[f“bio:x”"" ".1N J {(17)
is
:91' where a,, b, and ¢, are constants, To conslder the offeecl of
the fluctuations,” it is conventional to add a noise term whose
.= statistical properties are defined, normally chosen as a white
ion noise [37]. This is done after transforming the first equation
nnae 1o - NYZ2 ~n that we hnve an analytir variahlem x whnse
2l tluctuations will be determined, ihe anobysts 1s carrled  out
1on using both Gaussian decoupling and Monte Carlo methods. For
2T detalls we refer the reader to the original paper [38]. Here we
to shall present the principal results and discuss the implications.
= The average values of ©. and x are well reproduced {(i.e. their
en) behaviour 1is the same as that obtained from equations (16-17))
tic which 1is as should be expected. However, there are anomalous
?“d fluctuations in x and vy , whose values peak exactly at the
ion value of the yield drop. Figures (9) and (10) show fluctuations
= in x and y as a function of time (or strain). Angmalous
on) fluctuations manifest in all systems which pass from a wunstable
nge state to a relatively stable state. Such anomalous fluctuations
The should be seen in scattering experiments. Indeed the attenuation
lar of ultrasonic waves during an yield drop experiment does show a
marked behaviour [38]. our interpretation is that this is a

consequence of anomalous fluctuations and not merely due to the
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link length change as has been interpreted earlier [39], A
detailed calculation to express the attenuation in terms of
fluctuaticns In the number of dislocations is in progress.
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Fig.9 A plot of fluctuations Fig.10 Fluctuations in stress.

in x. Note the magnitude Again the fluctuations
of fluctuations is four are large and peak at
orders at the yield point. the yield drop

_ In summary, a need to understand the RY as arising due to
dislocation interactions initiated us to investigate <creep in
simple materials from a dislocation dynamical model. This model
led us to quantify the mobile disliocation density which in turn

led us to a model for jumps on creep curve. A straight
forward extention of this model to the costant strain rate case
explains a large number of quantitative features of RY, The
model 1s shown to exhibit chaotic flow as well. We have alsc

breifly presented our analysis on the effect of fluctuations.
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