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Abstract, A statistical theory of dislocations has been proposed with specific application
1o creep in LiF and materials like it. The velocity of a dislocation is chosen to be a
random variable. Based on various established mechanisms contributing to glide-
controlled plastic low, a semi-empirical continuity equation is set up for the velocity
distribution function. The solution is obtained in terms of a power-series expansion of
two small parameters, and the first four cumulants have been calcutated within a certain
approximation in which the third and fourth turn out negative, resulting in a distribu-
tion function having sharp edges on both sides. The average velocity of dislocations is
shown to reduce linearly with the average density of dislocations, leading to an internal
stress which is linear in the average density. The equation of motion of the distocations
exhibiting the drag, an equatijon for population dynamics of dislocations during creep,
and a creep law proposed by Webster (1966) follow from our work. The theory is
applied to creep in LiF with excellent agreement. It also explains the shift in the stress-
velocity relation in prestrained samples.

1. Introduction

Gilman (1968a) has emphasised that a statistical description is inevitable for motion of
dislocations in a material undergoing plastic deformation. In simple theories, only
average values of parameters are considered as in the Orowan equation

E=bVN (1)

where ¢ is the strain rate, V the average velocity of dislocations, N the average density and
b the magnitude of the Burger vector. Clearly, if one writes the above equation in terms
of a (nonstationary) velocity distribution function p{v, 1), it would lead to a statistical
description. If one sets up an equation of motion for p(w, 1), and solves it with suitable
boundary conditions pertaining to all aspects of plastic flow, then one would have a
description of plasticity which would be an Improvement over the usual phenomeno-
logical treatment. This is a difficult task, as the laws governing plastic flow are ‘nonlinear,
For example, in a tensile test for polycrystals (in general), the stress o~ £1/2, and as
¢~ N (for not too high levels of strain), o~ N'/2, There are less common materials where
o~N~e¢. This is also true in stage II of work hardening of simple crystals. A typical
example is LiF where o~ ¢ in a tensile test (Gilman and Johnston 1960) and the internal

t A preliminary version of this work was presented at the DAE Symposium on Nuclear Physics and Solid
State Physics, Bombay, 1978,
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stress is oy~ N (Gupta and Li 1970). In this paper we propose a statistical theory of
dislocation dynamics applicable to materials with goc e and apply it to LiF. We expect
that the basic feature of plasticity, namely nonlinearity (at the microscopic level) would
be common to these and the other type of materials mentioned above. There are two
reasons for choosing LiF as a reference material for our theory. First, it is extensively
studied (Gilman and Johnston 1962, Gilman 1969, Gupta and Li 1970). Secondly, the
mechanisms of plastic fiow are well known: dislocations multiply rapidly by the cross-
glide mechanism (Gilman and Johnston 1962) with a rate proportional to the flux NV
of dislocations.

For simplicity we consider plastic flow to be homogeneous in the sample and consider
the flow to be one-dimensional, i.e. we assume v to be a scalar variable r. To see the
range of r, consider a stress acting on positive and negative dislocations with b+(=|b})
and b- (= — | b|) as their respective Burgers vectors. We regard the velocity of a disloca-
tion as positive if it moves in the direction of the applied stress and negative if it moves
opposite to the applied stress. Hence the velocity v+ of posittve dislocations can take on
values from 0 to =+ oo, and the velocity v— of negative dislocations can range from 0 to
— o, (Note r4= —t—=|r|.) Then the range of r is from —o¢ t0 +oC. However, both
positive and negative dislocations contribute positively to creep. Using the appropriate
ranges of v, we get

0

e=by {77 vpe1) detb- RTIGOLE

= |5} jiz le| ple,t) de

=b(|e|>N 2)

where
Ny={"" dvplen). (3)

In §2 we propose an integro-partial-differential equation for p, which turns out to be a
Fokker—Planck equation with some source and sink terms. We confine ourselves to the
phenomenon of creep (i.e. stress is held constant). The main result we are able to derive
(§3) is that during creep V decreases linearly with N, thus resulting in an internal stress
o1~ N. The relation was assumed in the creep model of Webster (1966). The population
dynamics equation for the evolution of N during creep, and the Newtonian dynamics
equation for ¥ (Webster 1966, Gilman 1968a, 1969, Li 1963) are derived (§2) from our
theory. In addition to a creep law (§4) (derived with the approximation that {vy={|v|>
justified in § by the form of p, and then applied to LiF}, which is similar to Webster’s
(1966), our theory can also account for the shift in the stress—velocity curve (§5) for a
prestrained sample (Gilman and Johnston 1962, 1960). Also derivable from it is the
linear & versus N law (§4). We have derived four cumulants of the distribution p(v,t)
(§3); the third and the fourth ones, corresponding to the coeficients of asymmetry and
excess (Stratonovich 1963), turn out to be negative. This implies that the distribution
p(z,1) has sharp edges on both sides.

There are other statistical theories dealing with one aspect or the other of the phenom-
enon of plastic flow. We mention the following, with no elaboration of the contents, as
there is little in these in common with our work-——Gilman (1968b), Ostrom and Lagneborg
(1976), Lagneborg and Forsen (1973), Feltham (1968, 1973), Mott and Nabarro (1948)
and Welch and Smoluchowski (1972).

-2,
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2. The proposed mode}

As the distribution function is nonstationary, a central role is played by the conditional
velocity distribution function p(rt|vefe) (synonymous with conditional probability
density if probability were conserved) which is the probability of dislocations having the
velocity ¢ at time 1 given that these had the velocity © at an earlier time 7o. The velocity
distribution function, which should also depend on 74, is derivable from p(rt|toto):

Nop(r,t,to)= Jﬂdl’o p(vt|votg) p(taty) 4

where No=N(t0). However, in the present problem, p(rt|sto) loses memory of to in an
extremely short time (short compared to the time over which the material deforms, as
will be shown later), but retains memory of the initial state p(roto) through the initial
dislocation density Ny and rp. Because of this, p(rt|voto) is for all practical purposes
equal to p(r,1,¢0). The dependence on time is only through r—1o. However, as the single
particle distribution has an explicit time dependence (although in the form 7—tg), the
process is nonstationary (Stratonovich 1963). We do not distinguish between p(rt|rory)
and p(v,t,10) unless otherwise required. Further, we suppress 7o, and write p(r,1,1q) as
plo,1).

The problem of dislocation motion under stress has some similarities with the problem
of Brownian motion with the most obvious difference that the total number of dislocations
is not conserved. We momentarily disregard the production and annihilation of disloca-
tions. (This would be true if the time over which the stress is applied is short compared
to the time constant associated with production and loss of dislocations.) The lattice
friction of dislocations and the force acting on these due to the applied stress, respectively,
assume the roles of the viscous drag and the gravity force of the Brownian motion. (The
lattice friction constant in our problem is regarded as a parameter to be supplied
empirically.) Now we can include the production and the loss of dislocations by a term
representing sources and sinks. Then the equation of continuity for p(r,) can be written
as

dp &

ata™® 5a)
and
_ _(Bop_bos) - Q30
== (G o= S5

= —(Br~-fp(,1)~¢q ‘?ﬂg’f_{) 5b)

Here, J is the current associated with p(r,r). In the above equation, By is the drag
coefficient, boa is the force acting on a unit length of a dislocation and Q, the velocity
diffusion coefficient. (M is the effective mass of a dislocation of unit length, appearing
due to the fact that we have considered the velocity rather than the momentum as the
random variable.)

The sources and the sinks can include many different types of contributions. We shall
include only those which are well established and are simple in form. Some of these are
linear in p(z, ) and others, bilinear. The first linear contribution comes from the stopping
of dislocations at precipitates, grain boundaries, etc. Let the rate of loss due to this be
—ap(r,1) where a is a constant. The second contribution is the breeding of dislocations
due to the well established (Gilman and Johnston 1962) cross-glide mechanism. The rate
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of generation due to this process is denoted by Gvp(r,1), where € is a constant called the
breeding coefficient (Gilman 1968a). Adopting the chemical kinetic approach, the
mutual interaction of dislocations should be bilinear in p(t,f) in the simplest case
(analogous to the collision integral in the Boltzmann transport equation). If we consider
two dislocations with arbitrary velocities ¢’ and t” with their respective velocity distribu-
tions p(r,'t) and p(z",1), then the contribution to dp/0t should be of the form p(v") p(r”).
It should represent such well known mechanisms as mutual annihilation of a pair of
dislocations of opposite sign, formation of dislocation dipoles, formation of stair-rod
dislocations of the Lomer—Cottrell type, etc. The resulting species can in principle have a
velocity r=1v"+1t". (This resu'tant velocity could be zero also.) Thus the interaction
term will be of the form p(r—t")p(r’). It is clear that if jv| <{¢'|, v—v" has a sign
opposite to that of " for — cc €’ < ec. Thus we expect this term to represent all pairwise
interactions which arise when the participating dislocations have some velocity compo-
nent having opposite signs. Here again, || being small would possibly represent the
formation of dipoles and otter types of locks, which physically should have small
velocities. Other values of ¢ represent dislocations interacting weakly (with their slip
planes far apart). Some pairwise interactions corresponding to the case |¢]| > |t’| have
been discussed by Gilman (19€9). We represent all such interactions by integrating over
the variable ¢' and obtain the sverall contribution as

— W ‘-i . de' p(r—t, ) p(t',t)

where u is the effective rate constant for all these processes. In addition, when two
dislocations of velocities +* and ¢ interact with each other, their resultant velocities are
also reduced. Associated with these velocities, their respective distributions should
change differentially, their total contribution 1o 4 being proportional to

3 _[ d” p(t)dp ()8 +3 ‘|' de’ p(x") 8p(2))/er'.

But ¢ and ¢ are not independant since v=r"+1". This leads to an interaction having the
form

h IHE y d’ p(r—t',1)3p (', 1)/0r’

where # is a rate constant. Ncw, summing up all contributions, we may write the source
and sink function as

S=(—a+b)p(t,t)-p '.x‘x dv' p(r—171)p(',t)

+h [T ple—1,0)Bp(', )0 (5¢)

1t is clear that we have taken simplified forms for f and @ terms in equation (5)
to facilitate a closed form solution. Although terms representing interaction of positive
and negative dislocations have correct forms as explained above, the f and § terms
should have appropriate step functions multiplying them. The above simplified version,
we believe, still represents the physical situation adequately enough, with the basic
difference that the actual distribution should be bimodal when appropriate forms for 8
and f terms are considered. (See discussion, §6, where this point is discussed in detail )

To solve equations (5 a—c), we impose natural boundary conditions

p(t,1), tp(t,1), Bp(e,1)ju—=0  as vt (6)
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As there are several parameters entering into equation (5), we list their magnitudes in
table 1. All measurable quantities occur as ratios with respect 10 B (> 1) the largest
being /i 8 this is much larger than h'B, ¢/B, /B and ! 8. The quantity (h'B)YN could be
comparable to fi 8, which will be shown to be approximately equal to the average velocity.
Even before we solve the central equations (5 a—c), we derive the essential results by a
short cut but in an approximate way, the deficiencies are then removed in the next

Table 1. Values of the parameters used in equaticn {5).

Parameter  Value - Remarks

Bx B1=J{3 3.033x10-3ems™! Value for ea=380gmm~* using power lawt.
[ 30 em™3

g 109 s-1~ 1012 571 Estimated in §2

x 1.82x 103 ¢! From case {2) of creep

m 2271 x 10-10 cm? s} From case {1} of creep

hiB 3.535% 10" cmPs ! From case (1) of creep

N 8.4x 108 em-? From case {1) of creep

No 7.5%x 104 em~? From case (1) of creep

q'8 B From the condition k23>0

+ Johnston (1962}
4 Gilman (1968a).

section. The purpose of doing so 15 to establish connections -with some well known
phencmenological relations.

First we derive the equation governing population dynamics of dislocations. Inte-
grating equation (5 a) over v and using equations (5 b, ¢) and (6), we obtain

dNidt=(-a+ V)N - pN* o)

where V refers to the average velocity, an expression for which will be obtained from our
theory. This equation, apart from a constant term, has been used earlier, with V/ assumed
to decrease linearly with N (Webster 1966, Li 1963, Gilman 1968a, 1969)—a result which
we will derive.

The equation governing Newtonian dynamics of dislocations is similarly obtained by
multiplying equation (5a) by © and then integrating over r

(dV,‘dr)+(B+,uN)V=f—-hN+ g2y —V?) (&

where
- <]

Naty=[T dvpl0e 9
Under the approximations (to be justified later in §4)

pN<B and B(2y— VH<hN
and ignoring the quantity AN, we get the familiar equation

M(dV/dt)+ BV =bas. {10)

(See Gilman 1968a, 1969 for more explanations.)
As it turns out the quantity AN is not necessarily small compared to f when N is large
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(sec table 1). Then a better appro<imation 1o equation (8) would be the equation
M(d1dr) + BV =tog—hNM= b(ga— a)=bou. (an
The quantity
oi=hNM b=fiM b (12)

is to be identified with the internal stress in the sample and oq with the effective driving
stress. The steady state solution >f equation (il) is
—af f—-hN
V =f.J_c_rg = E.)_(_cfi _9L .—_:f.._ . B (13)
By By B

In the following we argue that the time constant 71 =/£-1 is small. Roughly, the
minimum value of B, Bmin, can bz estimated by considering the lower limit of og, namely
the threshold stress ot of the mzterial (Gilman and Johnston 1962) and the upper limit
of V, i.e. the velocity of sound, Vsouna. This leads to

Bmin=b0'rl‘ll"fl’,goujﬁ~ 109 Sﬁl.

(We have used a typical value s7~107 dvn cm-1.) The upper limit of B is set by the
Debye frequency. This means “hat =1, the time constant for dislocations to attain a
steady velocity is small (Gilman 1968a, 1969). Thus we have a natural expansion para-
meger 81

In contrast to the above showt time scale in the problem, there is another time scale
which is large and is associated w th the growth of N. This should be physically easy Lo see.
since the growth of N correspords 10 the duration of deformation. If we assume that a
larger time scale associated witt A exists, then we can use equation {13) in equation (7
to obtain

AN di=(~a+Bi9N—pN1=(h8 B)N? (14)
where B;=f 8. The solution is
N=Ney!1+(Ne1 No— 1) exp [—(B1—o)7ki? (i5)
where
Ney=(B1f-)8 puB+ht) (16)

and No=N(z=0). Using the vabues of 1= By, and 6 from table I, we see that
ro=(—a+B10)1~10s>71.

Also note that if we take a=0. and since /< B
re=f0r1®» 1.

Thus the quantity occurring ot the right-hand side of equation (13) in fact represents its
instantaneous value, and every time N changes, V reaches its steady value in a time 7:
so small that ¥ and N are always in phase.

3. The distribution function

Equation {5a-c¢) cannot be salved exactly. In this section we calculate the moments/

cumulants of p{r,?) in an app-oXimate Manner. in addition to the boundary conditions
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(6), we need to prescribe the initial condizion for p(r,?) at the time 1=15, when a constant
stress oy is applied. We note that for time r~ty+ 71, the sources and sinks do not
opetate as 73 is 5o small and N remains practically at its initial value No(=N{(ty)). For
such short times we shall therefore set §=0; then the asymptotic soiution of equation
{5a,b) is well known (Wang and Uhlenbeck 1945)

3o Mo 3 ¢
P(LD)'(ZTQMTB‘)T’Z“D( .‘.Tq(l-o Bl)z) {f<'rz). (17)

Note that just before the start of the creep test, i.e. for £<1g, B1=0 (as f=0), and the

distribution p(rp) is centred around zo=0. More generally however, one has v9+0, and
lim p{vt] roto) = No & (v —vg). (18)
I—f,

We use the method of Fourier transfcrm to obtain a solution of characteristic function
x{e,t) of p(r,r) given by equation (Al) in powers of w for small w, which is sufficient,
as we wish to calculate only the cumuants by using equation (Al13). The details are
given in the appendix. Using equation (Al15) in (Al10) we get

x(w, 1) =Ns/Z{w,t) {19
with
Z{(w, )=y [(Ns/No) exp (— Bro/B)— 1] exp (iBw + Cww?)
+ 14+ yw+dw?+vwd+ fwui+ 0(wd, B ’ 20)
p=exp [-B(1—10)]
and

No=N(t+2)=nB%(h8+ uf).

All the other constants are given in the appendix. We obtain by setting w=0 in y(w,?),

N=N{r—10)= Ns{l + {7 [(Ns/No) exp (— fro/B) — 1]}71. (21)
The moments are calculated by using eqaation (A 13).. We quote the first four cumulants:
ki=<{ry=V=B—(h/B)N. (22}
ka=2C—(h/B)NV. (23)
ka= —(h/B)N{v®). (24)
ka= —(R[B)N{v%). (25)

Equation (22) is our main result—i.e. the average velocity of dislocations decreases
linearly with N during creep. This result is applied to the velocity-shift experiment in §5.
The dispersion kg given by equation (22) also decreases with the passage of time. As k3
is negative, p is of negative skew type ard hence it has a sharp leading edge. In addition,
k4 is also negative, thus contributing an additional platykurtic character (i.e, concentra-
tion of area around the mean value with a flat top). The combined effect is a distribution
having sharp edges on both sides, but the leading edge is sharper than the trailing edge
(Kendall and Stuart 1969).

Our earlier remark that p(vt|veto) is equivalent to p(r,, 1) is transparent from the
expression for N (equation (21)). & contains information about the initial velocity ty
only through the factor exp (— Buo/B) which is essentially unity, as £ 1. 1t depends on
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the initial state only through Ny, i.e. the value of N at #o. All cumuiants depend on the
initial state only through N which in turn depends on No.

We now remove the deficiencies in our earlier derivations of equations (7) and (13).
The first cumulant ky = ¥ (equation (22) with B defined by equation (A7)) shows that the
quantitity B; occurring in equations (14) and (15) and in equation (17) is to be replaced by
B=B,+(g8/8%). In fact the correct equation corresponding to equation (14) is obtained
by differentiating N as given by equation (21). Note that the difference between B and 8,
is g8/B2=2CH B which is negligible due to the factor 8-1. This is because 2C is the
dispersion and is of the order of B2,

4. The creep law and its application to LiF

In order to obtain the creep law, we need <|v|> and not (v). This cannot be obtained
easily from y(w,?). From the discussion about the general form of p(z,?), it is clear that
the spill-over to the negative region of velocity should be expected to be small (see also §6).
Thus, we approximate {|{z}> to <v> and use it in equation (2) along with equations (21)
and (22). Integrating the strain rate with respect to ¢, with the initial conditions £(z0)=0,
we obtain the following creep law:

h bNs | h ) (No) kb
t—t)=bNs { B— - Ns} (t—1o)+—= { B—= N5} In | = |+ 5——, (N—Np). 26
cle=10)=6N (B N (=10 + 22 (B Mo ()« it =m0 9
This creep law is very similar to Webster’s (1966) second creep law (his equation (14)).
It differs from his equation in the following way: the saturation value of dislocation
density in equation (26) is given by

Ne=(B8- ) B/(h8+ uf)

where o corresponds to the stopping of dislocations at precipitates, grain boundaries etc.
In Webster's law, this rate of loss is assumed proportional to the dislocation velocity—in
other words this process has been included along with the breeding term. However, if we
set x=0 in the expression for N, in equation (26) and also set the corresponding (velocity-
dependent) loss term in his equation, then our creep law is identical to his.

We now apply equatton (26) to creep in LiF (Johnston 1962). Among the parameters
occurring in the creep law, only £ is adjustable. Consider creep at s =380 g mm-2 for
which B=3.033x 102 cm s~! (see table 1). We have calculated creep in two ways. In
the first case {case 1) we have assumed a=0 and p+0, and in the second {case 2} a%0
and p=0. The values of Ny chosen in both cases fall witbin the range quoted by Gilman
and Johnston (1962). N, as determined by the near saturation value of £ (see equation
26), is ~ 107 cm~2. As Vis always positive, we must have (h/8) Ns < B. Our calculation of
creep curves for cases 1 and 2, presented in figures 1 and 2 respectively, shows excellent
agreement with Johnston’s (1962) experimental data. For case 2, the value of « is obtained
from the relations

y=ao/Bf Neg=(1-9)BBiA.

One observes transient creep (TC) when there appears a point of inflection on the -t
curve. Let ¢; be the time of inflection and let ¢;,N; and V1 denote the corresponding
values of ¢, N and V. From the condition #(¢;)=0, one obtains Ni=BgS/2h. Four
different classes of creep curves result: (1) if No< Ny < Ng, TC is observed (figure 1, curves
B and C); (2) if Ny < No< N, Ny is so large that there is no incubation time for creep
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Figure 1, Calculated and experimental creep curves for case 1. Variation with respect
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Figure 2. Calculated and experimental creep curves for case 2. Variation with respect
to &/B is also shown. No=7.5x10%cm=2, Ny=84x 108 cm™?, u=0, a0, e/B6=0.02,

h/B=3.45x10"10 cm¥s-1,;
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and hence no TC is observed {figure 1, curve D): (3) if No<Ns<Ni, TC appears as
No < Ny, but the point of inflection receeds to ‘infinity’ (figure 1, curve A); (4)if N1 < No=
N,, only secondary creep is exhibited, and N(t)= N, for all . The case No=Ny<N; is
similar to this. (This is not shown in figure 1.)

Creep is not as sensitive to changes in « and u as it is to A/8. The variation of creep

with the dimensionless parameter AN;/BB is indicated in figure 2.

We now show that the linear N-¢ relation follows from equation (26). At any time ¢,
consider this equation for various stresses. Then we obtain a linear relation between
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N(as) and e{oy). We may rewrite equartion (26) as
BN ( h (Ns— N) ( bh ) .
£= — B-o NepIn (s o2 b (- 20— (V=N 27
e (2w n (G2 (g 930 ‘

For N not too close to N, the dominant term in the right-hand side of this equation s
linear in N.

Previously (§2) we had assumed that uN<f and 8{(r2> -~ V2]<€AN. Below we show
that these relations are valid. The first.one follows from N< Ns. This implies that

uNB<(Bf—-a)/B—hONiB2<I.

To see the second, it is reasonable to assume that the dispersion
{v¥y—VE~2C~ B2

Although V reduces monotonically, as for the order of terms
B~(RIBN~ [y - V2

As 8> 1, we have
AN [12— PEJle,

Noting that in our theory B~fi8< 1, we have
[e2y - Vepzg L.

Therefore
AN 8{% - Vel

Further justification can be found in table 1, where we have listed the values of the
various parameters for the creep case considered.

5. Velocity reduction in strained crystals

According to the experiment of Gilman and Johnston (1962) involving the stress-pulse
technique of measuring V, the graph for the unstrained and strain-hardened (~0.1%;
samples of LiF are shifted with respect to each other. The values in these samples were
respectively N(unstrained)~ 0% and N(strained)~ 5 x 106 cm~2. From equation (22) one
obtains the following relations between the velocities V(strained) and ¥(unstrained) in
the two crystals:

V(strained)= V(unstrained) — (h/B) [N (strained) — N(unstrained)]

V(strained) . A N(strained)

R= - .
¥ (unstrained) B V(unstrained)

(Here N{unstrained) has been neglected compared to N(strained).) Since the values of
V, N, oa and ¢ pertaining to creep at 1~210s (see §4) are in the range covered by the
present case, we use N(strained)x~ Ns and F(unstrained) >~ B and obtain (using table 1)
R=0.02. From the results of Gilman and Johnston (1962), Rx0.00]. Thus there is
order-of-magnitude agreement.

A few more comments will be made. As o; is proportional to N(t), it has the same
time dependence as N(r). It starts almost from zero value, saturates during secondary

10~
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creep. The driving stress
ga=oa—[N{t)— No}hM b {28)

has the same functiona! form as that of the velocity V. It is at its maximum initially, and
attains a constant value as N— N;, during secondary creep. After N saturates, the strain
rate becomes constant, Equation (28) also provides insight into the situation prevailing
in a tensile test. Kocks er af (1975) made the observation that the inference drawn from
the secondary creep region is equally applicable to conditions during a tensile test which
corresponds to the same strain rate. Let s’ and oy’ respectively be the stress sensed by the
load cell and the internal stress developed in the specimen during a tensile test. The
quantity corresponding to aq in this experiment is o9'=0a"—06i'. As gq is constant
during secondary creep, one would expect ¢4’ to remain so during a tensile test. This is in
fact confirmed by the stress relaxation data for LiF obtained by Gupta and Li (1970)—
see their figure 8.

6. Discussion

The main result of our theory is the derivation of the evolution of the internal stress oy
(equation (12)) during creep of materials like LiF. Qur theory unifies several well known
phenomenological relations; these are expressed by equations (10) and (12-14). It leads
to a creep law (equation (26)) in excellent agreement with the experimental data on LiF,
and it explains successfully the reduction of the velocity of dislocations in strained
crystals of LiF. There are no data available to check the expressions for the cumulants
(equations (22-25)) of the velocity distribution.

The distribution, strictly speaking, should be bimodal. The absence of this correct
feature in our present calculation is due to the unsatisfactory way in which we have
modelled the fand the # terms to help us obtain the solution. However, we argue below
that the actual distribution should be very nearly the one obtained by appending to the
present p(r,t) (for vz0) its mirror reflected part p(—v,7). To see this, consider the
contribution to 8p/dr arising due to the f'term alone. This should have the form

b+ d ; . b__ .| . .
,..f'l”g“] e [P(l)@(b)]—frb_l 3 {P(L)@( £)}

9
= =3, PO - p(t)O(-1)] (29)
where @(r)= + 1 for © 2 0 and zero otherwise. In a similar way the breeding term should
contribute equally to positive and nepative dislocations, We retain all other terms which
include interaction between dislocations as they have been correctly modelled. Then we
have the equation

dp(e, 1) _

9 g2
0= —ap)+B 5 Cp(e)+e

af:_.(;‘) +[0(r)— O(—1)] Bup (r)

£ 2 (0= 0=l -1 [, plo-v\0p ) &

o
— o

+h[° ple—v.1) apg:’,: ) av', (30)

We now show that the solution of the above equation is essentially the same as the earlier
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one except that it is bimodal. To see this, consider only the 8, fand g terms. Without the
£ term the solution is a Gaussian centred around the origin. Inciuding the f term changes
the nature of the solution to a bimodal form.t With these terms p(—r,1) satisfies the
same equation as p(t,1) (with the same initial conditions). Thus

p(v,r)sp(-v,l).

Using this and defining
Ye= f: plr,r)cos (wr) dr

after some algebra, we get
2 0 . R
X~ Bow X +if |l xe = ge'xe: 31
at dw

Clearly, this leads to a bimodal distribution with the peaks appearing asymptotically at
delr=218

Now consider the effect of including other terms except the p and the A terms. All these
terms are symmetric in v, Thus the addition of these terms does not destroy the bimodal
nature. The u term also gives 2 symmetrical contribution. To see this, consider this term
in the Fourier transformed space, i.c. consider the term — pxZ(w). 1f

P(tst)=P(_U’r)
then

X(wst)':x{'_wst)
and vice-versa, thus proving our assertion. The contribution from the h term is

ihwy? (w).
Changing t—~ —t corresponds to changing

ihwy?(w)—> —ihwyx*(~ w).
Thus the 4 term makes opposing contributions for t— —v, which still retains the symmetry
of p(r,1) about the origin. On the basis of present calculation, we recognise that the time
variations of all cumulants arise from the h term, in particular, k3 and k¢ becoming
progressively negative. Since the h term in equation (30) also contributes in the same
way as it did to equation (5), the bimodal distribution should have sharp edges on both
sides.

To see the relationship of this distribution to the one governed by equation (8), 1t 1s
fair to assume the same initial density of positive and negative dislocations. Let

J.‘iwp(!:,t) dv=N-(t)
and

,[ * p(o,t) de=No(1).

Then the above statement means N_(0)=N0). With the evolution of time, the equality
of the densities N+ and N_is maintained except for ihe fact that the contributions due to
p and A terms to N+ and N. are negative. In addition, the k term has the effect of moving

+ Note that the bimodal form arises only due to the fterm.
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both the edges towards the origin. For this reason, it is clear that the bimodal distribu-
tion should have the form p(t,t) that we obtained as a solution to equation (5) for v 20
and should have in addition, a mirror-reflected part for r<0. (Note that N=2N.=
2N, i.e. the areas under the distribution to the left and to the right of the origin are
equal.) We therefore feel that the present calculation does indeed represent the physical
situation quite well.

Finally we wish to mention one curious fact regarding the last term in § (equation
(5¢)) relating to the internal stress field. As is clear by now, the relation o~ N is a
consequence of the term

A J’ ® v pe—r,n)ap(v, 1)far.

One might suspect that other complex terms in p may lead to different relations for the
internal stress. We were however unable to find any other suitable forms in p. For
example the form

w7, 8¢ p(o—) exp [~ (hip) 3] p(e)
leads to a constant internal stress which is unphysical. It appears that it is difficult 10
postulate terms which lead to the more common form oy~N12. It may be necessary to
modify the continuity equation from, say, a two-particle distribution function to a
multiparticie one. The reason lies in the fact that the present approach leads only to o,
proportional to a power of N (by including more convolutions). However, it is unreason-

able to expect a nonanalytic function N2 to be derivable ‘from any finite sequence
involving powers of N.
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Appendix
Intreducing the characteristic function of p(t,t)
X(“’")’_‘F_Dm dv p(r, 1) exp (—ive) {AD)
and using it in equation (5), we get
oy . Oy .
= = —(at+iwf+qu?)y —(Bw—16) 2% — (p—ihw)y2. (A2)
or dw
The first independent solution is

(w=i/B) exp (— )= (w—i6/B)g(t)=C1’ (A3)

~{3-
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where Ci' is a constant. The second independent solution can be written in the form

X Hew)={{w)+C2") exp (fmdm' (Q+gg%%’2)) "o

where C2’ is a constant, and

w ko

i/
A 5

1= B

) f1 ()~

I{w) (AS)
with
I-m(w)= [ dw' (' = i6/B)~m exp (- B’ — Cw'?) m=0,1. (A6)

In the above equations

B=(fB)+(qb/8%) (A7)

C=q28 (A8)
and

n={_(—a+ BE)L. (A9)

Eliminating C," and C»' from equations (A3, A4) and using the initial condition (18)
we get

X Hw, )= N1 exp [iwgro—1B(w, — w) = Clwy?— w?)]+Jy(w) exp (iBw + Cw?)
{A10)
Jy(w)=(w=i8/B) [/{w) - I(w)] (A1)
with 1, (w) standing for J{w) (equation AS) with o replaced by
wy=wd+iE(1—4)  P=glt)et)

in the limit of the integral. J, contains the integral

where

Ly-m{w) = I _p(w)= 7 du’ ('~ i6/8y-m exp [~iBuw'~ Cu'?].  (AL2)

As >0 and is not an integer, the above integral cannot be carried out exactly, As we
are interested in obtaining only the first few moments, given by

NS =i (3% /0w ™) ump (A13)

it is sufficient to attempt a power series solution in w. It is clear that around w=0, the
exponential varies slowly with o, and a dominant contribution of Y7 arises from
(w—i6;B)r-m near the lower limit (for m=1). Thus the larger time scale emerges naturally
as the n power of . Performing a series of partial integrations, we get

I'—-m(w) - I:_ ,n(w)
I

=> () (' = i8] Byr-m+in
e (—m+Dm=-m+2)...(p—m+k+1)

dk N . (=)
—iBew' — e
X g FP (Z1Bw= Cu [, -m+D(~m+2) .. (q-m+i+1)
w , di-t i
xf dw' (@' —if/fytl-m=1 T exp(—iBa'~ Cw'?). (A14)
wy de’i-l

- 14-
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We have two small parameters -1 and 4. Using equation (A14) in (A1), and dropping
all power of ¢ larger than one and of 8- larger than two, the expression for J, up to w? is

Jo(w)= —Ne~t Ko+ Nyt exp (—iBw — Ca)

x(l+yw+8w2+vw3+§w4)+0(ﬁ-2. ¥, wh) (A15)
where
Ko=exp [(BO/B)+(CE[BH)] =] (A16)
Ne=ng/(uB+h0) (A17)
=;1'f—1-i-g5% (A18)
2 B2 h BN;

=2 - o ——— Al9
32 GINE+)  BG DD (A19)
The expressions for v and £ are cumbersome, and are therefore not given here. However,
expressions for up to the fourth moment, which involve » and £, have been given in the
text.
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Abstract. We investigate the mathematical propertics of the statistical model for
dislocation dynamics introduced in the context of creep. The situation corresponds to
a nonstationary process in which all the cumnulants depend on the density. Based on
expressions derived for the first four cumulants via a series expansion derived in our
earlier work, we derive an approximate form for the characteristic function. The solu-
tion is shown to be a good approximation. The distribution function is platykurtic in
nature. The velocity autocorrelation function is also calculated.

1. Introduction

Recently (Ananthakrishna and Sahoo 1981, hereafter referred to as I) we proposed a
statistical theory of dislocation dynamics in the context of creep and applied it to creep
in LiF. (Creep is time-dependent yielding of material under constant applied stress.)
Basically, the phenomenon is one where dislocations multiply, forming dipoles and forest
dislocations (Gilman 1969). These in turn act as obstacles for mobile dislocations leading
to a reduction in their average velocity V. Generally, for most materials, ¥ ~(c*)"
where n is some suitable exponent and o* = 0a— A4/ N is the effective stress. oa is the
applied stress, 4 a constant and N the total density of dislocations. However, there are
simple materials like LiF for which a simpler relation V'=Vo— AN is expected to hold
reasonably well, at least for low levels of strain. Here ¥o is a constant for a given tem-
perature and at a given oo (Webster 1966, Gilman 1969). Our objective was to construct
a statistical theory for such simple materials as a first step in understanding plastic flow.
Based on well known mechanisms operating in LiF (and materials like LiF) we wrote an
extended Fokker-Pianck equation (EFpE) for the conditional density with nonlinear and
nonlocal sink terms. We obtained explicit expressions for the first four cumulants via a
series expansion in terms of two small parameters. The e¥PE has the general feature that
all the moments (and the cumulants) depend on time through the total density, i.e. the
zeroth moment, which is not conserved. Such a general feature of moments (or the
distribution function) depending on time is known to arise in other situations {Clement
1978).

The purpose of this paper is 1o investigate some mathematical properties of the model
introduced in 1 and to investigate the extent to which the approximation used earlier is
valid. In §2 we present the EFPE and explain bricfly the physical meanings of the various

0022-3727:81/112091 + 10 $01.50 ¢ 1981 The lnstitute of Physics 2091
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terms in the differential equation in the context of creep. We modify some conventional
relations in probability theory to accommeodate the probability nonconservation. We
also identify the initial state of the system. This is essential since the process considered is
nonstationary. [n §3 we summarise the results obtained in I, i.c. expressions for the first
four conditional cumulants kse, (#=1 to 4). For n=3 and 4, we find that k.. =const.
Min-1yc Where mgc is the nth conc!ilional moment. This result suggests that the above
relation may be valid for all n>3. Assuming this relation to hold, we calculate the
characteristic function in a clcsed form. The solution thus obtained satisfies the original
differential equation for the characteristic function reasonably well. Some other proper-
ties are also investigated. The velocity autocorrelation function is also calculated.

2. The extended Fokker—Planck equation

The central role is played by the conditional probability density (cPD) p(rt{rot) of
finding dislocations having velocity v at time ¢ given that they had a velocity v at time g,
The range of ¢ is taken to be from — o0 to co. (For more details see I.) The extended

Fokker-Planck equation is
) af
apl (t"|v0'0)+a-v=s ) (la)

where
J= —(ﬁv—f)p(l.‘!lvofo)—-q g{ (v1]roto) (18)

and

= —(a=0)p(rifrofo) - p f:x de' p(e—1t', t|roto) p(v' tjvoto)

' x ¥ r a ¢
+hf_wdb‘ plt—1u',t|volo) a§(u 1| vato). (ic)

The above equation reduces to the usual Fokker-Planck equation if §=0. The first
term in J, in the context of dis ocation dynamics and plastic flow, is related to the disloca-
tion drag, the second to the applied stress and the third to velocity ‘diffusion’. The first
term in S (the term —ap) corresponds to the rate at which dislocations of velocity o are
stopped at fixed obstacies (eg. precipitates, grain boundaries, etc). The second term
(6vp) corresponds to the production of dislocations by multiple cross-glide (Gilman 1969).
The third term represents the depletion of dislocations (monopoles) by pairwise inter-
actions forming ‘dipoles’ (i.¢., a pair of monopoles bound to each other). The last term
corresponds 1o the changes ir. the distribution of velocities of dislocations due to their
mutual interaction. (This term leads to the linear decrease of the average velocity.) This
term also leads to change in the density as a function of time. (For detailed explanation of
these terms, see 1.)

All measurabie quantities oocur as ratios with respect to 8 (3 1), the largest being f/8.
This quantity is very much larger than k/B, ¢'B, a/f and u!B. However, the quantity
(hiB)N, where N is the total density of dislocations can be comparable to f /B. Wherever
there is a need to compare the orders of magnitude of various quantities appearing in our

.-(}'
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calculations. we choose the values of these quantities from the physical case applied,
namely creep in LiF (Johnston and Gilman 1959, and ). See table | where we have listed
the values used in calculating the creep curve in L.

The reasons for considering the time evolution of the cpD is that for timescales of the
order of f-1 the CPD is esseatially Markovian and for timescales over which the non-

Table 1. Values.of parameters used in calculation of the creep curve for LiF for os=

380 g mm-2.

Parameter VYalue

B=fiB 30Ixi0-3cms?

8 30cm-?!

B 10v s-1-1013 571

& 1.82x 103571

m 2271 x 10" em? 571
hiB 3535 % 107 emd !
Ns 8.4x 100 cm?

Na 7.5% 104 cm-?
2C=¢/B B?

conservative effects become operative the process essentially becomes a purely random
process, i.e. all joint distributions factor into products of the single-variable but non-
stationary distributions. Thus in both cases it is sufficient to consider the CPD to describe
the process.

Since the process is nonstationary. we have to identify the initial state of the system in
order to be able to calculate the final state and the joint probability density (D) p(ri:
vofo). Further, some well known relations of probability theory have to be modified in
order to deal with the present problem where the probability is not conserved. The initial
state of the system is characterised by the absence of source and sink terms in the equa-
tion for the cpD (i.e. S=0 in equation (1)). In this case the -+ solution determines
the initial distribution of the actual problem, i.e. when S is present. We define

[ p(eo) dro= No @)
the total (dislocation) density at time fo!
Rop(e, 1, to)= I p(vtvots) p(to, fo) dro

EJ' p(rt; voto) dro )

and

[ p(e. 1, t0) de= N(t, 10) )

the total density at time 1. Noisin principle different from No. The deviation of Ao from
No may be considered as a measure of correlation between the states at t, 7 and v'1’ (see
discussion). The initial probability density p(ro) occupies a very special status in our
problem since it is at r={o that the stress is applied. It is due to this fact that the state at
any later time 1 is fixed by both p(vo) and p(rt;rofo). (Note that there is no loss of general-
ity in defining p(x, 1, fo) in the above fashion.) However, for calculating a general jPD
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for any two arbitrary times p(', 1': of) (fo< 1< '), one has to first obtain p(r, 1. 10) from
equation (3) and use

pl't et)=p(v' 1" [v) p(u. 1, 10). (5)

We also define the conditional density by
|. p(rifroto) de= Nt to). 6)

Note that the quantity Ne(t, fo) is a function of vo which has been suppressed.
It is -worth emphasising that we are departing from the conventional probability
density (Stratonovich 1963) in the following respects:

(1) The probability is not conserved, i.c.

grfp(t'-f!vofo) d“"d::c (1, to)# 0.

(i1} The JpD does not obey the symmetry relation, i.c.
p(v ' en)# plvtiv'r'),
(iii) Although

' dreep(er; vote) = lvop(t’, 1, 1)

l- dep(rt; voto) # N(1, to) p(vete) {to< 1)
(iv) For yp<t<t’
“ dep(e't';et)# N(Lto)p(e', 1, 1),

However, these relations simplify under a decoupling approximation {see discussion).
In order to solve equation (1), we use physicaily reasonable boundary conditions for
large v, namely

lim plvt|vato) =0
. ép
iim —~ (rt|voto)+0
r--l: x av( |voto) )
and
lim rap{vt|tote)—>0,

We also make use of the initial condition
him plot|tolo) = Nod (v — ). (8)
P =iy

2. 1. Initial probability density

As stated earlier the initial density p(ro) would first be required. The identification of
the initial state of the system can only be done by physical considerations. The distribu-
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tion p(ro) is the one induced under the action of applied stress during a time which is
short compared to the time for the source and sink terms to become operative. Under
these conditions, the probability is conserved. To avoid confusion we shall use a different
symbol p(et]eir)) for the cPD when S§=0. The solution can be easily obtained (Wang
and Uhlenbeck 1945) and is

plotjost)) =(dnec) Ve exp [~ (v - B1)?jdc1] 2]
where

Bi(t)=vip+(IBY(1 - (10)
is the conditional average velocity

cr=(g/28Y(1 - %) (11}
and

yp=exp {—Bl1—n)] (12)

The initial state of the system is then represented by taking the limit 1 — 1, o0, except for
a normalisation factor which corresponds to the initial density Np of the dislocations.

Thus
P(vo)=No(2—g—q)-Mexp [—% (Avo—*g)z]. (13)

3. Ap approximate solution of the EFPE

In this section, we summarise the results obtained in [ via a power-series solution in
terms of two smal! parameters 8-1 and  (see table 1). We then examine the extent to
which the approximation is valid. The characteristic function is defined by

x(ew, 1, Lotol= |7_ . dup(er|roto) exp (1wt). (14}

For simplicity of notation. we shall suppress to and fa in x. Using equation (14) in
equation {1). we get .

d . N . g O
Exf= —(a+!wf+qw'-)x—(,u.—lhw)xg—(ﬁw-le)a—z. (13)

We have obtained closed-form expressions for the first four cumulants via a power-series
expansion in o using

Necomomin (2X) (6)

We summarise the results here:

Ne(t, toY=Ns {1 + " ko [(Ns/No) exp (— Ouo/B)— 1]} 71 (17
with ko= |

kio=(t)e=B—(h/B)N. (18)

k2e=2C—(h/BYNLEDe (19)

,Zo,
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where
Na=nB%/(uf+hb) (20)
7f=Bb-a @)
B=(f|B)+(q%/8% (22)
and
C=(q/28). ~ (23

The subscript ¢ in the above quantities refer to averaging with respect to the conditional
density. The third and the fourth cumulants are given by

kac= —(hiB)Nc(e®e (24)

and
kec= =(h/B)Net®) e (%)

Calculation of higher cumulants is rather cumbersome and has not been carried out. The
above equations (24) and (25) strongly suggest that within the approximation with which
thesc expressions have been calculated, the following relation may hold even for n> 4.

knc= —(h/BYNemm-1) ¢ (26)

where mac is the nth conditional moment. If we assume that equation (26) is valid along
with equations (17-19}, (24) and (25) then we can obtain the characteristic function ya
which should be expected to hold at least approximately. This x4 would satisfy a differ-
ential equation. This can be compared with the original differential equation (15) for the
true y to determine the extent to which the approximation is valid.

By definition

X, = liw) < (i) |
m._l-f-z . m,.g-exp( —n!—ltnc)- (27)

1

The factor Nc would be necessary in order to satisfy x(0, r)=Nc(r). Using equations
(17-19) and (24-26) in equation (27}, we get a differential equation for XA

P~ (184 2Cu) ya+ilh B A 28)

The solution of this equation with the initial condition that at w=0, (0, 1)=N(r), is

xalw, )=NeF(w)/ (1 —i(h/BYNeg(w) (29)
where

Flw)=exp (—iBw - Cow?) 30
and

#lw)= [, Flw')dw’ Gy

Using equations (20-23) and equation (28), we get
o @ . .
-(ﬁw - |6) af—: —(Ifw +qw2 + G)XA + lhwx_\z - 'qﬁXA + (’79:’]3) XAz' (32)

Comparing equation (32) with equation (15), we find that if a y satisfies equation (28),

~2 1~
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then it should also satisfy
dx ht ) .
X By~ 33
2= 1Px ( gTE)x (33
if it has to be a solution of equation (15). However, from equation (29), we find that ya
instead satisfies .

Oxa . nBxa _("9 )Lﬁ (34)

B I-ih/BNep \B ') Flw)

Equation (34) is similar to equation (33). To see how good an approximation equation
(34) is, consider the values of the parameters. We recall that f/8» A8 u/B. Further
since (1>c>0, B>(h/B)Nc. (Note that gf/82<€ 1 since g/8=2c is the initial dispersion.)
So if (h/B) No< 1 then the first term in equation (34) can be approximated by nf8ya for
all w. It may be noted that the expressions for the various cumulants does not have this
constraint (k/B)Nc<1. Consider the second term. The fact that the time dependence
is correctly satisfied can be seen by setting w=0. The dependence on w comes from
F(w) and g{w). For (#/f)N <1, the contribution from ¢{w) in x4% can be approximated
reasonably well for all w. The contribution from F(w), however, is reasonable only for
small w. For large w, it should again be a reasonable approximation since x,? and
xa% F(w) have both asymptotic exponential dependence. Thus, ya(w, 7) given by
equation (29) may be considered as a reasonably good approximate solution. We have
not been able 1o invert ya(w, ¢) to obtain the cpD. However, p{t, ¢, 1o} can be obtained
numerically for values of parameters in the creep experiment. Earlier (1) we had noted
that since both k3 and k4 are negative, the distribution should be platykurtic (Kendall
and Stuart 1969).

Several observations can be made at this point. The characteristic function y depends
on ve through exp (—#fro'B) (see equations (17-25)). All conditional moments also
depend on vo through N, since for the initial state {+>= B< B-8, and since in our calcula-
tion we have taken ¢ -0 for f—fo®» 11~ -1, for the sake of consistency we should set
exp ( — Bvg/B)~ 1. This is in fact a very good approximation since r, ~ -1 is very small
compared to the duration of deformation. In this approximation, the cPD loses memory
of its initial velocity but retains its dependence on fo. This is due to the fact that it
identifies the initial density No. Then, the CPD goes over to the unconditional density

p (vtiveto)— p{r, t = o). (3%

The dependence on time appears in the form r—ro. A general JpD p(v'1";¢1) with an
arbitrary (¢v'1’;vf) not representing the initial state rofe, then decouples to

pv'tiet)=p(', '~ p(r, 1 —-1t0). (36)

The time dependence is factored in the form 1" —1 and r—fo, and is due to the nature of
the dependence of N¢ on time. In particular

p(rt;vote) = p{ro) p(t, L —to). (37

Thus, for 1—ty» 71, the process becomes completely random. Since the distribution
function p(p, ¢, to) depends on time, the process is nonstaiionary.

Few more observations can be made, The densities corresponding to p(c’, t'—1) and
p(t, t—10) are N(t'—1) and N(1—1p). From equation (17), it is clear that the initial
density at a time ¢ is required to define N(¢r'—r). The only way to fix this unambiguously
is to start from the same initial value, Ny at 1p, when defining both N{(¢+'—r)and N (1 -10).
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Then

N(:'-:)=Ns/['+("_'(7}v‘i’—°)—l)exp[—nﬁ(r’—r)l]' (38)
Using the expression for N(1—r10), we get

N{t' —=t)=N(t'—t). (39

Consider a bad sample whose initial density is large, say No': then it would be un-
realistic to assume that the initial strain at 7o is zero. In such a case, the above relation
gives a method of estimating the initial strain. This is done by starting from a reasonably
pure sample and applying the same stress as that applied to study the creep curve for the
bad sample, so as to induce a density No'. In addition to this N-1 plot of the good
sample, we also need the e-f plot. From these two, the strain corresponding to Mo’ can

1
:::' -]
€
g
A —
02 =
>
A ! | i R
0 30 %0 90 26 fsc e 210

Time (s)

Figure 1. Creep curve for two different values of the nitial densities and the choice of
initial value of strain for a large initial density, Ns=8.4x fem~t; w0, x=0;
hiB=13.535x10-1°cm? 51 Full curves. theory: @. experimental values.

be assigned as the initial strain for the bad sample. At this point we wish to point out that
in 1 we have taken eo=0 for & sample whose initial density is not small {(curve D of figure
I in 1). It is because of this unrealistic choice that the curve for large initial Ng lies below
the curve with small Np. If we used the above procedure, all curves would be asymptotic-
ally paraliel. In other words if we shift the origin of the creep curve for the bad sample.
on to the creep curve of the good sample, they wilt coincide. Figure 1 shows the creep
curve of a bad sample with reference to a good sample.

4. Discussion

We now comment on the broad features of the present theory which perhaps can be used
in other areas. The present problem can be looked upon as a problem in transport
theory. The analogy between Ohm's law and Orowan's equation has been noted earlier
(Gilman 1969). In a conventional transport problem, the response of the system is
linearly related to the applied *force”. This is due to the fact that the ‘subsystem’ under
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consideration is weakly coupled to the ‘reservoir’ and the application of external force
affects the subsystem only. The change i1 the subsystem does not affect the nature of the
reservoir. Under such linear conditions, the cPD (which contains information about the
correlation function) can be easily calculated. However, in the present problem the fact
that the average velocity and other cum ilants are functions of the density suggests that
any change in the nature of the ‘subsystem’ (the ensembie of dislocations) affects the
‘reservoir’ (the lattice) strongly. Thisis clear due to the fact that the internal stress field (a
property of the fattice) changes as creep proceeds. Under these conditions, the response
of the subsystem to the applied force s in general nonlinear. Instead of attempting
to handle a nonlinear response, we have included the nonlinearity in the equation for the
evolution of the ¢pD. This procedure a lows us to calculate the correlation function as
long as we can obtain a solution of the cifferential equation for the CPD.

It may be recalled that the dependence on the initial velocity comes only through the
factor exp (— Bro/B) in No. To carry out the calculations, keeping even the linear terms
in ve, is rather cumbersome. However, Lsing the crude decoupling approximation gives
some indication of how nonstationarity complicates the situation. In this approximation

wvy=[B—(hiBNE —][B~hB)N(1—to)]. (40)

The strain rate autocorrelation function in the same approximation works out to
U =) (=10 = b2f &’ de—v—t'p('1'; o)
~BEN{' =) Nt —to)<{ve’s
=BN(t' =t N(t = 10) [B—CH!B)N(t' = 10)] [B— (h/ BN (1 — to)] (41)

where we have used equation (39). As z function of 1 (or ¢'), this function has the same
form as the mobile dislocation density we have obtained elsewhere (Sahoo and Anantha-
krishna 1982, Anamhakrishna and Saho> 1978 see also Gilman 1969). We believe that
this autocorrelation function can be related to many measurable quantities (perhaps an
example would be the acoustic emission phenomena).

The last observation pertains to the time development of the distribution function.
Generally, under conservative- effects, an initial delta function for the cPb broadens as
time proceeds (as in the case of Brownian motion). 1n the present problem also, the cpD
does broaden initially for a short time corresponding to the evolution under the absence
of the source and the sink terms. However, for the rest of the time when the nonconserva-
tive effects come into play, both the first and the second cumulant reduce, leading to the
sharpening of the distribution. {For a certain choice of the value of the parameters, the
dispersion can go to zero.) This general feature of sharpening of the distribution, starting
from a broad distribution, arises due t> nonlinear nonlocal terms. Such situations do
arise in many other problems, for example in the formation of a void lattice under irradia-
tion (Stoneham 1975). In this case what has been understood is that the void lattice is the
minimum energy configuration (see for exampie Stoneham 1975). How exactly a broad
distribution in sizes of voids having a certain average size {r)> goes over to a sharply
peaked distribution with average size ry<<{r) is notclearly understood. We believe the
present method does throw some light on this problem as well and we are presently
looking into this problem.
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Abstract. We propose. on the basis of well known mechanisms. a dislocation transformation
model between mobile and immobile components. Anexplicit functional form for the mobile
fraction of dislocations is derived. The theory is restricted to matenials in which the internal
stress varies linearly with the total dislocation density. A new creep law is derived and is
apphed to several materials, Excelient agreement is found between theoretical predictions
and experimental results.

1. Introduction

One of the most important variables in dislocation dvnamic models of plastic flow is the
density N of mobile distocations. There is at present no satisfactory theory relating N,
to the total density N of all dislocations. Gilman (1965. 1969) proposed a relation

Ny(€) = N(¢&) exp( —-Hela))

where H is a constant called the hardening coefficient, g, is the applied stress and ¢
denotes strain. Here N(e) is assumed to be linear in & N(e) = Ny + Me, where Ny and
M are constants. In deriving this expression, Gilman (1965) has assumed that the average
velocity of mobile dislocations remains constant during creep. Gilman (1969} has sum-
marised his view of the statistical description of the situation in the following wav. The
effect of interactions on the mobile population can be described in either of two wavs
from a statistical viewpoint. One is to consider that the average dislocation velocity
decreases as a result of plastic strain. because coliisions tend to reduce the drift velocity,
The other is to consider that the moving dislocations continue to move at the same
speed, but the fraction of the total density that moves decreases continually as the plastic
strain increases. The two viewpoints are statistically equivalent. (See Gilman 1969, p
185.)

One of the purposes of this Paper is to investigate the equivalence of the two views
within the framework of a simple modelin which the dependence of the average velocily
Von ¢ (or equivalentiy. NV) is known, Alternately. assuming the equivalence of the two
views, we attempt to relate N¢ to N. Generally. for most materials, V' ~ (0")" whete n
1ssome suitable exponent. Here o* = g, ~ AN Nisthe effective stress and 4 isaconstant
(Alexander and Haasen 1968).

0022-3727/82/081439 + 11 $02.00 © 1982 The Institute of Physics 1439
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Other forms of V(o*) have also been proposed in the literature. see for example,
Gilman (1969). However. in simple materials like LiF. Vdecreases linearly with increase
in N (Webster 1966 and references therein, Gillis and Gilman 1965):

V=V, - HN. (1)

Here H and V; are constants for a given temperature at a given o,.

Relation (1} has been confirmed experimentally by Gilman and Johnston (1962) for
LiF. Often equation (1) is looked upon as an approximation (Webster 1966) to a more
general relation given by Gilman (1969). For low levels of strain, Webster (1966) has
also applied this equation to other materials. For simplicity, we confine our attention to
systems where equation (1) holds, and consider deformation under creep. Based on well
known mechanisms, we propose adislocation transformation mode! which gives coupled
time-evolution equations for N and N Thisequation for Nis identical to the one derived
in our earlier work (Ananthakrishna and Sahoo 1981a, to be referred to hereafter as );
V has to be interpreted as the velocity averaged with respect to the distribution function
p(v) of 1. Solving the equation for N and Ny together with relation (1). we obtain an
explicit functional form for the mobile fraction @(1) (= Ng(1)/N(1)). In order to check
whether the time dependence of Ng(1) has been properly incorporated into it, we
calculate the average velocity V, associated with Ngunder the assumption of equivalence
of the two viewpoints. We find that although V, is not strictly constant, it is aimost so.
In order to assess how good is the form of N, s0 constructed we derive a creep law
assuming that V, is constant and apply it to creep in LiF (Johnston 1962). We find
excellent agreement for three different stresses considered. We also apply it to ALO,
(Webster 1966) and a nicke! based alloy (Watchman 1957). An indication that these
materials satisfy equation (1) comes from the fact that Webster (1966) has applied a
creep law derived on the basis of equation (1). The agreement of our theory with
experiments is again very good.

2. The model

We assume that the entire population of dislocations (the individual units denoted by p)
consists of single dislocations (monopoles, denoted by g) and pairs of bound monopoles
(dipoles, denoted by d). Let p(v, 1), pe(v, 1) and py(v, 1} be their respective velocity
distribution functions, and these are related by

Po. 1) = pylv, 1) + pylv. 1),
Let N(1), Ny(r) and Ny(t) denote their respective densities, i.e.

N = f_: plv, 1) do

etc. Clearly we have
N = Ng + Nd- (2)

We assume the following set of reactions (with the rate constants denoted on the top of
the respective arrows),

1%

P—p+p (3a)
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kul

p+p——d (36)
p 4 p (1=ku? 0 (3(]
p+d—wp. (3d)

The first reaction (3a) corresponds to the breeding of new dislocations by the well known
cross glide mechanism (Gilman and Johnston 1962); the breeding rate is known to
be proportional to the average velocity V of all dislocations. where V(1) =
(VN)Z. dv p(v, f)v and 8 is the breeding constant. The second reaction (3b) corre-
sponds to the formation of dipoles and the third (3c), to mutual annihilation of two
monopoles. The last reaction (3d) corresponds to transformation of dipoles into mono-
poles. A dominant mechanism by which dipoles are formed is by trapping parts of two
dislocations as they pass each other on closely spaced parallel glide planes. Annihilation
of two dislocations clearly occurs. when their glide planes are the same. Formation of
monopoles from dipoles occurs when the glide plane of a passing dislocation is the same
as that of one of the dislocations constituting the dipole. In LiF it is well known that the
formation of dipoles is the cause of hardening (Gilman 1969. p 147, Alexander and
Haasen 1968, pp 97, 105. See also Ananthakrishna 1981, 1982}). The last two processes
are the recovery processes. We believe that these are the dominant processes operating
for the cases we consider here. The constant X is very close to and slightly less than 1
which means the reaction (3c¢) is assumed to be much slower compared to {35). p and
u' are constants. All these reactions are well known and are listed by Gilman (1969. pp
193-4).

Here it should be pointed out that we have notincluded a number of other processes.
These are: p + p— s + s (e.g. formation of Lommer—Cottrell locks) and s — p {mobi-
lisation of an immobile dislocation due to athermal activation). These have been con-
sidered in another paper (Ananthakrishna and Sahoo 1981b). In such a case. the
structure of mobile dislocation density and that of creep are similar to that we obtain in
the present analysis.

We now reformulate the viewpoints of Gilman: the total flux of dislocations can be
written

NV=f dvplv.t)v

= dv p(v, o + J

—x —

E'S

dv pe(v, e

= NgVy + NV

It is expected that V, < V and since Ny < N, the second term in the right-hand side can
be ignored and we then approximate

NV =NV, (4)

In the first point of view, V decreases with time (the averaging is done with respect to
p(v, 1)). Thisis notinconsistent with the alternate viewpointin which V, remains constant
and the entire time variation of the flux is due to Ny(r) (the averaging is done with respect
to p(v, 1)). We have introduced the three distribution functions only to explain the
averagesinvolved. However, our entire calculation is done at a phenomenological level.
Assuming the statistical equivalence represented by equation (4). we would like to
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examine whether it is possibie to construct a model based on the second point of view,
Thus in our model we assume that equation (1) is valid and the transformations (3) give
a prescription to obtain N and N,. (The first point of view has been investigated in |
where equation (1) along with an expression for A has been derived. starting from an
equation for p(v, ). Equation (3) gives the same expressionfor N'asinl.) Then equation
(4) is used as a defining relation for V,.

The reactions (3a—d) lead to the following kinetic equations:

N = VN = uN? - (5a)
Ng= kuN® — u'NNy, (5b)

Equation (5a) is identical to the one assumed by Webster (1966) except for a constant
term in the right-hand side. This equation is also used by Gilman (1965) and Li (1963).
According 10 Webster (1966) and Li (1963) the quantities 8 and ¢ depend on o, and
temperature. Hence these are constants for deformation under creep. We retain this
assumption and also make a similar assumption that g’ is a constant.

Substituting equation (1) in equation (5a) we obtain

N = VN — Ny {6a)
where
W= u+ He. (6b)

The parameter H is to be identified with the quantity h/8of 1. where its physical meaning
has been discussed in detail. The solution of equation (6a) with the initial conditions
N = Ny atr = Ois the logistic curve

Nty =Nl +a)"' (7a)
where

a(t) = agexp(—6Vyr) (76)

ap = (Ny/Ng) — 1 (7¢)

N, = 6Vy/(u + H8). (7d)

The reaction cross-section of one mobile dislocation with another should not be too
different from that of a mobile dislocation with a dislocation dipole. This means that
#' and p" are of the same order of magnitude and we may assume u* = u”. This assumption
is quite good in these crystals where work-hardening occurs due to formation of dipoles.
In crystals with a diamond structure where work-hardening is known to occur due to
long range stress fields of single dislocations (Alexander and Haasen 1968). it is not
expected to hold good. Thus the present theory is not meant to be apphicabie to such
materials. Elsewhere (Ananthakrishna 1982) one of us has considered creep in such
materiais. Although this choice restricts the direct applicability of our results. the
essential feature of our theory is still retained with arbitrary u’ and u”. Subtracting
equation (5b) from equation (54) and using equations (1) and {2) with the above
assumption, we get

N, = VN — kuN* - u' NN, (8)

- R~



A dislocarion transformation model for mobile fraction 1443

Let k' be the fraction of ¥ that is mobile at the start of creep. i.c.
N, = k'Ny at1=0.

Using N as given by equation (7a) in equation (8) and with the above initial condition.
we obtain

Mo =N =k (1-2) ke (£)+ ok o (222)]

ay a(l + agy)
= Ngl(n) ' (9a)
where

k= k(wu). (9b)

Physically, the parameter k determines the amount of work hardening. It is the ratio of
the rates of formation and decomposition of dipoles. The Orowan equation is

£ = bVN, (10)

Here we assume that V, is constant. {This is only approximately valid as we shall show
in § 3.) Integrating equation (13) with the initial condition £ = g at 1 = 0, we obtain a
new creep faw:

£(t) = g9 = bV N f(D) (11a)
where
£0) = ([(1 k) -kln(l+a)r+ (k6V)
X In (1 + a)In (1 + @) + (8Y) 'In[(1 + a)(1 + ag))
X [(1 = k) + ap)iag ~ k'ia)
~ (k126V[In (1 + a)]2 — (k726V ) [In(1 +ap)]?

+k£ln(1+a)d.r). (115)

We note the following features associated with the creep law. The asvmptotic value
of N,. from equation (9)is(1 —k)N, which leadsto the creep rate in the secondary creep
tegion

£ = (1= k)BVN,, (12)

Thus unless £ is chosen as strictly equal to 1, the creep curve never flattens in the
secondary region. For a value of k very close to (but less than) unity. one has the strain
linearly increasing in time. and the slope of this linear rise is controlled by the parameter
k. (Note that £<1 since u' = p + H6>u.) The time at which creep changes over from
the transient to the primary region is the time of inflection 1. At r=1¢, &= 0 which
implies N, =0. Using this condition in equation (9), one obtains

L= ln(!ag +1- ao)/ﬂVn (130)
where

{ = expl(an~ | - k — k'Ykay). (13b)

- 30~




1444 D Sahoo and D Ananthakrishna

Ciearly the point of inflection exists if and only if £, > 0. i.e. if and only if /> 1 which
implies the condition

No < NStk + k). (14)
This means there is a point of inflection in creep as long as
O<sk'<1-k No< N, (15)

For 1 — k < k' < 1 and for any choice of N; violating equation (14). there is no point of
inflection. Thus there are two ciasses of qualitatively different creep curves. Note that
if k' is chosen as zero. i.e. if there are no mobile dislocations initially. then the initial
creep rate is zero. This would always give rise to a point of inflection.

We first apply the creep law to LiF. Except for the value of & (which is an adjustable
parameter), all other parameters are assumed to have values consistent with those
reported in the literature. {We have taken 6 = 3 x 10° m™! for LiF.) We describe. in
detail. how the theoretical creep curve is calculated for one value of g, = 3.73 MPa.
Creep curves calculated for other stresses and for other materials are dealt with later.
The approximate value of N (N, ~ 5.62 x 10" m™7) is fixed by the near asymptotic
value of £ (The value of N, is not given in Johnston (1962).) For the samples used. Ny
is reported to be 3 x 10° m™? in better samples to about 10° m™* in poorer ones. Our
choice is Np = 8 X 108 m " 2. From Johnston's {1962) power law V, = V; = (0,/5.29)"**
(where o, is the applied stress in MPa) we obtain Vi, = 3.033 x 10 *ms™! for g, =
3.73 MPa. the stress corresponding to the creep experiment (Johnston 1962). We obtain
a good fit to Johnston’s (1962) recorder tracings for k = 0.9778 (see figure 1). In figure 1
we have also presented the calculated creep curves corresponding to.a slight decrease of
k (k = 0.965) from the fitted value and the case corresponding to k = 1for which creep
saturates. This shows that k is a very sensitive parameter in the secondary creep region.

In figure 2 we have drawn a plot of N and N, normalised to N, for various values of
No. (The value of & is the one which fits the experimental curve.) For very small values
of Ny. the time taken for N to show any appreciable value (compared to its final density)
is very long. The mobile density is almost symmetric about its peak except for the flat

Strain {%]

S Sy Y R B

¢ 50 100 150 200
Time(s)

Figure 1. Creep curve for LiF for g, = 3.73 MPa. N. = 5.65 x 10" m . N, = 8§ x 10", m~*,

The points correspond to experiment and full curves to our theory. Variation of creep with
respect to different k values is shown.

Lo )
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Total and mobiie disiocation densities
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Time (5}

150 200

Figure 2. Time variation of the total dislocation density N (denoted by p} and the mobite
dislocation density N, (denoted by g) for different values of initial density N, A, =
565 % 10" m % & = 0.9788.

{non-zero} asymptotic part which is due to £ # 1. For a large value of A, there is a
pronounced asymmetry in N, for k' = 0 as can be seen from the curve corresponding
to No/N, = 0.5, For this value of Ny'N. the broken curve corresponds to the choice
k=1

In figure 2 we have shown that the initial density N controls the transient part of the
creep curve. The smaller the value of N, the longer it takes to generate a sufficient
number of dislocations to contribute to any observabie creep. For very large M. the
initial transient persists slightly for &' = 0 in contrast to the initial transient being
completely absent when k' = 1 is used (broken curve). This can be seen in figure 3 for
the value Na'N, = 0.5, We also note in figure 3 that by increasing N, from a reference

0 50 100 150 200 250
Time {5}

Figure 3. Creep curves calcuiated for different values of initial dislocation density. Also
shown are experimental points. A, = 5.65 x 101 m k= 09788 (A) Auh, = 0.0124- {B)
WA= 0.5.(C) NeN, = 0177 x 1078,

Dx—H
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value of L0124 X N (curve A) to a value of 0.5 x N {curve B). the amount of creep in
the secondary creep region is considerably reduced. This is due to the fact that we have
subtracted the arbitrary initial strain &, because we lack information about the initial
state. Taking the initial strain to be zero is rather artificial when A, is large. Ideally one
can choose & to be zero only when Ay is small comparedto N,. When all other parameters
are the same except the initial densities. the respective initial strains would not be the
same. One way of knowing the value of g, for large N, (sav. in a bad sample) is to start
from a reasonably pure sampie (N, < A,) and apply an appropriate stress to induce an
asymptotic strain £ which would produce the required value of A, in the bad sample.
The & for this case is then ', As Ny is increased. the point of inflection is reached earlier.
the peak of the N~ curve (see figure ) is reduced by almost half the corresponding
area under the reference curve. By reducing N, from the reference value to
{0.177 x 107®) N, (curve C). the above reasoning (also refiected in figure 2} leads to the
conclusion that the magnitude of strain should be higher than that of curve A in the
secondary stage. This is not shown in figure 3 as the crecp curve for the reduced density
18 still in its primary stage. Eventually it is expected to overtake curve A. We note here
that Webster (1966) has reported behaviour similar to that shown in figure 3,

In figure 4. we have plotted Ne'N for three different values of & For largerdeviations
of & from unity. the position of the peak shifts towards the right. indicating that the point
of inflection of the creep curve (which occurs at ¢ ~ 55 s for & = 0.9788) also shifts
towards the right.

Inordertocheck the validity of the creeplaw at other stress levels. we have computed
creep curves for LiF at two more stresses g, = 3.7§ MPa and 3.63 MPa (figure 5). The
same value of 8 and N have been used. This is consistent with the fact that Johnston's
(1962) samples used in his experiment had almost the same initial densitv A, The
parameter k. being a measure of work hardening. is expected to depend on o,. although
not too drastically. This is confirmed by our calculation.

10
i

08 -

Tota! and mobrle dislocation densities

s 50 100 150 200
Time (s}

Figure 4. Time variation of the toiai dislocation density A, the mobile disiocation density N,
and the dipole dislocation density A, (dashed curve) for different values of the parameter &:
{A).(B).(D). 0.9778: (C) 0.965. (E) 1.0. N, = 8 x 10" m = A=565=10"m -
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1

i

Stram (%)

0.5-

0 50 100 150 200
Time {5)

Figure 5. Creep in LiF, (A) 0, =378 MPa. nfi=0.107s . k = 0975, Ny=8 x 10¢m ",
A= TS0 m Y (B o, = 3.63MPa.nf=5.66 x 1077571 & = 0.977 A = g x 00 m-:,
No=49x108m-2.

3. Discussion

We now examine the validity of the constancy of ¥, assuming the equivalence of the two
viewpoints as expressed by equation (4). Substituting equations (1), (7} and (9) in
equation (4), we obtain

L,E_—']— ‘ —-—f{—hr—_l_ —_ ). =

7(' - 1) (1 Vo ) - @) (.1 1+ a([)/) =y (16a)
where

.J. = H:\IS:"VU. (lﬁb)

The parameter A does not occur in our creep law. It can be obtained in two different
ways. Since we have investigated creep in LiF using the first point of view in I where the
parameter /. appears, we can use the value of A from 1. For LiF 4=0.979 for 0, =
3.73 MPa. The second way to obtain 4 is to demand that the asymptotic creep rates in
both the viewpoints (see relation (4)) are equal. Using equations (1). (74) and (9a) in
equation (4) and assuming V,— V; asvmptotically gives 4 = k (= 0.9788 for this case).
In figure 6 we have plotted y«(r) using 4 = 0.979. together with two values of A. It can be
seenthat the maximum variation of yoccurs arounds = 80's. where v = 0.4. Incontrast.
the ratio V/V; reduces to as much as 0.02. Thus our assumption of constancy of V, is only
approximately valid. In spite of this fact, our creep law seems to agree very well with
experimental data. This can only imply that the essential time variation is already
incorporated in N,. ‘

We next apply the creep law to two other materials—Al;O; at 1100°C (Watchman
1957) and o, = 25.52 MPa and a nickel based allov MARM-200 a1 760 °C and g, =
5.92 MPa (Webster 1966). This we do in order to stress the wide range of applicability
of our model. The results of our calculation together with experimental curves are
presented in figures 7 and 8. The agreement is seen to be very good. The values of the
parameters we have used to obtain best fit are consistent with those of Webster (1966)
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Figure 6. Time variation of the function 1),
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Stram { % )
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Figure 7. Creep in ALO: for o, = 25.52 MPa. nf = 0.038h"', =24 10"m. k=0.99.
No=895x 10Fm™" N, =90 x 10°m~=.

who has fitted the same data. The consistency is seen by noting that Webster’'s parameters
are related to the creep law derived in 1. These parameters themselves have been related
10 the parameters occurring in our new creep law given in equation (11). (See equation
(16b) and the discussion that fotlows.)

The present calculation can be easily extended to crystals with diamond structure.
In such cases V~ (0*) withn=1and ¢* = 0, - AN'2. (See Alexander and Haasen
1968.) We have indeed constructed a model (Ananthakrishna 1982) with the same
transformations as in equation (3) with the difference that the rate constants depend on
N. Again, V, can be shown to be roughly constant. Elsewhere the present model has
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Figure 8. Creep in nickel based alloy MARM-200 for g, = 5.92 MPa, nf=0029h"",
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been used as the starting point in evolving a nonlinear oscillatory model for explaining
jumps on creep curve (Ananthakrishna and Sahoo 1981b).
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Abstract, A slight modification in the starting equation of our earlter model (Ananthakrishna
and Sahoo 1981} and the use of method of averages lead to expressions for the average
dislocation density and the average velocity. The average velocity varies as the square roat
of the dislocation densitv. A new creep law is derived which |s expected to hoid for cristals
with diamond structure. Itis applied 1o creepin Si. giving good agreement with experiments.
The creeplaw is cast into a new form in terms of new scaled variables—time and strain scaled
with respect to their values at the point of inflection. The scaled creep law is shown to be
independent of both temperature and stress for reasonably small initial densities.

1. Introduction

Recently (Ananthakrishna and Sahoo 1981, hereafter referred to as I) we gave a stat-
istical basis for creepin simple materials like LiF. where the average velocity V decreases
linearly with the total density N of dislocations (Gilman 1969). The situation is expected
to be applicable to low levels of strain in other materials also {Webster 1966). However,
for most other situations V ~(o, — A \’T')’".where g.isthe applied stress. A isa constant
and m is an exponent. For materials with diamond structure like Si. Ge etc, mis known
to be close to unity (Alexander and Haasen 1968). The purpose of this note is 1o extend
our earlier theory to materials like Si. The procedure followed is an averaging method
applied to a slightly altered €quation (from that used in 1) describing the velocity
distribution function of the dislocations. Under certain approximations. we derive an
equation for N and an equation for V. A new creep law is derived and applied to Si with
good agreement with experiments. In terms of scaled time and scaled strain (scaled with
respect to their values at the point of inflection) the scaled creep function is shown to be
independent of temperature and stress.

2. The model

We shall idealise the system to be one-dimensional as in I. Let p{v. 1) be the velocity
distribution function for the dislocations. We shall retain al] the assumptions made in ]
about p(v, ). Then the starting equation for us is an extended Fokker-Planck equation
for p(v, 1). It reads

éo(v.1y  aJ
o S
5t S (1a)
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where the current
d
I=~pro~fo- g

B bao, O ap
- _ (B _Po, _ Qop 1b)
(.w‘ M o Mot (

and the source

§= boipte.n — < [ pte = o opter. 0 @
= —{a- 6Go)ptet TTJ_I;)(I eLonple’. ) de

+%%_[zp(a~— v'.z)dp—;i,,;ﬂdp‘. (1c)
In the above equation, By is the drag coefficient. ba, is the force acting on a unit length
of a dislocation and Q is the velocity diffusion coefficient. M is the effective mass of a
dislocation of unit length. The first term in equation (1c) corresponds to stopping of
dislocations at precipitates etc with a rate constant a. The second term corresponds to
breeding of new disiocations via multiple slip with a rate equal to 6vp (Alexander and
Haasen 1968, p 93}. We have assumed the breeding coefficient # to be independent of
0, as Dew-Hughes has done (1961). The third and the fourth terms correspond to the
pairwise interaction of dislocations. These include two dislocations interacting to form
a third one which is relatively immobile. the formation of dislocation locks. two dis]o-
cations interacting to form two other dislocations. two dislocations of opposite sign
forming dipoles and the annihilation of two dislocations of opposite sign. The origin of
these terms has been explained at length in 1. (These processes are known to lead to the
hardening of crystals. See Gilman (1968) p 147). The additional factor N~!* has been
introduced in order to represent the fact that the mechanism of hardening in crystals
with diamond structure is different from that of LiF. In LiF. it is known that the internal
stress arises due to the formation of dipoles. whereas in the present case it is the long
range interaction between dislocations ( Alexander and Haasen {1968) pp 97.105). This
includes the interaction of perpendicular dislocations. Thus it is the first three processes
represented by the ¢ and A terms that should be modelled appropriatelyv, To do this,
consider two dislocations moving with velocity v and o', The collision rate of these
disiocations should be proportional to an ‘impact parameter’ whichis the closest possible
distance at which the interaction becomes significant. (Here it is helpful to see the
analogy of our equation with the Boltzmann transport equation which has been stressed
in 1. In the case of molecules of spherical geometry, the impact parameter has the
dimensions of area.) The average value of this distance necessarily decreases with the
increase in density and it is to account for this variation of the impact parameter as a
function of N that we have introduced the factor N~!°. From the above argument. itis
clear that this factor would not arise in the case of LiF since the formation of dipoles is
the dominant contribution to the internai stress. (The impact parameter in the case of
formation of dipoles is of the order of a few lattice spacings and does not depend on N}
From the analysis carried out to 1. it is clear that it is the Jast term that gives rise 10
the change in the average velocity and hence to the change in the internal stress, The
introduction of the factor N™! " in the last two terms will account for the correct variation
of the internal stress g,.1.e., o, ~ N'“in contrast to o, ~ Nin LiF.
We shall assume the coefficients u and A to be at most weak functions of stress. We
shalj also assume them to be independent of temperature. InI. we have further assumed

3% -




Creep in crvstals with diamond struciure 79

the deformation to be homogeneous. Although we shall retain this assumption some
Justification Is necessary since in the present case. the deformation is inhomogeneous
particularly when the initial density N is small (~200 ¢cm™). Alexander and Haasen
{1968. pp 93.98.99. 125) note that the deformation couid be made nearly homogeneous
by choosing large N, {~10° cm™). Patel (1964) obtains reasonably homogeneous defor-
mation due to oxygen precipitates. Yet another reason for retaining this assumption is
that it allows for mathematical simplicity. The fact that this would not be a serious
assumption is supported by the fact that the existing theories compare well with some
aspects of experiments except when the sample size and Ny are small (Reppich eral 1964,
Peissker er al 1961, also see Alexander and Haasen 1968). Further, for the case of creep
experiments considered here Ny ~ 10* cm™*. This falls in the region where the defor-
mation is reasonably homogeneous.

It should be pointed out that we have taken simplified forms for f and € terms in
equation (1). Although. we have taken the correct form for the terms representing the
interaction of positive and negative dislocations. the f and 8 terms should be multiplied
by appropriate step functions. We have shown in I that the results do not alter much
except that the actual distribution should be bimodal (see § 6 of I}.

At this point we would like to point out the differences between the mechanisms
included in our starting equation and that of Peissker ez al (1961). We have taken the
breeding coefficient to be constant {as Dew-Hughes 1961 has done) whereas they take
it to be proportional 1o the effective stress. In our theory. we have explicitly taken into
account the pairwise interaction of dislocations. which they ignore. (Of course, if their
equation for N is mathematically interpreted, they would have a loss term proportional
to N*~ asin our case.) In spite of these differences, many of their results can be derived.
in addition 10 deriving the expression for average velocity. As we will show most of our
expressions are simple and vet they fit the data quite well. We will point out the specific
differences as and when it is required.

In principle equation (1) can be sclved in terms of a power series expansion developed
in I. We will not attempt it here since we are not interested in the full distribution
function p(v, r). However. the reason for starting with an equation for p(v. r) is to show
that as the average density increases. an internal stress developes in the sample leading
to a decrease in the average velocity. (This point, as well as the fact that all the moments
depend on density, was the content of I.)

We shall use natural boundary conditions on p(v. ), namely p{cv.1). vp(e,t) and
ap{v, t)/av as v — = =. Using these and integrating equation (1) over v, we get

dN

v (—a+ BV)N — uA*? (2)
where

[ oto.nyd0 =N 3
and )

{(VIN=VN= f: vp(v.t) do. (4)
Multiplying equation (1) by v and integrating, we get

‘L—‘: + (B+ uN" )V = f— ANV + 8((w?) — V) (5)

- 39——



80 G Ananthakrishna
where

(b)N = f vp(v. 1) do. (6)

In deriving equation (5) we have made use of equation (2). In a similar way. one can

obtain equations for all higher moments. All these equations will be coupled. However,

since we need only N'and V. we decouple these equations using suitable approximations.
Consider the steady-state value of N

NU(x) = N§© = [6V(=) — o]/ (7)
Since N5 > N(r) for allz (i.e. N is a monotonically increasing function of 1}, we have
uN'g < [0V(=) — a]/f< 1

since B3 1 (B~ 10° ~ 10" s™". See Gilman (1969) p 173 and 1. See also table 1.) Thus
we can drop the g term in equation (5). The term [(v") ~ V*] should be expected to be
small since it corresponds to dispersion in velocities. In addition 6 < 8, We shall later
show that this term can also be ignored. Then we have

dv

ME' + BV = bO’a - AN! :M = b(Ua - q)= ba,ff. (8)

The quantity
o, = hNV:M/b = fM/b (9)
corresponds to the internalstress and g gis the effective driving stress. (bis the magnitude

of the Burgers vector.) Since f7' is very small. the average velocity attains its steady-
state value very fast after the stress is applied. Then

bay _ b(o, ~ a) _f- hN'*
By By B

Virs 7)) = (10)
We shall call f/§ = B, the initial velocity which is the velocity attained by distocations
under the absence of any internal stress.

There is another time scale which is large compared 87! which corresponds to the
duration of plastic flow. This appears explicitly in the equation for N. If we accept the
point that the time scale for the growth of N is much larger than 871, then we can use
equation (10) in equation (2) to obtain

dN hGy .

—_ — N — 4+ — ‘Nr3-2

5= (BO- N~ (u+ (1)
where B = f/§ = ba,/By. The solution of this equation can be readily obtained and is

Ns
Nt — )= - T 5 122
) = T TN~ 1] expl— e = tolF (120
with
s hoy:?
Ns = (B6~ a)‘/(y + —E) (12b)

np= (B8 - a)2 N(1 = ty) = N, (12¢)

The equation for N that has been used by Alexander and Haasen (1968) and Piessker er
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af (1961) has an extra term of N*. Whereas the solution given by equations {12) is simple.
their solution has a complicated form. Indeed. solution of their equation for N'°is a
transcendental equation. Yet many of our results are identical to their results. First. the
saturation value of N given by (12b) for values of parameters for which creep data fit
well, namely. a = ( and x < k8B exactly matches their result

To see this, consider equation (10) and compare it with their relation

- - b |
V=B(1) 0us= BTN (0, ~ AVE) = 2 (0~ 22 V%) 13)
a K
we get
_hM o _ b _bB
A= mn_Mﬂ_M'
Thus
Ns= 0u/A* = fap’, (14)

The second result which agrees with the earlier work is the density at the point of
inflection which can be obtained from equation (12)

Ni = §N° (15)

where the subscript corresponds 1o the point of inflection of . This is exactly the same
as their result. The third result (which we will show later) which agrees with theirs is
£(t)) ~ ol. Perhaps. this is not surprising since the dominant terms in the equation for N
are of the same nature. However, the point we want to stress is that it is the term
corresponding to dislocation interaction in equation (1) that automatically leads to an
increase in the interval stress.

In deriving the expression for g, we have assumed that 8((v*) — V?) can be ignored
in comparison with the AN term. We shall show that this assumnption is valid. It is
reasonable to assume that the dispersion

() - VI~ B

Although V' reduces monotonically, as for the order of terms
B~ (hif) VN ~ (v} — v¥})I?
h

BNL? -BO~ 6((02) — VZ)]'ZB _— ((Uz) — Vz)

But 6B/f < 1 (the ratio of the two time scales in the problem). Thus

RVN = 8((v?) - V).

3. The creep law

Due to the simplicity of the expressions for both N and V, the Orowan equation

£= BNV
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can be integrated. The resulting creep law is

_UBNsi o h o M SATT N A
13 En = 7]6 (B B.\S )[Eﬂj\,sz_‘\%:'?’ (1\,5) (‘\5) :|
bh s .
+——= NI (N = Ny (16}
2nf
where £ = &(r = 1) corresponds to at an initial density N, at . Itis possible 1o estimate
the value of Ny using equations (12} and (16). We shall discuss this a little later.

Table 1. Values of the parameters used in equation (16).

Parameter Value Remark:s

1.79 x 10 "¢ms

B=1p s at T = 803°C.
L =035kgmm™*
Fij 1087~ 104571
g 10cm™'§
u =10 ems™!
hp 1.61 x 107" em*s™! a1 T = 803°C
Ny 49 x 1fcm°
N, 2 X 10em™§

* Value consistent with near finear power law ot Alexander and Haasen {1968)
# Ananthakrishna and Sahoo (1981).
§ Alexander and Haasen (1968).

In the following. we shall show that the point of inflection on the creep curve is
different from that on the £ curve. Differentiating equation (16). we get

‘Nlls: = iBf(h‘ﬁ) (17)

where the subscript corresponds to the point of inflection on the £ curve. Further. using
equation (12}). we get
L 1, (N7 = NN
—WhE =N s
N THB (‘\}i =N [ll -) A'llr_
Clearly, N~ is different from NX'. Since y and a are positive and nonzero N,- = AN,
the equality holding only when y=a = 0. Similarly. it can be verified 1, = 1,,. From
equation (18). it can be shown that there will be no point of inflection if AL~ < N}°.

(18)

We shall now show that £(t,) ~o). Using equation (14) in the Orowan equation. we
get

This is exactly the same result as derived by Alexander and Haasen (1968). This, of
course, is a direct consequence of equation (17). We shall apply equation (16) to creep
in Si. The data are that of Reppich er a/ (1964). The parameters which enter into the
calculation are Ny, Ns., 8. B, h/8 and u. (We shall use a = 0 to minimise the number of
adjustable parameters.) The only adjustable parameter is & 8. The values of N, 6 and
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B can be obtained from the experiments. The values of N, and 8 we use are those given
by Reppich et al (1964). The average velocity (v) = B is obtained by the near linear
power law given by Alexander and Haasen (1968). (In principle it can be obtained from
experiments on velocity measurement. The data V' ~ ¢ at the temperature at which
creep work is performed are not available.) A rough value of A can be obtained by
either N — e curve for the pa-ticular oand T or it can be estimated from equation (16)
and knowing the value of the s:rain. (Forthis particular case Ns ~ 10" cm™=.) Anestimate
of the value of #/8 can be found from the constraint B <(k'/fINL" (see equation (10)).
Then a best fit is attempted with the values of parameters in the ranges estimated or
those given by experiments. The best fit we obtain for creep at g, = 0.5 kgmm™" at
T = B03°C is for parameter values 8 =B82 =1.79 x 10-"s7}, Ng=4.9 x 10°cm™*
and h'8=1.61 x 107" em”s™' The value of u is fixed by equation (12b) and 4 = 9.2 X
107" ems™'. Thus h/B is the only adjustable parameter as in 1. It can be seen from figure
1 that the data fit very well. I order to fit the data at T = 853°C, we can assume that the
velocity has a Boltzmann temperature dependence with an activation energy 2eV
{Alexander and Haasen 1968) and scale both B and A/ by the factor

E(T:~T\)
kT, T

where T- > T,. instead we hzve chosen the best values for B and //§ (keeping both Ng
and A fixed) that fit the cresp data at T = 835°C and used their respective values at
T = 803°C to obtain E. We get E = 1.75 eV which compares well with the experimental
value. This is the average of the values obtained for n and #/8. (It may be noted that
B = MB(T)/b). The calculated creep curve agrees well with the experimental one at
T = 856°C also {figure 1.)

Creep is a sensitive function of the parameter h/f. Figure.l contains a plot for a
slightly different value of A/8from the one that fits the data.

T T i T T T
T 303“:
RiIB =1 6107 (m 57
f=t6=10 cm’s’ﬂ
A T=B5¢ " -7
nBe8B3an1t 7
LY ETA TR S VY
15 -
S
f-
g
&g TeR03°C ]
nE=175x107" s
AIB= 16 %107 cm' 5
054 -

0" 05 13 15 28 25 30 35 49
Time (10" s)

Figure 1. Calcuiaed and experimental creep curves for a, = 0.5kgmm™* at T = 803°C
and T = 856°C. Variation with respect hA/§ is also shown (broken curve). Ns = 4.9 x 10°
em™ Np=2x Wem™.

~43 -



&4 G Ananthakrishna

To study the variation with respect to the initial density it is necessary to estimate the
value of g for a bad sample with a large initial density say A{. This would be necessary
since otherwise. the asymptotic part of the creep curve for large N, would lie below that
for a creep curve with a small Ny as in the case of curve D in figure 1 of I. This unphysical
feature arises due to the fact that & is not insignificant for large N,. This problem has
been examined in detail in a paper which mainly discusses the mathematical properties
of the statistical model for dislocation dynamics introduced in | {Ananthakrishna 1981,
hereafier referred to as II). Here, we shall summarise the results with appropriate
modifications. Following 11, one can show that

N =8 =Nt — 1) (20)
where t' > 1 > 1, and 1y referring 1o a reasonably pure sample. N{(#' — ) is given by
Ny 12 }1
e — - N 4+ - _ - o 2
Mo -0 =n/ i (o) 3= me - N

with the identification that N'(1 = ) is the density at time ¢ starting with N, at 1. (This
canbe proved by taking equation (1) as the equation for the conditional density p{ vf| velo)

NN, = 0438

20—

15 Logx1g

Stroin {°4)

¢ 05 ¢ 15 2t 35 i35 u%

Time (307 5,

Figere 2. Calculated creep curves for various values of No. Ny = 4.9 x [0 cm™ % A'f = 1.61
x 1077em3s i nf=1.79 x 107751

and using the fact that decoupling of the initial and the final states occurs forr » 71, See
11.} Similarly, one can obtain an £ — ¢ pilot for a pure sample for which & = O holds. From
these two one can assign & for a bad sample with a large N;. This means that one has a
unique N-¢ curve and different samples correspond to starting from different points on
the N-e curve. Figure 2 shows the e plots for three different values of Ny. (In principle
Ny =2 x 10* cm™ should have a small initial strain. which is quite small and therefore
ignored on the plot.) For the creep curve with a large N there is no point of inflection.
since it violates the condition (18). The other graphs are self-explanatory.
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4. A scaled creep law

We shall first scale N with respect to ;. We shal} also assume that a = Oand u < h6/fas
has been the case for the creep data. Under these assumptions N{* = flh = 0/A. Fur-
ther, Ny = Nie = M., and, f,, = £, = 1, given by equation (18). The dependence of ¢, on
temperature T comes from nf =362 = 0,B(T). Defining 7 = /7, and using equation
(18) in equation (12). we get

N 12 t-1+1 Nl -1
12¢ g = N2 i¥s - s _
wee- = w1+ [(5) -1 (RN

x exp[—npito(t — fu)]}- (22)

This quantity depends on temperature due to the fact that £ is nonzero. However, since
tois an arbitrary reference time it can be taken to be zero as long as we require No/Ng < 1.
(See § 3.) Using this and equation (15) we get

N = n /2] (B) - 1] )
=N§f:/[1+z ( Z;“ ‘] (23)

Clearly, this quantity is independent of 7. (Note that it is not necessary 10 assume a
Boitzmann type of dependence for £~ '=B(T)(M/b)). N(1) depends only on
VN ’VI\D and 7. From equation (23), N'3(1) =4N{*.

Now consider equation (16). I: may be readily verified that a variable transformation
t = o, leads to an expression for e where N(r) is replaced by N(r). Then

- __P_fﬁ( _h ) [ NN (ﬁ ":_(N_o ]
ol) - el0) = == g B phs = &) - ()
bh . _
AT NEAN = Ny). (24)
Then the scaled creep law takes tae form
&(1) — £0) { 2 12
—NEHf - AN
1) = 0) s(f 5°)
NN (i (N(DA\E (Noyit
|\ Ar +(Ns) ) ]
h N12 NIIQ
+ NG - N - - ) [in T
N\ 12 M,)m ._ﬁ _ }-1
() - (R)7] 3w N @5)

where we have used B = f/8. Since N(1) is independent of temperature, the scaled creep
law is also independent of temperature. To see that it is independent of stress also,
consider the first term in the numerator and the denominator. Since we have assumed
i <€ h6/B, it follows that Ns ~ f? ~ o3. The second term in the numerator and the
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Figure 3. The scaled creep Iaw as & function of the dimensionless parameter 1= 11,

denominator also have a factor N, if we drop Ny (see equation (12}). Thus the depend-
ence on g, also disappears. The otherterms are inthe nature of ratios in which Ngcancels
out if we use Ny/Ns <€ 1. Thus, the scaled creep law is independent of stress and temper-
ature for small N,. The applicability is restricted to such values of N, for which homo-
geneous deformation occurs. Experimentally it is found that below a certain threshold
value of Ny the deformation proceeds inhomogeneously (Alexander and Haasen 1968.
p 39). (Of course. we have used the assumption that u and h are weak functions of
stress.) It depends weakly on the ratio Ng/N,. even for small Ay For a fixed value of
Ns'Ny. the scaled creep law is identical for various nf and 4§ values as long as u < At
B. Figure 3 shows the scaled creep law as a function of 7. Experiments on 51 support the
above prediction that results for different o, and T but with the same N fall on one
single creep curve (Peissker e al 1961).

It is also clear that the creep law derived in I for LiF can be easilv cast into the scaled
form.

5. Discussion

Following the method developed in I and starting from a slightly different form for the
term representing the pairwise interaction of dislocations. we have shown that the
average velocity decreases as the square root of the average density. i.e., o, ~ NUUA
new creep law is derived and applied to Si. The form of the creep law is simple and can
be cast into a scaled form. The scaled creep law is shown to be independent of stress and
temperature for small Ny, 2 and a = 0. The value of the saturation density we estimate
is perhaps lower than the experimental value by a factor of four. This might suggest that
the time development of N should be slower than that given by equation (12). In spite
of this several of our results agree with Peissker er al (1961) and with experimental
findings.

The above crep law is perhaps applicable to other materials where o,~ N'". In
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particular, if V' ~(0, ~ AV'N)™ and if m can be approximated to be an integer. then
for such stresses where n4N'" < g, holds. it is fair to approximate V ~o’[l -
(nA’g,)N'"]. Attempts are under way 1o test the applicability of the creep law to
other materials and to tensile test situations.

References

Alexander H and Haasen P 1968 Solid Stawe Physics §327 (New York: Academic)
Ananthakrishna G 1981 J. Phys. D: Appl. Phys. 14 2091

Ananthakrishna G and Sahoo D 1981 J. Phvs. D: Appl. Phys. 14 699
Dew-Hughes D 1961 [BM J. Res. Der. §279

Gilman J J 1969 Micromechanics of Flow in Solids (New York: McGraw Hill)
Patel ] R 1964 Disc. Faradayv Soc, 38 201

Peissker E, Haasen P and Alexander H 1961 Phil. Mag. 71279

Reppich B. Haasen P and lischner B 1964 Acta Merall, 12 1283

Webster G A 1966 Phil. Mag. 14775

—4 -



J. Phys. D: Appl. Phys., 14 (1981) 2081-90. Printed in Great Britain

A model based on nonlinear oscillations to explain jumps
on creep curves

G Ananthakrishna and Debendranath Sahoo
Materials Science Laboratory, Reactor Research Centre, Kalpakkam 603 102,
Tamil Nadu, India

Received 25 February 198!

Abstract. A dislocation transformation mode! with three types of dislocations—namely
the mobile, the immobile and those with clouds of sclute atoms—is considered. Some
physically reasonably reactions are postulated, leading to a coupled set of nonlinear
differential equations for the rate of change of their densities. The basic idea of Cottrell’s
mechanism has been incorporated. It is shown that these equations admit a class of
periodic solutions called limit cycies which are typical of nonlinear systems, suggesting
that nonlinearity plays a fundamental role in our model. The rate equations are solved
on a computer to obtain the oscillatory behaviour of the densities and hence jeading to
steps on the ¢reep curve. The theory predicts that there is a range of temperature over
which the phenomenon can occur, in agreement with the experiment of Zagorukuyko
et al. The theory also reproduces other normal forms of creep curves.

1. Introduction

The phenomenon of repeated discontinuous yielding of materials is of considerable
interest in materials science since it touches upon the basic question of the stability of
materials. This phenomenon manifests itself either as serrations (also known as jerky
flow and as the Portevin-L¢ Chatelier effect) or as steps on the stress—strain curve
depending on whether the material is subjected to a constant strain rate or to a constant
stress rate, respectively. Bell (1973) has discussed these effects, especially the case of
stepped response. In a creep test, a material is subjected to a constant stress, i.e, 10 zero
stress rate and hence stepped response is also to be expected in a creep test. This has been
observed in B-brass by Ardley and Cottrell (1953), in zinc by Zagorukuyko et a/ (1977),
and in steel by Da Silveira and Monteiro (1979). According to Lubahn and Felgar {1961),
steps on creep curves were first observed in copper by Andrade (1910} who called it
‘copper quakes’. Lubahn and Felgar (1961) cite some further references. In contrast to
the case of constant strain rate and that of constant (non-zero) stress rate, the data
available on stepped response on creep curves (to be referred to as staircase creep, or 5¢C)
are rather limited. There seems to be no detailed theory for scc in the literature, Expla-
nations for discontinuous yielding that have been proposed include the solute atom
hypothesis of Cottrell (1953}, an improved version of this theory by McCormic (1972)
and Van den Beukel (1975, 1980), the Coulomb friction analogue of Bodner and Rasen
(1967) and the particle-wave hypothesis of Fitzgerald (1966).

In this paper we propose a dislocation transformation model for scc. It is an exten-
sion of our earlier work (Ananthakrishna and Sahoo 1978, Sahoo and Ananthakrishna
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2082 G Ananthakrishna and D Sahoo

1982) in which we developed a theory of creep with the assumption that mebile (denoted
as ‘g’) and immobile (denoted as ‘s’) dislocations interact and transform into each other.
In the present paper, which can be read independently of this earhier work, we introduce a
third species of dislocations (denoted as ‘i) which are surrourded by clouds of solute
atoms. These are dislocations moving much slower compared to the mobiie species and
ultimately becoming immobile. Introduction of the species i1 is reminiscent of the basic
feature of Cottrell's (1953) theory of dynamic strain-aging, i.e., as the dislocations move
with a velocity below a certain threshold, the solute atoms diffuse and catch up with
them, thereby arresting their motion. Thus we have tried to incorporate the essence of
Cottrell’s (1953) theory. The repetition of this mechanism is brought about via interac-
tions among the three species of dislocations. The rate equations for the densities of the
three species form a coupled system of nonlinear differential equations. Nonlinearity
plays a crucial role in our theory. For a certain range of values of the rate constants, this
system of equations exhibits time-periodic solutions called limit cycles which are charac-
teristic of nonlinear systems {Minorsky 1962). The existence of a limit cycle is proved.
A computer analysis of these rate equations is carried out to obtain the periodic solu-
tions. Numerical integration of the Orowan equation gives rise to sCC. We obtain only
the secondary creep region. It is shown that there is a fixed range of strain-rate values
and of temperature over which scc can be observed, consistent with the experimental
results of Zagorukuyko er al (1977). For values of rate constants outside the domain of
instability, normal creep curves are obtained. Finally we wish to emphasise that we have
made no attempt to explain any particular data and that our interest is only to suggest a
possible mechanism which can give rise fo scc. ’

2. The model

We propose the following reactions or transformations between the species g, s and i,

[}
g—rgt+g : (ia)
ku'i2
g+g—>5+s (1b)
“b)u'/2
g+g s 0 (1c)
g+s —>0 (1)
i
§ w——y g (]g)
g—>i . an
i s, o ' ()

The first reaction describes generation of dislocations by the multiple cross-glide mech-
anism (Gilman and Johnston 1962 and references therein); 6 is the breeding constant and
Vg, the average velocity of the species g. The second reaction (15) describes the conversion
of two g’s into two s's. The reactions (l¢, d) describe the annihilation of g with g and g
with s. Here & is a number very close to but less than unity, i.e. the reaction (l¢) is very
slow. The reaction (le) describes mobilisation of s due to the applied stress or due to
thermal activation. The reaction (1) corresponds to a dislocation acquiring a cloud of
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A model for jumps on creep curves 2083

solute atoms and moving along with the cloud. As the solute atoms progressively gather
around dislocations, these siow down and finally stop. When this process is compiete,
t1s regarded as having transformed into s with a rate 1'. This is expressed by the reaction
(1g). We disregard the continuous decrease in the velocity of i and assume that i moves
with a constant velocity (much less than ¥) till it stops suddenly, changing thereafter to s.
Admittedly, this is a gross idealisation, but we feel that it still retains the essential features
of dynamic strain-aging.

Let Ng, Na and N denote the densities of g, s and i species respectively. The rate
equations are:

N;zthN,——p'Ngz-—-pN'N.-l-AN.—uNg (2)

N'g=kﬂ.'.v.a—p-NlN.—AN;"“G‘Ni (3)
Ni=aNg—a'N;. 4)

Here we assume that @, u, p’, a. o’ and X are constants for a given stress at a given
temperature, i.c. these are constants in a creep test. (In reality, these could be weakly
dependent on stress.) The assumption that @ and u are constants has been made earlier
oy Webster (1966), Li (1963) and Gilman (1965). The parameter a is expected to depend
on the diffusion constant of the solutes, their concentration and the velocity of i. The
parameter o is the drag coefficient of i. It may be noted that the reactions {(Har{N)) are
assumed to be occurring homogeneously over the entire sample.
For convenience, we make equations (2)<4) dimensionless by substituting

x=(ufA) Ny

'l'=(p.,“6y').~s (5)
and

s=(pa’lAa) N,
Then we obtain

dI=(l —a)x—bxI—xy+¥ (6)

dr

dx

— =b{kbx?—xy—y+az) (N

dr

d:-

4. =cx=2 (8)
where

T= GV'I

a=a/6V‘ (9)
and

C=3'/V.8.

Here we have taken =, in order to minimise the number of parameters.
159
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3. Stability analysis and existence of limit cycles

The above sct of equations form a nonlinear system. Under well known conditions
(Minorsky 1962), these admit periodic solutions called limit cycles for a certain range of
values of parameters a, b, ¢ and k. Although the method of investigation pursued is
well known, for the sake of completeness we briefly outline the procedure used. Limit
cycles are special classes of solutions which are isolated closed trajectories in the phase
plane (x, y, =) such that any trajectory which is sufficiently close to it either approaches
or recedes from it. Such closed trajectorics can only arise in nonlinear systems. The
existence of limit cycles is generally preceded and aided by an investigation of the global
properties of these equations by linearising around the steady-state values x4, 3'a and z,.
The stability of the system is decided by the nature of singular points, namely node, focus,
saddle point and centre. These correspond to the four possible combinations of the
eigenvalues w;, w2 and wa of the linearised forms of equations (6)}~(8) namely

dy

p (10)
where W is a column vector (x—xu, ¥—~ys, Z—2a) and W is a 3x 3 linearised matrix
{around xs, ys and Za). A node arises when all w are of the same sign, and a saddle point
when one of these is of opposite sign; a focus occurs when two complex conjugate roots
exist and a centre when one root is identically zero and the other two are purely imaginary.
{In the last case the nature of the singular point may have to be analysed more carefully.
Sec Minorsky 1962.)

An attractive limit cycle exists if there is a surface surrounding an unstable focus into
which all trajectories enter. For this we first look for a domain in the parameter space
(a, b, ¢, k) when two of the roots are complex with at least onc of them having a positive
real part and then show that such a surface exists. Using this procedure we have shown
in the Appendix that a limit cycle exists. The only constraints that we have on the values
of the parameters are that @< | (which is a consequence of the fact that the total rate of
production of dislocations is positive), k <! and g, b and ¢>0. Also we have Mg, N, and
N >{.

4. Staircase creep

Analytical solution of the rate equations (6)~(8) for arbitrary values of the parameters is
difficult to obtain. (The stability analysis and the existence of a limit cycle are given in the
Appendix.) However, these equations can be solved on a computer. To do this, the form
of Vg as a function of the effective stress ” should be known. a* is itself a function of the
total density of dislocations N (=Ng+ Ni + M,). For simplicity of calculation we assume
Vg to be constant. We shall show shortly that this assumption, although unphysical,
retains the qualitative aspects of scc. With this assumption we have solved eguations
(6)<(8) for some values of parameters in the instability range using the Harwell sub-
routine package DCOLIAD. (Although for all 0.5<k <1, the instability and the limit
cycle exist, all the results reported are for k=1.) Figure | shows the osciliatory patterns of
Ng Ns and Ni. The density Ny has the same pattern as Mg (not shown in the figure). As
can be seen from figure 1, Mg varies over two orders with fast rise and fall times. In
contrast, both N; and N vary slowly except for the initial fast rise. (See figure 1.) The
total density has an initial fast rise time reaching a near steady-state value about which it



Lk

A model for jumps on creep curves 2085

1 ] i
T gria s [P r“, —. -y
w ‘ l( e Y i "'\\\ (
{ NN ] ‘\!f
1 N’\\l “\
1 1
P 10°H -
[
=
B
]
el -
x -
W ‘
1 1

1
] 50 100 150 200
Time {arbitrary units)

Figure 1. A piot of Ny, My and N as a function of time for a=0.43, =0.0007, c=0.04.
V=03¢ems ) p=10"%cm?s1; Ngo=Nop=Npo=10 cm=2,

changes with a subsequent slow periodic variation. For this reason, ¥y which depends
on time only through N () (since o* is a function of N()), changes from its initial value
to a near steady-state value very quickly, determined by the near steady value of N(1).
Hence any different choice of Vg as a function o*(N), should not result in any qualitative
change in the densities or in the nature of the creep curve. The period of oscillation of
x, y and : depends on the imaginary part of the eigenvalue of W. From our numerical
calculation, we find that 10-3 < Imw; < 10-1 and in most cases Imw; < 10-2, [p order that
the oscillatory patterns of Ng, Ny and N; are observable, an appropriate value of 61,
should be chosen. The value we have chosen is ¥¢~0.1 571 and 6=30cm~}. We have
chosen reasonable values of Ny, Ng and N; compatible with strains of the order of | or
29%. This is done by fixing u~10-8cm?s-!. Then scc is obtained by numerically
integrating the Orowan equation ¢ =5(V¢N¢+ ViNy) with ¥ chosen to be a fraction of Vg
(b is the magnitude of the Burgers vector). The staircase creep obtained for the special
case V;=0 is presented in figure 2. It may be noted that we obtain only the secondary
creep due to the fact that all the densities attain their oscillatory states very fast. Very
often this phenomenon sets in after the primary stage only (see for example, Zagorukuyko
er af 1977 and Da Silveira and Monteiro 1979). Therefore, this feature is not unphysical.
However, if we desire to have a primary creep region, it would be necessary to introduce
another time scale slower than (6V¢)-1.

Our model also predicts a crucial result which is in agreement with experiment—
namely, that there is an upper and a lower bound for the asymptotic creep rates for which
the scc occurs. This can be seen from the fact that the period of oscillation T~2mn/
OV {Imw,, with [10-4< Imw, <10-1, The exact range of Im w is unimportant as we have
not modelled any particular system. (The range of Im «w, will depend on the nature of the
system and hence the basic mechanisms prevailing in the system.) So, corresponding to
the bounds of Im w, ¥ has to have appropriate bounds (over threc orders.in this case?
if we wish to have observable steps. This implies that the phenomenon can only be
observed over a fixed range (at most three orders) of ¢, For the present case, if the
variation in densities as functions of parameter 8V is considered, the range of ¢ will be
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Figure 2. scc for the same values of parameters a, 4 and ¢ as figure {.

slightly less than three orders. Since V; is temperature dependent (for a fixed stress),
this phenomenon can only occur over a fixed range of temperature as corroborated by
the experimental result of Zagorukuyko e af (1977). Another resuli that can be seen is
that the phenomenon should start smoothly as temperature is raised. which is also
confirmed by Zagorukuyko et al (1977).

The mode! generates a scC with slowly damping steps for values of parameters just
outside the instability domain in the parameter space (a, 4, ¢) as shown in figure 3. In
this case, we do not have a limit cycle. The oscillatory part arises due to Tmew;; but
Re w for all i is negative, which damps the oscillations in Ny, Ny and N..

Strain (arbilrary unity)

we
.-

! i
) [{] 100 150
Twme {arbitrary units)

Figere 3. Damped scc for values of parameters just outside the instability domain
a=m04], b=0.0003, c=0.16.
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Figure 4. A normal type of creep curve for a value of ¢ much outside the instability
domain (full curve). a=04], 5=0.0001, ¢=0.0200, The broken curve shows the
behaviour of the mobile diglocation density.

Finally, it produces the usual type of creep curve for values of parameters falling
outside the instability domain. To see the correspondence, consider the value of ¢ to be
smzli compared to @ and lying outside the instability domain. This means that gradually
dislocations are retarded and surronnded by solute atoms but cannot get rid of these.
This leads to the same kind of variation of the mobile dislocations as we have obtained
earlier by a dislocation transformation model containing only two types of dislocations
(Sahoo and Ananthakrishna 1981, Ananthakrishna and Sahoo 1978). The creep curve
for a typical case is shown in figure 4, together with the variation of Ny

Figure 5 shows the projection of the limit cycle on the NN plane. As can be seen
from the figure, no matter what the initial values of the densities, the trajectories quickiy
reach the limit cycle. The full curve corresponds to the limit cycle and the broken curves
to arbitrary initiai states. The choice of the initial densities matching the asymptotic
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Figure S. A projection of the limit cycle on: Ny-N, plane. Parameters a. b and ¢ hawn:
the same values as in figure I
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densities, i.c., Ng(r=0)=Ngs and Ni(r=0)= N\, is not of much physical interest in the
creep problem but has been considered only to show that the limit cycle is approached
even when the initial state is inside the limit cycle. The bounds on the limit cycle are
clculated in the Appendix. The projection of the limit cycle on the other two planes

are similar to figure 5.

£, Summary and discussion

The basic idea we have used is to model systems exhibiting scc as nonlinear systems, The
underlying physical mechanisms operating decide the nature of the cquations. However,
since plasticity is basically & nonlinear phenomenon (in densities), we have tried to
incorporate some well established mechanisms to show that some basic features of scc
emerge. We have not tried to fit any data. Although we have incorporated the essen-
tial features of Cottrell's theory, we stress that ir is the nonlinear interaction that leads
fo scCc. We have checked this point by incorporating another mechanism in place of
Cottrell's mechanism, namely, stopping of dislocation at athermal ‘locks’ and release of
these and production of new ones via the Frack~Read mechanism.

The essential feature that emerges from our theory, apart from explaining scc, is that
there are bounds on ¢ and the temperature over which the phenomenon occurs. Qur
theory also gives rise to the usual type of crecp curves outside the instability range,

We believe that both steps in the stress-strain curve in the constant stress-rate test and
the Portevin-Le Chatelier effect can be explained along these lines. Further work is in

progress.

Appendix

Consider equations (6)-(8). The procedure we adopt is the same as that for the Oregon-
ator mode! (Nicolis and Prigogine 1977) representing Zhabotinski's oscillating chemical
reaction. The model is similar to Oregonator. These equations can be written as

S F(rab, e k)
dr

with

"=(-"»)’»2)- (Al)
The first point that should be noted is that ¥, is some known function of N which itseif
varies with time according to the set of equations (6)+(8). Therefore the function F does
not explicitly depend on time. So the system is an autonomous one. Thus, the stability
analysis can be used to get some useful information. The singular points denoted by
(xa, ¥n: 2a) are obtzined by equating the left-hand side of equations (6)~(8) to zero. Thers
are only two singular points (0, 0, 0) and (xa, ys, z,).

L~ B (BP+44)'2

Xs "2A—""‘— (AZ)
Ya= —(b/2)(1-k)xa+1 (A3)
s =Xga

it (Ad)}
B=2a—14+b(1-k) (AS)
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and
A=b(1+k) (A6)

The stability of the singular points depends on the eigenvalues of the matrix obtained by
linearising F around the singular points, namely the roots of the cubic equation

w?— w?(A; +tAi—c)tw[—c(d1+A4)+ A1 Ay~ AsAs)—c[AzA5+ AzA3— A1A4]=0

or
WP =-Twl+dw—A=0 (A7)
where
Ar=1—a—2bxo-yo (A8)
Az=1—-xg {AS)
Ag=2kblxg—byo (A10}
Ai= =bxo-b (All)
As=ab. (A12)

The origin is an unstable point since there is at least one root with a positive real part,
The nontrivial singular point r4 can become an unstable focus when one of the following
conditions is violated (see Nicolis and Prigogine 1977).

T<0 A<0O A-T3>0. (Al3)

Rough bounds on {a, b, ¢} can be obtained for the unstable domain by demanding that
one of the above telations be violated (and using the assumption that b is smail compared
to a}. Below, we give the bounds, obtained on a computer for k=1:

033<ay (b, c)gagasb, c)<0.69
0.0000 <c; (a, by<c<ca(a, By <0.201 {Ald)
O<bi(a,c)sbghs(a,c)<0.011

where g etc. are the actua! cut-off values.

For all 0.5<k< 1, we find that there is an instability domain. We have not investi-
gated for smaller values of k.

In order to prove the existence of the oscillatory solution of finite amplitude. we look
for a surface § on which every solution trajectory of equations (6)(8) or (Al) enters,
i.e., dridr always points inwards for any point r on S, i.e.

n‘i-’-:OforronS (Al5)
dr
where n is the outward normal to §. Following Murray (1974), it is easy to show that §
is the rectangular box given by

1€x<1jb F1€y€): I<zgl/b
where
yi=ab/(1 +b) Ye=(a+kb%);2b. (Al6)

In the above we have used the fact that < a which follows from equation (A3). Since r,
given by equations (A2)«A4) is an unstabie focus and S surrounds r,. it contains an
attractive limit cycle. We have plotted the limit cycle obtained by numerically solving
equations (6)~(8) and this is shown in figure 5.
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A model based on nonlinear oscillations to explain
jumps on creep curves: II. Approximate solutions
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Abstract. Using the method of relaxation oscillations. we derive approximate expressions
for the amplitude. period and the waveform of the limit cycle solutions. Using these. an
expression for the step size per cycle on the creep curve is derived, It is shown that these
approximate solutions agree well with the numerical soiutions. The theory predicts bounds
onh temperature and stress over which the steps are seen. The dependence of the step size
and the period of the oscillation on stress and temperature permits mapping of the theoretical
parameters on to the experimentat ones. It is shown that this dependence is in agreement
with the experimental results of Zagorukuyko eral.

1. Introduction

Instabilities in plastic deformation which manifest as steps on creep curves (creep is time
dependent deformation at constant stress). or as jumps on stress—sirain curves in a
constant stress rate test, or as repeated yield drops in a tensile test (deformation at
constant strain rate) have been of immense interest in metallurgical literature (see for
example Bell 1973). Though there exist many phenomenological treatments of the
phenomenon (Cottrell 1953, Bodner and Rosen 1967, Penning 1972, Van den Beukel
1975, 1980. Bell 1973} there has been no attempt to understand how this periodic
temporal state develops. Recently, Ananthakrishna and Sahoo (1981, hereafterreferred
to as I) proposed a model which exploited the intrinsic nonlinear character of dislocation
interactions (or equivalently that of plastic flow) to explain the periodic temporal state.
thereby explaining jumps on creep curves. The model consists of three tvpes of dislo-
cations (mobile, immobile and those with clouds of solute atoms to mimic Cottrell's
(1953} idea) and some transformations between them, leading to a coupled set of
nonlinear differential equations for the dislocation densities. It was shown that for a
range of values of the rate constants, these equations admit oscillatory solutions, called
limit cycles. The model has been subsegquently extended to the constant strain rate case
with good success (Ananthakrishna and Valsakumar 1982).

Inlaswell asinitsextension to constantstrainrate (Ananthakrishna and Valsakumar
1982). only qualitative comparisons with experiments were attempted. However, it is
desirable to make better contact with experiments (in terms of quantitative comparison).
This would require a knowledge of the dependence of the rate constant (at the leve! at
which they are introduced in the theory) on such parameters as stress (o), temperature
{T), concentration of solute atoms (C), etc. This however is lacking, although there is
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a limited knowledge of some of the rate constants. Even if these are known. it would be
difficult to achieve the above objective without obtaining closed-form expressians for
such physically measurable quantities as the period of the steps (or of serrations).
amplitude of steps (or of serrations). etc. Generally. the dependence of these experi-
mental quantities can be measured as functions of ¢, T and C and are expressed through
some phenomenological reiations. Once closed-form expressions are derived. compar-
ison with experiments is possibie. This can also be used to give some insight into the
dependence of the theoretical rate constants on o, T and C, where such knowledge is
lacking.

The purpose of this paper is to derive approximate closed-form expressions for the
above mentioned quantities. The analysis proceeds along the lines of Tvson (1977) for
the Belousov-Zhabotinski oscillating chemical reaction. Using standard methods
(Minorsky 1962), in § 2, we perform the stability analysis of the equations used in I. We
present the domain of the parameters for which the steady state becomes an unstable
focus. On scaling these equations appropriately. we identify the fast variable and
adiabatically eliminate it to obtain a reduced set of two coupled equations. Using the
method of relaxation oscillations (Minorsky 1962, Tvson 1977), in § 3, we show the
existence of limit cycle solutions. We also obtain approximate expressions for the
amplitude, the period and the waveform of these solutions. We show that the resuits
agree quite well with the numerical solutions of the original set and the reduced set of
differential equations. In § 4, we derive an expression for the steady-state creep curve
and compare it with the numerical solutions obtained for the original set and the reduced
set of equations. Many qualitative features of the phenomenon are shown to follow from
these results. Expressions for the step height and the peniod of the jumps on the creep
curves as a function of ¢ and T are shown to be consistent with the results of zinc
(Zagorukuyko et al 1977). In analogy with equilibrium phase transition, the transition
is shown to be a first-order transition or a hard transition.

2, Stability analysis

The rate equations for the densities of the three types of dislocations introduced in I are

ﬂhavzv—pwz—;u\f .+ AN, — aN (1a)
dr BTE B 3

93—? = ki N} — uNN, ~ AN, + &’ N, (1b)

and

dn,

?"—" CI’NS"G"N,' _ (IC)
where N,, N, and N, correspond to the densities of the mobile species, the relatively
immobile species, and those with clouds of solute atoms, respectively. We have shown
in | that these equations describe the dynamics of dislocations under constant stress.
(For details of the reactions and the rate constants, see 1.) The plastic strain rate &, and
the plastic strain &, are given by

£, = boN,V, (2a)

-59 -
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and
&= f £y d (2b)
0

where b, and V', are the Burgers vector and the velocity of mobile dislocations respec-
tivelv. {The qualitative nature of the oscillatory solutions supported by these equations
will not change if V, is allowed to depend on the effective stress 0. See I and Anan-
thakrishna and Valsakumar 11982}.)

For convenience we define a new set of dimensionless variables

x = (u/AN, y= (u/BV N, z = (ua’/ia)N, 3
Then we obtain

g =(l-ax~bx-xy+y (4a)

o b(bx* — xy — v + az) (4a)

dr B
and

%E =c{x -2z (40)
where

T=6Vy a=afV, b=4/6V, c=a' '8V, (%)

(We have taken ¢’ = yand 4 = 1 to minimise the number of parameters.) Since the
parameter b isrelated to stress or thermal activation. b is expected to be small compared
toa. We will restrict our attent on to the situation whenb<a.c< b andb < | (although
there is a range of values of ¢ > b).

Equations (4a)—(4c) admit a trivial steady state x, = v, = 2, = O which can be shown
to be unstable. The only positive nontrivial solution for the steady state is

_1=2a-{(1-2a)"+gp)"?
B 4b

X, =2z,
(6)

v.=1

For subsequent analysis it i5 convenient to EXpress equations (4a)=(4c) in terms of the
deviations from the steady state

X=x-1zx, Y=y-y, Z=z-1z, (7)
The time evolution is given by

X=-(aX+BY+bX =+ XY) (8a)

Y=—b(yX+cﬁY+XY—bX3—aZ) (8b)
and

Z=¢X-2) (8¢c)

TéT -
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where the dot denotes differentiation with respect 10 the scaled time 7and

a=a+2bx,+y.— 1

B=x,—-1
y=y,— 2bx,
8=1x,+ 1. ' (9)

1
When X! < 1. |Y/ <1 and [Z| <1 we may neglect the quadratic terms in eguations
(8a)—(8c). The resulting equations read
du
¥ wy (10)
dr
where yis the column vector (X.Y.Z Y7 and Wisthe matrix associated with the linearised
system of equations. The cigenvalues w,. i = 110 3, are given by

w — Tar + Po—A=0 (11)
where

T=~(a+06b+¢)

A = — be[ad + @~ V)]
and

P = &bc + afbb + ¢) — Brb. : (12)

The nontrivial singular point becomes an unstable focus when one of the following
conditions are violated (Murray 1974):

T<0 A<D or A-PT>0. (13)

Tt is easy to show that the first two inequalities cannot be violated. Substituting for A. P
and T we get

(a+ 6b)C + [(@+ 8bY — Babc + bla =~ 8b) (ad = py) < 0 (14)

for instability. Using the equality sign in equation (14) we geta critical value of ¢ = ¢
for fixed a and b. For ¢ < ccn, the steady state is unstable. For further analysis it 1s
expedient to use the power series expansion in b of the parameters a. B. vand & given
in table 1. Using these expressions in equation (14) and demanding ¢cn. = 0 we get the
bounds on « for which the system is unstable and is given by

t<a<1/V2. (15a)
The expressions for Cen are given by
Sg -2+ (—23a%+ 20a ~ 4)*°
4
Corn =44 for a=4% (15b)

2b(1 — 2a%)
(2a — 1)

for d<a<i

for t<a< 1,;’\"5.

In figure 1 we have shown a plot of /e as a function of a for b = 10~*. The domain as

_é(.—
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Table 1. Leading terms in the expansion of the parameters a. 5. yand &interms of b.

a <4 a=1} a>13
]—20* 2b o Za—l_ 2h
. 7 1-2 \ 75 T Za-1
8 1-2a_  2a 1 -1 A-a) 2
2b 1-2a \2b a-1 (2a-1)
, da-1_2b jo_2b
: 2 1-2a . 1-\28 (2a-1)
5 1-2a_ 2(l-a) L 2 2
b 1-2a A\ 2a-1 (2a-1)f

given by equation (15b) is open in the c—a plane.i.e.. c — 0 as a — a.. This is due 1o the
fact that we have ignored terms of higher order in 7}, If this is included. c versus ais a
closed curve.

3. Limit cycle, amplitude, period and waveform

Now we rescale time as ' = br. Using a dot to denote differentiation with respectto T
we get

bX =—(aX+ BY + X"+ XY) (16a)

Y=—(¥X+ 8Y-bX + XY - aZ) (16b)
and

z= %(X - 2). (16¢)

Itis clear that in the limit & — 0,/ X| — = unless the right-hand side vanishes identicaltv.
Physically this amounts to saying that X changes with a characteristic time ~ b 1o
maintain

aX + Y ~ bX*+ XY = 0.

Table 2. Leading terms in the expansion of the nonlinear function X(Y } in terms of b.

) ] ¥ 1 y+d
a<i 1<¥<t-0g =Ty TTTm Yoo
_ 12 1 Y-
Y>i-a  X=-{- ]*M)+Y+a—5

Y>i-a X=-r—

~é2 -



1060 M C Valsakumar and G Ananthakrishna

Table 3. Expression for the null cline Z; in terms of b.

2 o WrGa- LY QY-a(Y-h 1
a<i -}<¥<i-a ! ab aY~a-4  1-2a
1-2a ~a) (¥ =1

le( Ly QY- b

Y>i-a % TT-%) T avy-a-h
Z=_(2Y+a) 'Y+a—é+ Y+1i )
a>4 —-i<¥Y<i-a ! a ( b Y~a-1
Z = 1 _{_(Y+i)(a+2Y)
Y>i-ga T Za~1 TalY+a-D

This enables us to define X as a function of

[(a+ Y)? - 4bY]"* - (a+ ¥)
2b ’

X= (17)
(Only the positive square root is meaningful because the other root corresponds to
negative dislocation density.) Table 2 gives a power series expansion of X

Since X 1s a fast variable, we have to solve only equations (16b) and (16¢) with
equation (17)i.e.

dY
el -blaX -~ 2(x, + X)Y — aZ] (18a)
and
dzZ
L-dX-2) (18b)
10‘: z
-!03‘ ;
: E
g :
10’:— =
r g
- 3
: ]
) 1
0 4
" 3
83 5T )3 T —

4 -

Figure 1. Domain of instability of the steady state for b = 107*. ¢z} is plouted as a function
of a. The shaded region is unstable.

—63 -
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Figure 2. Phase plane porirait. The nall clines Z.and Z: are plotted as a function of ¥. The
broken curve corresponds to Z, and the full curve represents Z;. (a) For a <1, the steady
state is stable: (6) anc (c). for 4 < 2 < } and b<a<1n2 respectively, the steady state is
unstable. The limit cycle A B—=C—oD— A exists. (d) The steady state is stable for
1>a> 13

where X is given by equation (17).

3.1. Limiteycle

Consider the phase plane ¥ - 2. Using standard phase plane techniques (Minorsky
1962) we determine the null clines

}"=0<—»ZI=Z(}')=X(Y)+%[xa+X(Y)]Y (19)
and
¥=062-= X(Y).

Table 3 gives the power series expansion of Z(Y) in b. To find the existence of a limit
cycle, we look for the intersection of the nuil clines in the region of negative siope.
From the expressions for the null clines Z, and Z, we can have a reasonable idea of
the phase portrait which is schematically summarised in figures 2(a)~(d). (Z, always
shows a negative slope region.) Z; and Z, are piotted as a function of Y. For 0 < g < 4
and 1/V2 <a <1 the null clines intersect in the positive slope region (actual bounds are
obtained by demanding the max:mum in Z, to occur for ¥ < 0 and minimum in Z, to
occur for ¥ =0). This means that the steady state of the reduced equations

~LY -
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Y,=Z,=0is stable for 0 <a<}andi<a< 1/A"2. On the other hand for 4 <a <1
and} < @ < 1\ 2 the null clines intersect in the negative slope region which means that
a limit cycle exists for 4 <a < 1;’\’7. Starting from an arbitrary point P. the trajectory
moves along the null cline ¥ =0 until it reaches the turning point D from where it aimost
instantaneously jumps to A. Thereafter it moves along this branch of the null cline
¥ =0 (slowly) until it reaches the second turning point B from where it jumps to Cand
the process continues. Thus the trajectory is a closed one and the limit cycle is A—

B—-C—D—A.

3.2. Period, amplitude and waveform

Before proceeding further we emphasise that the subsequent analysis is applicable only
when ¢ < b. When 3 < a < }. there is a large region of the unstable domain lying outside
this and hence care should be exercised in applving these results. However for
t<a< 1\2 the above condition (¢ = b) is always satisfied.

Table 4. Expressions for X, Y and Z at the characteristic points of the limit cycle. (i) & < i

(iya>1t
()
A B C D
. 1-2a Za 1-2a 2a ~ 0 3g-1
y _ized A T £ 2
3% 1-%a % T-3 ' b
y (-af 1-2a-V21-a) e _3a-1
T6b 2 3 )
(1-3a)* 1-2a 1
z 8ab i 1-2a Za Za
~aenaplisd
a
(i)
A B C D
21— a) 2(1-a) = 1-a 1-a
X _ el - AL ILL N V)
Za - 1 Za -1 V2 75 b
y (-af 1-2a+V2(1 - a) e _3e-l
165 2 3 4
(1-ar¥ 1
Z Tw %1 b4

+(1+ \fi)?l;—“—)

Table 4 summarises the valuesof X, Y and Z at the characteristic values of the values
of the limit cycle A. B, Cand D. X'is approximately a constant (=Xa= - fB)inthe
branch AB of the limit cycle. At B, X makes a jump to its maximum ( = Xc). Thereafter
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it decreases to Ap and jumps down to X 4. The amplitude in X

1- -
Xump~Xe=Xp=—2=  fori<a<IN (20)

Now we consider calculating the period and the waveform of the osciliation. This is
accompiished by integrating equations (18a) and (18b), piecewise (by using the power
series expressions for X and Z in the appropriate branches of the limit cvcie). Substituting
for X'and Z in terms of Y, and integrating. we get along branch AB

(1—2473)l 1-a

+{1- +4) —- +a—4)=—cr+
=2 nY -+ {1-a)ln(Y +4) 1—2aln(y a—1%) CT + constant
for
l<a<i I<a<1/A\2
Hence
](1"2([2 YA };A‘i’% 1=-a Y.q"ﬂ_%"
=~ 2= - .
I g P s |

Since X'is nearly a constant we can simply integrate equation (18b) and get a maximum
estimate of 745. The result is

X=-x,*1 for < r<rap (21a)
and
1 (1-a)
Tag = In (Sb(l + V21 - a\-T)) (21b)
for

=

t<a<i i<a<%~;.

Similarly integrating equations (18a) and (18b) along the branch CD of the limit cycle.
we getfori<a<iandi<a<1/\'2

(Ba-1Din(-Y)-(Q-a)In(-Y+4=-a)=~(2a— 1)ct + constant. (22a)
Substituting for Y4 and Y5 from table 4 we get
1 3a-1 a
= - P .
T = (zm i 1) (226)

The period of oscillation is
Tp = Tag + Tcp.

Substituting for Y'in terms of X and applying initial conditions we getfromequation (21a)

(bX+3-a)"? [(1-a)2) "
(bX)Sa—l - (a/2)3a—1

expl — (1 - 2a)c{1 — 145)) (23a)

for

TABS TS 1p t<a<i

6l -
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and
(b)n’~a—i)3“'l_ (JI,-‘Z)Ja*]
®x)}*  [1-e)2)

—expl — (2a — D)e(1 - Tag)] (23b)

for
TApS TS Tp b<a< 1/V2

A plot of x = x, ~ X versus 1 fo- one cyele of oscillation is shown in figure 3 for
= (163 and b = ¢ = 107* (the full carve). Also shown in the figure are the numetical
solutions of the three original equatiins (the dotted curve) and that of the reduced set
of equations (the dashed curve). But or a small change at the jump down part {resulting
in a loss for the integral of the dersity) the numerical solutions are in remarkable
agreement. The elimination of the fast mode appearsto have practically no effecton the
shape and the position of the wavefcrm as can be seen by the two numerical solutions
except for the discrepancy at the jurrp down part. The shape of the wave as calculated
by the approximate expression is not significantly different. but a phase lag i1s induced.
The error in this is of the order of 7% for this particular choice of a. b and ¢. The
agreement with the numerical solution improves if ¢ is reduced. For values of ¢ larger
than b the approximation becomes worse. The nature of the waveform also changes
from the one indicated in figure 3 to the one given in figure 1 of paper 1.

4. The creep curve

The results derived in the previous sections can be used to derive the steady-state creep
curve. Using equations (2a). {2b) and (3). creep

b V. T
Ep =%J; x{(r)ydr (24)

3 ’-ﬁ r““"'ﬂ:.,
0t

=
=
——7

Hobile dislocotion density (orbitrary units]

|

-
7

T \

¢ T 7 TE5 S 5 %8 5 60 61 &2 6
Time arbstrary units)

Figure 3. Comparison of he waveforms obtained by various methods for ¢ = 0.63. and
b= c=10"*. The full curve corresponds to the approximate closed-form solution. The
dotted curve represents the numerical solution with al the three equanions and the dashed
curve corresponds to the salution obtained with the two equations.

-..é? -
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F = u P = l’r -y g

Bba, | x(r'ydr

Xir dT
= Tx, + X(r dX(n. A
—[\’((lz ( )dX(TJ (n (=)

Integrating, we get for
t<a<y 0= 1= 1,5

E=1 . (26)

and for

TABSTETp

) 1-2a 2 l1-a bX(Tag) + 4 =«
= Tap 5 (1= Tag) - [K(ras) = X(9)] = S ( b,é(?f)f 2 )
for
i<a<i
and
) -7 2. ., 3a~1 bX( +a—
£=mas - Ty T ) — X0 - 5 “{ bX(T:'T}* = :} (276)
for
t<a<INT
The step size on the reduced creep curve is given by
1-a
N he [1-1n2] fori<a<i
Ag = f X(ndr= (28)
TAH 1-a _ 3a — 1 2a

AN
he 2he ln30—1 fori<a< 17,

Let us examine Ag, and Tp = 1p/68V; as a function of 0. For this we first get the bounds
on gusing the bounds on a. (It is also possibie to obtain bounds on ousing bounds on ¢,
but the limited variation in ¢ allowed by our approximation does not permit the full
range of oaliowed. Note that ¢ < b and b < 1.) Choosing a power law

Vg = VCI(C',;;UU)m

we get
S \Lm
=[5 /5t
UM(BVO,) oy V2<i<3
forafixed a. Then for a fixed @, o’ and 2, we get
b002 I S =
Zya)eg(;hl)(l—lna for V2<§<2 (29a)
Agfo, T) =
bt . bot ..
—HE-1) - 53~ 51 2< &<l 296
2[1&"95 Ey ) 2“&’83(3 5) n3 _:;. for = ( )

..é%z
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Similarly

(30)

3I-£ +In {1-¢&y
2-§ 3-% TR+ V2):- \-’3)_)‘

Note that a, &, 4 and V,, are functions of T. It is clear that Ag, is a rapidly increasing
function of £ and hence of 0. In contrast Tr(0) is a weak decreasing function of ¢ for
most part of the allowed values of o. It slightly increases for value of 5(a™) ~ 3. This
slight increase is however due to the overestimation of Tas given by equation (21b) which
corresponds to the third term in equation (30).

It is obvious that the full steady-state Creep curve can be obtained by repeating the
single cycle over successive cycles. Figure 4 displays one such cycle on the creep curve

L
Tp(o.T)=a-_—,(21n2+

Strain larbitrary urits)

0 2 3%5 85 97 SB &3 @0 61 62 63
Time [arbitrary units)

Figure 4. One step in the creep curve generated by various methods, The full curve corre-
spondstothe closed-form solution. The dotted and the dashed curves represent the numerical
solutions, corresponding to the original set of three equations and the reduced set of two
eguations.

£-tfora=0.63andb = c = 107, Also shown are the numerical results of the original
set and the reduced set of equations. The agreement is seen to be very good.

5. Results and discussion

Many qualitative features of the theory are in agreement with the experimental results.
The fact that there are bounds on @, b and ¢ over which steps occur implies similar
bounds on o, T and C. This is consistent with results available on steps on creeps and
otherinferred results from experiments on serrated flow. Thereare veryfewexperiments
reported which display steps on creep curves (Ardley and Cottrell 1953. Da Silveira and
Monteiro 1979, Zagorukuyko et al 1977). Even among these, detailed measurements.

69 -
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much in the nature of those we mentioned in the introduction. have been carried out
only on zinc (Zagorukuyko et al 1977). Although the theory in its present form is not
directly applicable. it still permits qualitative comparison. These authors (aswellas Da
Silveira and Monteiro 1979, Lubahn and Felgar 1961) report that steps are seen in the
secondary (steady-state) creep only. It is obvious that this result is consistent with our
theory since the theory corresponds to bifurcation of the steady-state solution into
temporal periodic solutions. Zagorukuyko et a/ (1977) reportarapid monotonicincrease
of Ag as a function of ¢ and a weak decreasing dependence of T, on a. Clearly both
these are consistent with our results of Agy(o) and Tp(0) given by equations (29) and
(30) respectively. They also report that the overall slope (given by Ag,/Tp) increases till
the steps become indistinguishable. This result is also compatible with our results.

These authors also report results for Ag(T) and Tp(T). Comparison with our work
is slightly more difficult, since the dependence on T comes through all the variables a.
a’. Vand 4. If more experiments show a common trend, it is then possible to use them
to guess the dependence of a. @’. V and 4 on T If we assume Arrhenius dependence of
aand o’ with respective activation energies E and £'. such that 2E < E'. then it is clear
that Ag (T, 0) is an increasing function of T and T(T. o) is a decreasing function of 7
(note that the additional temperature dependence comes from Vy). We want to empha-
sise that the purpose of this comparison with the results on zinc is not so much to show
that results on functional forms on ¢ and T are consistent with experiments. but to
demonstrate how the theoretical parameters can be mapped on the experimental
parameters. Since detailed experiments are lacking. we intend performing a similar
calculation in the case of the Portevin-Le Chatelier effect, where more detailed results
are available.

Often an analogy can be established between systems which exhibit instabilities and
systems which undergo equilibrium phase transitions. In the former. new solutions
emerge bevond critical values of parameters (called drive parameters). In the present
case. the new state of order is one of the oscillatory solutions. It is conventional to
associate the radius (or (area)'-) of the limit cvcle as the order of parameter. In the
present problem a natural choice appears to be step size per cycle per period. namely
Ag,'Tp. It should be noticed that both are proportional to l/c. Asa—a?, (a* =4).
¢— Ol.e..both Ag,— = and Tp— = at the same rate and there is one single creep curve
(or jump). (Note that Tp is not defined fora <1/\"2 and a < 4. ) However. for any finite
Aa = a — a.. Ag,/Tr takes on a finite (but small) value. This implies that the transition
is a hard transition or a first-order transition (Nicolis and Prigogine 1977, Nitzan er al
19743,

6. Summary

With a view to mapping the theoretical parameters to the experimental ones, we have
derived approximate expressions for jump size on the creep curve and the period of
cycle. The method used is that of relaxation oscillations. We have demonstrated a way
of comparing theoretical results with experimental results. This gives us an insight into
the dependence of the theoretical parameters on oand 7. Due to Jack of experimental
results only functional forms of Ag, and Ty (as functions of gand T) are compared with
experimental results on zinc (Zagorukuyko et al 1977). Since detailed expetiments on
serrated yielding are available, a similar calculation will be undertaken.
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Repeated yield drop phenomenon: a temporal
dissipative structure

G Ananthakrishna and M C Valsakumar
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Nadu, India :
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Abstract. Based on well known mechanisms. we set up a system of coupled nonlinear rate
equations for the densities of three tvpes of dislocations. namelyv. the mobile. the immobile
and those with clouds of solute atoms. and for the load sensed by the Jead cell. For a range
of values of the parameters. these equations admit periodic solutions called iimit oveles.
leading to repeated yield drops. The model exhibits many experimemally observed features
The new temporal order is an example of a dissipative structure.

There are many phenomenological treatments (Bell 1973. Bodner and Rosen 1967.
Cottrell 1953. McCormic 1972. Penning 1972, Van den Beukel 1975, 1980) of repeated
yvielding (RY) (which s also referred to as serrated vielding (sY})). The best known model
is Cottrell's dynamic strain aging model (Cottrell 1953) and its improved versions
(McCormic 1972, Van den Beukel 1975. 1980). However. there has been no attempt to
use the well established solute dislocation interaction mechanism along with other
dislocation interactions to show that the temporal behaviour of sy (and other experi-
mentally observed features) follow naturally. From this point of view Cottrell's model
(and its extensions) has remained a static one. Once the dislocations break away from
the cloud. unless the solute atoms catch up again (or vice versa) another vield drop
cannot follow. In the present analysis, we consider the phenomenon of sy only 1o the
extent of what the Joad cell senses (space average over the sample) and we will not
attempt to explain the inhomogeneous deformation that most often accompanies Sy.
However. we point out thatinhomogeneous deformation should foliow from our model
once the appropriate space dependence is included. The support for this view comes
from two complementary points of view and will be discussed at the end. In spite of this
idealisation. we show that the model which is an extension of our earlier work (Anan-
thakrishna and Sahoo 1981a. hereafter referred to as 1) on creep curves exhibits several
experimentally observed features of sy. Here. we stress that in the present analysis we
will not attempt to fit any data.

The purpose of this study is twofold. First. starting from dislocation interactions. we
show that the mode! exhibits several experimentally observed features. apart from
demonstrating that the temporal state naturally emerges. Second. the analvsis shows
that the phenomenon of sy is an example of a dissipative structure (Nicolis and Prigogine
1977) or a non-equilibrium phase transition.

The model consists of three types of dislocations, namely, * g type dislocations which

0022-3727/82/120171 + 05 $02.00 © 1982 The Institute of Physics L171

~32-



1172 Letter to the Editor

are mobile with density N,. s’ type distocations which are relatively immobile with
density N, and i’ type dislocations with clouds of solute atoms with density N\. The last
one is introduced to mimic Cottrell's idea of dynamic strain aging. On the basis of well
established mechanisms (see 1). we incorporate some transformations between these
dislocations. This gives rise to a set of coupled nonlinear differential equations for the
rate of change of densities. These equations are coupled to the machine equation
representing the load sensed by the load cell. The rate equations are

N, = 8V,(0%) Ny — uNi = aNg + AN, = Jt NN, (1)
N, = kuNi = £'NNs = AN, + /N, (2)
N, = aN, - a’N; - (3)
a,= K[ = bo(N, + YN)) Vi(@™)] S

where the dot refers to the time derivative. Equations (1-3) are identical to the system
of equations in I (see I for the details of the mechanisms involved). In equation (4). € 1s
the imposed strain rate, K is the effective compliance and by is the Burgers vector. The
second term in equation (4) 1s the plastic strain rate £;. We have used a power law

V, = Vo(0*/00)”

with o* = g, - HNY2. where ¢*, o,, H. N and m are the effective stress. the applied
stress. the stress required to induce a velocity V. a constant characteristic of hardening,
the total dislocation density (=N, + N, + N,) and a velocity exponent respectively.

To keep the analysis simple we have included only simple transformations with
further idealisations on the rate constants. For example, in some situations ¢ should be
proportional to N~ 12 {0 account for the variation of the density (Ananthakrishna 1982).
1t is straightforward to include such changes. Here we assume that 6, u(=u'). A, a’ and
a are independent of stress. « is expected to depend on the concentration of solute
atoms, their diffusion constant and the velocity of ‘i". o’ depends on the drag coefficient
of i’ and on the critical size of the cloud.

All these constants are taken as parameters. Here, we make no attempt to relate
them to the existing parameters in the literature. (Such an attempt calls for analytical
approach in finding amplitude, period of the yield drop, etc. We have performed such
a calculation in the creep case (Valsakumar and Ananthakrishna 1982), where the step
size and the period have been obtained as a function of the parameters or equivalently
as a function of stress and temperature. Thus the experimental parameters and theor-
etical ones have been related. These results agree with the experiments of Zagarukuyko
eral (1977). A similar calculation for the present case is in progress.)’

Let us define
uNg=Ax  pN,=8Veyy uda'N=haz o= Wo} (5)
1= 0Vt bx +y + (abjc)z = n. )
Then
i=(@p-hn')Tx—bx’—ax +y—xy {6)
y = b(kbx? = xy -y + az) )
=c(x —z) (8)
&= dle - (¢ = " (x + V)] ®

—‘?.3.-
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where the dot corresponds to derivative with respect tc 7and
a=08Via ~L=6V.b o' =8V <oy =ay }

1 (10)
Buaud = }.b(;K Pbu 7(‘. = EIU hUL- = H( 8"'0 U"}t}l -

Under well known conditions (Minorsky 1962) these coupled sets of nonlinear
equations admit periodic solutions calied /imit cvcles which are characteristic of only
nonlinear svstems: we have carried out the analysis alorg the kines giveninI}. Physically.
these periodic solutions arise due to the feedback loop g — i— s— g. First, stability of
the steady states

P, = (X ¥a- Za- Fa)

(for which X, ¥.  and ¢ are zero) is investigated, -.e., we look for a region in the
parameter space (a. b. c. d. k, k.e,v)in which eigenvalues w, of the linearised form of
equations (6-9) around P, are complex with Re w, > ). This ensures the spiralling out
of the trajectortes in the phase space (x, ¥.z. ¢). Thenwe look for asurface S surrounding
P, into which all trajectories enter. These conditions ensure a bounded variation of
trajectories often leading to a limit cycle. We have carried out the above programme
and we find that there is unstable domainin(a.b.c.d.e, k. k. y')andan associated limit
cycle. Most of this has to be carried out on a computer. The details of the above
calculation will be given elsewhere.

Equations (6-9) have been numerically solved ¢n IBM 370 and Honevwell Bull
DPS8 computers for some values of the parameters ir. the domain of instability. These
are chosen to be consistent with the expected dislocation densities and the magnitude of
the yield drops. (Our earlier calculation (Valsakumar and Ananthakrishna 1982) shows
that the value of N, is determined by the value of 4. The magnitude of the yield drop
depends on uand 6. For a given material o is fixed by the power law and thus it would
depend on ponly.) Various characteristic features of -he sy exhibited by our model are
studied. Almost all of these qualitative features are consistent with the experimental
results. (Note that the latter are in the nature of averages over the sample dimensions.)

Stress [ kg mm 1)
=
(=3
T

364

Stroih rale

32r- ¥

l i ]

0.5 1.0 15
Strain (%}

Figure 1, Stress—strain curve showing repeated vielding fora = 0.2. 5= 0.002. ¢ = 0.008.
d=000t.y=0.h=02k=08andm = 2. Shown in the inset is a graph of oversus €, for
the same values of the parameters.
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We list here some important ones. with explanations only where it is found necessary.
{a) There is a range of £ over which serrations are seen. (b) The model exhibits the
negative strain rate behaviour of the flow stress at a fixed plastic strain. ¢, The inset of
figure 1 shows a typical plotof g, — £, fork = 0.8. h = 0.2 and m = 2. The minimum in
g.at £, = Enisclearly seen. Curvescorresponding to larger g are displaced successively
upwards. This feature has been theoretically established (Penning 1972) and experi-
mentally verified (Bodner and Rosen 1967). We have also investigated the dependence
of 0,(€;) with respect to k and /. We find that the dependence is qualitatively the same
as was indicated by our earlier analysis (Sahoo and Ananthakrishna 1982). (c) Figure 1
shows a typical plot of sy, The serrations are seen to be periodic (asymptotically). Since
it is not possible to identify them as type A or type B (from the nature of the plot). a
strain rate change test (Wijler and van Westrum 1971) had to be carried out. from which
we find that bevond £, it is of type B. (d) The amplitude of the serration increases up to
£ and thereafter decreases. (¢) The amplitude increases and saturates as a function of
€. consistent with experiments (McCormic 1971). (f) Another important feature
exhibited by our model consistent with experiments is that there are upper and lower
bounds on @ within which sy is seen. Since a depends on the concentration of solute
atoms. this implies that there are bounds on the concentration of solute atoms in which
Sy is allowed. We find the usual kind of g,(£) beyond these bounds. (g) & (the critical
strain). as a function of £, decreases and thereafter increases (McCormic 1971). (#)
Beyond the range of £ where sY occurs, normal behaviour of g,(¢) is also found.

Here we would like to point out that there has so far been no attempt to derive the
negative strain rate behaviour of flow stress (which is most crucial for any meaningful
description of the phenomenon) starting from dislocation interactions. In the existing
theories this is either assumed (Penning 1972) or derived through phenomenological
treatment of waiting time (Van den Beukel 1975). In contrast. in our model this property
comes out naturally starting from dislocation interactions.

Below we argue that although we have considered space averaged quantities. inhom-
ogeneous deformation should follow from our model once appropriate space dependent
terms are included. The support for this comes from Penning’s analysis. which assumes
a form of o(£,,) shown in the inset of figure 1. Under the assumption that £, is localised
in space (which is equivalent to N localised in space). he shows that inhomogeneous
deformation follows. Since, we have shown that our model predicts the form of of ¢ nl he
assumes. similar results should follow from our model once space dependent density
functions are introduced. This can be done by an extension of our earlier work (Anan-
thakrishna and Sahoo 1981b. Ananthakrishna 1981). Define

N(1) = fns(x. 1) dx

etc. The equation for ri ;(x. t) will contain. apart from other terms
on
- g
By, ) 72 (x, 1)

where g(x, 1) is the velocity associated with n,(x. 1). Additional support comes from the
fact that generally, a system of nonlinear equations which admits limit cvcle solutions
also supports spatial inhomogeneous solutions when appropriate space dependence is
incorporated. the exact nature of which depends on the boundary conditions and
geometry. (See for example Brusselator model in Nicolis and Prigogine (1977).) Thus,
our model is consistent with inhomogeneous deformation.

We have shown that the new temporal order is a consequence of a bifurcation from



Letter to the Editor L175

a homogeneous (in time. in the present analysis) steady-state plastic flow bevond some
critical values of the parameters. From the analysis it is clear that this order is a result of
a balance between the energd input (in the forms of dislocation multiplication) and
dissipation (annihilation. immobilisation and other processes). The phenomenon 15
obviously a far from equilibrium situation and 1s an example of a dissipative structure
(Nicolis and Prigogine 1977).

We thank Dr G Venkataraman for arousing interestin this problem and Dr P Rodriguez
for useful discussions.
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Chaos exhibited by 2 model introduced in the context of repeated vielding is studied. The model shows an infinite se-
quence of period-doubling bifurcations with an exponent § = 4.67 « 0.1, The associated one-dimensional map and the pro-

jection of the strange attractor are also studied.

Recently we [1-3] have been interested in model-
ling the phenomenon of repeated vielding of materials
and its other manifestations [1.2]. Repeated yielding
(RY) of materials has been known te be some kind of
instability [4] and has been an object of much investi-
gation in metallurgical literature. Qur interest in the
subject arose out of a need to understand and explain
the full temporal behaviour of RY. In a sense. the
model we have proposed is a generalization of Cottrell’s
model [3] by including the time dependence, The basic
idea was 10 make use of the intrinsic nature of plastic

flow. namely the nonlinear interaction between disloca-

tions. and to show that limit cyele solutions are sup-
ported for certain values of the parameters. We thus
identified the emergence of limit cycle solutions as
the mathematical mechanism of RY,

The purpose of this note is 1o report the chaotic
flow [6.7] exhibited by our model over a certain
range of the drive parameter. (There is some evidence
for such a flow in experimental situations also, We
shall discuss this briefly later.) This adds te the grow-
ing list of models as well us physical situations exhibiting
chaos [6-9]}. The modei shows an infinite sequence
of period-doubling bifurcations eventually leading 1o
chaos. The drive parameter is the applied strain rate.
The region over which chaos is exhibited is very small
compared to the range of strain rate over which RY
isseen. (RY is considered to be periodic.) We have cal-
culated the value of the associated exponent and found

it to be the same as Feigenbaum’s exponent for the qua-

00319163/83/0000—0000/S 03.00 © 1983 North-Holland

dratic map. We have also obtained the associated one-
dimensional map.

Briefly the model consists of three types of disloca-
tions, namely the mobile. the relatively immobije and
those with clouds of solute atoms (Cottreli type). There
are many well-known mechanisms which transform
one type of dislocation to an other, leading to a cou-
pled set of rate equations for their respective densities.
The rate constants are functions of stress, temperature
and other parameters. In constant-strain-rate experi-
ments. the stress is changing. The rate of change of
stress is described by the machine equation which
involves all the dislocation densities. (For the interested
reader we refer to ref. [1-3].) Here we will not give
any description of the equations. except those that
will be essential for our discussion. We shall work with
ditmensionless variables. The rate equations are

F=(0 - hnlipix —bxl—ax +1 - xr. ()
P Eblkbxl —xy -y +acy, (2
Z=c(x-2). (3)
o=dle— (6 ml2yn(x +4'2)] . (4)

The dot refers to the derivative with respect to a dimen-
sionless variable 7 {the dimensionless strain or time).
In the above equations x, y, = and ¢ correspond to
the mobile density, the immobile density. the density
of those with clouds of solute atoms and the stress.
respectively. All the parameters (2, b, o, d. e, b, k, ¥")
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aré parameters that can be varied. In the actual physical
situation all the parameiers are positive and so are the
variables x, v, z and ¢. Further, the initial values for X,
¥, z are never strictly zero,

The two steady states are (0, 0, 0, O)and (x,.y,.
244 %, ). The trivial steady state is always unstable and
is not allowed by the physical conditions. Linear-sta-
bility analysis around (x,, v,.z,. ¢,) shows that there
Is an unstable domain in the parameter space for which
a limit cycle solution is supported. The parameter of
interest (even in the physical case) is the applied strain
rate, We therefore fix the values of other parameters
within the instability region and study the bifurcation
sequence with respect 10 e (the strain rate). The entire
numerical work has been carried out on a Honeywell
Bull DPS 8. The values of the parameters are fixed at
(0.7.2X 10-3.8 X 10-3,10-4,¢.02,09, 0).

The region over which the period-doubling bifurca-
tion occurs is smalt and this region is located near the
upper end of the domain of e (the dimensionless
strain rate) over which RY is observed. The first bifur-
cation fron the periodic state with period T to a state
with period 2T occurs at € = 1599844 The successive
bifurcations 227, 237, 24T and 25T oceur at e
=173.7178. 65 = 1758974 ¢4 = 176.3462 and e
= 176.4923 respectively. The exponents defined by
5?1 = ("n - en—l)/((’nﬂ - en) .
form=23and 4 are respectively 6.30 2 0.1.4 .86
* 0.1 and 4.67 * 0.1. (We have not tried to obtain a
better estimate of & due ro limitations on computer
time.) 1t is clear that the value of & in our case is very
close 10 that obtained by Feigenbaum [10.] 1] for the
quadratic map. Figs. 1.2 and 3 show graphs of ¢(1)
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Fag. 1. Stress—strain curve fore = 173.077 with period 27.
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Fig. 4. Stress—strain curve fore = [78.205 well within the
chaotic regime.

with periods 2T, 22T and 237, respectively. The esti.
mated value of e_, is 176 4669. Beyond this value of
e.. we tind chaotic motion. Fig. 4 shows a graph of
¢(7) for e = 178.205 well in the chaotic domain, We
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. Fig. 5. A log—log plot of the strange atiractor for e = 178.20%
on the x—¢ plane.

have also obtained the projection of the strange attrac-

tor in the x—¢ plane, A log—log plot of this projec-
tion is shown in fig. 5.

In order 10 check the precise nature ot the one-di-
mensional map associated with our system of equa-
tions. we have plotted M, | versus M, . where M, is
the ith maximum of the ¢(r) graph. The number of
points used is 1000 and we have passed a smooth

curve since these points form almost a continuous line.

The plot so generated is shown in fig. 6. Unlike the
one-dimensional map associated with the Lorenz mod-
el [6]. our map has a smooth rounded maximum simi-
far 10 the quadratic map, except that it is very much
skewed. )

The fact that our model exhibits a chaotic flow
has prompted us 10 lock for such experimental plots
in repeated yield drops. (Of course. the values of the
parameter which controls the magnitude of variation
in ¢, i the magnitude of yield drop has to be chosen
appropriately.) Even though we are constrained by
the fact that the average level of ¢ (stress) remains flat
in our model, we have found evidence in support of
such flows [12]. Experimentally such regions also oc-
cur at the end of the region of the strain rate for
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Fig. 6. A one-dimensional map associated with the model.

which RY is seen. If we subtract the slow increase in
the base level of stress normally observed. there
appear many more situations which are perhaps chao-
tic [13].

A more detailed analysis of the model including the
perivd-undoubling phenomena seen will be reporied
elsewhere.

We thank Mr. K. Anantharaman for the help in
preparing the computer plots.
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