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The elastic plane-strain Green’s function is calculated for a general anisotropic composite
solid with a plane interface and a line load paraliel to the composite interface. The interface
may be between two different solids or between different orientations of the same solid such
as a grain boundary. The equations of elastic equilibrium are solved by the Fourier transform
method. Analytical expressions are obtained for the Green’s function in real as well as Fourier
space. These expressions should be useful for calculations of elastic properties of a composite
solid containing defects. Two sum rules are also derived for matrices which constitute the
Green’s function and the stress tensor. These sum rules can serve as numerical checks in

detailed computer simulation calculations.

{. INTRODUCTION

Many elastic properties of a solid with defects can be
calculated from the elastic Green's function of the solid
and/or its derivatives and integrals. The main advantage of
using the Green's function is that it gives the displacement
field and the stress distribution in a solid subject to any ar-
bitrary loading which satisfies all the required compatibil-
ity and boundary conditions. The Green’s function for a
solid can be obtained by solving the equations of elas-
tic equilibrium for a unit force at a point or a line subject
to appropriate boundary conditions (for mathematical as-
pects of Green's functions, see Ref. 1). There is growing
interest in the calculation of the elastic fields of cracks and
dislocations near interfaces. These are important in estab-
lishing a basis for the treatment of a number of cracking
problems for composites, including near interface crack
propagation, crack blunting, and dislocation emission, as
well as those for near interface dislocations, including pile-
ups. All of these can be solved by means of Green’s func-
tion techniques.

The anisotropic elastic Green’s function for infinite,
uniform (or homogeneous) solids containing point or line
defects has been extensively studied.>® The Green’s func-
tion for a selid containing a crack has been calculated by
Sinclair and Hirth.” The elastic fields of line defects resid-
ing in the interface of a composite have been recently pre-
sented.® However, the Green’s function for the bulk phases
in a composite solid containing an interface has not been
reported in the literature.

* Current address: Nationat Institute of Standards and Technology, Frac-
ture and Deformation Division, Boulder, Colorado $0303.

® Current address: Washington State Unlversity, Department of Mechani-
cal and Materials Engineering, Pullman, Washington 99164-2920,
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In this paper we have calculated the anisotropic elastic
Green's function for a line force in a composite solid con-
taining a planar interface. The interface may be between
two phases or orientations of the same material such as a
phase or a grain boundary or two different materials such
as in a fiber composite. The Green's function can be used to
calculate various elastic properties of the solid associated
with the interface such as the interaction of a dislocation or
any other defect with the interface.

Planar interfaces in solids have been studied by sev-
eral authors.>"? These studies are based upon the method
developed earlier by Eshelby e al."* and Stroh."* In this
method, the elliptic differential equations of elastic equilib-
rium are solved in terms of complex variables, a procedure
that requires the solution of a complex sextic determin-
ental equation.

In the present paper we solve the elastic equations by
taking their Fourier transforms. We thus obtain an integral
representation of the Green’s function over the Fourier
space. One advantage of this method is that it avoids the
need for solving a complex eigenvalue problem which is
convenient only in certain practical applications.'® Fourier
transforms have been employed by Barnett* as the basis
for the so-called integral method of Barnett and Lothe."
We also calculate the Green's function in the alternative
analytical form which would require solving a complex
eigenvalue problem as in the Stroh method. The method
is illustrated by an application to a X5 grain boundary
in a cubic lattice. In a later paper we shall apply these
Green's functions to a composite solid containing an inter-
facial crack.

We find that the Green’s function at a point is continu-
ous as the point of application moves across the interface.
As a by-product of this proof, we also prove two sum rules
[Egs. (B.1) and (B.2), Appendix B] which are general and
should be useful as numerical checks in computer simula-
tion calculations.
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Il. GREEN’S FUNCTION AND ITS FOURIER
TRANSFORM

We denote the space variables by x, x', etc., which
give the position vectors of various points in the solid
with respect to a suitably chosen frame of reference. The
Cartesian components of x are denoted by x,, x,, and x,
along the axes |, 2, and 3, respectively. We follow the
summation convention over repeated Roman indices i, j,
k, I, etc. )

The equations of elastic equilibrium for a solid can be
written as follows:

Z(x)ufx) = —f(x) (h
where u(x) and f(x) denote, respectively, the displacement
field and the force at x, Z is a tensor operator defined by

62

ZAx) = ¢, ——
v W ax,0x,

(2)

and c,; are the elastic constants of the solid.

The solution of Eq. (1) can be expressed in terms of
the Green’s function G(x, x'), which is defined as a solu-
tion of the following equation:

Z(x)Gu(x,x") = —8,8(x — x') (3)
where 8, is the Kronecker delta function, which is 0 for
{# kand / fori = k, and 8(x — x') is the Dirac delta
function which has the following properties:

5(x) =0 forx, #0

and

x

j Fix — x")8{(x'}dx’ = Fix)

for any arbitrary F(x).

The Green's function G(x, x") must satisfy all the pre-
scribed boundary conditions for u(x) over the variable x.
Then it follows that the solution of Eq. (1) is as given below

ulx) = f G,(x,x")f(x") dx’ (4)

We now introduce the Fourier transforms of various
functions as follows:

' 1 (RPN S TIT IS ]
Gix.x") = @ ﬂ;Gq(Q.q Je ST dqdq

(5)
|
ulX) = G L“f(q)e“' dg (6)
and
1 * .
filx) = 2y Jﬁfi(q)e“‘ *dq )

where q is the wave vector with the Cartesian compo-
nents g, ¢;, and g, and q * x = ¢,x,.

The inverse transforms can be easily obtained by
means of the following orthogonality relation:

1
(2my

In terms of the Fourier transforms, Egs. (1), (3). and
(4) reduce, respectively, to the following:

f e dg = 8(x) 8)

A{9)Gq,q") = 2n)’ 8, 8(q — q') (10)
and
1 x*
Q) = —= {q.q’ "dq' 11
ul(q) (277)3 [—zGIJ(q q )fl(q ) q ( )
where the 3 X 3 matrix A (q) is defined by
Afq) = ciyqug; (12)

To calculate the Green's function, we determine the
displacement field for a unit force at a point x'. 1n order to
facilitate the calculation, we define a partial Fourier trans-
form of the Green's function as follows:

=

Gig.x') = f Gix,x")e 9" dx

i ¥ :
= e [ Giq,q')e " dq’ 13
(217)3 J:, (q q )e [l ( )
Its inverse transform is given by
! 1 : ! iq-x
Gix,x') = (2—_”)3 j_xG(q,x et * dg {14)
Glg.q") = f Gig,x')e' " dx' (15)

In a uniform infinite solid, since the choice of the
origin of coordinates is immaterial, G{(x, x") would depend
upon x and x' only through their difference. 1t would be
therefore a function of the single variable x — x". Simi-
larly, its Fourier transform G(q,q") would aiso depend
upon the single variable g — q'. In this case, as is appar-
ent from Eq. (10), we have

Glg) = {Al@}" (16)

where, in the light of the preceding remark, we have ex-
pressed the Fourier transform of the Green’s function as a
function of the single variable g. Equation (16) indicates
that the 3 X 3 matrix G(q) is inverse of the matrix A(q)
where A(q) is defined by Eq. (12).

Now we consider a composite solid with a planar in-
terface. In this case G(x, x') depends upon x as well as x’.
Similarty, G(q.q’) depends upon both q and q' and not
necessarily on their difference. Our object in this paper is
to determine this dependence.

We take the interface along the plane x. = 0 (see
Fig. 1). We label the material parameters of the solid in
the upper half (UHP) of the x,x, plane by superscript A
and those of the solid in the lower half plane (LHP) by the
superscript B. We assume the solids A and B to be individ-
ually uniform and to extend to infinity. Thus. the only dis-
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Xz
J
UH.P
(Solid A)
Interface
0 X
L.HP
(Solid B)

FIG. 1. The coordinate axes. The x; axis is normal to the piane of the
paper. The interface is along the plane x, = 0.

continuity in our model solid is on the interface at the
plane x, = 0.

We apply a line force @* at the point R}, R5 (RS > 0)
in the UHP and another line force ¢° at the point RY,
—~R%Y (R > 0) in the LHP. The line forces are taken to be
paralle] to the plane of the interface. We assume that there
is no variation in the x, direction. Thus, the force func-
tions and their Fourier transforms are given by

fAx) = @' 8lx, — RY)8(x; — RY) (17)
Fix) = &7 8(x, — R%)8(x, + RY) (18)
fig) = Qu)ple nri-nrigg) (19)

fq) = Qm)ele aFm ) 5ig)) (20)

The elastic equations in the two regions, UHP and LHP,
are given by

>0 Ziudx) = — ¢t 8lx, — RY)8(x, - RY
2D
<0 Zixwi(x) = —¢]8(x; — RT)8(x, + RY)
(22)

We assume that the two solids A and B are perfectly
welded at the interfacial plane x, = 0. Thus, the pre-
scribed boundary conditions at the interface are

utle, x, = 0%) = ullx;,x, = 07} (23)
and

Tix,x, = 07) = Tix,,x, = 07) (24}

where T denotes the stress tensor. In addition, we require the
usual condition of zero strain at infinity on the x,x, plane.

The term 8 (g, in Eqs. (19) and (20) arises from the
fact that the applied line forces are independent of x,. This
is the only case that we consider in this paper. Therefore,

for the sake of brevity, we ignore the variable x, and take
g; = 0 so that henceforth, unless otherwise indicated. x
and q refer to two-dimensional vectors with Cartesian
components x,, x, and g,. ¢,, respectively.

. CALCULATION OF DISPLACEMENT FIELD
AND GREEN’S FUNCTION

In this section we solve Eqs. (21) and (22) subject to
the boundary conditions given at the end of the preceding
section and thus obtain the required Green's function.

We adopt the following procedure for obtaining the re-
quired solution. First we assume that ¢® = 0. We write
the solution of Eq. {21) as a sum of its particular integral:
a solution of the homogeneous part of the equation, i.e.,
Eq. (21), with its RHS taken as zero. The homogeneous
part of the solution would contain an integration constant
which is determined by the boundary conditions.

Similarly, we write the solution of Eq. (22). This
equation is already homogeneous for ¢° = 0. Its particular
integral therefore is zero. The two integration constants in
the solution of Egs. {(21) and (22} are then determined so
that the two boundary conditions as given by Egs. (23) and
{(24) are satisfied.

We obtain the particular integral of Eq. (21) from
Eq. (13) where for G(x,x") we take the Green’s function
for the uniform solid in UHP, i.e., solid A without any
interface. This Green's function for a uniform solid can be
written in terms of the single variable x — x'. Its Fourter
transform can also be written in terms of the single vari-
able q.

One can also write the homogeneous solution by using
Eq. (13) with the same Green's function and a force func-
tion which is applied outside the interface, i.e., outside the
region in which the solution is obtained. This force func-
tion must be zero everywhere inside the region of the solu-
tion. The solution obtained with this force function inserted
in Eq. (13) is the solution of the homogeneous part of the
equation in view of Eq. (3). The force function plays the
role of the integration constant and, as mentioned before,
has to be determined from the boundary conditions.

The Green’s function for the composite solid is finally
obtained by taking ¢* = 1, corresponding to the case
when the unit force is applied in the UHP. The Green's
function for the composite solid for the case when the unit
force is applied in the LHP can be obtained following the
same procedure by taking ¢* = 0 and ¢° = 1.

Henceforth, the particular integral and the homoge-
neous solutions are denoted by the superscripts £ and H,
respectively. The Green’s functions for the solid A in UHP
and B in LHP are denoted by the superscripts 4 and B, re-
spectively. The superscript C is used to denote the Green's
function for the composite solid. Finally, the complex con-
jugate of a quantity i1s denoted by a star as a superscript.

First we consider Eq. (21). By taking its Fourier trans-
form as defined by Eqs. (6) and (7) and using Egs. (9) and
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{(13), we obtain the following particular solution:

ug) = Gilgle ot~ ki (25)
where
Gig) = {Ag};' (26)

As mentioned at the end of Sec. II, the vector q is a
two-dimensional vector with components ¢, and ¢, along the
x, and the x, axes, respectively. Its magnitude is given by

g’ =qi+ 4} (27)

In order to satisfy the boundary conditions at the inter-
face, we add to the integrai in Eq. (26) the solution of the
homogeneous part of Eq. (21), i.e., Eq. (22) with RHS = 0.
This solution can be written

ul*(q) = Gi(Q)F!(g)e? (28)

where F*(g,) is an arbitrary vector function of g, and
& > Qs a constant which can be made arbitrarily small. In
the end we shall take the limit 8 = 0. The function F*(q)
is determined so that the total displacement field as given
below satisfies the prescribed boundary conditions at the
interface.

wix) = 1 3 ﬂ ut{q)e ! T 2 dg dg, (29)
Qm)” ),

where

Q) = uq) + ui(q) (30)

At x, = 0, the displacement field is given by

ul(x, 0) = (2—]‘”)[_: VA(g,)e " dg, (3bH
where

Vig) = gia. —Ridle " + gig,, 8)F Hgy)

(32)

with

8(q. 6 = (%W)JZZG?}(%qz)e‘”fsz 33)

The evajuation of this integral is given in Appendix A.
We now calculate the stress components T, which
can be written as follows:

1 [~ ‘
M08 = o f LAQG g™ da, (37

and

L) = chugr + Chng: (38)

As shown in Appendix A. the integral on the RHS of
Eq. (37) is independent of ¢, for £ = 0.

Proceeding in a similar manner, we obtain the follow-
ing expressions for material B in the LHP:

l x
H?(X) = z[ “f(Q)elq'I'ﬂqmd‘hd‘h (39)
P2, il
-
u?(x.,o) = —f V?(ql)flq!x]d% (40)
27l .
T%(x,,0) = ”r_J' 3%(g e "1 dg, 41
pr .
where
ut(q) = Glgle nrtrfigl o Giqle P FE(g)
(42)
Vi(g) = 8%g,, RDePe 0*T + gBig,, —8)Fi(q,)
{43)
5%(g,) = g, RE)efe ™8 + nbiq,, ~8")F(q))
(44)

with G3(q), g3(g.. &) and 1’(g,, ) defined, respectively,
by Egs. (26), (33), and (37) with the superscript A replaced
by B. The constant 8' in Eqs. (43) and (44) is positive and
in the end, we shall take the limit §' = 0.

The boundary conditions given by Egs. (23) and (24)
are satisfied if F*(g,) and F%g,) are determined from the
following equations, which are obtained from Eqgs. (31),

(40), (35), and (41):
Vig) = Viq) (45)

and
SHg) = S¥q) (46)

After some algebraic manipulation, we obtain the fol-
lowing expressions for F*(g,) and F®(q,) in terms of vari-
ous 3 X 3 matrices:

F'(g) = MIP(g)d'e ™ *! — Q(g,) % ~*!

_ ou{x) ou (x)}
Talx) = ¢y 5;] 22 33(2 (34) 47
Using Eq. (29), we obtain for T4 from Eq. (34) at and .\
x, =0, F’(g)) = N[T{g,)p"e "1 — W(q,)(bae_““”
Ll (48)
T.(x,.0) = E'Ii FQI”S?(‘FI)Sg”'(%)dQI where
(35) M = [g4q,. 8)] '[v*(-8){g%g,, ~8)}"
where - 7' (8){g"(g,.8)}']" (49)
Sty = mitg,. —Ridfe M + niiq,, 8)F )(g,) N =[g%g. ~80] " [nf (-8} {g%q, —8))
(36) - n'(8){g"lg,, )} '] (50)
116 J. Mater. Res.. Viol. 4, No. 1, Jan/Feb 1989
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Plg) = {’TA(_R;){gA(QH —Rg)}—l
- 7(-8){g"q,. — &)} "Ig'(q,, —RY)

(51}
Q(g) = [v* (R {g"(q,. R}
- 2(-8){g g, -8} "1’ (.. RY)
(52)
Ti{g;) = ['TA(-R;){EA(GH, _R;)}_l
-n*(8) {g*(q,. 8)} '1g"(q,, —RY) N )
W(g,) = [ﬂB(st) {gB(QEsR?)}_I
- n'(8){g"(g,, )} '1g%(q.. RS) (54)

The evaluation of various matrices in Eqs. (47)-(54) is
given in Appendix A.

The displacement field in the UHP and LHP can now
be calculated from Egs. (29) and (39), respectively. The
Green'’s function is just the displacement field for a unit
force, i.e., for ¢* and @® equal to the unit matrix. Thus, we
obtain the following expression for the partial Fourier trans-
form of the Green’s function which is defined by Eq. (13):

(i) Unit line force in the UHP at x’ = R* = (R}, RY)
G“(q.RY = G‘(q)e"‘?lﬂﬁ‘*lqzké

+ G'(@MP(gy)e 1 * (55)
G%(q,R) = GP(qQ)NT(g,)e 9" (56)
(ii) Unit line force in the LHP at x’ = R? = (R% —R?%)
G(q,R®) = —G*{q)MQ(g )e 9! (57)
G%q.R%) = G"(gye0*Frrd
- GP(g)NW(g,)e " (58)

The final result for the Green’s function can be ob-
tained from Eq. {14). Carrying out the integral over q in
Eq. (14) as shown in Appendix A, we obtain the following
expressions (x stands for R* or R"):

() xand x' in UHP (x, > 0, x; > )
GHx,x) = —i 2 vi(pd
“In[(x, = x]) + palx; — x3)]
- LS vphm
ks ag
o (pp) — o v H(pp]
“In[(x; — x]) + xplh — xipgl (59)

(if) x in LHP, x’ in UHP (x, < 0, x} > 0)

G%(x,x") = -% S vB(pEN
af

fo™(ph) — o v (ph)]

Il - x)) = [xlpl’ - xipg)
. (60)

(iii) x in UHP, x" in LHP (x, > 0, x; < 0

1
Ghx.x) = — X v (phM
w af
[l — &P Y ph)
“In[(x, = x{) + x;pd + Ixiiph]
(61)
(iv) x and x' in LHP (x, < 0, x; < 0)

GCB(X,X’) - - % Z V-B(p:)

- Inf(x, — x}) — pE(lx)| — x3h)]
1 B, 8

+ - azﬂ v (psN

et ph) - ol Vi (p))]

“Inf(x, = x}) = |xlpl + kel

X,

(62)

where the matrices », o, v,, and @, are given by Eqgs. (A.9),
{A.17), (A.22), and (A.23), respectively, in Appendix A,
and the matrices M and N as defined by Eqgs. (49) and (50)
are expressed in terms of ¥, and o, in Eqs. (A.20) and
(A.21) in Appendix A. It is understood that the displace-
ment field is given by the real part of the Green’s function
in Egs. (49)-(62).

IV. AN ILLUSTRATIVE EXAMPLE

In this section we illustrate the method given above by
applying it to the simple case of a planar interface between
two cubic solids. The interface is taken to be parallel to the
crystallographic z-axis. The two solids on the opposite
sides of the interface may be different materials as in a
composite solid or different crystallographic orientations of
the same material as in a grain boundary.

We consider the case where the x and v (x, and x,)
axes of our frame of reference, as given in Fig. 1, coincide
with the crystallographic axes. The results for a different
orientation of the x and v axes can then be obtained by an
orthogonal transformation.

For the cubic case the elements of the A matrix as de-
fined by Eq. (12) reduce to the following:

A = cullg® + 8,g1)8,8y + Bogq)) (63)
where
8y = (e, — €3 = 2c4)/ca (64)
By = (e t cul/ea
and
¢ =qi+q+q (65)

Our interest is only in the case g, = 0, as remarked at
the end of Sec. II. In this case the matrix defined by
Eq. (63) reduces to a 2 X 2 matrix, which is referred to as
A, and a | X | matrix (i.e., a pure number) given by

J. Mater. Res., Vol. 4, No. 1, Jan/Feb 1989 17
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(66)
X 2 matrix A are formally defined

Anilg) = C-uq:
The elements of the 2

From the above equations we obtain the following matrix
sums;

by Eq. (63) with i and j assuming values of only 1 and 2 . —-I-—LS (80)
and with g, = 0. The matrix A is relevant for the plane Y 2eh(py o) Y
strain problems for which f; = 0: whereas A..(q) is re- O = O = 1/2 81)
quired for the antiplane strain problems where f, = f, = 0 - =
and f; # 0. Here. we consider the plane strain problem so _ Cas
: O = ————[1 - 83, + (82)
that f; = 0. 1 2(‘,;(#1 + “2)[ Bo C]
The roots of D(q), the determinant of A, as defined and
by Eq. {A.5) are given as . |
2 _ 2 4 _ qyl2 oy = + N - 83
pi=-K'+ (K- 1) (67) T o gt T e = Bocy)] (83)
and . ) ’ We note that, as demonstrated by Eqs. (B.1) and
pr=—K' — (K*' - 1)"? (68)  (B.2) in Appendix B. v, is real and
where o~ or =l (84)
> &y where I is the unit matrix.
K =1+ —{(B, + 8,/2 691
4 (8o o/2) ( In the case 8, < 0, the roots p, obtained from Eq. (67)
and and Eq (68) are given below:
{=ayfcy (70) =R + (85)
with a, as defined in Eq. (A.5), equal to ¢,,. and
For §; > 0, we can write pr=—-R + (86)
P =y and  p, = e, where
where the u, are real and are given by R=1[(1 - KY/2]" (87)
=K - (K- 1" (M} and
and po=[(1 + K%)/2]** (88)
ui =K'+ (K- 1" {72)  We also have the relation that
In this case after some algebraic manipulations, we p=pt (89)
obtain the follogmg expressions for the matrix elements of Proceeding as before, we find that
vand o (a.B = 1,2; 8 # o) )
2 vilp.) = Z,(1 + {pl) (90
( ) = _._l__g’f.a__ (73)
Fint P 2a g (pl — u3) VikPa) = va(pa) = —Z Bop. (91}
t V2’(pa a(‘: + P (92)
volpd = vy(p,) = ‘_':_BO_E (74) 5
2a gy — onlpa) = Zapall = By + {p3) (93)
! ~ M ) 24
Vo p,) = —ﬂ%&j (75) o pa) = Z,[(1 = Bolps + (] (94)
Hallta ™ K oalpa) = Z[~1 + B, — {pl] (95)
t ) 2
oulpa) = _W’:—z)[cu(l = Lua) = Bucs] On = CuZpdl — B + Bo + {pl) (96)
ke T M where
{76} (—1)°
T T Reunkp, e
ou(p.) = 2o [ﬁuﬁ-’-n al (Rl TR VT . NP
enlpd = The matrix sums can now be determined but are not
(77} given here. However, with the help of Egs. (85), (86). and
-1 (89). we can verify that
Tolpa) = S -
2c(p; — Hp) vip)} = v*(p,) (98)
enBotta + cnll = Lug/p,) (78) a,(p) = o*p) i #j) (99)
- and
nlp) = el = By
anlp.) = 2(”{#“ ,u.‘ [ g = Bac-] g cullpl - p%] e 100)
\ (79) T 8¢, R 2
118 J. Mater. Res.. Vol. 4, No. 1, Jan:Feb 1989
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From Egs. (98)-(100) we find that in this case also
Eqs. (B.1) and (B.2) are obeyed.

In deriving the above formulae, we have assumed that
the x and v axes of our frame of reference coincide with
the crystallographic axes. The corresponding matrices for
a different orientation can be found with the help of the
orthogonal transformation of rotation S, viz.:

$,(8) = 5,,(8) = cos 6 (101)

where 8 is the angle between the crystallographic x axis
and the x, axis. The transformed matrices are simply given

by

Adq) = S(OAQ)ST'(H) (103)

v, p.) = S{Bw(p IS (104)
and

a(p) = S(6)a{p,) 'S(O) (105)

Since S(@) is an orthogonal real matrix, it follows
from Egs. (80), (84). (98), and (100) that Egs. (B.1) and
(B.2) are obeyed for any orientation 6.

Once the v and ¢ matrices are known, the various
terms in Eqgs. (59)-(62) for the Green'’s function can be
calculated. Here we give the results for a 25 tilt grain
boundary in stainless steel. We take the crystallographic
axes in the UHP (region A) to be parallel to the chosen
x,,x, axes. In the LHP (region B), the crystallographic
axis is taken to be oriented to the x, by 8 = tan~' 3/4. The
elastic constants of stainless steel as taken from Hirth and
Lothe® are given below in units of cu:

¢y, = 2.2

The calculated values of G*(x, x') and G%(x, x') as
a function of x, (x, = 0) are depicted in Fig. 2.

cp=13  cy=1

o
&

L

-010

-03C

Green's Function

. | L A L

e -€C -2t en €C 100
X2

FIG. 2. Real part of the Green's function plotted as a function of x,
{x, = 0) for & unit line force in UHP at x, = 10, x, = 10 for a 5
boundary in stainless steel. In the UHP. the crystallographic axes are par-
allel to chosen frame of reference (Fig. 1), In the LHP, the crystallo-
graphic axes are rotated by an angle tan”' 3/4 relative 10 the frame of
reference. which explains*why G;: = G, in LHP.

The case of antiplane strain is particularly simple.
In this case all the matrices are 1 X 1, i.e.. pure num-
bers. The A matrix is given by Eq. (66). The only root of
As(g) = 0 which contributes is p, = ¢. This yields the
following expressions for v, s, M, and N:

vip) = v, = 1/2c4 (106)
alp)=0,=1t/2 (107)
M = 2uch/(eh + ch) (108)
N = 2wl /(ch + k) (109)

Again we see that Egs. (106) and (107) satisfy Egs.
(B.1) and (B.2). The final results for the Green's function
as obtained from Eqs. (59)—(62) are given below:

Dx,>0,x3>0

r l 1 '
G™x,x') = _51;;}:'“(1 —-z')
+ -2-;2‘:71:\(1 —z'%)
44

(i) x; < 0, x1 > 0

1 i
CcB , (AN *_Z'*
G"(x,x") p —__ci, ey In(z )

(i) x, >0,x; <0

G™(x,x') = —'11; F:A—i—c'i In(z - z'}
(iv)x, < 0,x;<0

G%(x.x') = ——1——157 In{z* — z'*)

o o
- 5:—7—% In(z* — z°)

where

z=x, + L, (110)

2" =x) + o (1
and

{= (e — e}/ (e + i) (112)

V. DISCUSSION

The Fourier transform of the Green’s function is given
by Egs. (55)-(58) from which the Green’s function (or
the displacement field) can be calculated by means of
Eq. (14). This would involve a numerical calculation of an
infinite integral over g,. Alternatively, one can use the
analytical expressions given by Egs. (59)-(62), which
would require solving a complex sextic equation.

We notice that the Green's function in real space has
the well-known (see Ref. 5) logarithmic dependence on the
space variables as found for the displacement field by
Tucker.® One important physical test of the theory is that
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there should be no discontinuity in the displacement ficld
as the point of application of the line force moves across
the interface between UHP and LHP. We show in Appen-
dix B that this discontinuity is indeed absent in the result
given by Egs. (59)—(61). In Appendix B we prove the two
sum rules that », — »* = 0, i.e., the matrix », is real,
and that o, — o, = I, which is independent of the mate-
rial parameters of the solid. A direct verification of this in-
teresting result has been given for cubic lattices in Sec. IV.
Because of their generality, these sum rules should be use-
ful as numerical checks in detailed computer simulation
caiculations.

An application of the Green’s function derived in this
paper for the problem of an interfacial crack in a com-
posite solid will be reported in a forthcoming paper.
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APPENDIX A: EVALUATION OF THE INVERSE
FOURIER TRANSFORM OF THE GREEN'S
FUNCTION

In this appendix we shall show how to evaluate the
inverse Fourier transform of the Green's function for
the composite solid by contour integration of the various
expressions given in Sec. III. First we shall give the back-
ground formulation which leads to the well-known loga-
rithmic expression for the Green’s function of a uniform
homogeneous solid (solid A in UHP or B in LHP in the

present case). We shall then use the same technique to ob-
tain the inverse Fourier transform of the Green's function
for the composite solid and the result as quoted at the end
of Sec. III.

Background formulation

We note that A (q) is a homogeneous function of ¢,
and g, (for all i and j = 1, 2, and 3). The three eigenval-
ues of A(q) can therefore be written in the following form
forw=1,2 or3:

€.(Q) = a.(g: + bugiq: + c.g})

= a.{q: = p) (g — piq) (A1)
where a,, b,, and ¢, are constants and p, and p¥ are the
roots of the sextic equation €,(q) = 0, and * denotes
complex conjugate.

For elastically stable solids the eigenvalues of A are
real and positive" and are not zero for any real value of g,

and g, except for g, = ¢, = 0. Each root p, therefore must
be complex. We label the roots so that

Imp, >0 (forae=1,2,3) (A.2)

The Fourier transform of the Green’s function for a
uniform solid as defined by Eq. (16) can then be written as

I'(q)
G- Z\ = == A.3
A0 = {Alg)},' = Dl@) (A.3)
where I, is a cofactor of A, viz.,
ALQT,(q) = D(q)3, (A.4)
and D(q) is the determinant of A which is given by
3
D(g) = [] E,lq) = aﬂ (q: = paqi) (42 — Pq))
a=1
(A.5)
and
a = a,a.d,.

The inverse Fourier transform of G;(q), i.e., the
Green’s function for a uniform solid in real space can be
written as follows in terms of Eq. {A.3):

l x

G:j(l’) = 5—;[ e‘qlxlg,_,(qi’xz)d% (A.6)
where
8i(qi,x) = f G(q)e'" dg,
1 Je o
" 2ma f 2 q dg,
U ~ P4 (g — ptq)
(A7)

We consider the case where all of the eigenvalues are
distinct. The case of degenerate eigenvalues, such as those
for an isotropic solid, can be tackled by means of a stan-
dard limiting procedure. We also assume that x, > 0.
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The integral on the RHS of Eq. (A.7) can be obtained
by means of a semicircular contour in the upper half of the
complex g plane, as shown by the solid line in Fig. 3. In
view of the condition (A.2), the integral over the semi-
circle vanishes in the infinite limit. The only contribution
comes from the poles at ¢, = p,q, in the upper half plane.
Thus we obtain

1
grj(QI!XZ) = E’ z V{f(pa)e‘qwaxz (AS)
| a
where
.t ru(‘h = ¢,p,)
VU(Pa) = * *
a4y (p, — pX) [ (pa = P} (po — PD)
Bra
(A.9)

Since A,(g) is a homogeneous function of second de-
gree in ¢, and g, its cofactor I';(g) is a homogeneous
function of degree 4 in ¢, and g,. The matrix elements of
¥(p,), as defined by Eq. (A.9), therefore depend only
upon p, and not upon q,.

In order to evaluate g, (g,, —x,) (for x; > 0), we
choose a clockwise contour in the lower half plane, as in-
dicated by the dotted line in Fig. 3. Moreover, g, has the
property that

1 X ptqilxy T oy
=;R!f g (A.11)

0 q
or
dl ¢ 7
_ = R[._f gix) = paxat A12
) ), € dg, { )
T (X + p.x;3)
or
1
fx,x) = —;—Rl In(x, + pa_rz)’ (A.14)

In writing Eq. (A.13) we have used the fact that the
imaginary part of p, is positive so that the integral is zero
at the upper limit ¢, = =. Thus, we obtain the following
expression for G (x):

Gx) = —éRlZ vi(p,) In(x, + p,x,) (A.15)

By using the same technique, we can calculate the
Fourier integral required for 7(6,, £) in the stress compo-
nent T, in Eq. (37). Assuming ¢ > 0, we take the same
contour in the upper half plane, as shown in Fig. 3. The
result is (for superscripts A or B)

—y) = p*
g:j(?]» x;) & (g, x3) (A.10) ﬂy(‘]ug} = 2 O',I(pﬂ)e‘q'p"f (A.16)
In order to evaluate G (x) from Eq. {A.6), we notice u
that it has a singuiarity at ¢, = 0. We can, however, obtain  where
its principal value by considering the following integral: T(P.) = Lulp vl p.) (A.17)
fx,,x,) = _l_f e }e‘qipa:2 dq, is independent of ¢,
’ 2,
‘QIFX Ly(p.) = € + ConPa {A.18)
2 and
n{g,, —€) = nkg,. &) (A.19)
Derivation of the inverse Fourier transform of the
Green’s function for the composite solid
X Using the background formulation and the contour in-
2/9,=P tegration technique as described in the preceding sub-
2 s section, we shall now derive the inverse Fourier transform
of the Green's function for the composite solid.
1 ! X We note that in the limit £ = 0, 7(g,, £) is indepen-
\ | dent of ¢, and, from Eq. (A.8), g,(q,, €) is proportional to
\ § o 1/g,. The matrices M and N as defined by Eqs. (49) and
\ 92/Q1%Pa  / (30} are therefore independent of ¢, in the limit & and
\ ,/ 8" = 0. Their explicit forms are given below.
e g M= /7y (A.20)
~ S - - -1
Rt el N =y (A.21)
where
vt =3 v ip,) (A.22)
FIG. 3. Semicircular contours chosen for integration. The clockwise @
solid line contour in the UHP encloses only those poles for which Im P.
is positive. The anticlockwise broken line contour in the LHP wiil en- 0-:-5 = 2 g"-B{Pa) (A.23)
close poles for which Im p, is.negative. Poles are denoted by crosses. -
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and

Y =@ *B*Bl

- v
Similarly, we obtain the following expressions for the
other matrices in Eqs. (51)-(54):

P(q]) - EU*A(pz)e-cqm&Ang

— o T e (phe Y (A24)
Q(Q]J = Z B(ps)eum’u

= 0¥ T W (pReswil (A.25)
Tig) = X @™ (plle v

— U:V:_l 2 v*A(pa)e _qu;AR? (A'26)
Wig) = 3 0°(plle s

w1 GRS (A.2T)

—ov 2 vP(ple

Now we evaluate the inverse Fourier transforms of
various terms in Egs. (55)-(58) as defined by Eq. (14).
The inverse Fourier transform of the first term on the RHS
of Eg. (55) and also Eq. (58) can be obtained directly from
Eq. (A.13). The other terms are given below (x, > 0,
R >0.R:>0).

(i)

*

] 3 fdQn GHQMP(g,)e 1 *lemarnan go,
™

1 ( .
-5 [ g xampgen g

1 _
=-— > v pMc*(p}) — o¥p¥” Iv"‘“‘(p";)]
a8

“Infr, = RY) + xpf — RipH*) (A.28)

where we have used Egs. (A.8), (A.14), and {(A.24). In a
similar manner we evaluate the remaining terms as given
below.

(i1)
Zlf;i J] da, GB(q)NT(QI)eﬁmME“I"' T dg,

1 -1 A
= == Z v (pINla™(pp) — otw v (pp)]
ap

“n[(x; — RY) — xp2® — RipE]

(A.29)

(iii)
1 :
= || eamMQu e ten g dg,

B _i % v pIMIa®(ph) — v v (p})]

nf(x, = RY) + xp? + R3p3]
(A.30)
(iv)

1
a7 ﬂ GHQNW(g )e e dg, dg,

-

___Ev

ln[(xx — RY) — x.,p** + Rip)

(pIINLo®(ph) — &v ' vP(p5)]

(A.31)

where, in each equation, the real part of the RHS has to
be taken.

APPENDIX B: CONTINUITY OF GREEN'S
FUNCTION WITH RESPECT TO THE POINT
WHERE THE FORCE IS APPLIED

In this appendix we shall show that the G°(x,x"} is
continuous as x' moves across the interface from UHP to
LHP or vice versa. For this purpose, first we shall show
that the following relations, i.e., the sum rules, are valid:

yiE - B =g (B.1)
and

d—ot=d - =1 (B.2)

To prove Eq. (B.1), we use Eqgs. (A.7}, (A.8),
(A.10), and (A.22) to write (for superscripts A or B,
£ >0)

Y, — ¥

llm q:[8(q,. &) — glg,, —&)]
4 j G(q)e* dg,

4 J’ G(q) sin ¢,¢ d‘h]

"
E.
|

il
5.
|

=0 (B.3)

since sin g,£ remains finite as g,— > and therefore its
limit will be zero as £~ 0. We note that for a general line
defect with both line force (Green’s function) and disloca-
tion character, the difference v** — v**® would instead
relate to the Burgers vector of the dislocation portion.

To prove Eq. (B.2), we first consider its LHS. Using
Eq. (A.22) for the definition of ¢, along with Eqgs. (A.16),
(A.17), (A 19}, (3.13), and (3.14), we write

o - o= ;l_r.l‘[l) JNE (B.4)
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where
& = 9*g. & ~ 1.~
- L [ wiastge - LaGige 1
(B.5)

and as in Eq. (B.3}, £ is taken to be positive.
From Eq. (B.5) we obtain

dJNE) _ ¢ r PR it et
& 27 7xq:L(q)G (@ le + 7' ]dg,
(B.6)
From Egs. (3.14) and (2.12) we see
A*q) = ¢, L*g) + ALtg) (B.7)
where
ALyq) = Ctm‘l% T Cipdi: (B.8)

since, as mentioned at the end of Sec. I, ¢, = 0.

With the help of Eqs. (B.7), (B.8), and (16) we obtain
from Eq. (B.6)

dJé) L J' * 0k -
- — E + tqad .
% . Ie e ]dg,

L

" 3 J IAL(q)G(q) [e' + e™9*]dq,

(B.9)
where 7 is the unit matrix. Using the Fourier representation

of the delta function as given by Eq. (8) and the following
definition of the step function

j 5(¢) = HE)

where the step function H() is defined by the following
(& = 0y

H(-§€ =0
H(¢ =0} =1/2
H{¢) =1

We obtain from Eq. (B.8)
J(&) = 2dHE) — AJHO

where

3

l x 3
AJ?ﬂf) = '2_; J (anl% + Clllel)Gﬂ{(q)
Y 2

e - e\ dg, (B.10)

Since the limit of sin(g,£) and sin(g,¢ )/ g, is zero for

£ = 0 even for g,— %, we see that AY(¢) = Ofor £ = 0.
It may be remarked that we would not put J*(£) =0 in
Eq. (B.5) although it contains the factor sin(q,€) because
L(q) contains the factor g, which would be infinite as

fh—’ x,
Thus, we see
o —-o=4 (B.11)

and is independent of the material constants of A. Proceed-
ing in a similar manner, wWe¢ would obtain the same result
for a* — o¥® which proves Eq. (B.2).

Now to prove the continuity of G (x,x’) we put
x; = 0in Eq. (59) for UHP and in Eq. (61) for LHP. We
obtain

G™(x,x.x; = 0°) = —R[I + M{a}

=1
— o’y
(B.12)
and
-1
GHx.x!.x) = 0) = RM[o? — 2"y
(B.13)
where
1 1
R=;27A(Pu) ln[(x, _xl) +x1p‘:] (B14)

and we have used Eqs. (A.22) and (A.23). Using Eq. (A.20)
we find that
=1
Gx:x!.x! = 0') = —RM[a*’¥y! — o
+ O'*A — 0*87;‘67*"]
(B.15)

Using Eq. (B.}) we find that Eqs. (B.15) and (B.13)
reduce, respectively, to the following:

GAx;x],x, = 07) = RM(&} - a*?)
and
GHxx),x,=07) = RM(o? — o) (B.17

which are equal in view of Eq. (B.2). Similarly, we can
prove the continuity of G (x,x').

(B.16)

J. Mater. Res., Vol. 4, No. 1, Jan/Feb 1989 123

~ -



Elastic Green’s function for a composite solid with a planar crack
in the interface
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Columbus, Ohio 43210
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The elastic Green’s functions for displacements and stresses have been calculated for a
composite solid containing a planar crack in a planar interface using the Green’s function
derived in a previous paper for a line load parallel to the composite interface. The resulting
functions can be used to calculate the stress or displacement at any point in the composite

for a variety of elastic singularities. As specific applications. the Mode I stress intensity factor
of an interfacial crack was calculated as were the Green's functions for the semi-infinite
antiplane strain case. The Mode I case shows the near-crack tip oscillations reported by other
authors while the Mode II1 case does not. The newly devised Green's functions are shown to
reproduce the results of other authors in the isotropic limit.

I. INTRODUCTION

The interfacial fracture strength of polycrystalline and
multiphase solids and also of MACroscopic composite ma-
terials may be controlled by the properties of cracks em-
bedded in the interfaces in the materials. The mode of
fracture, viz., intergranular vs transgranular, is presumably
related to the relative fracture toughness of the matrix and
the interfaces.

The elastic properties of a homogeneous, continuous
solid are contained in the elastic Green’s function for that
continuum. These functions are valuable for solving a va-
riety of elastic boundary value problems that meet the
physical compatibility and equilibrium conditions.' For
a cracked composite body, similar problems can be solved
by means of corresponding Green’s functions. It is of inter-
est, therefore, to calculate the Green’s function of a com-
posite solid containing a crack in the interface: the object
of this paper.

A considerable amount of work has already been done
on elastic fields of line defects in a cracked body (see, for
example, Ref. 4 and other references given thergin). The
mathematical treatment is generally based upon the formal-
ism developed by Stroh.” An alternative treatment based
upon an integral representation of Stroh’s theory was de-
veloped by Barnett® and Bamett and Lothe.” Excellent re-
views of the general theory have been given by Rice® and
Thomson.® These reviews contain many other references to
work on fracture.

Interfacial cracks subject to uniform loading of crack
surfaces in isotropic solids have been studied by several
authors, including England” and Rice and Sih."' The case

" Cument address: National Institute of Standards and Technology, Frac-
ture and Deformation Division, Boulder, Colorado 80303.

® Current address: Washington State University, Department of Mechani-
cal and Materials Engineering, Pullman, Washington 99164-2920.
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of anisotropic solids subject to loading of crack surfaces
has been discussed by Willis” and Clements.” For many
practical applications, such as the interaction of disleca-
tions and other defects with cracks, one must calculate the
displacement field and the stress distribution in & solid sub-
ject to arbitrary loading. The Green's functions as calcu-
lated in this paper facilitate the analysis of such applications.

In general, the displacement field and the stress have
been found to show strong oscillations very near the crack
tip. Our results confirm the existence of such oscillations
except, of course, in the simple case of Mode 111 defor-
mation (antiplane strain mode). In this mode there are no
oscillations and the composite solid behaves like a homo-
geneous solid.

The Green's function for a homogeneous anisotropic
solid containing a planar crack with straight parallel edges
has been obtained by Sinclair and Hirth." In an earlier
paper (Ref. 15, henceforth referred to as Paper I) we ob-
tained the elastic Green’s function for an anisotropic compos-
ite solid with a planar interface. In the present paper We use
the results of Paper I to obtain the Green’s function for the
same model solid containing a planar crack in the interface.

1. EQUATION FOR DISPLACEMENT FIELD
AND ITS SOLUTION FOR A CRACK OF
FINITE LENGTH

We consider a composite solid with a planar interface
containing a crack of length 2¢. The solid is assumed to
extend to infinity. The edges of the crack are assumed to
be paralle] and straight. We choose a system of axes as
shown in Fig. 1, such that the interface is along the plane
x, = 0 and the crack extends from —c to c. No variation
of the field quantities (stresses, strains, etc.) is allowed in
the x, direction so that the mathematical problem is es-
sentially a two-dimensional one. As in Paper I, the solid
in the upper half plane (UHP:x; > 0) is denoted by the
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Xa
)
UH.P
(Solid A)
Crack Interface
| — — — — )
x=-C > x,=C '
LHP
(Solid B)

FIG. 1. The coordinate axes. The x, axis is normal to the plane of the
paper. The interface is along the plane x; = 0. The crack extends from
¥ = —ctx = cin the interfacial plane.

superscript A and that in the lower half plane (LHP:x, < ()
by the superscript B.
The equations of elastic equilibrium are as follows:
0'u

dx, dx,

Cajt = =flx) (1)
where ¢ is the tensor of elastic constants, u is the displace-
ment field, x denotes Cartesian coordinates, and i, j, k, |
take the values 1, 2, and 3. In Eg. (1) and throughout this
paper we shall follow the summation convention over re-
peated Roman indices but not over Greek indices which
also take values of 1, 2, and 3.

Our object is to calculate the displacement field for a
line force, i.e., when f(x) in Eq. (1) is of the following form:

fx) = ¢,8(x, — R)8(x, ~ R,) (2)
where ¢ is the constant vector strength of the line force,
The line of force application is parallel to the x, axis and,
as is apparent from Eq. (2), cuts the X, x, plane at x, =
R\, x; = R,. The point (R,,R,,0) may be in UHP or LHP
and is accordingly labeled by the superscripts A or B. The
two-dimensional Green’s function G; is defined by the dis-
placement field u; for a unit line force, i.e., when §, = 1.

We consider the case when the two solids, A and B,
are perfectly welded at the interface except, of course, in
the region of the crack, where two traction-free surfaces
are required. The boundary conditions at the regions of in-
terface outside the crack. as given in Paper [, are that the
u; and the stress component T, are continuous at the inter-
face. At the surface of the crack the following boundary
conditions" are specified:

T,=0 (3)

for

X =0 ad -c=x =<¢

In addition, as in Paper [, we require that the stresses van-
ish at infinity.

In our present model, as in Paper I, f(x) is indepen-
dent of the coordinate x,. In what follows, therefore, unless
otherwise indicated, the vector x denotes a 2-dimensional
vector with components x, and x,. The indices k and / in
Egq. (1) take only the values 1 and 2. Of course, the z com-
perents of u and f need not be zero.

We now discuss the solution of Egq. (1) in four differ-
ent cases. These four cases correspond to the following
four combinations of x and R in UHP or LHP: (i) x and R
in UHP; (ii) x in LHP, R in UHP; (iii) x in UHP, R in
LHP; and (iv) x and R in LHP. The Green’s functions for
these four cases without the crack were obtained in Paper I
and are quoted in Appendix A of the present paper. Certain
useful relations between the parameters of the Green's
function are also given in Appendix A.

We first consider the case when both x and R are in
the UHP, i.e., x = x,,x, where x, > 0 and R* = R}, R
where R} > 0.

The general solution of Eq. (1), as in Paper I, can be
written as follows:

uf(x) = f G(x, x")f(x') dx’
+ (lignf GAx, X' )F(x)8(x; + Ddx’

(4)
where
) = &;8(x; — R 8(x; - RY) (5)
Fj(x,' ) is an arbitrary function defined over the crack sur-
face and { is an arbitrarily small positive number which
tends to zero in the limit. The second term on the RHS of
Eq. (4) can be considered to arise from a hypothetical dis-
tribution of forces which are applied just outside the re-
gion 4 along the surfaces of the crack. This distribution of
fictitious forces is required to meet the traction-free surface
condition at the crack. As shown in Paper I, the displace-
ment field as given by Eq. (4) satisfies Eq. (1) and those
boundary conditions at the interface outside the crack re-
gion which correspond to the perfect welding of solids A
and B at x, = 0 for all values of F (x}). We therefore de-
termine F(x|) so that w*(x) satisfies the crack boundary
conditions as given by Eq. (3). In addition, we impose the
following equilibrium condition that no external net force
be applied to the crack:

f Fix)dx! = 0 (©)

Using Eq. (A.1) of Appendix A, we determine the
following displacement function for case (i) from Eq. (4):

1 3
u'(x) = - 2 Y(phé" iz} — ot
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K

1
T T L Y'Q(P?:)Q,Iad’ In(z,
T oapg=1

1S ‘
- > 7"":)9[ In(z2 ~ t )F(r.)dt
a=1 -

- pa%)

1 2 ¢
T > ‘Y'VPQ)Qif In(z; — t_)F(_) dt
a=| —¢
(7)
where
3
= 2 Q'(pl) : (8)
a=|
23 =1, + phx; 9)
pr =R} + p’R} (10)
b, =t+ 0
t_ =1 — 10

As in Paper 1, the real part of the expression on the
RHS of Eq. (7) gives the displacement field. In Eq. (7) the
sum over « includes only those three roots p, of Eq. (A.19)
which have positive imaginary parts. Equation (A.19) is a
sextic equation in g, [see Eq. (A.1) of Paper I and Ref. 5
of this paper]. The remaining three roots of that sextic
equation are the complex conjugates of p, (o = 1, 2, and
3). We can, therefore, order the roots such that

Pez = ps  la=1=3) (11)
We now write the stress component T ; in terms of the
displacement field in the following:

au’ dul
T, = f'?zu_’!' + szz,_u'L
dx, LR
= Lijla)dul/dz} (12)
where we have used the fact that «} is a function of z}
so that
d 1 @ J
— == (13)
dx, p,8x; dz,
and
Lﬁ‘-(a) = C?zu + Pﬁ":“zzf' (14)

Using Eqgs. (7} and (12), we obtain the following ex-
pression for T in the UHP for x, = 0" where T is a vector
with components T .:

1 i a;Q;
=1 X .0;*
¢ oQF(r)

X =t

12 A
T(x,) == g = pi
1 AF(I,,} l

wl o, x - f“) m ).,

plex conjugate and multiply by one-half. In accordance
with Eq. (11), we obtain the complex conjugate by ex-
tending the sums on the RHS of Eq. (15) over a and
B = 4106 and also replace t. and ¢ by ¢_ and 1., respec-
tively. Proceeding in this manner and using the fact that

xy ~ 1, =x_ — t we find the following equation for
—C=x =
f (o F(r. ) + o}QF(1_)]ds
- X,
kA + %Ay okl
+f Lo F(‘* oQFEId ) e
. L
where
S EATEP
Mix) = 3 [ pa) . QA*]cb (7
m=| - pm l ~ Pm
Prey = PR* (m=1,2,3) (18)
a"=0o! (m=1,2,3)
= g* (m=4,56) (19)

In what follows we use the same notation for other
variables and functions, viz.,

(m=1,23} (20)

Y(pps) = ¥¥p,)  (m=123 (21}
with similar relations for &, Q, and Q..
Using the same procedure that led to Eq. (16}, we ob-

tain the following condition for zero siress in the LHP by
using Eq. (A.2): +
J' © o"QF( )dr 'J" a Q."F(1,) dt

r—x, "

+ —¢

A — LA
I3 = Iy

= Mix,)

r— x._

-

(22)

M(x,) = (23)
l mzzl ’tl pm

By means of Egs. (A.2) and (18)-(21) one can show
that the RHS of Eq. (23) for M(x,) is the same as that of
Eq. (17). Subtracting Eq. (22) from Eq. (16) and using
Eq. (A.22), we get

J’ [a?F(1.) — o™ F(r_)]dr
t—x,,
j [or*F() = ofF())dr _ o)
t—x,

In view of Eq. (24), we can choose
oiF(t.) = @*Fir) = 1(1) {(25)
Using Eq. (25), we can write Eg. (16) in the following

(13) form (—¢ < x; < ¢):
We have to det_erminerF(n) apd F.(r-) 50 that the T H(x, ) + T*H(x, ) = Mix,) (26)
boundary condition given by Eq. (3) is satisfied. However, h
the stress is given by only the real part of the RHS of W€
Eq. (15). We therefore add to the RHS of Eq. (15) its com- T, =1+ o’Qo*)! (27
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“ f(r)dr
t—:z

H{z) =

-t

(28)

I=x + o,

and I is the unit matrix.
Equation (26) is in the standard form of the Hilbert
problem. Its solution' is given below:

H(:) = %J,(z)m) ) J;(( > M(’)dr 29)
where .
5(2) = (2 s ‘)d (30)
I =
Y(z) = 1/(z* — )" (31)
and
exp(—2mA) = T,T})"! (32)

Here, both A and therefore exp(—27A) as defined by
Eq. (32) are matrices. The matrix exp(—2wA), which is a
scalar raised to a matrix power, is defined in terms of the
eigenvectors and the eigenvalues of T,(T})™’ as follows:

exp(~2mwA) = EAE*
where E is the matrix of the eigenvectors of T, (T}) ™',

is the transpose of E, and A, a diagonal matrix. The ele-
ments of A, are given below:

Al\aB exp( 277‘\'1:) Saﬁ

where A, is an eigenvalue of A and is obtained in terms of
£.. an eigenvalue of T(TF) ', as follows:

{no sum over a)

1
= -— 13
A, o In £, (33)

Willis'? has shown that T, and T} are Hermitian ma-
trices so that £, are real. The eigenvectors are taken to be
orthonormal such that

EEY¥ =1 (34)
In Eq. {29). J,(r.) and ¥{t,) denote the values of

The matrices J, and R, are also defined in 2 manner
analogous to exp(—2mA). For example.

R,(1) = EA;E¥ 41)

where Ay is a diagonal matrix whose elements are given by
e+ o\t

Aps = (C — ) 8us (42)

The matrices J,, R,. exp(* 7wA), and T (T7)"!
commaute with each other since they all have the same
eigenvectors. Their order in a product can therefore be
interchanged.

Now we come to the solution of Eq. (28). This is
a standard singular integral equation with a known solu-
tion."" The solution for x = x, on the real axis is given
below:

|
fix)) = -—[H(z =x,) — H(z = x, )]
1
= -4_[TL + TR, (x )Yyl x
'(r) M(z) dr
f YO(I) t — .«r] (43)
Using Eq. (17) for M(¢), we obtain
6
fix,) = —2—[T" + TH 'R Y ) Y
m=1
' [I(xhpm)o-ﬂ(pm) + l(":l! *}O.AM ]]d,
{44)
where
¢ -1
K, p) = 1 R, (1) dr 45)

2w S Yle) (r— x)r — p)

The integral in Eq. (45) is evaluated in Appendix B.
Using the result given by Eq. (B.5) we find

f(x,) = —E—TL exp(—mA)R,(x, Y(xJE

m=1

Ju(z) and Y(z) in the UHP for z = ¢~ Taking z — ¢ = C[P'(xy, phat(ph) + Px,, piM Q' o
(c —t)expum}and - + c = ¢ + 1(—c <t < ¢) in the (46)
UHP, we have
where
) = Ridr) exptmd) S R 0 T .
Yit.) = —LYO(I) {36) ’ p=x
J.(t2) = R,(1) exp(—mA} (37) We can now determine F(x, ) and F(x, ) from
and Eq. (46) by using Eq. (25) as given below:
- ~1
Yl = ) (38) Flx.) = (o)) (48)
and
where
o= ,. A Fx) = () 'fix) (49)
R, = P (39 where f(x) is given by Eq. (46).
' The displacement field is given by Egs. (7). (48). and
and ) ) (49). In a similar manner we obtain the displacement
Yoy = 1/ = s (40)  fields when the force @ is applied in the LHP. by using
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Eqs. (A.3) and (A.4). The Green’s functions are then found
by replacing the force vector ¢ by a unit matrix. The cal-
culated Green'’s functions are given in the next section.

i. GREEN’S FUNCTIONS

In this section we present the displacement as well as
the stress Green’s functions for a composite solid contain-
ing an interfacial crack. The displacement Green's function
G(x,x'), as defined in Paper I, gives the displacement
field at the point x when a unit line force is applied at the
point x'. Similarly, the stress Green's function 8(x,x")
gives the stress at the point x when a unit line force is ap-
plied at the point x'.

As in Paper I, we distinguish four cases correspond-
ing to x and x' being, respectively, in (i) UHP, UHP;
(ii) LHP, UHP; (iii) UHP, LHP; and {iv) LHP, LHP. In the
expressions given below, the Greek summation varables o
and 8 have the range 1-3 whereas the Roman variables m
and n have the range 1-6. In each case only the real part
of the final expression is to be taken.

A. Displacement Green's functions
1. UHP,UHP (x, = 0, x; = 0)

+ ‘Y*A(P:)Q;m ]n(ziﬁﬁ - zlg*)]
_l A A 1Im by~ 1= 1
t 5 Em',? (paQI (a2 'T;
- exp(—7A) 2, P24, D)o QY (52)

4. LHP,LHP (x, < 0, x} < 0)
G(x,x") = —ﬁ 2 r*(pa) In(zo¥ — 2'2%)

B
- z'5)

1
+E ? [y*(pDQL In(z2*
+ Y (eDQEY In(z ~ 2’54
_!_ *B *Bm lepm g —
+ P %y | W T
- exp{— m\)z [P(z2*, 2’ 2*)a**(p?)

_ P(‘-m , ‘rg HerlV]
(53)

In the above equations, factors with the following defini-
tions are employed:

Jr 1(;:»)
1 = -
Gx,x') = —g Z'r“(pﬁ,) In(z;, — 2'7) PGP = p) L) = Klp) o8
R,(1)Y, (:)
- E [v*(p2)Qp In(z; — 2'5* Lz, p) —f _Ot (35)
+ *A — LA .
YHPIQE 2" - 2] Ki(2) = 5- f In(z — OR,(Ylt) dr (56)
1 A A Ammy =1 -1 e
+ — ) T T
29 % Y (P )( ) vy Tf_ =1- o_;kanv(a_ngq (57)
. CXP(_'?TA)E [P(Z:,ZJ:)U'A(F:) TL(Tf)71 = TL’(T:")_i = exp(—2'rr)\) (58)
n + B 0Ol Tp = Tym = 1,2,3)
ms Z n 0': n — * =
(50) Thim = 4,5,6) (59)
with a similar relation for T} in analogy with that defined
2. LHP,UHP (x, = 0,x; = 0) by Eqgs. (18)—(21), where I is the unit matrix. The evalua-
1 tion of the integrals in Egs. (55) and (56) is described in
Gix,x') = - 2 ly*(pdQs In(z2* ~ 2'4¥) Appendix B.
oA . i " In most cases of practical interest, one needs the stress
+ Y (pdQE" In(z} — z'§)] distribution in the solid rather than the displacement
1 B Burilmr s e ] field. We, therefore, give below the stress Green’s func-
+ > zm: Y (p Q. (o) Ty tions S(x, x’). The element S/(x,x’) of the stress Green's
function gives the stress T; at x when a unit line force is
cexp(—mA) S P(E*, 4% g QY applied at x’. In accordance with Eq. (12), we can obtain
n S(x,x") from the displacement Green's function G(x, x’)
(510 by replacing ¥ by & and differentiating it with respect to z,
maintaining the appropriate indices A or B and « or 8.
3. UHP,LHP (x, = 0, x; < 0 From Eqs. (54)—(56) we see that
x') 1 dP{z,p} _ J:'(p)
G _- YA( ﬁ)QlH A — ZIB) » P = A P ' _ i 2
2T 5 5 " ¥ Wep) K@) (60)
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where
L [ Ryt
2 _ - [E—— " A M A 6
K. p) 2 f_( (r— 23t — ﬂ)dI (61
and
2rl., 11—

The evaluation of LI and K, is given in Appendix B.
Using the results given by Egs. (B.6) and (B.7), we find

&Lz, p) = [exp(—7A) + exp(wA)]™!
dz
x [ L. V(z,p)J 63)
2= p
where
- _1&\p)
Viz,p} = [—Ym— 2__-—p + I]JA(Z)Y(Z) (64)

and I is the unit matrix.

The expressions for the stress Green’s function ob-
tained from Eq. (63) by the procedure described above are
given in Egs. (67)—(70). These expressions give the stress
component T... The comresponding Green'’s function for T,
can be obtained in an exactly analogous manner except
that ¥ in G(x,x’) has to be repiaced by &' which is de-
fined as foliows [cf. Eq. (12)]:

(T,]j = L,]-,cy,q (65)
where
Ll]f(a) = C'll.f + P.,C;,z_,- (66)

B. Stress Green'’s functions (for T,,)
1. UHP,UHP (x, = 0, x; = 0)

1 o o'(ph)
-2
~izfﬂw%+“wﬁ%]

A 1A% * _ A
2 3 2, = 2'; Z 2’y

S(x,x') = ~

+ 2—:; 2 a*(ph) (o) ' TUTY + T,)™

,Z[wwh+ o"Q,

A Az
A A

+ Vi 2 et p?)

2. LHP,UHP (X =0, x; = 0)
*B B iH B B sl
sw)- L3 [0 i

2 o 2B — z'g* Sl 4

1
T 3 2 Qe
(TE + T,
O,:Bn f,l
» [‘Z‘er_-g;; + V(Zﬂ*,Z';‘*)O'?B"QL‘J
(68)

3. UHP,LHP (x, = 0, X;<0)

, ! o pQY | o (pHQrT
S(xrx) =—2[ AP rsﬁ + Ax rai
Tagl Za— 25 Za T Zg

+ 51; 2 o pRQM™ (@) (T + 1)

Angy i1
a
3 [-—_Q— - wz:,z'f)a:"o:"]
n

h m

+

(69)
4. LHP,LHP (x, < 0, X;=0)
, L5 _o¥pd)
S(x,x ) = -_2_1; - Zf,* - zrf"*
» Ly 2oy | oo
2G| zat -2 7y — 2'B¥
L
27

2 T (po) (e ™) (T, + T,)™

B
'y o*(p7)
v [zat — Ex
)kBngyIV
aQ
- —-——23: — z",s + Vizg*, 28 a*8(p ")
”m n
~ V(zi*,Z'fJo,"‘””Ql‘] (70)

IV. STRESS INTENSITY FACTOR

In this section we use the Green’s functions as derived
in the previous section to calculate the Mode I stress in-
tensity factor when the crack is introduced into a body
initially loaded only by uniform externaj stresses. (For re-
views of the physical significance of the stress intensity
factor, see, for example, Refs. § and 9.) For brevity, we
refer to this case as a crack subjected to a “uniform load”
This boundary value problem has been discussed eariier

for isotropic solids by England"® and Rice and Sih." Oyr

+ V(Zf",z'f*JO'T"QLJ (67)  results, as given befow. are applicable to genera! aniso-
tropic solids.

) J. Mater. Res., Vol. 4, No. 1, Jan/Feb 1989 129



V.K. Tewary, R. H. Wagoner, and J. P. Hirth: Elastic Green's function for a composite solid with a planar crack interface

Let £, and —f, denote, respectively, the forces on the
upper and the lower surfaces of the crack. The applied
force ¢(x,) is thus represented as follows:

¢’(le =f,
= —f, x,=0,—c=x =0
0 (e, > ¢) (71)

The stress T,(x) at a point (x,, x,) in the UHP can be
written as:

(x, =0"1—c=x, =0¢)

i

T(x) = f Skx, x M, dx; — f S¥ix, x")f, dx;

(72)
where T is a vector with components T, f, is a constant
vector as defined in Eq. (71), and x is in UHP (x, = Q).
The stress Green's functions §° and §" correspond to cases (i)
and (iii), respectively, as given by Eqs. (67) and {69).

Using Eqgs. (67), (69), (57), (58), (A.23), and (A.24),
we derive the following equation from Eq. (72):

Tix) = ﬁ S oM ph) (e THTE + Ty)

: f [V x]) — Vizmx])]dx)f,

¢

(73)

The integrals in Eq. (73) have been evaluated in
Appendix B. Using Eqs. (B.21) and (B.22), we determine
the following result from Eq. (73) for the stress distribu-
tion in UHP when the crack is subjected to a uniform load:

Tx) = -3 o' (pA) (@) ' TUTE + Ty)™

. . ~1 71—(2”1 - ‘n)
3, + )

+ {1 + exp(=2mA)}" TE—

- {z,I ~ ZLCA)]JA(Z,..)Y (2 Mo
(74)

For x on the real axis between —c¢ and ¢, the first two
terms inside the square brackets on the RHS of Eq. (74) can-
cel. In this case T(x) is zero, as expected, when summed
over m. In other cases, i.e., for x not in the range between
—c¢ and ¢, we obtain

T(x) = =3 a*(ppH{o") ' THTE + Ty)™

1= (2,0 = 2eeA)] (2,0 Y (200,
(75)

The stress distribution on the real axis for x = x, with
Ix,| > ¢, as found from Eq. (75) using Eqs. (35-(40) is

Tix)) = —f + xF — )71 — 2uch)

x, +
. exp[u\ In al C] f, (76)
X, —c

Equation (76} has the same form as the corresponding
equation for isotropic solids derived by England" and Rice
and Sih."" As shown in Appendix C, this equation reduces
to those derived by these authors in the isotropic limit.
Also, Eqs. (75) and (76) reveal that as |x| approaches x,
T(x,) approaches zero.

Near the crack tip, i.e., near x, = ¢, the stress as
given by Eq. (76) has a strongly oscillatory behavior in ad-
dition to the square root singularity. These oscillations are
characteristic of interfacial cracks in the elastic theory.
Following Rice and Sih"' (see also Ref. 12), we define the
stress intensity factor, which is a vector in this case,” as

K = 2V2[exp(mA) + exp(—awA)]™!

- lim (x, — )*" "' T(x)) (77)
From Egs. (76) and (77) we obtain
K = 2Ve [exp(mA) + exp(—7A)]"

I — 2eA] expleA In 2cf, (78)

As shown in Appendix C, Eq. (78) reduces to the result
derived by Rice and Sih" in the isotropic limit.

The displacement field follows directly in the present
case of a uniformly loaded crack. For this calculation, fol-
lowing the “inverse” of the procedure described in Sec. 1l
for the calculations of S(x, x"), and as implied in Eq. (21),
we replace o*(p?) in Eq. (74) by ¥*(p2) and integrate it
with respect to z,,. This gives

Ulx) = =2 y™ph) (o™ ' THTE + T

“[zal = Iz, /Y(z,)] (79
The displacement field vanishes as x — = since in
this limit ¥(z,) = 1/z,, and J,(z,,) — L. Equation (79)
agrees with that derived by England" in the isotropic limit.
The presence of the J,(z,) term on the RHS of Eq. (79)
gives rise to the characteristic oscillatory behavior of the
displacement field. The stress distribution and the dis-
placement field as given by Eqs. (74) and (79), respec-
tively, are derived for x in UHP. In a similar manner, we
can derive those for x in LHP. Both the stress T, and the
displacement field are, of course, continuous at the inter-
face on the real axis for [x] > c.

V. SEMI-INFINITE CRACK-ANTIPLANE STRAIN
PROBLEM

As a simple illustration of the formulae derived in
Sec. III, we consider in this section the antiplane strain
problem associated with a semi-infinite interfacial crack.
The oscillations in the displacement field and the stress
associated with the interfacial crack are absent in the
antiplane strain mode. In this mode the composite solid
behaves like a2 homogeneous solid.

130 J. Mater. Res., Vol. 4, No. 1, Jan/Feb 1989

— & -




V.K. Tewary, R.H. Wagoner, and J. P. Hirth: Elastic Gree's function for a composite solid with a planar crack interface

As given in Sec. IV of Paper I, in the antiplane strain
mode a and 8 take only the value 3. The indices m and n
in Egs. (50)—(53) and (67)—(70) for the Green’s functions
therefore assume only the two values 3 and 6, which cor-
respond to complex conjugates of one another, Further,
all the matrices in this case reduce to pure numbers as
given below:

Vet =yt = 1/2a%" (80)

o5t = ol = /2 (81)

Q.=Q=0'=d"-d* - (82)

Q) = 2d4° (83)

oV = —244 (84)
where

('A'B
"= (el + cl) (83)

and y!* are expressed in units of (ch + B)7,

The constants d*® obviously obey the relation

d* + d® =) (86)
From Egs. (27) and (57) we obtain

T, = T} = 24° (87)
and

T, =T} =244 (88)

The matrix A is zero in view of Eq. (87). Hence
Ji =1 and therefore the oscillations in the displacement

field and the stress distribution are absent in this case.

Since the only root of Eq. (A.19) which is relevant for
the antiplane strain problem is Py = t, we have in the pres-
ent case

2= Z, T A v, (89)

For further simplification, we assume that the crack is of
infinite length. We shift the origin to one end of the crack
so that the crack extends from —x to 0. We achieve this
by defining a new variable Z as follows:

Z=z~-¢ (90)
and then take the limit of large ¢.

The functions P{z, p) and V(z, p) as defined by Egs. (54)
and (64), respectively, can now be calculated and are
given below:

The variables Z and p refer to the crack tip as the
origin is defined by Eq. (90), and we have neglected the
terms in P which correspond to rigid body displacements.

The calculated values of G(x, x') and S(x, x') cbtained
from Eqgs. (80)-(88) and (91)-(92) are given below. The
expressions for G (x, X'} are in units of (c%, + iy,

A. Displacement Green’s functions
1. UHP,UHP (X, = X; = 0)
1

GX,X') = - 2n(Z — Z') + In(Z* - Z'¥)

4nmd
+ (d* — d%)
AIn(Z — Z"*} + In(2* - Z')}]
1 4% ,
+ E;EL(Z'Z } (93)

2. LHP,UHP (X, < 0, X;J = 0)

GX, X') = —-i[ln(Z = Z') + In(Z* — Z'*)]
2n

+ iL(Z,Z') (94)
2

3. UHP,LHP (X, = 0, X} < 0)

G(X,X') = -%{ln(z —Z') +In(Z* - Z'%)]

+ -LL(Z,Z') (35)
2

4. LHP,LHP (X,F < 0, X;F < Q)
1

"N = - — Y+ * ok
G(X,X") 41_rdﬂ{ln(z Z') + In(Z Z'*)
— (dA - dB)
“Aln(Z - Z2'*) 4+ In(Z* — Z
1 44
+ —— ! 96
. d"L(Z’Z) {96)
where

LZ,Z') = In(VZ + VZ') + In(VZ* + VZ'*)
- In(VZ + VZ™) - n(VZ* + VZ")

97)
P(Z.p) = n(VZ + Vp) (91)
and B. Stress Green's functions (for Tsa)
\/E i 1. UHP, UHP (X, = 0, X;=0)
VIZ,p) = ~|——|—= (92) d* d’
Z-p}Vz SX.X) = = =4,2,2) - L az.z) o8
4 47
where
Z=X+ 2. LHP,UHP (X, < 0, X; = 0)
and S ' a’ ’ d’ ( ' 99
P =X+ (X,X'} = -_LGA'(Z’Z y - LEA; 2. Z') (99)
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3. UHP,LHP (X, = 0, X; < 0)
A A

. d
S(X, X)) = —Ld—A,(Z.Z') - t—AZ,2')
47 4w

(100)
4. LHP,LHP (X, < 0, X} < 0)
d° a4*
SX,X') = ~1=—A(Z,Z") — 1—ANZ,2")
47 4
(101)
where
1 1
A(Z,Z) = _
I =g Tz
1 |
M T 7 (102)
and
'\/’_' LV AL ]
AZ(ZaZZ') =:__L_ ‘Z T EZ '
\ZIZ-2Z' Z-Z'*
L] VZT VT
VZ*|Z¥ -2 Zx-2Z'*
(103)

VI. SUMMARY

We have derived the displacement as well as the stress
Green's functions for a composite solid containing a planar
crack of finite or infinite length in the interface. The re-
sults can be applied in the fracture mechanics of a macro-
scopic composite solid in which the interface is between
two different solids or a multiphase or a polycrystalline
solid in which the interface is between two phases or ori-
entations of the same solid (for the fracture mechanics of
interfacial cracks; see, e.g., Ref. 12).

The advantage of the Green’s function is that it gives
the displacement field arising from a unit line force which
satisfies all the prescribed boundary and equilibrium condi-
tions. By using these functions, one can therefore derive
the displacement fields and stress distributions near a crack
caused by any elastic singularity in the solid which can be
represented in terms of a distribution of line forces. Exam-
ples of singularities include such defects as dislocations,
musfitting inclusions, or externally applied stresses. Some of
these applications will be reported in a forthcoming paper.
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APPENDIX A: GREEN'S FUNCTION FOR A
COMPOSITE SOLID

The Green’s function for a composite solid as derived
in Paper | is given below. The displacement field is given
by the real part of the Green's function.

(i) xand x" in UHP (x, = 0, x; = ()

GAx.x') = - Y (p2 In(z* - 2%

A= 3|

3
2
ﬂzl
BZ; YHpIQs In(zh — 2'4%)
(A.])
(i) x in LHP and x’ in UHP (x, < 0, x} = 0}

1 k]
G(x,x') = — - 2 Y¥(pQE It — )

af=|
(A.2)
(iii) x_in UHP, x’ in LHP (x, = 0, x < 0)
1 3
GAx,x') = = 2 Y(pHQY In(zh — 28
aff=1
(A.3)

(iv) x and x' in LHP (x, < 0, x{ = 0)

NI
Go(x,x') = - > Y*(p5) In(zB* — 5%
a=1

l < :
+ = 2 v¥pIQy InE - %)
T 4=
(A.4)
where (for superscript 4 or B)
Zag T Xyt Py axs {A.5)
Zap = X F PopX; (A.6)
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Q: = M{o*(pj) — o* 2™ 'y pi)] (A.7)
Qi = Nle*(p3) - af‘yf_i'y*"(pg)] (A.8)
Q' = Mlo(pf) — oy 'y (pE)] (A.9)

i = Noph) — oty 9" (p2)] (A.10)
M=yl [axys ™ - ghyr') (A.11)
N =y [ory ' = glyt ] (A.12)
Yo = 2 v(pa) (A.13)
o =Yalp,) (A.14)
o(p.} = Lip,)y(p,) (A.15)
Lilp,} = Cort  PaCiya I ) (A.16)

t i QZ = fIlpa

(P} = —

A P (TS IR
B
(A.17)

I';(q) = Cofactor of Alg)
Alg) = ey (A.18)

4. 4. are components of the wave vector q and P 18
obtained such that ¢, = p,_p, is a root of the following
equation: q

A =0 (A.19)

a is the coefficient of 47 in [A(g)|| and [|Al| denotes the de-
terminant of the matrix A.

The index « takes values 1 to 3 such that the imagi-
nary part of p, is positive,

Certain useful relations among the various parameters
of the Green'’s function as defined above are given below:

YQ — Q. = y*(p?) (A.20)
o(pd) = (¥ ¥ (pl) P (A.21)
Q. - alQ, = o*(gf) (A.22)
YIQ. = QY = —y%(p?) (A.23)
o;Q. - a}*Ql = —a®(p?) (A.24)
Q. +QV=-(@l+ oM =1 (A.25)
Q=-1-wM (A.26)
Q¥=1-nN (A.27)
o, - o = (A.28)

APPENDIX B: EVALUATION OF INTEGRALS

In this appendix we evaluate certain integrals required
for the formulae given in Sec. I and Sec. II1. For the evalu-
ation of all these integrals, we choose the contour’" as
shown in Fig. 2. This contour consists of a large outer cir-

N\

cle of radius R and an inner rectangle ABDE which en-
closes the real axis between X, = —¢ and ¢.
First we consider the following integral given in

Eq. (45):
Ry ') dt

o) - Kty (0= x)(r = p)
where p is complex and x, is on the real axis lying be-
tween —c¢ and c. In order to evaluate p. we replace ¢ by the
complex variable z and consider the following integral
over the contour given in Fig. 2.

I = f#r(z) dz

(B.1)

{B.2)

where

NG !
Yiz) (z ~x)(z ~ p)
The only pole enclosed by the contour is the one at
z = p. Hence, by Cauchy’s theorem

I'(z) (B.3)

-1
L=omBt) 1 (B.4)
vip) p~ x

The integral over the outer circle, in the limit R — ENTS
2. Using Eqgs. (35)~(38) for the values of I'{z) over AB
and DE, we obtain

1(p) = 2nlexp(—mA)

ey
+ exp(mA )] 22 -1
P ] [Y(p) P x
(B.5)
where [ on the RHS is the unit matrix.
Xg‘i
:--)(I

FIG. 2. The contour used for integration in Appendix B. The cut is on
the x axis from ~c to c. The star denotes the position of a pole.
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In a similar manner, we can determine the integrals I,
and K, as defined by Eqs. (61) and (62), respectively. In
these cases the integral over the outer circle vanishes in the
limit of large R. Thus we find:

L(z,p) = [exp(—7A) + exp(mA)] ™

_[umnm_Lmnﬂ B.6)
—p 21— p
and .

K.(z) = [exp(=mA) + exp(mA)] ' LL{(2)Y(z) (B.7)

Now we consider the integrals I, and K, as given in
Egs. (55) and (56), respectively. These integrals can be
obtained by integrating Eqs. (B.6) and (B.7). Alterna-
tively, we can obtain I, by contour integration. For this
purpose we use the same contour as given by Sinclair and
Hirth,* which accounts for the logarithmic term in the in-
tegrand. The final result, after neglect of the singular terms
which only contribute a rigid displacement, is

Lz, p) = [exp(—mA) + exp(mA)]

| |
: [Jk(p)Y(p) In(z — p) + ————=

\/p'—c‘F
-{lnl_b = pl(1 = b) = (1 = bg)]
1 — bg
+19(/17— 1}
2
[ =B - (1 - b }
5
1 1
TNV = (Y
.{m 1l::g_p[“ +b) — (1 + bg)l
+P(p-— 1)
2
[+ B = (1 + be)] H
5

{B.8)

and
K,(z) = [exp(—mA) + exp(mA)]”’

1
) [(_.1)1'{1"(1 +g)—pll — g
Lplp -t er }

2 2

- {ln(l - g~ plt — gl

L plp - D —gf H
> 2

' (B.9)

where
p = 2th (B.10)
b= Z;Z (B.11)
and
z +
= (B.12)

The series given in Egs. (B.8) and (B.9) mainly serve
the purpose of showing the qualitative nature of the Green’s
functions. For computational purposes, it may be more
convenient to obtain 1, and K, directly by numerical inte-
gration. However, as remarked in the text, in most cases of
practical interest, one needs the stress Green's functions
for which analytical results in closed form have been given
in the text.

In the special case that A = 0, the expressions for I,
and K, are considerably simplified. This case arises, for
example, for homogeneous solids or for antiplane strain in
composite solids. In this case we obtain the following re-
sult from Eqs. (B.8) and (B.9}).

Fora =0
I(z, = ——
Az, p) N = o
[pz -+ (pz — g w2
“In 3 L2
ptip —c)”
(B.13)
) 3 a1n
K\(2) = Eln[z + (27— M7 (B.14)

These results, as expected. agree with those obtained by
Sinclair and Hirth."

Finally, we evaluate the integral on the RHS of Eq. (73).
This integral can be written as follows:

f [Viz,t.) — Viz,i)]dr = 1, — L;s (B.15)
where
. ¢ Alp.
[ = llmj Al (B.16)
n—ol_.pt+inp—=z
¢ Alp_
I: = limf _Ale) 4 (B.17)
n—0)_ p =t~z
Alp) = 1 (p)Y(p) (B.18)

and r is the real part of p.
To evaluate 1,1, we consider the following integral
over the contour given in Fig. 2.

§ Alp)
Il =¢—"—
p—(z—wm)

The only pole enclosed by the contourisatp = = — .
The value of the integrand in the LHP, as obtained from

(B.19

134 J. Mater. Res., Vol. 4, No. 1, Jan‘Feb 1989

- 2_2;-



VK Tewary, R.H. Wagoner, and J. P. Hirth: Etastic Green's function for a composite solid with a planar crack iMerface

Eqs. (35)-(38) is —e€xp(—2mA) times that in the UHP.
The integral over the outer circle in the limit R — o s
given by

A{p)dp

= 2zl — 2ucd) (B.20)
R—x p -z
where I is the unit matrix.
Thus we obtain
L= 2mfI + exp(—27A)]""
. {linEA(z —m) - (zf - 2ueA)] {(B.21)
—

In a similar manner we can evaluate I,2. The result is
L= =2mI + exp(2mA)]!

. [ﬂn%A(z +um) = (2 - 2icA)) {B.22)

APPENDIX C: STRESS DISTRIBUTION IN THE
ISOTROPIC LIMIT

In this appendix we apply the formulae of Sec. IV 10 a
crack at the interface of two isotropic solids. This would
provide an illustrative example for the use of the formulae
in the plane strain problem as well as their verification by
comparison with the results derived by earlier authors.

In the isotropic case the roots P, of Eq. (A.19) are de-
generate. Consequently, the matrices v and & become sin-
gular [see Egs. (73)—(79) of Paper I]. However, v, and o,
tend to finite limits as the anisotropy parameter [Eq. (64)
of Paper 1] goes to zero. The limiting values of y, and a,
are given below:

_1+7{1 0

y.r - C“C (0 I) (C'I)
=L A

%= (L/c ! ) ©2

where, as defined in Eq. (70) of Paper 1,

{= cnfey

In the above equations we have omitted the superscripts A
or B for notational brevity, These superscripts, when in-
serted, identify the appropriate parameter for the solid A
(UHP) or B (LHP), as in Paper 1.

With the use of Egs. (C.1) and (C.2), all other ma-
trices, viz., M, N, Q,, €IC., can be easily calculated with
the help of the various formujae given in Appendix A and
the text. All of these matrices can be diagonalized by the

where

1+ 11 0
“"_(o 1—1/5)

and E* is the Hermitian conjugate of E which obeys the
orthonormality condition.

E*E =1
I being the unit matrix.
In a similar manner we cap diagonalize the other ma-

trices using the transformation E. After some algebraic
manipulation we obtain

(C.5)

(C.6)

2t {1, 0
* =" "I
E*T.E P+ t(O 12) ©n
and
2t (1, 0
* K - y
= 20 )
where .
_ =1/ 1
I]_I—I/CA =, C.9
L+ 1/ 1
) t 1
= 1—;—! 'C; - E (C.1D)
B+ 1/8%
t = _m-zg—— (C.12)
and
B =ci/cl

The same transformation also diagonalizes the ma-
trices exp = 27A, J\(2), etc., as defined in the text. From
Eq. (33) we obtain the following result for the eigenvalues
of A;

I
I\] = _1\2 = "Z’r']n fl/lz

_ L LB+ 1/ - 1/
2r B+ (L + 1/ - 1/

(C.13)

Equation (C.13) agrees with the value of the bielastic

constant as derived by England" and Rice and Sjp" for the
Plane strain probiem.

We now operate on both sides of Eq. (72) by the oper-
ator £* which gives

transformation E where E is the matrix of orthonormal T'(x) = J' ‘ 8%x, x') dx ' £ (C.14)
eigenvectors as defined below: -c , e .
where
E = —\}_5(: ;) (C.3) T'(x) = E*T(x) (C.15)
f; = E™, {C.16)
For example, we see from Egs. (C.2) and (C.3) and
E*o.E = ¢, (C.49) $' = E¥[§' - S"E (C.17)
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As mentioned before, the matrix §¢ is diagonal. Using
the diagonal] elements, one can treat the matrix equations
of Sec. IV as scalar equations. Taking the first diagonal
element of each matrix, we obtain the following relation
from Eq. (76) by using Egs. (C.14)~(C.17):

Tix)) = (Tylx) = =[1 = (x} = 3"

- {x, cos @ + 2cA, sin 8
+ tlx; sin @ — 2cA, cos §)}]

X, tr
6=\ In—V——0
X —c

(C.19)

The components f, and f;, of the vector f, can be
identified as the applied shear and the normal load, respec-
tively. Similarly, T, and T, being the components of the
stress T, for i = 1 and 2, respectively, can be identified
with o, and o, respectively, in the notation of England. '
The separation of the real and the imaginary parts of
Eq. (C.18) would lead to Eq. (27) of England.” Proceed-

 (fn— e} (C.18)  ing further, we see that the stress intensity factor derived
from Eq. (C.18) using Eq. (77) gives the result obtained
where by Rice and Sih."
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