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Understanding the behavior of large amplitude plasma waves is impor-
tant for many practical applications ranging from particle acceleration
to plasma heating. A rich variety of nonlinear effects can limit the am-
plitude of a driven electron plasma wave, including nonlinear frequency
shifts, wave-particle interactions, and coupling to other waves. A useful
upper limit is provided by wavebreaking, which leads to a strong distor-
tion of the electron velocity distribution. In general, energy coupling into
other waves by ion density Auctuations is very important. A feedback
mechanism allows this coupling to be very efficient, even starting from
thermal level ion waves. The result is s collapse into shorter wavelength
electron plasma waves which transfer their energy into a suprathermal
electron tail.

INTRODUCTION

A key feature of a plasma is ite ability to support various kinds of waves or collective
modes of interaction. In the simplest case, these plasma waves correspond to charge
density fuctuations slong with their associated electric fields. Theoe electric fields can
accelerate particles to a high energy, a feature which is sometimes desirable and sometimes
not. In lnser fusion applications,? very energelic electrons can prematurely heat the fuel
in a capsule and make efficient implosions difficult. Hence one tries to avoid exciting
plasma waves. In accelerator spplications, one aims t0 produce efficient acceleration by a
Plasma wave which is intentionally excited. In either case, it is important to understand

the nonlinear effects which determine how large and how coberent a plasma wave can be
excited. ‘

In this introductory lecture, we will focus on the nonlinear behavior of large amplitude
electron plasma waves. We will begin with » discussion of the linear characteristics of these
waves. Then we will consider nonlinear frequency shifts and the amplitude limitation due
to the onset of strong wave-particle interactions. Finally, we will show that the long-term
nonlinear evolution is strongly influenced by the interaction with low frequency density
fluctustioas. ‘

ELECTRON PLASMA WAVES IN A COLD PLASMA

Let us first treat high frequency charge deasity oscillations using a Physically appealing
Lagrangian description.? We assume a cold electron plasma with a uniform background
density ny, an immobile neutralizing background of jons, and no imposed magnetic ficlds.
A one-dimensional treatment suffices, since the motion in along the wave vector for these
electrostatic Buctuations. The position of each electron is

T =2y +€{30’t)|

where {(zq,¢) is the displacement of an electron from its initia) position 7y, The displace-
ment { leaves behind a positive charge per unit area o = ngef. The electric field due to
this positive charge provides a restoring force. Since E = 4x0, the electron eqguation of
motion becomes

- 4xnged

f=———¢ n
Equation 1 clearly describes high frequency charge density oecillations at the electron
Plasma frequency wpe, where wpe = +/Awnge?/m.

It is important to note that equation 1 is exact under the assumption that elsctrons
do not cross one another. Heuoethemilnomnlimﬁ'equencylhiftiniheeoldphnmn
limit. However, there is a nonlinear frequency shift associated with relativistic corrections
to the motion. Equation I then becomes

d__§ o
- = = = El (2)
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where § = df/dt and ¢ is the velocity of light. If we assume /¢ € 1, equation 2 can be

written as . {_’
§= -—w:. [l - E;] . (3)
We lock for & lolutipn of the form
€ = Eninlkag — wpt + #(t)), (4)

where ¢(t) varies slowly in time and $.= $w represents the small frequency shift propor
tional to 2. We substitute into equation 3, neglect d*$/dt?, and use the trigonometric
identity

sinzcoe’r = (sinz + sindz) /4.

Neglecting the response at the third harmonic and noting that £ = ¢E/muw;,, we then
* obtain*

3 ek \?
A“’=‘ﬁ('m..,‘";:z wpe- )

This negative frequency shift is due to the relativistic increase in the electron mass due to
. motion in the field of the electron plasma wave,

WAVEBREAKING AMPLITUDE

We are now ready to consider an important nonlinear limit, which is due to the onset
of n very efficient interaction between the wave and the plasma electrons. Neglecting
relativistic effects, we consider » simple wave-like solution to equation 1; i.e.,

E(zo,t) = {ain(kzo — wpat). {8

As already mentioned, this solution is exact until electron crossing occurs. Since z = 29 +
£(z0,1), croesing is determined by 8¢/8z, = —1, which clearly occurs when [k€] = 1. Since
E = 4nngef, the crossing condition defines the 50 called cold wavebreaking amplitude:

eEuer _wpe
e £ a

At the wavebreaking amplitude, electron motion in the wave becomss “disordered.”

Streamers are formed in electron phase space, as some electrons are accelerated to nearly

3

twice wpe/k. Of course, this strong wave-particle interaction correaponds lo the onset of
an extremely efficient damping of the wave. Hence the wavebresking amplitude provides
a useful estimate of the maximum amplitude of an electron plasma wave.

A physically-appealing interpretation of the wavcbreaking amplitude in a cold plasma
can be given. Slow electrons simply oscillate in the wave. However, resonant particles
with velocity near wpe/k sce a nearly constant field and can be efficiently accelerated. At
the wavebreaking amplitude, the oscillati_un velocity of an electron in the wave (e E/muw,)
becomes as large as the phase velocity {wpe/k). Hence numerous electrons are nonlinearly
brought into resonance with the wave, leading to the onset of a very strong damping which
limits the amplitude,

The calculation of the wavebreaking amplitude is readily extended to include rel-
ativistic dynamics.**® Taking a time derivative of equation 2 and changing variables to
p= {1~/ gives

%,: = *”""—1\/%5' @)

After multiplying by p = dp/dt, we obtain

d nd
|5 +eviva] = (9)
Hence
ANV e P (10)

where p=01for p=py = p(f = v,). The maximum value of p obtains when p = 0:

:J'. 1/2
f’-u=\/§{‘/l+p=—l} : (11)

Since p = —eE/me, the maximum value of the electric field is

11
eEmax _ 1 _
lmw_,,cl —\/i{ﬁ 1} . (12)

For v, < ¢, equation 7 is recovered. Note that the wavebreaking amplitude increases as

the relativistic mass of an electron moving at the phase velocity increases.
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EFFECTS OF PLASMA TEMPERATURE

Let us now consider electron plasma waves in a plasms with & finite temperature, In
particular, we no longer assume that the electron thermal velocity v, is negligible compared
to wp/k. The linear effects of electron temperature are well known. There is a thermal
correction to the frequency as well as a damping (or growth) due to electrons with velocity
in the neighborhood of wyefk. For & Ap, < 1, the frequency of an electron plasms wave
becomes .

oo (143898,) +in, (13)

where Ap, = v,/wpeandy, is the Landau damping decrement. This decrement is conve-

niently expressed as

2. Z

where f, =nyf, is the electron velocity distribution.

Plasma temperature also significantly reduces the wavebreaking amplitude. First,
electrona with a finite initial velocity are easier to nonlinearly bring into resonance with
the wave. Secandly, the preasure fluctustions enhance the force accelersting electrons. To
illustrate these effects, we adopt a water bag model,” which corresponds to replacing a
Maxwellian distribution with a velocity distribution which is constant between ++v/3v,.
This idealized distribution is convenient, since it yields the same pressure force s »
Maxwellian distribution with thermal velocity v,, yet has a well-defined maximum ini-
tial velocity of /3v,. Although there are particles with an arbitrarily high velocity in a
Maxwellian distribution, the number of particles is not sizable until v 5 2v,. Hence a water
bag distribution should roughly model the condition that s significant number of particles
are nonlinearly brought into resonance.

In the water bag model, the average density n and velocity u of the electrons satisfy
the same equations as those for 8 warm electron fluid:

fn 8
¥ + F;(nu) =0 (18)
Bu du —eE 1 ép
T Sl o (16)
L

—

Since the heat flow vanishes for a water bag distribution, the pressure p i given by the
adiabatic equation of state; i.e., .
% =c™, (17)
Equations 15—17mmdilyd¢rivedbytlking the first three moments of the Viasov equa-
tion.
Representing E = -8¢/8z and transforming to the wave frame with velocity v, gives

nu = ngv, (is)
w28, i?-:;'—i
m nd
where ng is the density of the uniform unperturbed plasma. Using equation 18 in equation
19, we obtain

= v: + 30:. (19)

2 u?
mv,"%’-—l—ﬂ+ﬂ 3 (20)

where 8 = 3v?/v). We determine the extremum potential (¢.,)} by the condition 3¢/0u =
0, which gives

ebe < (1- gy, @)

for u/v, = 8Y4, Thin critical pof.enhnl simply represents the condition that the energy of
the fastest electron be zero in the wave frame.

The critical value of the electric field is found by using Poisson’s equation
Pé ‘
B2t = 4re(n —ny) (22)
We multiply by ¢ = 8¢/8z and use equations 18 and 19 to obtain
§2
!2- +4x [nged - nmu? — n.muf:—:-;
- 2xnemv) [1 - gy gﬂ”‘] . (23)

The constant has been evaluated by noting that ¢ = 0 where ¢ = ¢,. The maximum
electric field (Epe; = ~@may) occurs when ¢ = 0:
2

=14+28"2 _ aﬂ"‘ 8 (24)
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This maximum electric field is plotted in figure 1 88 a function of Vv fv,. For
vy = 0, the cold plasma wavebreaking amplitude is recovered. Note the substantial
decrense of the maximum field as the plasma temperature incresses. For example, for
Vp = Bv,, eEmu/rmuvpv, =~ .29.

The water bag model can also be used to determine the nonlinear frequency shift. For
E € Emu, sod kAp, € 1, it can be shown that’

-lfup.m,*,, (—ﬂ-) . (25)

Dugr ™~
22 ¢l
miwi,vl

Note that this nonlinear frequency shift vanishes in a cold plasma.

ROLE OF ION DENSITY FLUCTUATIONS

Thus far we have considered electron plasma oscillations in » plasma with a uniform
background density. As we shall see, low frequency fluctuations in the background density
can efficiently couple an electron plasma wave into other electron plasma waves. We start
from the equation relating the electrostatic field Aluctuation (E) to the fluctuation in the
current density (J):

9E

'5‘-+4‘I'J=0. (26)

Equation 26 is readily derived by combining Poisson’s equation and the continuity equation
for the charge density. We describe the electrons as a warm fluid with density n, and mean
velocity v,. The high frequency component (w ~ wyp,) of equation 26 is

A

O = txe(na + i @)

Here n,, is the uniform background density, n! is the low frequency density fluctuation
associated with an jon sound wave, and u*(E*) is the high frequency component of the
electron fluid velocity (the elsctric fleld) associated with the electron plasma wave. The
ions are assumed to form a neutraliting background. Since the frequency of an ion wave is
so much less than the eleciron plasma frequency, the electron inertia can be neglected for
" the low motion, and so u! 2 0. Under the same assumption, a time derivative of equation
27 gives ?ﬂ

Bul
o :

= dxe(ng, +nl) P

(28)
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The high frequency component of the force equation for the warm electron fluid be-

But eE* 3 nt
Ty B8 _ SN 9Ny
? o m n.g Oz (29)

Here n? is the high frequency component of the electron density, and v, is the electron
thermal velocity. An adiabatic equation of state has been taken under the assumption that
¥ > v, where w is the frequency and k the wave number of the electron plasma wave.
Using Poisson’s equation to eliminate n® from equation 29 and subatituting into equation

98 finally yields
&* 4xe?

(% +ul, - 3035::—1) E* = -—m-n:E", (30)
where w}, = 4ang.e?/m.

For n! = 0, equation 30 simply describes electron plasma oscillations at the Bohm-
Gross frequency: w = Jm . It ia clear that a low frequency density fuctuation
couples an electron plismn wave with a given wavenumber into plasma waves with other
wavenumbers. This coupling is simple to understand. Oscillation of electrons across a

variation in density creates a high frequency density fluctuation; i.e.,
6n=n,(x +xy) — n(x) > x, - Q%xgﬂ, (31)

where x,, is the amplitude of the electron oecillation in the high frequency electric field
(xe = ¢E*/mw?). As shown in equation 30, this density fluctuation drives an electron
plasma wave.

To illustrate the efficiency of this coupling, let us consider a plasma with a large ampli-
tude, homogeneous pump field Eysinw,,t and a static density Auctuation n] = Ancoskz.
This pump field models, say, a large amplitude electron plasma wave with a wavenumber
much less than k. Linearizing equation 30 then gives

Qn
Ne
(-g:—,— +w), =30} g—;) E= —u:,{Ennim,.!embz, (32)

where E is the amplitude of the driven plasma wave. The driven solution is then

1 An_ .
E= ﬂmn—'n—“ﬁmwwlwﬂkr. (33)
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Hence a plasma wave with shorter wavelength is generated by the interaction of the pump
field with the density fluctuation. Indeed, this interaction becomes so efficient® when
Anfn,, 2 3k%A3, that our linearized treatment breaks down. Multiple harmonics in
wavenumber then need to be considered,

The coupling via low frequency density fluctuations is especially important since there
hnfead—bndmedunismdmtothem—ulbdpaxdmtiveﬁom. Let us consider the
low frequency component of the force equation for the electron fluid:

mimoept - 1O MO ) (34

Here the superscript [ denotes the low frequency component and the brackets denote a

timelvmgeoflhemcﬂlntayenagofthedectrominthehighfmquencyelectlicﬂdd.

Note that thegndieutoﬂhiuaci"a&oryeuerg;imﬁuto;bw&equmcyfome,juﬂu
) the gradient of the pressure does. This ponderomotive force is

Fy= = (2 (uby). (38)

Hweagdnnegbctdectmninaﬁn,eqmthnudeteminathebw&eququectﬁcﬂdd
which transmits the ponderomotive and the usual pressure force to the ions. In particular,

whem!.htheeiectmtunpu-utureudmuothﬁmﬂeqmimdnmhmediorth
low frequency electron fluctuations.

To describe the low frequency fluctuations, we must also calculate the jon dynamics.
The continuity and force equations for the density n; and mean velocity «; of the jon fluid
are

%:'! + —(n.lu) 0 {37)
(nnq) + (n.u,) = -af?en.E‘ (38)

whmMistheionma-,Zuthedutgeluze,mdthempreumilmglectedh
" simplicity. We take a time derivative of equation 37, » spatial derivative of equation 38,
and combine to give

g-;ni - g—:(niuf) + %%(ﬂiEt) =0. (39)

We next take n; = n, + n! and substitute for E' from equation 36. Approximating
Zn} = n! and 4t =¢E‘/mw,.mdkeepmgonlythelonuordermpmumthelow
frequency fluctuation amplitudes, we obtain

8, - ‘(Eh):

[m= S50 | = (40)

where ¢, is the ion sound speed (2 = 24,/M). Equation 40 describes the generation of

low frequency ion waves by variations in the intensity of the high frequency clectric fleld.
The feedback leading to instability can be illustrated quite simply, If we return to ous

example of & plasma with a large amplitude pump field and a density Buctuation,

F= —i(mu..u), (41)

where u = ¢E/muwp, and v,, = eEqy fmuwy,. Substitution from equation 33 gives

1 An e2E} |
By = ~ S e i, bink. (42)

Allhowninﬁgmzthhpondunmotivefmeemtoeuhmcethedenityﬂuctmim

{Ancoskz); that is, to push electrons into regions in which there is already an excess.!
Hmthnpondunmotivefuuproﬁdunfned-bmkmechminnbywhiehminiﬁd(m
thermal level) density fuctuation can be amplified.

The instability in this jdeal model is called the oscillating-two-stream 1°=1! and gives
nnhtheywthofbothnhodqnvelengthphmanmmdmﬁvqumcydqmty
modulations, Ifthepumpfnquencyuputeﬂhmw,..thmunhonbrmchdmtnbthty
called the ion-acoustic decay.’~" This represents the resonant decay of the pump field
into an electron plasma wave plus an jon acoustic wave. Both branches of instability are
readily derived from equations 30 and 40,

Thempﬁngintolhuiunvelengthnmhmddfoqundu‘hndin;thelong-tﬂm
nonlinear behavior of targe smplitude electron plasma waves, In a collisionless plammna, Lan-
dludampingproviduthelinkformveumgy. Wave energy is transferred into shorter
wavelength, lower phase velacity waves which ultimately damp, creating a tail of suprather-
mal electrons. This characteristic feature of heating via excitation of plasma waves has
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A long been emphasized by computer simulations. For example, fignre 3 shows an electron
distribution function from an enrly one-dimensiona) simulation' of a plasma driven by a
pump field with frequency near wy,.

A general and powerful analysin of the physics described in equations 30 and 40 has
been developed. In this theory of plasma wave collapee,'*=!" & local modulation in the
wave intensity self-consistently creates a density depletion via the ponderomotive force.
This density depletion in turn amplifies the intensity modulation, leading to a narrower
and deeper cavity. The process terminates when the cavity becomes sufficiently narrow
that the associated high frequency wave is damped by the electrons.

SUMMARY

In summary, the nonlinear behavior of large amplitude electron plasma waves is &
very rich topic. The amplitude to which mich s wave can be driven depends on nonlinear
frequency shifis, wave-particle interactions, and the coupling with low frequency density
Buctuations. This latter coupling can transfer wave energy to shorter wavelengtha, which
allows efficient transfer to a suprathermal tail of electrons.

ACKNOWLEDGEMENTS

I am grateful to Drs. T. Katsouleas and C. Darrow for discussions of the relativistic
corrections.

Work performed under the auspices of the United States Department of Energy by
the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.

REFERENCES
1. J. H. Nuckolls, L. Wood, A. R. Thiessen, and G. Zimmerman, Nature 239, 139 (1972).

2. T. Tajima aand J. M. Dawson, Phys. Rev. Letl. 43, 267 (1979); T. Katsouleas and J. M.
Dawson, Phys. Rev. Lett. 61, 302 (1983).

3. J. M. Dawson, Phye. Rev. 113, 383 (1959).

4. M. N. Rosenbluth and C. 8. Lin, Phys. Rev. Leti 20, 701 (1972).

5. 1 am grateful to Dr. W. B. Mori for this derivation.

6. A. 1, Akhiezer snd R. V. Polovin, Sov. Phys. JETP 8, 696 (1956); T. Kutsouleas and W. B.
Mori, Phys. Rev. Lett. 81, 90 (1988).

11

- Pr— . v o = el e | W SRR

1. T. P. Coffey, Phys. Fluids 14, 1402 (1071).

17.

. C. Darrow, et. al., Phys. Rev. Lett. B8, 2629 {1986); and references therein.

. F. F. Chen, Introduction {0 Plasma Physics, Plenum Press, New York, (1974).
10.
11,
12
13.
14.
18.
18.

V. P. Silin, Sov. Phys. JETP 21, 1127 (1965).

K. Nishikawa, J. Phys. Soc. Japan 24, 1152 (1968).

D. F. DuBois and M. V. Goldman, Phys. Rew. Lett. 14, 544 (1968).

Y. N. Taytovich, Nonlinear Effects in Plasma, Plenum Press, New York (1970).

W. L. Kruer and J. M. Dawson, Phys. Fluids 18, 446 (1972); and references therein.

V. E. Zakharov, Sov. Phys. JETP 35, 908 (1972).

V. E. Zakharov, Handbook of Plasma Physice, Vaol. 11 (A Galeev and R- N. Sudan, eds.} p.
81-122, North Holland, Amsterdam, 1984.

M V. Goldman, Rev. Mod. Phys. 56, 709 (1984).

12




=

i

.~ an

L \ /

X/
\ /
~

I
ﬂ'."'
Figure 1. The wavebreaking amplitude as a function of the electron thermal velocity. Figure 2. A schematic illustrating the feedback due to the ponderomotive force. !
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Figure 3. A beated electron distribution from a one-dimensional simulation of & plasma driven
by a pump field with frequency near wp,.
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