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Together with the structure interactions and the spatio-temporal
chaos propertiee the wave snergy concentration proceases have
traditionally attracted attention in the nonlinear dynamics inves-
tigations, In particular, this ettention has passed into the theory
of stationary 'aolf-rocusing and langmuir wave collapaes[f-.ﬂ »
which have become classical exanples of nonlinear physics, In any
field of ikmowlasdge, the information galning by aolution of direct
problemes is accompanied by the formulation of inverase problems that
require a certain level of generalization, For exsmple, one of the
most important problems in the phyeics of ponlinear processes 13 to
determine the propertiss of e nonlinear medium that could ensure
the meximum possibles localization of the wave fleld anergy.). Be-
osldes the obvious applicatione, the interest in this problem is due
to the fact that in moat systems investigated to date upper limits
exist on the energy value involved and concentrated by the wave
field bunch, and the nonlinear systems demonstrate "flexibility"
resisting the localization of an arbitrary given portion of wave
energy. Thie resistance is manifeated, as a rule, in the structural
inatability of wave collapsees,

There are several universal types of the bshavior of nonlinear
aystems with collapses, which can conveniently be classified by the
character of wave energy trapped into the singularity domain.
Figure 1 ghows gschematically acenarios of tha evolution of collap~
aing field bunches, which we shall call atrong, weak, fractel,
distributed and complete collapses,

[ ]
) By the energy we mean a conventionel energy characteristic the
physical meaning of which depends on particular formulation of
the problem. This can be the number of quanta involved into singu-

larity, the energy flow localized in the beanm croas-pection,
and so on.

Historically, the case of strong collapse, which occurs at
atationary self-focusing of electiromagnetic wave beam in media
with local cubic nonlinearity, was firat atudied [3] . In this

_case, the initial (boundary)} field dietribution is divided into

several secondsry collapsing bunches (beams), with a definite, so-
called critical portion of energy wcr (critical power of gelf-
Tocuaing) involved into easch bunch, Symbolically, thia process can
bs represented aa: Wo =“/cr, x MV , where W, is the initial value
of the energy parameter and A/ is the finits number of secondary
bunches (beams),

In the case of weak collepses [ ¥, 5] the initial distribution
is divided, during ita evolution, into en infinite number of second-
ary bunches, with "hollow" field singularity arising in easch bunch:
a secondary bunch loses the whole of its acquired energy when
approaching the aingularity. With small-scals d}gaipation in bunche:
taken into account, 8 finite portion of energy W 1is absorbed,
but with decreesing spatial scals of damping (or increasing thre-
shold field amplitude beginning from which the absorption becomes
essential) the locally disaipated energy decreases, Such a bshavior
makes this case radically different from the case of gtrong
collapas. Ae a result of ita evolution, the initial field distribu-
tion undergoes multiple splitting A =(u“/4 VN o, Wao s V302,

Close in result of evolution (but not in dynemic behavior) is
the fractal collapee process [TG_J + where each small-ascale bunch
is, in its turn, unetable and aplite into still smaller-ecale
siructures when collapsing. The symbolic representation of this
process is analogous to the previous one.

The idea of distributed collapse | 7] 1ia that when a "weak"
(hollow} singularity is formed, the collapeing PQQK energy does not
escape into the background distribution of the wave field but
begins to lesk into the singularity (the black hole imege), a@o that
a finite portion of energy dimsipates over a finite time & [ :

W, = /t w 't .

A’convenient mathematical model for the illustration of the

above types of evolution is the ponlinear Schrodinger equation:
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In two-dimensional geometry (GL = 2), at the coefficient values
du =fand S a2 Eq. (1) describes a strong collapse with critical
(W) energy W . = SIvtd, dr, involved into each singula-
rity. In a eimilar three-dimensional situation ((f = 3) weak col-
lapaes take place. A posBibility of dimtributed collapse ie also
predicted for this case. The fractal collapese process davelops in
the case of oppoaite 8igns of the disperaion coefi’icientaa{,:o(l: 1

ofs = -4 when the sleamentary act of avolution conaists in two-dimen-
sional compression (along X, and Xh ) and longitudinel bunch eplit.
ting (along X, ).

Thus, in all the examples given above it is not possible to
localize arbitrary large energy into the singularity, i.e., to
reelize itas maximum concentration. In what syatems a complete
collapse is possible then? This is exactly a short reformulation
of the inverse problem mentioned above,

An answer (poesibly not a single one) to this question ig as
followa: trapping of an arbitrary portion of energy into singulari-
ty occurs in media with nonlinearity inertie, As an 11luatration,
we shell consider a simple example with relaxetion nonlinearity
obtained from (1) through a modification:

I s R

L ot &, oxt (2.1)

gg T Th (2.2)

Unlike the case of local coupling { g% =0 in (2.2)) the nonli-
near parameter n of the medium (call it for definitensss the matter
density perturbation) during the collapae of the distribution /Y¥/
is too slow to resch the values corresponding to a similar field
amplitude at inertialess nonlinearity, The higher the collapse rate
the atronger is the retardation of the density perturbations from
the locally nonlinear ones, and therefore the greater field empli-
tude in the bunch is needed to mchieve the former level of matter
perturbation., It is easy to mee that such distributions lead to
dependence of the collapse rate on the energy trapped into singula-
rity f;”‘!d; =W - On the contrary, for each value of
stored energy there is g collapse rate ensuring the trapping of the
whole portion of energy. Within the framework of Eqa. (2.1)~(2.2),

8 complete collapse 1s deacribed by the following approximate
self-similar molutions Efj H

bee " (2 e expl v
¢ - Pt
h = elP /V('LJ, e } .

At Peo , W= Wéyt ; ir P""‘ W incresses as P + The structurs
of a self-similar solution for the cese of atrongly nonlinear
coupling ( P = 100) is represented in Fig, 2.

Like in the case of local nonlinesrity, syastem (2.1)-(2,2),
evolving in the course of time, has its own spatial snalog, With a
substitution = 2 Eq. (2.1) describes the transverse structure
variation of the wave field along the quasioptical beam propaga-
tion direction, Equation (2.2) takes into account the spatial non-
locality ("inertia") of the nonlocal responae of the medium in the
longitudinal coordinate, Such a situation can take place, for
sxample, when intenss waves propagate in a medium with a stationary
flow of matter (besm self-focusing at longitudinal wind}, Evident-
ly, the apatio-temporail analogy is complete with eact transforma-
tion of the initiam] conditions of one probiem into the boundary
conditions of another problem.

This analogy suggeats an 1dea that the conceptions of complete
collapse can be generalized to a wider range of wave systems with
bilevolution behavior, By the term bievolution we mean the unidirec-
tional process along the temporal and one of the spatinl coordi-
nates, i.e., the 8imultansous fulfilment of the temporal causality
principles and the reflectionless spatial propagation condition for
the wave field, The simplest generalization in the wave description
is the use of the equation:
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for the field complex amplitude, where V y 18 the wave group velo-
city. The medium density (n)} perturbations can be found from rela~
tione evolving in only one of the independent varisbles, We shall

consider the casme of materisl coupling, inertial ir time and Taral



along the wave propagation direction z,
The following typical examplea of material coupling can be used:

—= =V{1¥?)n - (4)

This 18 tha case of ionizetion nonlinearity. The effacts of inter-
est [QJ arise with decreassing dependence of the medium ioniza-
tion frequency on the fleld amplitude, This occurs, for example, in
the presence of superstrong electromagnetic flelds in gases when
the oacillatory energy of free electrons exceeds noticeably the
molecule ionization potential [gJ . Without loas of generality,
we ¢an assume \)N {/“'! :
on _ o v E(1¥1) (5)
ot
This exemple of local coupling with respect to all spatial variable:
aimulates the simplest type of nonlinesrity relaxation of the medi-
um. It waa mentioned when discuseing the purely temporal evolution
of two-dimensional systems with cubic nonlinearity.

g’z'_A no+ a, F(147) (6)

At diffusion relaxation the density perturbation cnset velocity
depends on the beam width, Such a nonlinearity is typical of the
medium heating in the field of & powerful electromsgnetic wave and
ia realized, for exsmple, in a weakly ionized collisionless plasma.

2
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This type of coupling is due to the excitation of sound motions in
the medium and is characteristic of a wide class of nonlinear pro-
cesges, for example, in the case of laser radistion self-action in
rarefied coronal plasma. In the cases (4)}~(7) an introduction of an
arbitrary function P enables one to deacribe veriocus aituations, frc
the simplest dependence F= 147 to the nonlinearity saturation ef-
fects. Note that the transition to new time T = ¢ - 5/@31 will

oot change the material coupling structure but simplifies Eq. (3)
by excluding the term with a temporal derivative:

P _ (8
- 53 + A -nt=0 |
The boundary condition at ¢ = O retaina, evidently, its form while
the initial conditions must be eet exactly when the pulse operated
at the boundary at t a O reaches a given point z. Since the nonline-
arity is inertial in time, for sn unperturbed initial state of the
medium the initial (with respect to ¥ ) conditions correspond to a
stationary diffractional field pattern in the linesr problem with
na= 0,

The main ides of what follows is that complete concentration of
the energy flow in the beam crose-asection is possible in the class
of nonlinear asystema (4}-(7) with inertial coupling of the medium
denaity perturbations and the wave field amplitude, This can be
demonstrated by a scheme based on the search for self-similar solu-~
tions with an arbitrary energy flow entrained into aingularity, the
anelysisa of atability of these solutions and the numerical illustre-
tion of the spatio-temporal dynamica of the wave.

Note, firat of all, that a common feature of all the types of
inertial nonlinearity being diacussed is the class of solutions in
the form of homogenecus (in z), collapsing jets along which the
trapped electromagnetic wave propagates. The Pointing vector flow
is conatant slong the Jet and depends, generally speaking, on the
traneverse structure of the mode and the collapse rate, The time
of aingularity formation on a finite-dimension set (either a straigh
line or a plane depending on the tranaverse form of the beem) is
determined by the type of nonlinearity. Let us formulate scme regu-
larities of the jet scale decresse st the self-similar stage of
collapse: (1 ﬁ/z for a plane beam in & medium with the ionization
defined by the effective frequency \) 1 aAr~e Pt (P? @) tor the
cage of local relaxation, cubic nonlinearity and three-dimensional
beam, In the analogoua caae for diffusion relexation the blow-up
behavior takes place: (1 ~ F“" » 88 well as for sound relaxa-
tion: R . Por each’ of these laws it is possible to find
a mode localized in the beam cross-section,.

Neverthelesa, the existence of appropriate self-similarities
does not mean that the corresponding solutions will necessarily be
reslized at arbitrary initial and boundary conditions of the problem
For example, if a permenent source is given at the input to the
nonlinear medium, then the queation arises whether it is possible to
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match the stationary field distribution at 5 « O with the dynamic

Jet (say, at 2252 ). In a not mo general by qualitatively snalogou:

formulation the queation is am follows: Is the solution in the form
of collapaing jets attracting sets in the clasa of gz-inhomogeneous
structures? The eimplest analysie under the sggumption of given
(pelf-similer) transverse form of the Jet, with the width being
variable in z. It appeara that homogeneous jet distributions with

en infinite time of singularity formation ((4)-(5)) are stable mani-
folds attracting beams, from the clome vicinity at least, with the
energy flow retained, In a esimilar analysia,jets with blow-up singu-
larity formation (6), (7) eppear to be unstable and, therefore, cen-
net serve as solutions with complete energy flow concentration in
the beam crosa-section.

The eximtence of longitudinel inetability of jets with blow~-up
behavior makeg one seek for z-inhomogeneous self-aimilar solutions
that concentrate the energy flow at separate spatial points (which,
generally speaking, move in the course of time). Let us discues in
more detail the finding of such solutions in 8 medium with diffueion
relaxation of nonlinearity F(I1¥{?)=[¥]*

Note, first of all, the general assertion that the stiructurslly
#table mode of collapse in a reference frame collapaing together
with the field distribution and renorming its amplitude must corres-
pond to a stable atationary localized gtructure. ¥e now apply the
inhomogeneous compression transformation to syatem (7)-(8);
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where Ir[t} is the arbitrary velocity at which the singularity
propagates towards the incident radiation. For the self-gimilar
functions ¥ and N we have:

: J_ ¢ _wve. ol 25
Laz%—flg"’ V¥ %QHE”L) (10)

af(ﬁfﬁwﬂ/?)-mar(EV?AHJA/)-AFAA A?W"" (1)

Evidently, the presence of the lest (lens) term in Eq. {10) exclude:
the existence of 8trictly localized modes {except for the cese

aﬁ7 = O but then a complete self-similarity is not reached in
(11). It ia possible, however, taking into sccount the known
stabllieing properties of the lens term, to construct quasiloca-
lized solutions with exponentially weak leakage of RP field quanta
from the mode to the surrounding background. In these aolutions

CNpop T G enperte) [ 9]
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Byntem:
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To illustrate thias, Fig, 3 shows the main axlaymme tric mode for
strongly nonlocal nonlinearity (the high rate or collapae 2?; ).

zation requires the relations V20> { to ve satisfied, If

the singularity propagates at n velocity 77~ f » then the energy
flow into 1t ig close to a critical one,

A similar consideration is poseible in the cage of dound rela-
xation of nonlinearity, Unlike the previous cage, the field struc-
ture near the singularity is characterized by a conical form:

a = o~ " ,» 8nd the corresponding mode appears to be strictly

localized becauss of the absence of the lens term for this type of

aelr-aimilerity. J.1:) previously, an increage in collapse rate

[3rv 97 leads to an increase in energy flow into the ai
singularity

propegating towards the radiation source,

Thus, the dynemic pattern of wave energy concentration can be
radically different from the known self-focusing processes in media
with stationary nonlinearity, In this context, it should be reason-
able to ascertain whether the correpondence between the dynamic and



centration peculiarities are fully manifested in the case of sharp
ewitching on the scurce for the time leas than the field linear
relaxation time in the medium, Exactly at this stage complete
concentration of energy is possible with the appesrance of singule-
rities such ae jets or moving foci. We should emphasize that under
such conditions, supercritical locslization of the energy flow in
the wave beam is possible. At times much larger than the linear
relaxation duration the system must inevitably evolve to the
stationary limit, It ehould be interesting to consider a situation
with a transition from complete dynamic concentration of the wave
bdam to the regime of its multiple mplitting in the etationary
cass with supercritical power in the wave cross-section, Thisa
process was eimulated in the case of eself-action of a two-dimen-
sional wave beam Ai_zif; using the local relaxation of nonlineeri-
ty to 8 level determined by its saturation F(H'/J'):”"V(.f -fa!H‘l“) .
At the initlal dynsmic stage (see Pig. 4) (the source was switched
on instantaneously and then meintained at a fixed level) there was
the formation of an exponentimlly compressing plane jJet entraining
the bulk of the electromagnetic energy flow passed through the
medium. The maximum level of the field reached |¥/ ~ ﬂ/; Y4 and
then the interaction passed into a quasistationary regime with an
almoat unchanging form of the Jet and slow propagation of its atart
towards the source. Only st times much larger than the linear
relaxation time, the structural instability of the jet developed,
which led to the multiple splitting of the field diatribution and
the turbulization of the interaction region. The completely sta-
tionary interaction pettern with the filamentational gtructurs was
eatablished at the expense of the displacement of the dynamic tur-
bulence region towards larger z,

To summarize, we stress one again that the use of mediam with
inertial nonlinearity is attractive ss a possible way to reach, in

dynamic regimes, high levels of wave energy concentration, exceedin

the corresponding values for stationary action of radiation on
matter,
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