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ABSTRACT

A critical review of relativistic instabilities of large amplitude
electromagnetic waves in plasmas is presented. For illustrative purposes,
we first summarize the small amplitude results. We then continue to
take into account fully relativistic electron quiver velocity ang

large amplitude density fluctuations driven by a fully relativistic
ponderomotive force and investigate modulational and filamentation
instabilities of an intense circularly polarized electromagnetic wave.
Thus, the nonlinearities arising from the relativistic electron mass
variation and the relativistic ponderomotive force are treated exactly,
s0 that our theory is valid for arbitrarily large values of the
radiation intensity. Novel relativistic instabilities are shown to
exist at large fluxes of the electromagnetic radiation. The relevance
of our investigation to inertial confinement fusion and piasma based
beat wave accelerators has been pointed out.
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1. INTRODUCTION

There has been a great deal of interest in the study of interaction
of strong electromagnetic waves with a plasma. This investigation is
of fundamental imporiance with regard to the understanding of the
various physical processes that occur in laser-plasma interactions and
plasma-based beat-wave particle accelerators. Strong electromagnetic
waves have also been observed in astrophysical plasmas.

The inertial confinement fusion concept requires a ¢lear understand-
ing of the detailed mechanisms by which the electromagnetic wave
energy can be transformed into particle random energy leading to plasma
heating. On the other hand, in the plasma based beat-wave accelerators,
two collinear coherent electromagnetic waves whose frequencies differ
by appoximately the electron plasma frequency, are employed for genera-
ting a large amplitude Langmuir wave. The longitudinal electric field
of the latter can then be used to accelerate electrons to extremely
high energies.

It is well known that a finite amplitude electromagnetic wave is
subjected to a great variety of stimulated scattering, mo&ulational.
and filamentation instabilitiesEt-31which belong to a class of parame-
tric interactions. The parametric instabilities can affect the wave
propagation, the wave absorption, and the electron energy transport in
plasmas.

The nonlinear processes involve several distinct features. These
are associated with the radiation pressure or the ponderomotive force
effects{1-4], relativistic electron mass variations [5-227 , harmonic
generation £5,6,91, and the joule heating [ 23-257 . The radiation
pressure effect drives the slow density fluctuations, the relativistic
electron mass variation in the laser field causes the mass modulation,
the harmonic generation produces the second order electron current

density, whereas the joule heating gives rise to the temperature perturba-
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‘tigon. The ponderomotive force and the joule heating effects may thus
Invlove the ion dymanics. On the other hand, the relativistic electron
mass modulation and the harmonic generation nonlinearities arise on

a time scale sufficinetly short so that the background slow plasma
motion does not respond to the ponderomoctive force.

The nonrelativistic ponderomotive force related stimulated
scattering, modulational, and filamentation instabilities of a coherent
electromagnetic wave have been investigated by many authors T1-47
A number of authors [6,9,107 have investigated the modulational and
filamentational instabilities of an electromagnetic wave excluding the
ponderomotive.force effects but accounting for the relativistic electron
mass variation and the second harmonic generation nonlinearities.

The combined effects of ponderomotive force and relativistic mass
variation nonlinearities have been incorporated in the study of the
modulational and filamentation instabilities of circularly polarized
electromagnetic waves in an unmagnetized plasma [14, 18-20]. New insta-
bility regiems have been found.

The purpose of the present review talk is to discuss relativistic
instabilities of an electromagnetic wave in plasmas. {n order to outline
the essential physics, we have limited our efforts to an unmagnetized
plasma. We shall start with the small amplitude theories for the modu-
lational and filamentational instabilities of an electromagnetic
wave, The role of relativistic electron mass variation shall be empha-
sized. We then continue developing finite amplitude theories for
the parametric instabilities invloving arbitrarily large amplitude
circularly polarized electromagnetic wave. Accounting for fully
relativistic electron quiver velocity and large-amplitude density
fluctuations driven by fully relativistic ponderomotive force of an
intense circularly polarized electromagnetic wave, novel instabilities
are shown to exist at high pump power. The relevance of our investiga-
tion to inertial confinement fusion and plasma based-beat wave
accelerators has been pointed out.

2. GOVERNING EQUATIONS

The nonlinear interaction of a strong electromagnetic wave with the
background plasma is governed by the continuity equation

o 1y + V-(m '\}j)=§, (1)
the relativistic momentum equation
(Qt+?JJ--V)_LJ- = e (e +—?g‘~*—§)—-,%;-v% )@
fhe Maxwell equations
vx B -_-__;_3;5. @)

—

=4 -3
VxB =i;l’j+.£_BtE, (4)

and Poisson's equation

-~y
V-E = 4me (N, —-n.), (5)

where nj .ﬁa and Tj are the number density, the fluid velocity, the
temperature of the particle species j {equals e for the electrons and
i for the lons).'Bj=mjc;7j ¥; . whereX; =(1 - v?/ca)-”‘?. is the
relativistic momentum, mjo is the rest mass of the particle species j,
e is the magnitude of the electron charge, P, is the particle
pressure, ¢ is the speed of light, and j=nievi—nee¢e- jiﬁe is the
total plasma current density. The usage of the nonrelativistic
pressure gradient force in (2) is justified for the nonrelativistic
plasma temperature.

The electromagnetic fields are usually represented as



5.
?--96 -3, % (6)

and
T-vxh, . (7)

where (b and.z are, respectively, the scalar and vector potentials.
We shall use throughout the Lorentz guage condition,

VA d -0,

" In order to close the above set of equations, one needs to specify an
equation of state for the pressure. For isothermal processes, the
equation of state is given by

P.:n.T., (8)

whereas for adiabatic responses, one uses as equation of state:

T
dt(Pj"j )=0, (9)

where oy is the usual adiabatic index which is the ratio of the specific
heats. Equation (9) is valid for those thermedynamic processes where
the net heat flux is zero. At relativistic temperatures the macro-
scopic equations of state as given by (8) and (9) are not valid.

A few comments must be made about the correctness of the continuity
equation for processes where relativistic effects are taken into
consideration. Since the density is not a Lorentz invarient quantity,
it follows that one must account for changes in the particle number
density due to relativistic effects. However, since all the calculat-
lons are carried out in one frame of reference, namely, the laboratory
frame of reference or an inertial frame moving with respect to it, the

fact that the number density is not a Lorentz invarient quantity is not
relevant to the present discussion. The effects due to the Lorentz
invariance are important only when there is a change from one inertial
frame to another. We shall be considering in this talk only those
relativistic effects'which arise due to the high-freguency motions of
the electrons. For large field intensities, the latter becomes relati-
vistic resulting in the nonlinearities due to the ponderomotive

force and the particle-mass variation whereas the low-frequency motion
and the plasma temperatures are still nonrelativistic.

3. DISPERSION RELATIONS OF WAYES

The dispersion relations for the Langmuir and electromagnetic waves
including relativistic mass variations have been cbtained from the
fluid model presented in §2. In the weakly relativistic limit (viz.,
when the electron quiver velocity v0=eE/mooa , where E is the wave
electric field, (> is the wave frequency, and m, is the rest mass of
the electron, is much smaller than c), one finds the electron plasma
wave dispersion relation

2 a k3
W = Wpe (1~ _%_u..,), (10)

where Wpe =(41rn,e2/m0)1/2 is the electron plasma frequency, and
u =v°/c. On the other hand, for u,—> 1, one obtains

m
a2 2 2 2 -1
®w .%L‘*)pe(i—uwd ’ (1)
where eE:fE’mo ¢ Wpe (1- uﬁ)'1/4, so that

W o T mMpC w;./ze E . (12}

—~

Equations {10) and {12} show that pure longitudinal waves with fregen-
cies less than °3pe can propagate in an electron plasma.

Py W
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The relativistic electron mass variation as well as harmonic generat-

ion nonlinearities have been included by Sluiiter and Montgomery[S] in

their study of linearly polarized electromagnetic waves. In the weakly
relativistic limit, their dispersion relation is

2
Q2= Bet 4 “’;e[i'“'z%(i W)],m)

where k is the wave number. In the strongly relativistic limit um > 1,
one finds for gquasi-transverse waves

2 B i
w f~ hc + Trwpg/z ‘uv\n) (14)
where kc 3> @  has been assumed. On the other hand, for circularly

polarized waves, harmonic generation does not occur. Relativistic
electron mass variation effects leads to [8]

. a 1 a 31/1
w = ke +ﬁ)pe(.t+1r,/c) (15)
Thus, waves in the frequency range
L]
2
wpe(:L+‘U..,.) LW (L wpe. (16)

tan also propagate in the plasma. In the weakly relativistic limit,
{15) becomes

q 2 2
W o R 4 e (14 %), (17)

It is evident that near the cut-off (k=0) both the electron plasma
waves and electromagnetic waves can propagate in the overdense region
because of the electron mass variation nonlinearity whith downshifts
the local electron plasma frequency. Thus, relativistic nonlinear
effects provides a novel mechanism for transporting the wave energy
in the overdense region of plasmas.

4. MODULATIONAL INSTABILITIES

For {llustrative purposes, we consider the modulational instabili-
ties of a finite amp)itude circularly polarized electromagnetic wave
whose electric field is represented as

=
E=E(%+i¥) exp (ikz-iwt) + c.c., {18}

where c.c. stands for the complex conjugate. The relativistic electron
mass modulation or the low-frequency modulations associated with slow
plasma motion can give rise to an ervelope of high-frequency electro-
magnetic wave packet. For the cne-space dimension problem, the envelope
of waves evolves according to the nonlinear Schiédinger equation

! a
i(3 + U32)E + LUy 3E—f0E a0, (19)

where v_= OWfdk - kaIOJ is the group velocity of the wave packet,
and v_= 3’“’/303.: =c2/u.> is the group dispersion. The nonlinear
frequency shift S » including weak relativistic effect is given by

Sm-_-%gg}[m— '-"E‘ ] (20)

where OOP ={4N ngezlma)”’2 is the unperturbed plasma frequency, N=
n1/n0, n, is the electron number density perturbation in the average
plasma density N, and is associated with slow plasma motion. We assume
n,/n0 <£ 1. The second term in (20) comes from relativistic electron
mass modulation.

We consider two types of plasma slow responses to the electromag-
netic waves. First, the dynamics of non-resonant high-phase velocity
{compared with the electron thermal velocity) electrostatic perturba-
tions is governed by

a‘bN o+ 32 Uez = o; (21)
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? 1
EVer = & 3¢ - Sgr % lEl, (22)
and
2
P = 4mem,, (23)

where cb is the electrostatic ambipolar potential, and the second term
on the right-hand side of (23) represents the ponderomotive effects.
The time scales of the nonlinear interaction are assumed to be much
greater than those of the ions, so that the latter do not participate
in the moticn, and form a neutralizing background. Combining (21}-
(23), we find an equation for the driven electron plasma oscillations.

We have
2 ) el, 2 2
(at+mp)w=wzilm. (24)

Next, we consider non-resonant low-phase velocity {comapred with the
electron thermal velocity) electrostatic perturbations whose dynamics
is governed by the inertialess electron fluid

2
W

together with the continuity and momentum equations for the jon fluid.
The low-frequency equations can be closed with the help of the quasi-
neutrality condition ny=n,;. Thus, for Veida® 9 << Veadr , Wpi,
where Wpi is the ion plasma frequency, and vy -(T /mJ )” is the
thermal velocity, the density fluctuations assoc1ated with the driven
ion-acoustic perturbations are governed by

a 2 42 ce IE|
Qg - ca22)N = —""'!E % “arnete (26)

2_2
where ca=cs(1+¢;Ti/Te). c§=(1e/mo)’ 7\“ 35 &1, and A‘*:Cs/“)f“
is the electron Debye length.
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Let us now consider the modulational instability of a constant
amplitude pump EO against the excitations of low-frequency, long
wave length (compared with the electromagnetic wave} electrostatic
perturbations. Physically, nonlinear interaction of the pump ( G .k)
with low-frequency efectrostatic perturbations (£l ,K) gives rise the
upper (W + €1 ,k+K) and lower (& -1 ,k-K) sidebands. The latter
interact with the pump and produce a low-frequency ponderomotive
force, which eventually reinforces the low-frequency oscillatiaons.
The modulational instability of an electromagnetic wave including the
ponderomotive force driven density fluctuations and relativistic
electron mass variations is governed by the nonlinear dispersion
relation

[ - kug)'~ Kvg (4 KMy~ Yiey]@- O))
= K’ 'Ugf < (1) |E, Iz, (27)
where

2 .12 2 4 a
¥ = € Cﬁ}, ﬂﬁ;/’z mgC RW
and
1 2 2 2 2 A
o(LQ): ewPU}Ek/gm,c R w,
2
Note that 514 bJp and € = 1 for the non]lngar 1nteractlon
involving driven electron plasma waves (24), and 51 K c and

€ .mo/mi for the nonlinear interaction involving driven ion sound
fluctuations (26}.

In the follwoing, we discuss several interesting analytical
solutions of (27). First, in the absence of low-frequency density
fluctuations (viz. n‘=0) there is an intrinsic instability of the
electromagnetic wave because of relativistic electron mass modulation.
Here (27) takes the form

e

P i

e

oy -
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(- KVy) = K ug(d KYy- Yien). (28)

Letting §1 =kv_+1 ¥wm, we observe that (28) admits an instability for
] IEO| > szd'/4. The growth rate of that instability is

Ym = (¥U5)72 KIEL. (29)

The physical mechanism for the relativistic modulational instability

is the relativistic correction to the mass of the electrons oscillating
in the electric fields of the electromagnetic wave. As mentioned before,
relativistic electron mass variation produces a nonlinear shift in the
group velocity of the radiation. Accordingly, the energy accumulates
around local maxima in the wave amplitudes.

Secondly, we consider the case in which the term YIEJ% which arises
from relativistic electron mass increase, cancels the term resulting
from the diffraction of the wave:i.e.,

1 a ¢
YIEIN~ L. K'Yy . (30)

For this case, (27) reduces to

i
(Q- ky) (0 O)) = Ky () 617 (31)

We can analyze (31) in three limiting cases. Assuming that $i= KU3+~'Y,..

« 5y (‘tm«xv }, we obtain from (31)
1A
.Q _ K'U-a, + i K {U oQ(k\r&)] IEol/n1 (32)

fquation {32) exhibits an instability. MNext, for £13> -Q1 , the solu-
tion of {31)-is

a2, ! % 4/:
O =06 + [ 0O, = kK @gats) BN, (33)
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where 1, —KngZ and of, -e2 aa, v_€ /2m2c2kco Equation (33)

admits an instability for K° (vg )”215 i > 02 . Finally, letting
a =Kvgt 85  and assuming an« Kv e £y, we find from (31)

2
(5_;1) ~ (K’u,'/zu,) o L KVg) {Ea1 . (34)

Equation {34) yields an instability and the corresponding growth rate
is given by

, k%
n 89 = ([3/2) [ (K vy r2vg) (K y) €617 ? (35)

The examples presented above clearly show that relativistic effects
allow new regimes for the modulational instability of an electromagnetic
wave,

We have also analyzed (27) by keeping the ponderomotive force
driven density fluctuations and relativistic mass variations on an
equal footing. For thls case. lettmg Q -Kv +i b and YTm <« Ky
we obtain for ]E°| > K 'U}M-do

g’

2+ Va
¥m = lv;/u K14 o 18— Kyt (36)

4 . . A
provided that Lighthill's criterion vg/ ofg > 0 is satisfied. Here,
we have defined

ES
Ao 2o (€ Vg2 my R’y (W' + 2y, (37)

for the driven Langmuir perturbations,
] 2 4 2 2 3 a
Lo = (& Vg/amec R’ (K 4+ @p), (38)

for the driven ion-sound perturbations, and
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a £ S
-3 'U‘, “JP ™m, C‘
%o = Img cFRa* (‘fl" +1) (39)

for the quasi-static modulations for which 0 << Ke, and o, =1 in
Eq.(26). In (38), we have defined Q=k2f\n¢(c§-v§)/c§.

5. FILAMENTATION INSTABILITIES

For the convective amplification, Eq. {19) must be written in multi-
space dimension. For the stationary filamentation of an electromagnetic
wave propagating along the z axis, we have

LU E 4 L 'Ug: T E +%ElE=o0, (40)

where o{, is given by the expression {39). In Eq. (40) wehave assumed
Vf)) 3; . The filamentation instability of a constant amplitude pump
can be investigated from the dispersion relation which is derived from
{40}). We have

2 a
k;: = _ﬁlfé_( K..L.Ugf"' 4 oo lEola) (41)
4-‘U&

If we set Kz=-iKm(Km > 0) in (41), we see that the convective ampli-
fication occurs for

2 2 /
[E.1" > Kivy /4. (42)
Noting that the electromagnetic wave intensity is represented as
l=kczlE0[1/87rao » We can express (42) as
I > 10'7kc2v;K2 [32Tmao, watt/cml. (43)

The mode number of the most unstable wave is

K (2, 1v) 12, (44)
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The corresponding maximum spatial amplification rate is
1
K1=at.lEol /vg. . {45)

The minimum scalelen§th over which the wave filamentation occurs is
L=21T/Ki. The critical power of the radiation for the filamentation
process is

P=IA e (kc2 eyl /8T ) wa?, (46)

where A= 1Ta2 is the cross-sectional area, and a is the radius of the
filament. For the filamentation of a plane wave, we can roughly take

a s AL /2, where AL =2 /K m 1S the minimum perpendicular wavelen-
gth of the perturbation. Hence, {46) can be written as P = 10'7P0

watt, where

1 ‘
P0= b1y hc"U’,/iGe(a

32
2 (TTmec™y whk ) (47)
Vqe wp J Umec/ry+ 1]

i}

The filametation instability can break up a laser beam into small pipes,
which can affect the propagation of the radiation and the y might also
causelocalized plasma heating.

In the next section, we focus our attention on the modulational
and filaventaticn jnstabilities of strong circularly polarized electro-
magnetic waves in an unmagnetized plasma.

-

-

L]
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6. FULLY RELATIVISTIC . INSTABILITIES °

Here we present an investigation of the modulational and filamenta-
tion instabilities of an intense circularly polarized electromagnetic
wave taking into account an arbitrarily large amplitude relativistic
electron quiver velocity as well as large amplitude electron density
perturbations that are created by relativistic radiation pressure.
Both of these effects become significant for laser intensity beyond
1016 watt/cm2 because of the large quiver velocity Yo (=eE0/mooo =
erlmoc. where A, is the vector potential) which obeys the well-known
scaling -

v /e =8.5%x10 10T X, (48)

where the electromagnetic intensity I is expressed in terms of watts/
crn2 and A is the laser wavelength in microns. For example, for a
€0, laser with X =10.6 pMm and 1=10'® W/en®, we find v & 0.9c.
Ciearly, in such a situation the results of §4 and §5 do not apply

and a fully relativistic theory for the modulational and filamentation
instabilities must be developed. This has been done by Shukla,
Bharuthram and Tsintsadze(?9,20] and their results are summarized
below.

The wave equation for the circularly polarized electromagnetic wave
is obtained from {4) and (7). We have

2 a2 _a >
(b_t._ C Vv )K = - ﬂ'cl'r-enel&! (49)

where the ion current is noted to be small, and has been neglected
here. The right-hand side of (49) represents the nonlinear electron
current density arising from the interaction of the relativistic
quiver velocity and finite amplitude slow electron number density

16~

variations, Furthermore.-x is the perpendicular component

of the vector potential and
- - - - /2
U = P/ Mo¥e = B/Molt+ B/mic®) (50)

Inserting (6) and (7) inteo (2) it can be shown that the
relativistic momentum equation is satisfied by a high-fre-
guency part
-
P

=eh
e =© /moc. {51)

and a driven equation for the slow plasma motion
2 - aVa
\"ﬂoc v (1 -+ lPefl‘“'C‘ ) - qu)'-' Tevl"‘ NG) (52)

where Ne=ne/n0 and the inertia of the slow electron fluid
for the temporal modulation has been neglected, whereas
the electron inertial forces are unimportant. for the
spatial modulation. Equation (52} dictates that the fully
relativistic ponderomotive force (the term on the left-
hand side) can drive the finite amplitude slow ambipolar
potential ¢ as well as the electron density variation ng-
The expression for the latter can be found for two classes
of perturbations. First, for the forced Raman interaction,
the jons form the neutralizing background and the ambipolar
potential is directly created by the radiation pressure.

Thus, from (52) we have
1 -—\2‘/-1
¢ = eyl 17, (53)
- : )
where " £3e/moc = éi/moc . On substituting (53) into the

Poissgson's equation, we can determine the slow electron

number density
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R 2 >, Va
Ne = 1+ BVCL+1R8), (s4)

where @‘ =c2/vie

batic response tg the electromagnetic radiation, we find

- Secondly, for the guasistatic (QS5) adia-

Ne = exp(d + p- pLa+®m)%y (55)

and

N? = exp(-ed) , (56)

where @ =e /T and <r0='re/"ri. Eliminating @ from (55)
and (56) we obtain for Ne =N$

Q v
Ne = exp[ p- Fs(i.-'-"‘—l"'l:)zil , (57)

where Fs = P"'/(1+ ¢ ). Equations (49) and (54) or (57)
are a pair of coupled equations for the study of the
relativistic instabilities of intese electromagnetic waves
in a uniform unmagnetized plasma.

A. Modulational Instability

As mentioned before, the interaction of either the slow
plasma motion with the radiation field

.“* .
f\-? oy ay (Q +;;) exp (« R:Y-iwg)+eoc,, {58)

or relativistic electron mass modulation in the radiation
field can give rise to a slowly varying envelope of waves
which is governed by

. 1 Ne
‘Eat&{" + Vg UP+ AYV+BU o = v (59)
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-

where € =2W/w, , Uy =IKe?/wh Ape ., O =(? k22,
wgi, and the time and space variables are normalized by
Gy, and Ape , respectively,
r
In order to investigate the temporal modulational insta~
bility of a large amplitude electromagnetic wave, we suppose

Vo=, + V) exp(-idt), (60)

where "Po is real and denotes the constant amplitude of the ’*
pump, "'P,' ( << "l’o ) is the amplitude of the perturbation, '
and § is a nonlinear frequency shift caused by the non-

linear interaction. For the forced Raman interaction, we

insert for N: from (54) into (59), use (60} to derive from

the pump wave equation the nonlinear frequency shift

-1,

aT va

) =6R=[(.L+"l{,) —-&']/E ’ (61)
and an equation for the evolution of the perturbation

. 2 Yy oy
LE¥Q+ Ypv)v, + BTN, RETEE TR

T

2
W LY (62)
—_:.Ei._:'\lr'éj vV

’ |
where &, = "\P,\'l"‘k‘ and the asterisk denotes the complex i
conjugate. Substituting f\k‘ =X+iY into (62), separating
real and imaginary parts, we obtain

=

= 2 WX
..(E%t-&- 'U'q-V)Y+ ﬁvx + _“—_T‘(i*"‘{’.)‘k
1 -«E

= '"(Eﬂ%w v'X, (63)

and !
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- 1
(eat.l.—uq.v)x +BVY=o0. (64)
Assuming that
~ - oy
(X,¥)= (X,Y) exp(iK-T - 141 t), (65)

we can Fourier analyze {(63) and (64), and combine them to
obtain the nonlinear dispersion relation valid for an
arbitrary-large-amplitude-pump, The result is

- 2
(1 - K-vUgle) -W[ PK- ‘(,_—‘L‘T'Mp )VJ (66)

-
where {1 and K are the frequency and wave vector associated
with the slow plasma motion. For the modulational instabili-

rriuid : : :
ty, we set e =K-VG/E. +1'(R in (66) and obtain the growth

rate

K a
XR ={'§'§_+—¢:‘){4 [W%- PK ] (67)

Threshold is given by
1 Ya a
S ANACEEAS S (68)

The above analysis can be repeated to investigate the
modulational instability involving the Q5 interaction. Here

we have

)

e [+ ) eup(tb,)—a‘]/e, (69)

it

Xg

lFéﬁ -T;—gtp+(i+'%) ]Qxl:(@r) PK ]

(70}

and, at thresheld,

-20-

“P (i+q’) [(334" (i"'we ]"‘l’(¢,)= PK (71)

Y
where ¢P = By~ @s( 4+ %) 'z

r
B. Filamentation Instability

To study the convective amplification arising from the
nonlinear interaction, we consider a spatially slowly
varying envelcope alcong the z axis and the filamentation of
the radiation in a direction perpendicular to the envelope
wave propagation. This, Tc=%k and ¥, ®3,. Subsequently, {59}
takes the form

U Y+ R+ AW = UYL+ Y (12)

For the filamentation problem, we introduce the ansatz

Nz (b, + W) exp (fmw), (73)

where ¥ is a nonlinear shift in the wavenumber. The
procedure for cobtaining the dispersion relation for the
filamentation instability is similar to that of the
modulational instability. Here, instead of (61), (63) and
(64), we have

%
x.._.['A—-(.L-i-"-V:') ]/Uq: (74
1 VX
~VRRY B 4 wz)ahﬂmm)v‘x (75)

and

2
Vg2 X + PULY =o0. (76)
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For X and Y spatially varying as

~ o R g .
(X,¥) = (X,Y) exp(iKrx + LKzz), (77)

equations {75) aad (76) can be Fourier transformed and

combined to yield the dispersion relation for the filamen-

tation instability
2 a 2-1/3 1
k" p KL ['43(1'+‘*o) - likll
32 =
U: ci+ ”’Poz) + P K.l.a Woa
For spatial growth along the direction of wave propagation,

we set Kz=-iKm(Km 2 0). Then from (78) we obtain the
amplification rate

(78}

a /1
km B x, L (v s 81y s (79)
T T A+ ) +p K17
‘with the threshold condition
a 1 Y2
Bki & W74 +~3yn (80)

In order to investigate the filamentation instability
caused by the QS perturbations, we insert (57) into (72)

and use (73). Here, the nonlinear wave number shift is
=[a= U@+ exp@:,,)]/\fq ’ (81)

whereas the spatial growth rate is found to be

Q

K =(I® Ko/ug) i r\p:(_1_+«p013/;
=1 a
)BT e - BRI g,

Threshold condition is
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2 2 -1 2=V
BKL &€ M (L4+ )[R+ U+ J expld). (83)
C.Numerical Results

For illustrative purposes, we examine the variation of:
the spatial amplification rate as a function of the incide-
nt laser amplitude. An overall dependence of Km an A& is
shown in Fig. 1 for f =50. k=0.1 and K;=0.04. We observe
that the QS interaction causes growth for ﬂk £ 0.65. As the
laser amplitude increases to larger values, only the forced
Raman causes wave filamentation. The restricted range of
ﬂg values for wave amplification associated with QS intera-
ction could be attributed to the behaviour of the nenlinear
wave number shift ¥ , which in Fig. 2 is plotted against
*P for m/m,, =1.5 and for all other parameters fixed as in
qu 1. Wwe find that for QS interaction 3 reaches the
value of k, wavenumbar of the incident laser beam, for Au
in the range of 0.5 & ¥, & 0.7, It appears that at large
pump intensity the nonlinear wave number shift is so large
that the wave propagation properties are destroyed and the
electromagnetic wave suffers damping. On the other hand,
for FR interacticn, the nonlinear wavenumber shift is
relatively small for 0 & W £ 1, and it does not hinder
the amplification of the filamentation instability.

The above graphs are drawn for a CO2 laser (k=6X 10

) and a dense plasma with an unperturbed plasma density
n_=2 !lol9 cm-a. For plasma-based beat wave accelerators,
one considers a tenuous plasma with n, =4 x 10ls cm-3 and

-SOCHP For ;hese values, the magn;tude of L3 decreases
by a factor a seventy. This is due to the significant
increase in the parameter Vg -
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with all other parameters fixed as In Fig. 1. The

" Fig. 2. Plot of nonlinear wavenumber shift M. against N
curves are labelied as In Fig. 1.
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Fig. 1, —ﬁ vs laser amplitude ¥, for the two plasma responses, ::.:r\ = 0.04,
m = 50, and & « 1. FR indicates forced Raman and Qs _3_3”3 the
quasi-static interaction.
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7. SUMMARY

In this talk, we have presented our present understand-
ing of the modulational and filamentational instabilities
of a circularly polarized electromagnetic wave in a uniform
unmagnetized plasma. We have reviewed the small as well as
large amplitude theories paying considerable attention to
relativistic electron mass modulation and density fluctua-
tions that are driven by the radiation pressure. Several
interesting analytical results for the growth rates and
thresholds are presented.

For tutorial purposes, we have concentrated on the
instabilities of a single electromagnetic wave. The exten-
sion of our theory to multi-electromagnetic waves is

22 It is expected that the modulational

straightforward.
and filamentation instabilities would grow faster in the

presence of multiple alectromagnetic waves in plasmas.

The results presented hz2re must provide a better
understanding of the nonlinear propagation of electromagne-
tic waves in laser produced plasmas, ionospheric modifica-
tion experiments, as well as plasma based beat wave
electron accelerators. The modulational and filamentation
instabilities can seriously distort the incident laser
pulse shapes, with detrimental consequences for the plasma
heating and particle acceleration.
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