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1. Introduction.

High amplitude electron plasma waves with phase velocity close to ¢
propagate large longitudinal electric fields which might be able to accelerate
electrons up to energies of interest to elementary particle physics. Two methods
have been proposed in order to generate such waves: resonant beating of two
electromagnetic waves, wakes. Since in general high frequencies improve the
performances in accelerator technology, many ideas stem from an extensive use
of lasers (i.e. high fields at optical frequencies).

Pioneering theoretical investigations about laser beatwaves were done long
ago, first by Montgomery [1] who set up the relevant system of 3 coupled rate
equations, then by Rosenbluth and Liu (2] who, through a different approach,
calculated the growth and saturation by relativistic detuning. Later, using
particle in ecell simulations, Tajima and Dawson [3] obtained computational
evidence of electron acceleration. Then, extensive theoretical and numerical
investigations were made together with a few experimental attempts. Limiting
mechanisms were identified and evaluated. Rapidly, the strong connection with
stimulated Raman scattering and with processes occuning in the free electron
lasers became apparent. More recently it was realized that short high intensity
pulses of laser light are also able to generate a wakefield whose main properties
were calculated by Gorbunov and Kisanov [4].

The plasma in which the required electron waves are to be generated has to
be reasonably long and should have a uniform electron density. Lasers can be
also used to create such plasmas with prescribed size and electron density and
temperature. The present review will deal first with this topic. A second part is
to be devoted to wave generation. Finally the requirements on the lasers

themselves will be examined.
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Part 1
LASER GENERATION OF PLASMAS

2. Overview.

The use of lasers is suited to plasma creation with electron densities in the
range 1015-10!7 em3 through gas breakdown or the irradiation of solid surfaces
or foils. In most of the cases, a high intensity is needed. The laser beam has to be
focused. Thus the optical properties of the laser beam and of the focusing devices

are of importance. They are summarized by 2 quantities: the diffraction limited
spotsize ¢ {proportional to the focal length) and the Rayleigh length

(4]
Le=T0_ @-1)
Y

where A is the light wavelength. Inside the volume no?Lg/2, the laser intensity is

fairly uniform. The values of ¢ and Ly are important to determine the
requirements on laser power and energy.

Various methods were proposed to creale plasmas suited to electron
acceleration. Table 1 states the advantages and drawbacks of those which are to

be reviewed in sections 3 to 5,

3. Multiphoton gas breakdown.
In ordinary gas breakdown, a high laser intensity at the focus of a lens or a

mirror, releases first a few electrons by multiphotonie ionization. Through

4

inverse bremsstrahiung in presence of neutrals, these electrons gain enough
energy to ionize further atoms. An exponential increase of the number of free
electrons takes place (electron avalanche) until a high temperature plasma is
created and set into laser driven motion: the so called optical detonation {for a
review see e.g. Raizer [6] and references therein). In order for the breakdown to
take place, the laser intensity should be larger than 10!® Wem-2 at optical
frequencies. The resulting plasma is far from homogeneous.

Complete multiphotonic ionization without subsequent motion is possible

with high intensity short (picosecond) laser pulses, thus providing a

satisfactorily homogeneous plasma, The number N of photons with energy hw

required to ionize the atom (ioniation potential y;} is

N=1 +lnt(£) (3-1).
hw

It is then a priori expected that the probability for ionization with a laser

intengity . I goes as IN. Experiments show such a dependance, often with an

exponent slightly smaller than N.

Now, the degree of ionization is a very rapidly increasing function of the
intensity. As shown on figure 3-1, multiphoton ionization is effective only at high
intensities. The laser beam has to be focused and the fully ionized plasma is
created over a distance equal to twice the Rayleigh length. The plasma electron

density is of course as uniform as the initial gas.

Choose as an example hydrogen {x; =13.6 e.V.) and a Nd laser (ho = 1.17

e.V.). Then N=12. However, fitting experiments, the exponent is about 10.

Expressed in terms of electric field (in V/cm) the probability w of ionization is

approximately:



w =10137g20 (3-2).
For a picosecond laser pulse to completely ionize hydrogen with initial atomic
density 1017 cm3, the necessary field turns out to be 2102 V/cm i.e. an intensity
1014 Wem-3. This technique was succesfully used at the Rutherford lab in
U.KI5]). Unfortunately, as can be seen on the above example, the efficiency of

direct complete multiphotonic ionization is rather poor, something like 6 10-5,

4. Resonant gas breakdown.

In resonant breakown of a Na vapor, the tuned radiation saturates the 3S-3P
transition. When the incoming intensity is large enough, 3/4 th of the atoms are
in the 3P state which can be considered as a pseudo ground state for Boltzmann
equilibrium. A few free electron are created by twe photon ionization. Then
multiplication proceeds via 2 possible channels:

i) initial free electrons undergo superelastic collisions with 3P states and are
able to ionize after 3 such collisions.
ii} collisions between atoms in the 3P state produce either atoms excited to

higher states (energy pooling). Subsequent collisions lead to Penning ionization:

energy pooling: Na(3P) + Na(3P) — Na{(3S) + Na(n)

Penning ionization: Na(35) + Na(n) — Na(3S) + Na*t+ e

with balance 3Na(3P) — 2Na(3S) + Nat+ e.

Alternatively, Sodium atoms in the 3P state are able to form a molecular ion

associative ionization: Na(3P) + Na(3P} - Nayt + ¢

followed by dissociation: Nay+ -3 Na(38) + Nat.

Eventually, a motionless low temperature plasma is produced whose high
degree of ionization lasts as long as the laser beam is on. The resonant

breakdown is obtained at comparatively low laser intensities: typically 106
Wem-2,

The time histery of the particle density N, of species a is given by a rate
equation. The system of rate equations, completed by equations for the energy
d_ensity W and the electron temperatur T,, is solved computationally. The results
are best represented on a triangular diagram for the densities Ng and Np of

atoms in the 35S and 3P state and the electron density N, (figure 4-1), All

trajectories with initial conditions Ng=N_(the initial density of neutral atoms), -

To=0, pass in the vicinity of a saddle point $ which represents the pumped vapor

in saturated state, and end at a node N very close to N,=N_, i.e. an almest

complete ionization. Meanwhile, T, stays at very low values unconsistent with

Saha's equation.
The computations evidence other interesting features. First, the time

necessary to reach the highly ionized state varies as the reciprocal of the initial
atomic density. Its value is about 30 ns at N, = 10 7em3. The eventual degree of
ionizaticn slightly diminishes as N, increases (90% at 10 18¢cm-3). The electron

temperature, almost independant of N, is well below 1 e.V. It decreases by 10%
as the ionization reaches its maximum (figure 4-2a). The time history of the

electron density is given on figure 4-2b. Finally, it is found that maximum values
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of the populations in the excited states above 3P, are orders of magnitude below
N,.

In the experiments, a tunable laser beam is aimed at a saturated Sodium
vapour elaborated in a heat pipe with Argon as a buffer. The time history of the
electron temperature and density is inferred from time resolved spectroscopic
measurements: occurence, .shift and broadening of atomic lines. Results are
shown on figure 4-3 for an initial atomic density slightly below 10!7 cm-3{7]. The
gas is almost totally ionized during the laser pulse (FWHM 2us). This is followed
by a recombination stage in which exists a plateau regime: the degree of
ionization and the plasma temperature remain constant for about 50us. Since
the required laser intensity is moderate, there is no need for strong focusing.
Such plasmas may be obtained in long filaments. Since the obtained plasms has
a very low electron temperature, most of the laser energy has been used for
ionization, i.e. the efficiency is high.

The method cannot be applied to hydrogen. Indeed there is no available
tunable laser source around the frequency of the 18-2p transition (Lyman a:

A=121.6 nm, w=1.55 10165-1),

5. Exploding foils and surface ablation.
When s high iontengity laser beam impinges onto a solid surface, energy is
absorbed by the material. A high temperature plasma is formed and is set into

motion.

In the case of a thin foil, the whole foil expledes. The plasma expands in both
directions perpendicular to the surface in a symetric fashion. The time varying
plasma density has a maximum at the plane of symetry. The density profile can
be monitored accurately by plasma interferometry. The region in which the
density can be considered as uniform is restricted to the vicinity of the plane of
symetry (figure 5-1).

At the surface of a thick material, a plasma plume is formed the shape of
which can be controlled by a suitable laser irradiation. By focusing with a
cylindrical length, or setting up a succession of aligned foci, each corresonding
to a different beam, a long plasma filament paralle! to the surface can be created.
The density profile is well known. Regions exist in which the electron density is
fairly uniform along a direction parallel to the surface (figure 5-2).

All the tricks which have been invented to build up long plasmas aimed at-
X-ray laser experiments, are also well suited for the generation of high

amplitude electron waves which propagate (see e.g. [8]).



Part 11

Laser driven plasma waves

6. Relativistic equations of motions.
Consider a particle with electric charge q moving under the influence of

an electromagnetic field. The momentum energy 4-vector

(p.W) = {(mgyv,mgyc?) (6-1)

and the 4-potential (A,@), enters the usual equations of motion
Qd%= q(E+va)=:{-va -%‘% (vVA + V(v-A)A‘

Q}:{ = q(waB} v = g{-VG - %?—} v

Whenever in plane waves, the scalar potential @ has a purely longitudinal
gradient and the vector potential A is purely transverse, one gets, after some

algebra, the relevant equations:
EEK-J_?_(L)’%QE (q )’( "F%Af
dt 3 dz z e Vo 2f
mgy g ™y flae
q A
27!11(:':(:2 !

dy _ { g s 15) +
di - 2] foz
mge

They can be applied to individual electrons isolated or in bunches, and to the

electron fluid in a plasma as well,

For the electron fluid in the field of 2 electromagnetic waves, a purely
transverse field, ) is zero and the vector potential A is a relativistic invariant.
Assume for convenience thal A results from 2 circularly polarized waves in the

laboratory frame:
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A, =[Acos(lyz-0 L+, ), A sin(k, z-w, L+¢, ), 0]
W >y (6-4).

A, = [$Azcos(kozimt+9,), Agsin (kyziwot+gy), 0].
The upper sign means that both waves propagate in the same direction, the
lower sign that they propagate in opposite directions. The vector potential enters
the equations of motion through its modulus squared only:

2 2 2
Al =A]+A¢ 2A1A2cos[(k gk e~{w,- tuz)nmp] (6-5).

The expression of 1Al2 in a reference frame moving with the relativistic velocity

ug, is obtained by the Lorentz transform:
u
z= 14§+u,‘1:), 1= Y;{“;E + t) (6-6) .

<

Substituting in (6-5), it turns out that 1 A2 has no t dependance provided
oy - Wy

= 6-7).
k, *ksy

Ug
In all cases, waves 1 and 2 propagate in opposite directions in the moving frame,

with the same frequency and wavenumber (for the free electron laser, wy=0, the

moving frame is known as the Bambini-Renieri reference frame [9]). In the
following we keep only the lower sign in (6-7).

The space and time dependences of the vector potential are contained in the
third term of the right hand side of (6-5). Substituting this term in the first
equation (6-3) yields an equation of motion for a relativistic electron gas in the

laboratory frame. The force resulting from A oscillates at the (low) beat

frequency w, - w,. It is called the ponderomotive force. The subsequent oscillatory

motion of the electrons is resonantly excited when the beat frequency is equal to
the plasma frequency. This oscillation induces a longitudinal electric field which

has to be included in the equations. It is more convenient to go to the frame

11
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moving with the velocity ug in which the electron motion is weakly relativistic

and use the electric field or the density perturbation as the relevant variable.
In the laboratory frame the longitudinal electric field E fulfills the
propagation equation
ﬁ- clvEp=. 13 Moy (6-8).
o 2 : £y O g, Ot

Performing the Lorentz transform, making use of the Poisson equation and
neglecting terms in v/c2, one gets from (6-8), the following equations in the

moving frame for the longitudinal E-field and the density perturbation (in the

non relativistic limit):

2 2
) . .
d E +KE=- 29&( ¢ k'pﬁlﬂ‘zcos(k'D’:F ki) _EAcos'b(‘Dﬁ) (6-9),
? €9 \TrMeC € 2
d& Tr
. 2, o2
40 Lk =2n% K'pA A s infk'pt) = 2n'g —2 Asin{k'E) {(6-10) .
2 Y £ 2
d Tr

In these equations, k'p = (k;-ky)y; and
2

A=(—°—)A,A2 (6-11)
m gc

is the interaction parameter. Since the general form of A is E/e, the interaction

parameter exhibits the usual IA? dependance.

Equations (6-3) & (6-10) describe the behaviour of an electron plasma wave
driven by an external force. This problem can be dealt with assuming that all
involved oscillations have a slowly varying amplitude and phase. Accounting for
the variations of A; and Ay, a set of coupled first order differential equations is

then derived. Alternatively, (6-9) represents a typical case of forced oscillations,
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It is usually used when the forcing amplitude is nearly constant.

8. Stokes and antistokes forward Raman scattering.

Resonant coupling between two electromagnetic waves and an electron
plasma wave is an important nonlinear effect in laser plasma interaction.
Whenever one of the E.M. modes has a large initial intensity (as in a laser
beam), whilst the other and the plasma oscillation are very weak, this is known
as Stimulated Raman Scattering. We will restrict ourselves to the case of all
waves propagating in the same direction in the laboratory frame (forward

scattering). In this frame, the vector potentials obey the usual propagation

equation in Lorentz gauge which reads for e.g. the complex potential Ay

azA 282A j
il B A (7-1)
2 - I
at dz o
where the current density j; in lowest order is
2 2
n
ji=- —2%A, . i oA, (7-2).
My mg

The first term in the right hand side is the polarisation current due to Ay; the

second term comes from the resonant coupling of A, to the plasma wave. Setting
Ay = Afzveilkizzont) | Ay = Ayz ve ikoz-wat) | n = n(z,t)e itkpz-wpt)  (7.3)

neglecting the second derivatives of the slowly varying amplitude Ay(z,t), and

denoting by v, the group velocity, one gets a first order partial differential

equation

13



2
c

eulno

oA, 2A,

2w f—+ v,
at dz

nA, (7-4) .

This implies the selection rules: kp=k,-k; and o =, -w,. By the same token,
2
2A 9A
20202, 20).. <
0 dz

n*A, (7-5).
EgM p

The second order equation (6-9) is also reduced to first order and given a form
analogous to (7-4). Equations are then readily transformed for quantities in the

moving frame. The final system is thus:

dA
(vz- ugb—2=- —5—n#a, (7-6) .
dg 2£0T|'I om'z
] 2 »
El_l'_l_= ﬂ‘o( ) leA]A1
dg YR of

Such equations were thoroughly investigated in various situations. In all cases,
the amplitudes obey the Manley Rowe relations which are best expressed

quantum mechanically as

1 photon w; < 1 photon w, + 1 plasmen o, -

Let first A; be a large fixed potential (pump). Initially small Ay and n' are

then to increase exponentially. This is an example of a convective instability with

growth rate
@
re=|—& < -1 7-7).
Te Mot

Actually; waves are damped. The longitudinal plasma waves (e.g.} can be

damped either collisionally or via the Landau mechanism, Such effects should

14

be accounted for in the equations. Then it is found that the growth of the
instability occurs if and only il the pump intensity exceeds a threshold which
depends upon the damping coefficients of the daughter waves. Many studies
were devoted to this problem in the seventies. They were motivated by laser
driven inertial confinement fusion. Threshold values were evaluated in both
homogeneous and inhorﬁogeneous plasmas. The main result can be
summarized as follows: at threshold the product of the pump intensity (in
Wem-2) by the wavelength (in um) squared is a few 10!3 WuZcm 2,

Several situations are of interest when A, is variable. Assume first that A,(0)

is still a high intensity pump with zero A,(0) and a small n'(0). The solution of
(7-6) is then expressed in terms of Jacobian elliptic functions [10]. The
corresponding time history is displayed on figure 7-1a. It exhibits a nonlinear
period which depends on n'(0), Since at the begining, a good approximation to
the solution is an exponential growth, the physical process is known as Stokes
Raman scattering by analogy with the behaviour of the solution of the Airy
equation. The saturation of the plasma wave is due to pump depletion. When on

the contrary, A,(0) is zero, Ay is large and n'(0) is still small, the regime is

sinusocidal with comparatively low amplitude variations (figure 7-1b). In this

case a photon w, combines with a plasmon w, to form a photon w,: antiStokes
Raman scattering.
We now consider the case with initial large amplitudes for both A, and A,.

This situation was investigated first by Montgomery [1] who set up equations
similar to (7-6), and later in more details by Rosenbluth and Liu {2] who took up

the forced oscillator approach. Assume that both laser frequencies are much

15
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greater than the plasma frequency (beat wave in an underdense plasma). Then,
it is readily shown that the phase velocity ug of the plasma wave is equal to the
group velocity of the laser waves,

In order to study the beat wave dynamics, (7-6) is solved first. The result is
shown on figure 7-2, Since both A;(0) and A4{0) are large, the initial growth of the
plasma wave amplitude is fairly linear and much faster than the growth of the

Raman scatering near threshold.

8. The Raman cascade.

A single laser wave is able to undergoes forward Raman scattering
whenever its intensity is greater than a threshold which depends upon damping
mechanisms. The effect goes both ways: either a photon gives rise to a plasmon
and a photon with a lower frequency (scattering on the Stokes side) or the phaton
recombines with a plasmon to produce a photon with & higher frequency
(scattering on the antistokes side). The generated wave can grow up to intensities

over the threshold value so that it also takes part in a further Raman process.

Consequently, satellite waves with frequency shifts multiple of ©, can appear

on both sides of a given high intensity laser line ( figure 8-1 ): this Raman
cascade can lead to turbulence and plasma heating [11).

By the same token, each of the two laser waves participating in the beat wave
may be scattered either side. It was considered as a possible saturation
mechanism. This cascade can be deseribed by a system of coupled first
order differential equations dealing with the complex amplitudes of the modes

involved.
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The relevant equations were set up by Karttunen and Salomaa [12]. Here the

similarity variable & is of a temporal nature and the equations read for each
E.M. mode labetled j:

dA, o .

—L =LA AA A, (8-1)

dg w,

where o, correspond to the impinging laser wave with the higher frequency and
A is the amplitude of the plasma mode which in turn satisfies the equation

dA, [ 2];\ _ .

o +[0(B)- 14 | |a, = EA,AJ-,I (8-2).
In the left hand side of (9-2) are added terms dealing with the relativistic

detuning alA,12A,, and its compensation by a time varying density [f{£)-1] AL A
single term only is present in the right hand side of the equations dealing with
the modes at both ends of the cascade. These equations are solved numerically
for a finite number of modes, usually 30.

Sighificant results are shown on figure 8-2. Energy cascading towards the
lower frequencies improves the quantum efficiency of the heat wave. However,
the phase shifts by n every time one of the E.M. waves goes to zero. The
conservation of coherence is then questionable. Introducing the relativistic
detuning with a large coefficient changes drastically the dynamics. A nonlinear
peried shows up. The detuning dominates the process. A linear compensation
enhances the saturation level of the generated longitudinal plasma wave whilst
the electromagnetic spectrum spreads over all allowed modes. This is
accompanied by a locking of the relative phase between the two pump waves and
the plasma wave, In case of an overcompensation, the relative phase increases

indefinitely, the spreading of the spectrum is limited and the plasma wave

17



saturates at a lower level: a kind of steady state takes place.

9. Connection with the Free Electron Laser.

Consider the dispersion relation for the system made of a cold background

plasma with plasma frequency , and a relativistic electron beam with plasma

frequency Opps and velocity u,. Denoting by e(k,) the high frequency dielectrie

constant,
2 2
w w 2
ehw)=1-—2-—T—=0  wih 7= ! ©1).
w 'yjku.,-m) 1- Un

In the Free Electron Laser, there is no background plasma and the dispersion

relation reduces to
2

w w
£lk,w) =1 --2—1"’—-»2—=0 o w=kut-—2  (92).
yh(kub-m) To

¥,{kuy, - w) is the Doppler shifted frequency of the electron wave @. In the Brillouin
diagram (w,k) the dispersion relation {9-2} is represented by two parallel lines
with slope u,. The upper branch has a positive energy (3¢/d0w>0 at £=0) whereas

the lower one has a negative energy (de/dm<0 at e=0X13]. Now, one may look at the

possible couplings of these plasma modes in the beam, to an electromagnetic

wave (the laser) and a zero frequency oscillation (the undulator). In figure 9-1,

the relevant (w.,k) diagrams are shown for both the laboratory frame and the

reference frame in which the beam is at rest: moving frame.
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interaction deals with individual electrons rather than with a collective

oscillation. Such an effect should happen over a length emaller than the Debye

length. On the contrary, collective effects act on a scalelength larger than Ap, In
terms of wavenumbers and as an order of magnitude:

Ikl >> lkp! holds for individual (Compton) interactions,

Ikl << lkp,! for collective (Raman) ones.

In a beam in which electrons are shaken by waves, the resulting energy spread

Ay,.can be used to define the thermal velocity <v,> and the subsequent Debye

wavenumber

<v> = cAY MY, Ikpl = @ f<v,> (9-3)

in which y, is the Lorentz factor of individual electrons. Now, in a reference

frame moving with the phase velocity of the plasma wave, the incident and

backscattered electromagnetic modes have the same frequency

w'y = ck'p/2 9-4).

After a Lorentz transformation, one has in the laboratory frame

@ =1 + By =270 =crk’p, hence k'p=w/ecy, (9-5).

The condition for a collective behaviour (Raman scattering) thus implies
2

™
mlm:nc::!f--E (9-6) .
Ay,

L]
It should be noted that, even in the Compton regime, electrons are periodically
bunched as a consequence of a free electron laser process. The period is that of

the laser-undulator beats, indicating a self organization of the electron beam in

20
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the form of a plasma wave.
A final remark is noteworthy: since the plasma wave and the laser have the
same frequency in the laboratory frame, the quantum efficiency for plasma wave

generation isequalto 1.

10. Laser-wiggier beat waves in a plasma.
The presence of a background plasma does not changes the three wave
couplings involved in the F.E.L. In the case of Raman backscattering, the phase

velocity of the laser-undulator beats is

IR ki+k,

(10-1)

and thereference frame moving with this velocity is the Bambini Renieri (B.R.)
frame. From (9-1) a relationship between ug and the beam velocity uy, is derived
viz

up =gt (10-2).

T 1—

The upper and lower sign refer to the Cerenkov and inverse Cerenkov regimes

respectively. In both cases the Lorentz factor of the beat is
2
2 1 [k |+k2]
W=y - (103
R
-8 @
C2 [Zk l+k7k2- c2

which, since
2 2 22
O, =0, +kjc (10-4)
imphes a divergence for

2 71
@, - 2cank; + ke =0 10-5}.

21

In other words, there exists a critical density for the background plasma or a

cut-off value for the laser frequency, with the double inequality:

2
Eﬂmﬂ(2m, - ckz)ckz [mp + k%cz)
nDSnnc=——*2“ or w, 2m|0"=—‘-2c—k2— (10-6) .
c

The Lorentz factor y; depends upon the plasma frequency (i.e. the density) and

upon the laser frequency @ as depicted on figure 10-1.

The longitudinal electric field E obeys
TE_LA ey
ot &

in which the longitudinal current j has to be calculated after the density
perturbations and velocities both in the background plasma and in the beam.
Linearized fluid dynamical equations are used for the velocity and the electron
density perturbations in the background plasma and in the beam as well. The
result is a second order partial differential equation for the electric field in the

B.R. reference frame (no time dependance, non relativistic motion):

aE_ L, mreo Ho,
2 w

2
K+ Al 22} ¢ Leodiog)  c08).
dg

1l T

Now, in the interaction parameter A, for the undulator (magnetic field Bs):
Ay=By/ky. In the right hand side of (10-8), the first term in the { ] bracket is the

non resonant contribution of the background plasma and the second one is the

resonant contribution of the beam.
Assume A), A, and E have slowly variable amplitudes: these are found to

obey a first order system of 3 coupled differential equations. The undulator is

equivalent to a very high intensity electromagnetic wave. A is made large with a

22



comparatively moderate laser intensity. Since the quantum efficiency is unity,
the plasma wave amplitude is obvicusly bounded by the laser amplitude.

The saturation results from the usual contributions of many mechanisms:
pump depletion, cascading, collisions, relativistic effects... Since the static
magnetic field of the undulator is set up over a limited number of periods, the
finite size might also influence the growth of the plasma wave. This can be
accounted for by introducing a phenomenological damping term in the left hand
side of equation (10-8) in which the reciprocal of the undulator length L'
(measured in the moving frame) appears as an effective collision frequency. This
approximalion was proved to work for parametric instabilities in bounded

plasmas [15). Now, the second order equation for E is:
2

o, Ll z_tfﬂA(J)ﬂ_m{k-,g;) 109
)y R

dg

With constant A, (10-9) is a Duffing's equation. The effective damping and the
relativistic detuning can also be included in the first order system which
accounts for pump depletion.

When the effective damping and pump depletion are small, the plasma wave
amplitude is limited by the relativistic detuning. A maximum electric field is

calculated after the Duffing's equat.wn in the case of growt.h from a very low level

Epmu= (—J!) ‘6 A (10-10) .
Tr

The accelerating field is the smaller of two: the electric field given in (10-10) and
the laser electric field. Furthermore, it has to be larger than the driving
longitudinal field, otherwise there would be no plasma and the system would
operate in the so called Inverse Free Electron Laser (I.F.E.L.) regime, Then,

(10-10) holds provided

23

T A S _z (‘6" S A oy
.Y c CAz
which implies
_ CAZ _ CBZ
7“>?R="“—@—m(ﬁkz (10-12).

When the Lorentz factor of the B.R. frame surpasses the critical value, one has
the situation depicted in figure 10-2 which shows plasma enhancement of the

longitudinal field induced by laser-wiggler beating when the interaction

parameter A is smaller than about 0.6.

In this process, since its frequency is much larger than the background
plasma frequency, the generated plasma wave has a nonzero group velocity. It
can be launched through a plasma longer than the undulator. The extra length
could be used as an accelerating section separated from the region where the

plasma wave is created.

1. Evaluation of saturation mechanisms.

Besides pump depletion, the actual amplitude of the longitudinal field is
expected to saturate thanks to a large number of various possible processes:
wavebreaking, relativistic oscillatory motion of the electrons in the wave,
competing instabilities, cascading, collisional or Landau damping... Examples

of growth and saturation of the electron plasma wave were given in the case of

the Raman cascade. In particular the role of a compensating detuning f(§) was

investigated.
The term fl£) may be included in the equations for other reasons, for instance
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the onset of a modulational instability which results from the coupling of a high
amplitude plasma wave and ion-acoustic oscillations. The latter induce a
sinusoidal detuning with a period much longer than the electron wave period
and growth rate. Choose the longitudinal electric field E as the significant

variable, In the left hand side of the forced oscillator equation (6-9), one may add
a cubic term al EI2E accounting for relativistic electron oscillations and a

periodic flE) representing the modulational instability. One then gets a modified
Duffing's equation
- ﬁ+rgg+[f(§)-u|Elz]E=-Fcosf; a1
a9

in which I' is a damping coefficient (collisionnal or Landau) and the driving

amplitude F is proportionnal to the interaction parameter A. This equation can
be used to investigate qualitative features. A computationnal result is shown on
figure 11-1. The electron wave saturates at a level which remains about constant
for a while and finally decreases exponentially.

A comparative review of beatwave saturation mechanisms was given by P,
Mora [16] for typical conditions of laser irradiation. The mechanisms considered
are:

- relativistic detuning,

- linear detuning i.e. approximate frequency adjustment,

- lateral plasma expansion due to transverse ponderomotive potential
associated either with the focused laser beam or the generated electron plasma
wave itself,

the modulational instability as investigated in {17],

- collisions.
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For any one of these, the maximum relative amplitude An/n of the density

perturbation in the plasma wave scales as IA2 where I and X are respectively the
laser wavelength and intensity. The results are best presented
diagrammatically. Figure 11-2 (after [16]} refers to the following plasma

parameters: electron density 10 17 cm3, temperature 40e.V., focal spot diameter

100pm. They show that in the range of IAZ expected for particle acceleration the
main limiting processes are the linear detuning (5% error with respect to the

density for resonance} and the modulational instability.

12. Longitudinal wave generation vs. plasma heating.

When a high intensity laser beam impinges onto & plasma, part of the energy
i absorbed thanks to inverse bremsstrahlung, a mechanism which depends on
electron ion-collissions. These collisions also act as a damping process for the
longitudinal plasma wave. They are density and temperature dependant.

Taking up the usual formulas for Coulomb collisions, the damping term in
the modified Duffing equation of the type (11-1) is proportional to T,32. Now, the
electron temperature T, is given by a rate equation the right hand side of which
is the balance between gains due to laser energy absorption by inverse

bremmstrahlung and any kind of heat losses which can be simply modeled by a

constant coefficient times T/%. Altogether, the longitudinal wave electric field

and the electron temperature are given by the solutions of coupled equations of

the form

26



aE, T 0 afef]E=-F1g) cost

d 2 T:ﬂ dg
(12-1).
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Typical results are shown on figures 12-1 and 12-2. The laser pulse is

gaussian. It turns out that the shape of E(§) depends on the ratio I/G. for a low

value of this parameter, the nonlinear period is clearly visible. On the contrary,

damping dominates when I'/G is large. The maximum value of E is about the
same in both cases. In the investigated range of parameters, the growth and
saturation of the plasma wave are not dramatically changed by the occurence of

laser heating of the plamsa.

13. Laser induced wakefield.

It has been known for quite a long time that a relativistic bunch of charged
particles passing through a plasma perturb the electron gas. A wake is induced,
i.e. a longitudinal plasma wave follows the bunch. The same effect is to arise
with any concentration of electromagnetic energy propagating with the speed of
light e.g. very short intence laser pulses. The perturbation of the electron gas is
then due to the pondromotive force associated with the rapidly varying amplitude

of the electric field in the pulse. Following Gorbunov and Kirsanov [4], the
coupled equations for the transverse electron velocity v, and the longitudinal

density perturbation n are
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2, v, 2 A N o,
c > T '“’p"l"'f Tt +—nv {13-1)
oz dz FI ¢
2 2 2\.r2
E~;l+mpn=£;3~—~~if (13-2).
o oz
The longitudinal electrostatic potential is given by Poisson's equation
)
: a-%:-i'l (13-3).
oz €

For a transverse velocity of the form
v jug)= ;[E{g).,"[""“‘h c.c.] (13-4).
2mg

where the amplitude E(£) of the laser electric field is a slowly varying function of

the similarity variable §=z-v.t, v, being the group velocity, and provided the pulse

length is shorter than the plasma wavelength

olE) = Dsinlk Ery)  with  @g= % f [E(§)|2df, (13-5)

in which k,=w/vg~w/c. The longitudinal electric field is:

2 2 o .
[0
E= ekP2 Foe—°% 2—|2'-F where F=f EJElzdF, (13-6)
Egm g EME @ -

is a fluence i.e. the energy which has passed through a unit surface. F is also the

product IAt of the laser intensity by the pulse duration. Putting numbers in the

formula yields:
2

Hvm?)=2.2 10’9%1(%" Yoo a3m.
w

If for instance, the electron plasma density is 1017 ¢m-3, the wavelength of the
longitudina}l oscillation is 100 pm. Taking At = 3 1013 8., the intensity required to
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obtain 10° V! i5 1.5 101 Wem'2 from a CO, laser (w/w=10"1) and 1.5 10'¢ Wcm2

from a Nd laser (o /w=102).

These values are of the same order of magnitude as those necessary for
beatwave generation. Strong focusing of the laser beam is requested. The length
. (twice the Rayleigh length) available for plasma wave generation is limited to a
few millimeters unless self focusing takes place. There is still a definite
advantage of the laser induced wakefield. No resonance condition is to be

satisfied.
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CONCLUSION

14. Requirements for lasers,

Lasers might be used for plasma creation, beatwave generation or wakefield
generation. For all these potential uses, the requirements are very much alike. If
one has in mind the application to particle accelerators, further constraints have
to be accounted for. Indeed, besides the energy, the devices should provide a
sufficient number of expected events thanks to a high luminosity. This parameter
is proportional to the repetition rate: a convenient value the lasers should
mandatorily match is 1 kHz.

A high energy particle accelerator is obviously expensive. Routine operation
is also costly. It is important that the machine be as efficient as possible, To this
end, the overall laser efficiency has to be over 10%,

The beat wave mechanisms leads to requirements on wavelength, power, and
pulse duration. It has been shown:

i) that the electric field Ep in the plasma wave which determines the acceleration

gradient increases as the square root of the plasma density;
i) that the Lorentz factor y; associated with the phase velocity is proportional to

woftn,. One wants high values for both Ep, and Yr which imply a dense plasma and

consequently a small laser wavelength

High laser powers are also needed. First, in beat wave generation the

saturation amplitude, and hence the acceleration energy W,, turns out to scale

as (IA2)13, This constraint is somewhat relaxed in the "surfatron” [18] and laser

wiggler beat wave schemes. However, consider on table 2 the calculated values of
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acceleration energies and lengths in beatwave generation with saturation by
relativistic detuning. It appears difficult to match the focal volume of an optical
system to the acceleration length. Now, light self-focusing was evidenced in
numerical simulations [19). The mechanism which comes from either
ponderomotive or relativistic effects, provides a high intensity over long
distances. In both cases the laser power (not the intensity !) has to exceed a
wavelength dependent threshold.

Finally, one has to look at the pulse duration. In beatwave generation, it
should not be larger than a few nonlinear periods. In practice, this condition
leads to 1-5(.I ns pulses. In plasma creation by multiphotonic ionization, and in
plasma wakefield, 1 p.s is an upper boudary.

The above requirements: high repetition rates over long periods of time (days
or months), 10 % efficiency, short wavelength, high power and picosecond pulses,
look rather contradictory. No existing laser meets all of them, as can be seen in
Table 3.

The KrF laser exhibits some appealing features. The main issue is how to
efficiently extract the pump energy with picosecond pulses, a so far unsolved
problem. Angle multiplexing as used in Inertial Fusion is concievable. But, in
recombining the beams, one should be very careful about coherence which is

essential in driving the plasma wave. Table 4 gives alter J.J. Ewing [20] , the
main properties of both a KrF and a CO4 laser designed for a 10 TeV electron

accelerator. The latter is well suited for proof-of-principle demonstrations as
shown by preliminary experiments in the U.S. (U.C.L.A.) and
Canada (I.N.R.S.).

Acceleration of elementary particles in laser plasma interaction has been

demonstrated on a very small scale: 1 GeV/m overlmm only. It is considered

KY|

seriously by high energy physicists as a very promising way to reach energies
beyond a few TeV. However the subject is still in its infancy. The accelerators of
the next generation will be designed and built by extrapolating known and
reliable techniques. This leaves about 20 years from now:

i) toinvestigate all the physics relevant to laser-driven acceleration of particles
in plasmas;

ii) to design laser sources suited to the job,

If one looks back at the progress in the physics and the technology of
high-power lasers designed for Inertial Fusion, one sees an increase in power by
6 orders of magnitudes over the past 20 years. This is indeed a remarkable
achievement. There is no doubt that, provided the demand and the motivation
exist, a similar evolution will occur; by A.D. 2010, laser properties could be close
enough to the requirements of accelerator physics, in time for a future generation

of machines.
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Table 1.

LASER GENERATION OF PLASMAS

density (ecm?)

Gas breakdown  in quiet gas 10163017

ingasjets - 10181017

Resonant gas breakdown 10151017

Interaction with solid surfaces 10161020

Interaction with thin foils 10161070
Table2

comments

muitiphoton ionization produces
completely ionized plasmas with a
very uniform electron density [5].
EMiciency is questionable.

uniformity is questionable,

Efficient, but so far restricted to
metal vapour,

adjustable length,

short but controlable.

MAXIMUM ENERGIES AND ACCELERATION LENGTHS

Laser wavelength (pm ) 10 1
Intensity ( Wem-2 ) 1.3 x1015 1.3 x1017

Electron density { cm-3 )

1015 10 GeV 1TeV

4m 400 m
1016 1GeV 100 GeV

13cem 1.3m
1017 100 MeV 10 GeV

4 mm 40 em
1018 10 MeV 1GeV

0.13 mm 1.3. em
101% 100 MeV

0.4 mm
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0.25
211018
Gradient (GeV/m)

16 TeV

6.4 km 25
1.8 TeV

210m 8
160 GeV

6.4 m F--1
18 GeV

21 em @
1.8 GeV

6.4 mm o0



Table 3

STATE-OF-THE-ART LASERS AND ACCELERATOR REQUIREMENTS

LASER A(um} SMALLJA PICOSECOND ENERGY
EFFICIENCY

PULSES 102.104)
Ccoz 10 NO Possible Proven
HF 2 NO Nd Possible
Nd 1 Yes Praven Proven
¥xF 0.25 Yes Questionahle Possible

Table 4.

DATA FOR ALASER IN A 10 TeV ACCELERATOR

Assume: laser / beat wave conversion efficiency is 25 %

Ayky

Plasma electron density

Tr

Iy

Power for self-focusing
Pulse duration

Energy/pulse
Total length

* feasible by Raman shift in H,
** DREAM |
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Co,

lpm
1017cm-3
10

0.6cm
047 TW
3 psec.
14J.
660 m

REP. RATE
1 KHz 210%
Possible Proven
Possible Proven
NO NO
Possible Possible
KrF
37A "
4 1018¢m?
38cm
21TW
3 psec.**
63J.
104 m
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Figure 4-3. Time histories from spectroscopic diagnostic
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a) electron density, b) electron and ion temperatures.
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5.2 This sketch presents some of the general features of a plasma column
produced by a cylindrical focusing of laser-beam. The behaviour of electron density
and temperature, perpendiculary to the target surface, iec represented on the left

side. If the 1llumnation is conatant along the focal line, the plasma is homogenecous
in the axial direction which is used for gain measurements.
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7-1-a  Time history of smplitudes in Stokes Reman scatlering
8) patiodic regime; b) solitons.

7.1 L antiStokes Asmen scattaring
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WG Loremtz factor for the B.R, frame versus:
- a) the plasma density; b) the aser frequency.
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Acceleraling field versus interaction parameter.
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