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L INTRODUCTION

In this lecture I want to summarize the results of a research program which has
focused on the “long time" development of strong Langmuir turbulence (SLT) which
is driven by intense coherent radiation in long scale length plasmas near critical
density. This problem was chosen for s theoretical simplicity and because of its
relevance to ionospheric modification experiments using powerful HF radiation.
These experiments probably provide the best physical realization of the theoretical
ideal, long scale length, quasi stationary plasma.

The strong Langmuir turbulent system which [ will try to describe is a fasci-
nating system in which locally coherent, nonlinear “wave” structures or excitations
undergo chaotic or turbulent motion. These elementary excitations which we call
“cavitons” consist of high frequency Langmuir waves trapped in self-consistently
evolving density cavities. The low frequency density response which describes the
cavities evolves under the influence of the pondermotive force of the localized Lang-
muir waves, These excitationa have a finite lifetime; they are born by gaining energy
from the external fields in a process of “nucleation;” they “collapse” to small di-
mengions where they die or “burnout” by giving up their electrostatic energy o
accelerated electrons. These excitations also interact by the radiation of jon acous-
tic waves and “free” Langmuir waves. The study of this interaction is in its infancy
but we have examples in which the caviton gas apparently undergoes a phase tran-
sition to states which are highly ordered in space 20d time. These phenomena are &
significant departure from our concepts of linear wave excitations and weak turbu-
lence or renormalized turbulence theories with their often uncontrolled assumptions
such as random phase approximaticns.

Data from the ionospheric modification experiments has accumulated for about
15 years. In the early days these data seemed consistent with the conventional the-
ory invalving linear parametric instabilities and weak turbulence cascades. How-
ever, with the passage of time it was realized that these data were manifestly
inconsiatent with the conventional theory. A more detailed discussion of this is
given in reference 1 from which much of the material here is derived.

During the same time period new theoretical insights into SLT were developed
centering around the seminal work of V. E. Zakharov.2 He developed a very useful
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unified description of SLT and concluded that collapsing localized Langmuir states
would play a central role in the turbulent state. In recent years it has been possible
to carry out long time computer simulations of Zakharov's model equations in
two’4 and three’ spatial dimensions. We believe our work has led to & new set
of paradigms for the understanding of SLT and its spplication to the ionospheric

modification experiments.!

The results of this research can be summarized as follows:

1.) States of SLT can be excited for heater (pump) intensities only marginally
above the threshold for parametric instabilities. Thus we expect the ionospheric
heating experiments, which are estimated to be well above the threshold for these
parametric instabilities will be in the SLT regime.

2.) In these states of SLT a major part of the power in high frequency density
fluctuations is contaited in Jogalized states in the case of strong ion sound wave
damping which is appropriate to the ionosphere.!34 These localized states, which
we will call cavitons, consist of a high frequency Langmuir field trapped in a self-
consistent density cavity (i.e., density depletion). The dynamics of these cavitons
will be a major concern of this paper. It is important to emphasize that these local-
ized states are pot wavepackets of plane linear Langmuir waves, but gew nonlinear
Langmuir states and consequently cannot be described by perturbation argurnents
such as weak turbulence theory based plane wave states.

3.) This state of SLT is sustained by a local nucleation process, {see 6. below),
and not by linear parametric instabilities. 37 The developed turbulent state is
gtable to the excitation of these global parametric processes because of the level
and localized nature of the turbulent fluctuations. Parametric instabilities may play
& role in the transient excitation of the SLT state from guiescent initial conditions;
for ionospheric parameters this would be the first few ms following the turn-on of
the heater.

4.) The localized states are trapped in self-consistently evolving density wells
which collapse to small dimensiona because of the dominance of the nonlinear pon-
dermotive force aver the linear pressure force. The svolution from nucleation to
collapse is discussed by Rose and Weinstein® and the collapse procesa follows the
self-similar scaling discussed by several Soviet authors.??

5.) As the caviton's spatial dimension decreases to the order of 5-10 electron
Debye lengths, Ap,, the electrostatic energy trapped in the caviton is rapidly given
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up in the acceleration of electrons resulting in the sudden dissipation or “burncut”
of electrostatic energy.

6.} The electrostatic burnout process leaves an empty density cavity, no longer
supported by a pondermotive force, which then evolves s o free ion sound pulse.
These residual ion density wells provide aycleation centers for the excitation of
new collapsing cavitons.3%7 For strong ion sound damping, appropriate to the
ionosphere, the burnout density wells relax in place,

One purpose of this paper ia to review several years of research on strong Lang-
muir turbulence, Highlights of this research have been reported in several short
articles. 3:468.7 Limiting the scope of this discussion to ionoapheric heating greatly
reduces the “volume” of the potentially very large parameter space of SLT which is
considered, although what remains is still very rich in phenomena. Qther applica-
tions such as laser-plasma interactions {e.g., see Rose, DuBois and Bezzerides!0:il
invblve many of the same or related phenomena. The same conditions of excita-
tion near the critical density in weak density gradients might be approximated in
long scale length laser produced plasmas with weak collisionality or in laboratory
microwave-plasma experiments with sufficiently long-lived plasmas uneffected by
boundaries. We will not treat such applications in detail here.

A second purpose of this paper is to sketch out the application of this strong
turbulence scenario, which we believe represeats the most credible description of
Langmuir turbulence, to the experimental facts of ionospheric heating. This SLT
approach represents a significant departure from the accepted or conventional ideas
associated with parametric instabilities and weak turbulence cascades.

Our most complete current understanding of SLT is based on simulations of
8 homogeneous, isothermal model described by Zakharov's [1972] equations.? This
situation is best realized in ionospheric modification for early times (several ms)
after heater turn on befare large scale (several m} density and temperature fluctua-
tions have had time to develop. The most relevant data for this situstion seems to
be that obtained by Wong et al.,!? Djuth et al.!? and recently by Cheung et al.14
in low duty cycle pulsed heating of the ionosphere.

A more detailed comparison of the SLT theory to ionospheric modification
experirents is given in reference 1.



2. ZAKHAROV'S MODEL OF NONLINEAR LANGMUIR WAVE-ION SOUND
WAVE INTERACTIONS

The calculations to be reported here will be based on solutions of Zakharov's
[1972] model? of Langmuir wave-ion sound wave interactions. These are formulated
in terms of the slowly time varying envelope field B (x,4) of the total electrostatic
field Eror (xt), where "W = ¥ S

o

Erorlz.t)= %E(;,. t)ezp[— twpt] + c.c (2.1)

where u,2 = 4r2ng fme where og is the mean plasma eiectron density. It is assumed
that

&£} << hpk] . (2.2)

The total jon density is writien as

nror =ng+1n (2.3)

where @ is the Auctuation about the mean density; the spatial aperage of 4 is then
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The equations of Z. s mode] are: &, -
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where ¥ x = 0. Here Ap is the electron Debye length and c5 = (1 Te/my)!/? ia
the ion acoustic speed which is often expreased in terms of specific heat parameters.
Eo is the possibly time-dependent pump which is assumed to be spatially uniform.
This is the “heater” field in jonspheric modification experiments. Tildes are used
to denote conventional dimensional quantities to distinguish them where necessary
from dimensionlesy quantities introduced below.

S

The damping operators ;e and vie which are nonlocal in coordinate space are

local in Fourier space. In Fourier space it is also simple to include a weak back-

ground geomagnetic field Bybased on the modified Bohm-Groes dispersion relation
for Langmuir waves. 1%

w(k)? = w?, +3k%02 +wisin? @ (2.5)

where v? = Ty /my, we = ¢ Bo/mc and # is the angle between B, and k
In this paper we sdopt the convention for spatial Fourier transformas:

E(k) = (L)~D 1 dP2 exp(—ik - z)E(z) (2.6)

where L is the linear dimension of the system and D is the dimensionality of space.
The jonospheric heater or “pump” field Eo(t)is included, ignoring pump deple-
tion, by assuming that the spatially uniform, k = 0, Fourier component is a given
function E(t). We will generally take Eg(t)=Ep exp {—idigt] where dy=wy — wp is
the difference between the heater frequency and the average plasma frequency.
The Langmuir wave dumping term is taken to be collisiona] damping plus Lan-

dau damping.

Ge(kwp = Pefup + /2 (862 kp fk) ezp - (K 1202 27

for k < 0.3kp; this function is continued smoothly to increase as &2 for large k. The
latter step is necessary in order to arrest collapse at small scales aar discussed by
Zakharov and Shur'® and Russell et al. 37 it is essential for numerical resolution.
This damping is an ad hoc addition to the model which is justified by comparing
with pasticle in cell simulationa.!718.19.20 which show nearly complete dissipation
of the trapped electrostatic field at the burnout stage of collapee. For the work
reported here, where we treat heater inteasities well above the collisional thresholds
for parametric instabilities, we will take i, == 0. This is valid provided all physically
important rates are much larger than v.!

For ionocspheric conditions we expect the ratio of electron to ion temperatures,
Te/T;, to be of arder unity for early times after the onset of heating. Fluid descrip-
tion of the ion density response is then expected to be quantitatively inaccurate
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because of the important role of Landau damping on ions.2! Since kinetic simula-
ticns of the ion response are prohibitively expengive for the problems we treat here
we have adopted the following strategy: We use the Auid description of (2.4b) but
the sound velocity ¢ and the ion Landau damping used in this equation are chosen
to coincide with the least damped poles of the linear kinetic response. Using this
procedure we find for k <<kp, that %(k)/o;(k) = ¥; where &;(k) = k(n Te/m;)!/2.
The values of 1; and 5 are found from the least dsmped roota of the full kinetic
dispersion relation.!

We have found the qualitative features of the nucleation process to be unaffected
by the values of v; in the regime 0.95> v; >0.4 for systems driven well above the
nucleation threshald discussed in Sec. 3.

It is well-known,? that the linearized form of these equations contains the para-
metric decay instability (PDI)?? and modulational instability?3.24 (MI or OTSI)
of the pump wave. Furthermore, when weak turbulence analysis?5.26 i4 applied to
these equations it yields the usual wave kinetic type of equations which lead to the
weak turbulence cascade. However, the validity conditions for the weak turbulence
spproximations are very limiting. %8

We have studied examples of the solution of these equations for parameters
relevant to ionosphere heating in which the system is initially excited by a linear

parametric inatability and evolves to a state of SLT.! In this paper, however, we
will consider only the developed turbulent state.

In carrying out numerical solutions of these equations it is convenient to use
dimensionless yptilded quantities which are related to dimensional tilded quantities
in the following way:2%

2 m\VP oz
x=§(q;£) v (2.8)

=L (m\ (3 g\
T M \gm, 167 4angT,

The scaled equations then have the familiar simple form

7

Y[ +veo) + V2 —n)E = £y Un (2.9a)

6 +20; 00 ~ V¥ = VIE 4+ Eol? (2.9b)

[n the scaled units there is a residual mass ratio dependence which occurs only in
the scaled damping rate which is obtained from (2.7) as follows:

ve(k} = (3/2)Me(2/3M " kkp ! (2.10)

in terms of the scaled wavenumber k and M = m;/nm,. This residual mass ratio
dependence reflects the ratio of the parametric instability space and time scales
which increase with M and the mass ratio independent dissipation scale. A similar
formuln applies to v;(k).

Note that in dimensional units Landau damping becomes significant for k >
0.2%kp(kp = Ap ~!). Thus in dimensionless units this dissipation becomes signifi-
cant for k greater than the dissipation scale ky:

3 m; \ Y2
k> kg~ (0.2)- 3 #‘)

Since the dynamics of the decay instability involves k's on the scale of k, =
(2/3)(qme/m; /2 kp, we need Fourier components at least as small as this, if
the parametric processes are important, and this sets the linear dimension of the
simulation cell to be L; = L, > 2x/k,. In dimensionless uanits ke =landL; =
Ly > 2r. The number of Fourier modes must be sufficient to probe deep within
the dissipation range of kmqz >> kg in order to resolve collapse. This sets a limit
on the value of M which can be accommodated in a reasonably sized simulation of
suy 128 x 128 Fourier modes in two dimensions. In view of these limitations we
have chosen M = 1838 for our simulations. At various points in the text to follow,
especially in Section 3, we will discuss the scaling of physical quantities with the
mass ratio. This scaling will allow us, at least roughly, to translate the simulation
regults to the larger mans ratios.

The validity conditions for Zakharov's model have been discussed elsewhere
{Zakharov{1972] Nicholson [1983]) and include the condition.
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Z <<l (2.115)
ng

A discussion of the degree to which these conditions are satisfied in our numerical
simulations is given in reference 1.

Our simulations are carried out on a 128 x 128 equare grid of sides L, = Ly
= 2, with periodic boundary conditions in x and y. In physical units this implies
Lz = Ly = 404 Ap, and a grid-point spacing &x = Ay = 3.15 Ap,. The Debye
wavenumber in these units is 64. and the maximum wavenumber is 91. Spot
checks with a dealiased code with a nominal 256 x 256 grid were used to confirm
the validity of our simulations. Typically the spectrum {|a(k)|?} decreases by 4
orders of magnitude between the peak of the spectrum and the iasgest k values.
The test of temporal and spatial resolution is energy conservation as expreased
by the balance between the average dissipation and injection rates as discussed in
Sec. 4.

3. THE LOCAL CAVITON MODEL

The accumulated evidence from many computer simulations of equations (2.4)
shows that, at least for moderate to strong ion acoustic wave damping, »; 2 0.1,
the strongly turbulent system in dominated by caviton “events” which are localized
in space and time. Snapshots such as Figure 1 show the localized nature of |[E(x,t)[*
and n(x,t) as functions of x for given t. The power spectra |E(ksv )|, which we will
discuss in detail below, also have signatures of localized states. The envelope field Fig. 1 ‘ 2 2 ‘
E(x,t) in this case can be modeled by & sum over events i: Y 0 X

Two-dimeusional plots of [Ef* (upper surface) and n (low .r gurface} at

~200
.

Nt
E(z.t) = f ElZ = Zint ~ ) + Enontocal(@> 1) (3.1) two different times. Paramelers in scaled units E,=1.2, ¢ =0.9,
=0 wowy=0, v, = Landau damping continued smoothly as k? at large k,
mi/nim, = 1836, Ly =Ly =2n and a 128 x 128 spatial grid. The cullapses

are anisotropic with the narrow dimension along the x axis, the drive
direction
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Here a caviton event i is localized at the space time point %, t;. The single event
function g(x,t) has its maximum at x=0, t=0 with » spatial width 4i(t) and a
temporal width or lifetime r;; from the simulations we find this lifetime to be or
the order of 0.05 to 0.1 ms for ionospheric parameters. Ata given time t, the number
of eventa N(t) which contribute to the sum in (3.1) are those for which O<t—t; < r,
which is clearly proportional to the volume of the system if the cavitons are roughly
uniformly distributed. For example, if the portion of the heated volume obeerved by
the radar is ionospheric heating experiments is (200 m)?, the mean caviton spacing
is 0.25 m which is about 50 Ap, as observed in our simulations, and the mean time
between events is roughly 7. as observed in our simulations, then we find N(t) ~ 107
which is crude but representative. In (3.1) the term E;onigcai(X:t) represents the
nenlocalized part of the envelope field which we will assume is relatively negligible.

This local caviton model can be put into a more formal setting by introducing
the instantaneous vector eigenfunctions g,(x,t) of the operator on the left hand side
of (2.92). These satisfy (for By = 0)

T W)+ 92 - n(zt) a(z.) =0 (3.2)

where A, (t) is the corresponding instantaneous eigenvalue and ¥ x ¢, = 0. These
are nothing more than the Langmuir modes in a nonuniform density background.
In ordinary units this can be written as

- for -opa) + 3 o s =o0 (3.3)

where

wp(z,t) =wp (1 +% ﬂf:)t))

is the spatially fluctuating plasma frequency. Thus we can relate A, in scaled unjts
to wy in ordinary units:

W —wp g m; 1/2
M = 225 () &0

The complete description of these states for an arbitrary n{x,t), especially for D > 2
is beyond our capability. In D = 1 it is relatively easy to compute these states from
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an arbitrary realization of n(x,t) obtained from the complete numerical simulation
of (2.98,b).8 We note that a subset {i} of the states {~} are localized at x=x; in
density depressions of n(x,t) and some of these, which have the proper symmetry
to couple to the pump Ky, evolve to collapse. This subset of states can be viewed
as local ground states of the “potential” o(x,t).

The electric field envelope can be resalved in this complete set of states

Ez,)= 3" hy(t)e(z. t)ezp(—iwpt) (3.6) .

(In an infinite system the sum may imply an integral over continuum states.) The
equation of motion for the amplitudes b, (1) is readily found from (2.9a) to be

ihy (1) + (wo ~ Av(hh )+ z [{eobveeu) + {eo $€ur}] hun = Ep - (goln) (3.7)

Here we have taken the g, to ben complete orthonormal set with

(e b20i) = [dzey(2,) gunl(Z,t) = b (3.8)

and have used the notation

(ebiv) = [dz &) 3 eniat (39)
{evdvecw) = [ dz [ di'eu(2.8) ve(z — 2 )em(z’ . 1) (3.95)
Lo {evln) = Ey-Jdz &(z.t)n(z,t) = Sp (3.9¢)

To understand the various terms in {3.7) first consider the case where n(x) is
independent of time and therefore (d/dt) e, (3} = 0. Then the amplitude b, is driven
directly by the source term Ey- { eu|n ). If ¢, where & plane wave state propartional
to exp i k-x; then this source term is proportional to Eg-k n(k) the so called direct
conversion source term.!%! However, the important states are the localized states.
The coefficient { g, ¢ v¢ &,¢) couples states because of the nonlocal nature of the
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Landau damping. This term becomes important in the time dependent case only
in the burnout phase. Note that by introducing the spatial Fourier transform of
the eigenstates ¢, (k,t) we can write

(gubvegu) = Y (k) gk tivelk) (3.10)
k

For v=¢/ this certainly becomes important in the burnout phase. For & # o/ this
is less important if one of the states is not localized - e.g., noncollapsing - or is
localized at a differeat space-time point.

In the time-dependent case of interest the coefficient {es ¢ eur) can provide a
coupling between rapidly collapsing states, say v and s nonlocalized state ». This
is one of the mechaniama responsible for the excitation of the “free mode” states
observed in the spectra. We will return 1o this in more detail below.

We can now make a tentative connection between the localized event functions
£i (x — xi,t — t;) of (3.1) and the subset {1} of localized eigenstates. It is reasonable
to identify

£ilZ -zt - ) =gz — .t - t;)exp(~iwpt) (3.11a)

where

L@ =z t=1) = hi(the(z,t) (3.115)

The contributions from the remaining nonlocalized ssates jn the set {v} make up
the term E,oniocas (X,t) in (3.1).

The eigenstates g;(x,t) are in a sense the natura] basis or coordinates for de-
scribing the turbulent system. Unfortunately, they can only be obtained by first
solving (2.8) for n(x,t). In spite of this they are conceptually useful and some cb-
served properties of the turbulence can be related to geueral properties of these
states. In effect the use of the states £i{X,t) represents s huge reduction in the
effective dimensionality of the problem. While we use (128)? Fourier modes for the
simulation there may be of the order of 10 collapse sites in the cell and therefore
roughly 10 localized states.

3

We bave gained useful insight into the nature of these cigenstates and their
connection to the obesrved turbulence by considering the gcalar Zakharov model.
In this model E(r,t) and Eg are scalar fields and in place of (2.9) we have

[i(@ + va) + V2 ~ n(z, )] £z, 0) = Egn(z, 1) (3.12a)

(8 + 20 8 - V)n(z,t) = VIEy + E(z,1)| (3.125)

In this model only spherically symmetric collapsing cavitons are allowed and the
three dimensional problem for an isolated collapse reduces to one in which E and
n depend only on the radial coordinate r. This scalar model-haa several properties
ia common with the physical three-dimensional vector model (2.9): threshold and
maximum growth rate for the modulational inatability, collapse scaling exponents
which are discussed below, no threshold energy for collapse and the possible failure
of a density well to support a localized eigenstate,

Spherical symmetry is imposed by representing all fields in terms of the Fourier
modes sin (kyr), ke = x/5p, £ = 1,2,~~, with r, chosen large compared to a typical
caviton size. In these scalar studies we have observed for v;(k)/k = 0.9 that st the
nucleation site, E(r,t) is dominated by its projection, hy(t), on the localized ground

state eg(r,t). In nucleation eg(r,t) remaing localized; at every time step ep(r,t) can .

be computed from n(r,t). Here we will adopt a simplified model in which ho(t)
is evolved neglecting the excited state contributions ¥/ ¥ 0ia (3.7). The density
evolves according to (3.12b) with the pondermotive force replaced by V?|E; +
Bo(t)eo(r,t)[?. The solution to this model is insensitive to boundary conditions
(i-e., the choice of rg).

Let us restrict our attention to the case where ¥ is large enough so that af-
ter burnout, the relaxing density fluctuation is essentially nonpropagating. Im-
mediately after burnout, energy absorption is minimal because the eigenvalue is
lasge and negative, implying & far from resonant coupling to Sq (see (3.9c)). The
pondermotive force is negligible, and the density fluctuation evolves according to
the acoustic Green's function. A simple model for this phase of the dynamics is
obtained by replacing the rhs of (3.12b) by I6(t) V283(x), where the “impulse”
I3 fdt [ dgle(x,0)® = [ |ho(t)}? dt = {jhg|?)r. In three dimensions, the response
ofnis
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n(z,t) = I-G(z|/t)/¢! (3.13a)

where

Clo) = B d? P
W = i (T

(3.138)

Even though n is evolving self similarly, ¢y is not. The figure of merit, g, for
the ground state is simply expressed in terms of the width w, w{t) ~ t, of n, and
its depth, d, d ~ Ift4, as y ~ dw? ~ I/t2. If 4 is too small, there is no localized
state. Since 3D solitons are unstable, as t increases, either enough energy will
be accumulated so that another collapse follows, or the bound state will be lost.
In the latter case, the bound state will be localized in the immediate vicinity of
the expanding-density fluctuation, uatil just before the bound state is lost. So
that during the time when energy is being injected, one may be able to ignore the
coupling between states localized at different collapse sites. At a particular collapse
site there is a lowest lying localized state which has a nonzero source. Excited states
at the same site typically have s smaller source term because they are oscillatory
while Eg n(x,t) is essentially uniform in direction. Also at a particular site there
may only be a small number of localized states. This motivates the study of a
model for the evolution of a caviton in a previously existing density fluctuation -
a process we call caviton nucleation - in which only one localized state is p;resent.
For a given ion fluctuation the lowest lying state, ¢y, with nonvanishing source, S,
(we shall call it the ground state) is calculated from (3.9¢), hg is evolved according
to (3.7) without the coupling to other amplitudes.

In Figure 2 we show some typical results from the scalar model driven by
a spatially uniform field Eg at the plasma frequency (wg = 0). For a range of
Eg, a stable pucleation cycle is observed, with a complete cycle over the interval
O<t<t,. We expect that in a turbulent environment of other such nucleation sites,
the strict periodicity of this cycle may be lost, but at a given site there may be
strong correlations over a few cycle times for strong ion acoustic damping.
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In Figure 3 we show snapshots of the lowest two eigenstates ep(r,t) and ¢ (rzt)
and the density n(r,t) as they evolve during one of these cycles for a case where
wp <0. In Figure 2a we show the time evolution of |E(r = 0,t) [* and n{r=0,),
in Figure 2b the ground state eigenvalue Ag(t), the velocity %o of the phase of the

‘amplitude by(t) = {hg(t)] exp idy(t), and in Figure 2¢ the electrostatic energy in the

caviton jho(t}]2. At the beginning of the cycle, t=0, the deep density well is relaxing
from the previous burnout. From Fig. 2a we see that the peak JE{? oceurs at about
t=0.22 followed by its rapid burnout due to dissipation. The density well reaches
its maximum depth shortly after at t ~ 0.235. The maximum spatial extent of the
eigenfunction §(t) occurs eaclier at t ~ 0.15 which is also the time at which the well
depth, n(r=0,t), is shailowest. The well then deepens under the action of the PMF
increasing the confinement of the eigenfunction. The eigenvalue Ay(t) approaches
the pump frequency wg = 0, this causes rapid increase in Jhy(t)[? as the mode
frequency approaches resonance with the pump frequency. This rapidly increases
the PMF and as the density well deepens again Ag(t) again decreases rapidly during
collapse. This illustrates what we believe to be the typical bebavior: As the relaxing
density well becomes shallower and brosder its eigenvalue approaches resonance
with the pump causing a rapidly increasing PMF which initiates the next collapse.
It is, of course, important that the state remain localized s0 that it maintains a
significant PMF. Under some conditions for D22 a localized bound state can be
lost, i.e., Ay crosses zero before sufficient PMF is built up to initiate collapse. For
the D=3 scalar model discussed here we find a finite nucleation threshold [Rose et
al. 1986). For Eq below this value the ¢¥cle cannot be maintained,

There are certain qualitative features of the scalar model which enable one
to make scaling predictions. This has been discussed by Roee et al.!l Consider o
regime in which Ej is time independent, and dissipative effects are significant during
& time very short compared to 7, the caviton cycle time, with the cycle beginning
8t t=0, and ending at t=r. We shall call this jqeal nucleation. One dimensionless
parameter of nucleation is the degroe of localization, u, at the turgaround time,
t1, when & begins to shrink. Thiy can also be expressed in terms of the impulse I,
(3-13a), which drives the density weil: #=1/t? where t i the time elapsing since
the previous collapse. For 0<t<t,, the pondermotive force is negligible, and one
obtains the estimates §(t=t;) = A ~ t;. and 4 ~1/t1%. Near turn-around, |Ag|
attains its smallest value, A, (for an isolated pucleation site, localization requires
Ap <0), and |hgj? attains its maximum value, Nrpaz. If one makes the hypothesis,
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justified by the results of Figure 5a, that 4 does not depend sensitively on Eg, then
A~ 1742, We now distinguish two regimes: (T~ t)A <1, and (r- ti)A>> 1.
The former will be called sonic nucleation, and the latter supersonic aucleation,

The sonic regime is obtained for Eg % Er where E7 is the threshold value of Eg,
above which stable caviton cycles are obtained. At turn-around, the cavity is clogest
to resonance, and the oscillations in Jhol? are potentially large. However, there iy
not sufficient time between turn-around and burnout for these large oscillations
to take place, 20 that Nypgs N{r), the amount of euergy taken into bumnout,
which is also the amount of energy dissipated, D. In this regime, one finds that
{r= t1)/7 << 1, and therefore

BTt I n Npas 1,8 ~ v (3.14)

The evolution of the caviton parameters for Eg = 3.40, and no damping until the
very end of the cycle, are shown in Figure 4. Note that the major variation in
time of |hg[? is on the time same r, which may be reinterpreted aa the soqic transit
time over A, and that ia why we call this sonic nucleation, Relations (3.14) do
not depend explicitly on Eg, and so we shall call them internal scaling relations. If
one assumes that collapse sites are typically situated a distance A from each other,
then the mean evergy demsity (|Ef*) = W ~ Nmes /A% ~ 1/42, and the mean
dissipation rate (per uait time per unit volume) R ~ W/r ~ 1/A3. Therefore

R~w¥3 (3.15)

Noie that (3.15) is identical to the result obtained by Degtyarev et al. [1984] by
using an analysis based oa the modulational instability.

Apother st of acaling results is obtained by relating the above quantities, i.e.,
Nmay and A, 1o Eg. From dimensional analysis the source term in {3.9¢c) can be
estimated as EgAgé%?. The maximum amplitude {bof is then simply estimated as
EgA%2, because the oscillation amplitude of & nonresonantly driven oscillator ~
{source/frequency mismatch). Therefore

Nenaz ~ EEA:’ . {3.16)
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Fig. 4
Evolution of the ground state radius § and the electrowtatic energy
for the parameters of
l-‘i.g. 2. bui with no dissipation. (a)and{bJE;=3.4, and (¢) K = 8.0, und
drE =320,
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Combining (3.14) and (3.16) one obtains

W~ E}, R~ E}, Nmaz ~ 1/Eg, A~ 1t ~ 1/Eg A"V ~ 1B} ~ 1. (3.17)

In words, the stronger the drive, the weaker, smaller, and briefer are individuai
collapses, in a way such that the overall dissipation rate is greater. As far as
we can tell, the results in (3.17) are quite different from those predicted from a
modulational instability analysis.

As Eg increases, (r— t]) A becomes large and we encounter the supersonic
nucleation regime, there are large oscillations in N for ¢; < t < r, and D decreases
faster than Ny,;. The evolution of N for Eg = 8.0 and 32.0 is shown in Figure
4. In Figure 5 variations of y, Nar, D, A, 7, and A are shown for 3.4 <Eg
< 32.0. Towards the end of this range, D Eff = constaat. The ansatz that the
figure of merit, 4, is constant is not too badly violated away from the nuclestion
threshold, and the measured scaling exponents are close to the values in (3.17). An
eyeball fit (the dashed lines in Fig. 5) yields Npnaz ~ 1/EP/4, A ~ 1/EJ/S, 7 ~
1/Eo, A ~ E¢. The scaling of R is roughly R ~ EZ.

In order to physically realize ideal nucleation, dissipative effects must be neg-
ligible when energy is being absorbed. Peak absorption rate occurs roughly at the
same time that the caviton is fattest with width A. In dimensionless units the
Debye wavenumber ~ (M = m;/nme|V/2. Therefore, if AMY2 ~ M2 / E/® 5>
L, oucleation will be essentially nondissipative. Ignoring the difference between
7/6 and 1, and recalling the units of electric field strength, this means the energy
density of the external field must be small compared to the particle kinetic energy
density.

For example, if Eg = 8.0, numerical studies indicate that M > 40,000, i.¢., field
energy/kinetic energy < 0.003, is required in order that D be within 20% of the
ideal value. This estimate of s few tenths of one percent does not depend sensitively
on M.
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In this regime (Eoz/hnoh <1) the scaling DE¢? ~ const. has an inter-
esting consequence if it is assumed that the scale of the caviton §(diss) at the
end of collapse, ie. at the beginning of dissipation is independent of Eg (say
5 Ape in physical units). Then since D is the energy dissipated at the end of
collapse we have D ~ |E(?peak &(diss) ~ const. Eg? g0 |E?peak ~ Eg~%

V] W] H

For fixed pAysical value of the electric field, if M is quadrupled, Eq doubles, A
and 7 are approximately balved, physical length scales are roughly invariant while
the physical caviton cycle time doubles. Any fixed phyaical frequency, such as the
electron-ion collision rate, or frequency mismatch between the external electric field
and the average plasma frequency, becomes more important as M increases.

This isolated collapse model is oversimplified in severa] ways, one is its neglect
of the turbulent environment of the collapse site. The density fluctuation n{rt)
Was constrained so that there was locally no net change in particle number - ie.,
Jderd(r,)=0 - i.e., the local averaged plasma frequency is the same as the global
average plasma frequency which is the zero of frequency in our envelope approxi-
mation. This constrains all bound or localized states to have Au(t)<0. However,
locally on » scale larger than a single caviton but macroscopically small there can
be Buctuations in the background plasma frequency away from the global average.
I the local plasma frequency is different from zero this is equivalent to replacing
a{r,t) in (5.128) by éng + n(r,t) and bound states can occur if Ay < bny. Since
there are local domains or “patches” of positive and negative ng we conclude that
in & large multicaviton system localized states can occur for Ay {t)<(éng)mer Where
(4n0)mas >0 and depends on the paramsters Eg, wy, etc. which determine the
turbuleat state. Simulations with wy >0 are consistent with this picture. The
“localized” states for 6ng >0 are not strictly localized from the mathematical point
of view; their eigenfunctions may have extended tails which are exponentially smai)
but do not decay at large distances. Such states are better described as resonance
states as discussed at the end of this secticn.

The self similar scaling of the parameters of the eigenstates during the collapse
phase are well-known [e.8., Galeev et al%]. A self-similar ansatz for &i(X.t) can be
written
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slzt) = 61,+,mg(;6-‘m (3.180)

where &(() is the normalized shape function of the collapsing state.

JdGEC)R =1 (3.188)

The collapses observed in our D = 2 simulations are not cylindrically symmetric as
can be seen in Figure {(4.2), but have a pancake shape with the narrow direction
mainly aligned along the pump polarization (the x direction in Figure 1). The
aspect ratio of the y dimension to the x dimensions appears to be in the range of 2
to 3. The ansatz of (3.18) implies that although the aspect ratio is not necessarily
unity all dimensions scale with §(t). Simulations of collapse in D = J for isolated
cavitons?’ and for multicaviton states® display these pancake cavitons whose orien-
tation arises either as a result of initial conditions or by coupling to a drive source
such as we have used.

The scaling of the parametera of the self-similar collapse depend on the spatial
dimension D aa follows:

() = (te — )P (3.19)

A(t) ~ 673(t) ~ (te — t)~Y/D - (3.20)

where t. is the time of collapse. The self-consistent density behaves as

et = -;,%,—) G(z5~1(1)) (3.21)

where G(x67}(t)) is a shape function related seli-consistently to &(x6~1(t)). The
scalar model collapse behavior is consistent with these scalings for D = 3.

We will use the self-similar formula (3.18) for e;(x,t) in other regimes —~ e.g.,
nucleation but where §(t) does not satisfy the scaling of (3.19). Examples of the
evolution of §(t) in the scalar model are shown in Figure 4.

In the scalar model results, presented above, the contributions from nonlocal-
ized states or from localized excited states are neglected. Such localized excited
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eigenfunctiona have one or more nodes in the region of the confining density well

and would be expected to couple less efficiently to the pump in the overlap integral
of {5.9¢c}. Localized excited states which evolve to collapse are not observed in the
simulations.

For an isolated density well the localized state eigenfrequencies lie below those
of the nonlocal {or continuum) states. In the “patchy” model with fluctuating
domains of differing mean plasma frequency, it appears that the eigenvalue ranges
of localized and nonlocalized states may overlap.

The definition of a localized state as one of the localized eigenfunctions gilx.t)
is actually too restrictive. A wavepacket of nonlocalized states whose ), lie just
ebove the localization limit can be a resonance state analogous to those known
in quantum mechanical scattering theory if it is a superposition of states with a
sharp peak in the density of states. Such a resonance state will appear spatially
coherent and localized for a time At~(AX)~! where AA is the frequency width
of the resonance. The resonance state will then have a pondermotive force over a
time which may be sufficiently long to depress the density so that a strictly localized
eigenstate can again appear. The effective source terms Ege{e,n) are neacly the
same for all the states comprising the resonance. A narrow resonance state therefore
cannot be distinguished from a strictly localized eigenstate and so the definition of
the states ¢;(x,t) which are identified in (3.11) should be extended to include such
nartow resonance states. It can be shown that for a sufficiently narrow resopance
the equation of motion for its amplitude h;(t} is indistinguishable from the equation
of motion discussed above for a localized state. The existence of such resonances is
another reason why localized atates appear to exist for A; >0. As discussed above,
the random density environment of a caviton can also raise the eigenvalue limit
for localization to positive values. Such localized states are also best described as
resonance states.

4. ENERGY SPECTRA AND POWER SPECTRA IN THE LOCAL
CAVITON MODEL

It is well-known that the power spectrum of electron density Auctuation, fie(X,t),
contains information concerning the elementary excitations of a plasma and can be
measured by incoherent Thomson scatter techniques. For frequencies w near the
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electron plasma frequency wp (or its negative) the ions cannot respond significantly
and 50 one can relate the electron density fluctuation directly to the total electric
field

Wehdd ) =X-Bror(s.t) = ;¥ B@ et + e (4)

From this it is easy to see that the power spectrum of n, is directly related to that
of the envelope field

(xeie(Rw)? = ()E- (ko - wp)?
= (1/4)(kAp P E(E,& ~ wp)*(4amg T, ! (4.2)

To obtain the low-frequency spectrum associated with the ion line we note that
for w << kv, that quasineutrality is obtained so ne(k &) ~ oi(kd) = (ko) and
the low frequency electron density spectrum is obtained directly from the density
fluctuation which appears in the Zakharov model:

etk o1 = ik @)p2 (4.3)
The power spectra can be foupd by taking the temporal Fourier transform of

(3.1).

N(T)
Ehojr = 37 eapilk: g ~wtilei(kwh + E(kwmonsocat (4.4a)

where

t+T/2
ok = [ @06t - ) it 1)) (64

is the single event Fourier coefficient. If we make the assumption, which js probably invalid

that all events are uncorrelated we obtain the power spectrum as s sum over single
event spectra:
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N(T)
E(kwi?) = E_: k) = N(T)le(k,w)?) (45)
1=
The important effect of correlations will be discussed below.

Simulation parameters can be chosen s that the collapse eventa are so well
sepazated in time that we were able to compute the single event spectra |g (k)2
for this case. These spectra, shown in Figure 6, bave & surprisingly rich structure
including the following features: 1.} Easeatially all the spectra energy occurs for
w < wp; in this case wy = 0; 2.) Tbmmweudeﬁnedpeahinthaspectmm;
3.) For increasing k, i.e., increasing kAp, the peaks for more aegative w become
relatively more important; 4.) The position of the maximum shifts in & step-wise
fashion (see inset to Figure 6) where —~omay ~k, i.e., wp — Wmae ~ k cg; 5.) There
ia & weak “free mode” peak at w ~ k?, i.e., roughly at the Bohm-Gross frequency.
These single event lpectnlpropertiumsimilartothaelhownin Figure 8 for
the power spectra from multicaviton states in a maguetic field.! Caviton-caviton
correlations also can bave & strong effect on the spectral shape and will be discussed
bejow,

We have obtained some insight into the sources of this structure from the scalar
mode] discussed in Sec. 3. A realization of the single event spectrum |¢ (kw)|? for
the scalar model is constructed by taking the temporal transform of the function
f(t) = hg(t)eg(k,t) for B<t< 7, and f(t) = 0 for 7. <t<T where T is chosen to
give the desired frequency resolution and eo(kit) is the spatial Fourier transform of
the numerically obtained eo(r,t). The results are shown in Figure 7. These model
spectra contain the features listed above for the D = 2 Zakharov model (Fig. 6)
except for 4.) and 5.).

The predominaace of negative frequencies arises because the phase velocity &
isin Figure 4 is predominantly negative; this in turn is related to the negativity of
the sigenvalue A(t). In this model calculation Eq. 3.7 reduces to ibg = Mhy =S =
Eo{eg|n) since we are neglecting coupling to excited states. Then if we write by =
|ho| exp iy we see that &g is related to Ay by

~dg = A(t) + S(t) ho| oy (4.6)
which is the equation used to compute €y m Figure 4.
26
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The peaks arise from & modulation of the spectrum with an angular frequency
Aw = 2x /1. where 1, is the caviton lifetime as measured by the width in time of
the total electroatatic energy pulse, [ho(t)[2, shown in Fig. (4). This is the same
kind of modulation that arises in the spectrum of a single square wave pulse. Let
us assume that the early-time apectrum from low-duty-cycle experiments can be
identified with the incoherent average {le(kw)|?) of single-event spectra. In this
averaged spectrum the individual spectral peaks may be smeared out but it is
reasonable to assume that the balf-power frequency width is approximately that of
the first and strongest maximum of the single-event spectra. Application of this
argument to the data of Djuth, Gonzales, and lerkic!3 in this regime — e.g., their
Figure 4 — leads also to a value rc~1+0.05 ms. The k depeadence in this model
arises from the k dependence of the eigenfunction, eg(k,t); for a localized state with
ké(t) we expect that eg(k,t)~ &P%(t) exp (~k fo(t)). For increasing k, smaller
values of dg(t) are favored and these correspond to more tightly collapsed states
with more negative frequencies.

The free-mode peak observed in Figure 6 is, of course, not seen in this simplified
scalar model calculation since it neglects all of the excited states. The free mode
excitation in the scalar model is treated below. The behavior near w = 0, including
the shift of the maximum peak with k, is also different in the scalar model than
in the D=2 Zakharov simulation of Figure 6. The inclusion of excited states in
the scalar model brings the results into closer qualitative agreement. In the case
of overdense drive wy <0, this single state model agrees well with the complete
Zakharov simulations.

The Fourier transform of E(r,t) ia given by E(kw) = J dt exp i (wt + &p(t))
{ho(t)] eg(k,t) where @y is the phase of bg(t). For large negative w we can make
asymptatic estimates based on a stationary phase evaluation of the time integral;
the stationary phase pointa t = t § oceur approximately where w = -60“ s). From
Fig. 2 we see that the ground staie has large negative phase velocities where
@0(t) ~» —Ag(t) a8 t — ¢, and can satisfy che stationary phase condition, In
this temporal regime one comes closest to the self-gsimilar scaling for the collapsing
state: ep(rt) = fy(t)~P/2 Wo(r/dp(t)) with the spatial Fourier transform eg(k,t}
= &0(t)P/? . fd¢ (exp — ikbop&)Wo(€). The self similar behavior is ot} ~ (te—
)0 ~ A(t)~Y2 where ¢, is the collapse time, Using these behaviors in the
stationary phase evaluation of the Fourier integral we find the asymptotic behavior
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]E(k.t...v)j2 ~ |~ (43D/4) g oy o, _ o, This asymptotic prediction is observed in
the D = 2 vector Zakharov simulations and in the scalar simulations to an accuracy
of 10%.

‘The single event spectra are an interesting property of the caviton ¢ycle and
should in principle be observable in laboratory experiments such as those of Cheung
and Wong®’ and in local rocket-borne diagnostics of the heated ionosphere.

In the ISR experiments, however, the spectrum is the result of about 16° events

and the question of caviton-caviton correlations becomes important. In general if .

the events are correlated, (4.5) is replaced by

N
(IEGwl) = 3 latkw)i?

N N
+2 20 eapilk (z; — &) - w(t; - 1))
i#j

* Li(k,w) gk, w) (+.7)

The second or “coberent” term in this equation has N? poteatial contributions and
%0 could have a potent effect on the spectrum if events are correlated. We have a
limited theoretical understanding of correlations at this point of our reseaich, but

recent experimental evidence from Cheung et al. ' strongly supports the importance
of correlations. -

A possible model of the effect of correlations is to assume that the dispersion in
the single event transform g,(k.w) is small from event to event. This is true in the
scalar model calculations and has been seen in the full vector simulation; especially
in the case of overdense drive. Formally, this assumption is equivalent to writing
gi(kw) = {(kw) + 6g;(ksw) where { is the average over many events and &g, =0. If
we assume [52,[2 << |Z|? we can write

(& W)} = (lo(kw)) & w)? (4.80)

where

e

—

e



N(T}
pkw) = Y ezpilwti-k g (4.85)

This quantity is just the space-time Fourier transform of the caviton event density

N
Ant) = 3 6Pz -zie-1) (4.9)
i
Eq. {4.88) shows that in this approximation the single event spectrum |g(kw){? is
modulated by the correlation or structure factor: {|p (k,w)lz).

We will argue in more detail in Sec. 6 that the increasing sharpness of the ISR
spectrum observed by Djuth et ai.!3 which develops a few ms after heater turn on
or for low duty cycles is a result of the development of caviton correlations. The
wave length of 35 cm probed by the ISR radar is about T0 Ap and is comparable
to our estimates of intercaviton spacing. Thus the spatial structure factor

Y eapik-(zi-zj)
i

might be probed near a maximum if the cavitons have some quasi-regular arrange-
ment, If the events are also correlated in time, the effect of correlations are more
potent, as discussed in Section §.

5. SENSITIVE DEPENDENCE ON wy — wp: OVERDENSE DRIVE
AND PERSISTENCE OF CORRELATION:

As discussed previoualy the principal effects of a slowly varying density profile
can be modeled by letting the heater amplitude Eqg be a function of space reflecting
the Airy pattern of the heater and by letting Uy = wy — wp be a function of
space to account for the mismatch between the heater frequency and the local
plasma frequency. In this section we will examine the dependence of the turbulence
properties on &y. If we assume that the electron density profile is smooth and
monotonic we can relate changes in Uy to changes in altitude.

3

In Figure 9 we plot the total time-averaged Langmuir energy per unit volume
(area) (W) (4.7), and the effective dissipation rate Ry = v, 7|Eo|? density versus
wp for Eg = 1.2, wefwp = 0.1, ; = 0.9. We see a dramatic increase in Ry as
wg becomes pegative. Negative values of wy are only of interest in the evanescent
region of the pump wave, z > z,, or if there are domains of aver-dense plasma whose
spatial dimensions are smaller than the skin depth of the heater wave, £ ~ cfwp (1
—uﬁ/&z)‘l/ 2 30 that the heater can penetrate.

This increase of Ry is & sign of greatly increased caviton activity. This is
easily understood from the nucleation picture: For wy < 0 the relaxing density well
remaining from a previous burnout comes earlier into resonance with the pump and
therefore at a relatively deeper depletion compared to the wp = 0 case. Thus at
the time of closest resonance A, ~ wy the eigenfunction g,(x.t} is more confined.
The caviton cycle presumably will be more stable and less effected by neighboring
cavitons in this more confined caviton cycle. Thus we expect more rapid caviton
cycles, ie., smaller 7., with less energy carried into collapse. The fact that (W)
increases by 50% and Ry increases by about 300% as wy goes from +5 to ~5 is
consistent with this picture. The overdense drive Uy < 0 is much more efficient in
the nucieation of cavitons,

An important observation of the acalar, local caviton model discussed in Section
3, ia that the single event functions £;(X ~ %;,t — t;) are phase locked to the pump.
Thus it waa more convenient to replace these functions in (3.1) by exp ~ iwgt
£i{x — xj, t — t;); that is to explicitly separate out the pump phase. [See also
(3.11).] Another way to look at the problem is to rewrite (2.9) in terms of E(x,t =
exp{ — iwgt) E(x.t), i.e., to envelope around the pump frequency. As an equation for
E the equations are autonomous, i.e., the drive term has no explicit time dependence
but an sdditional term, wy E(k.t), appears on the left hand side of (2./4a). The
result of this is that the single caviton spectra for wy # 0, |g(kw)i?, have their
spectral energy mainly for w < wy. The eigenvalue trajectories versus time have
the property that they reverse near the resonance A{t)< wq where the PMF reverses
the relaxation of the density well.

This picture is confirmed in detail in the isolated scalar model calculations.
In Figure 10 we show the behavior of the dissipation rate Ry = v.s|Eg|? and the
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total Langmuir energy/unit volume (W) versus wy in this model. Again we see a
dramatic increase in caviton activity as measured by Ry 85w becomes increasingly
negative. Since this model contains only the ground state it becomes unreliabie for
wp >0. In these calculations we also find that the energy per caviton taken into
collapse, Nmaz, decresses as wy decreases; bowever, the density of cavitons p ~ §~3
increases in such a way that (W) ~ 673 Nma increases as wg decreases.

These observation have led us to examine more closely the properties of the
turbulence for wy <0. A very important new property emerges which is not evident
in Figure 9. In the regime wy <0 there are significant hysteresis effects; this means
that the turbulent state depends very much o initial conditions or at least that
the memory of initial conditions decays in time much more slowly than in cases
where wg <0. For example, if —wyp > |Eg}? the system is modulationaily stable
and cannot be excited to a nonlinear or turbulent state from quiet (e-g., thermal)
initial conditions. On the other band, the turbulence is sustained by nuclestion
from turbulent initial conditions for the data points al wy = ~5 in Figure 9 where
Eg = 1.2. This behavior is not unexpected in light of the arguments made above
for caviton cycles which are more stable and less effected by neighboring cavitons
when wy <0. To obtain the data points in Figure 9 we chose initial conditions in
which the initial caviton locations and cycle phases did not have any particular
order. (In fact, the initial state was the final state of another simulation with wp =
0 which also had disordered turbulent initial conditions.)

This hysteresis greatly increases the parameter space which needs to be studied
since now we need to specify the detailed initial conditions. We are far from a
complete understanding of the basins of attraction of various initial conditions.
However, we wish to present here one case which has interesting properties and has
led us (o consider the perfectly correlated, alternating lattice models postulated in
the following section. This example is one of a class of simulations in which cavitons
initially arranged in a regular array of sites persist at these sites, their cycles become
very stable and become phase locked to one another in various temporal patterns.

In Figure 11 we show the initial locations of two density cavities which resulted

from previous collapses and in which the initial electric field fluctuation is set to
zero, This is the initial state for a simulation with Ep = 1.2 and wp = —25 ini scaled
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The maximum |[E(x,t)f? over the simulation box versus time for the
coherent alternating lattice simulation described in Fig. 11 Thesingle
caviton power spectra in Figures 13 and 14 are caiculated over the

time interval indicated by the dashed lines.
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units. This value of wy corresponds to a domain in physical units which is about 1%
overdense. In Figure 12 we show the time series of the maximum value of |E(x,t)]2
versus time as the syatem evolves into a periodic pattern. As time increase each
evolves into a strict limit cycle with period 7 = 0.59 with the cycles at the two sites
becoming 7/2 out of phase with one another. We will generalize this behavior in
the alternating lattice models postulated in the next section.

In Figure 11 we aiso show the extended spatial periodicity implied by our pe-
riodic boundary conditions. This shows that the simulation is equivalent to two
interpenetrating square lattices in which the ¢ positions are all in phase but are
7/2 out of phase with the + positions which themselves are all in phase. Examples
of the computed spectra are shown in Figure 13 for @ = 0 and @ = 45°.

In Figure 13 the single event spectra are also shown for the samne values of (k,8).
These are easy to isolate from a single cycle at a given site. According to (4.8a) the
single event spectrum modulates the spectrum of the structure factor. Comparison
of the complete spectra and the single caviton spectra in Figure 13 verifies this.

In Figure 14 we show the ion line spectra obtained from the same simulations.
Note, in the cases in which the plasma line spectra in Figure 9 has peaks at odd
multiples of 2x/7 (i.. cases & and d) structure, the ion line consists of a symmetrical
peak around w = 0 {corresponding to & = wy) and two displaced peaks at w =
£2r/r. These two displayed peaks are shifted by exactly the same frequency as the
“decay line” peak in the plasma line spectra in Figure 13 a and d. This correlation
of frequeacy shifts in the plasma line and ion line spectra has often been offered
a3 evidence of the parametric decay instability; here we see that the same spectral
correlation can arise from completely different physics!

The very sharp spectra in these exampies arise from nearly perfect correlations
which persist over many caviton cycles - about 50 cycies in the simulations. Note
in Figures 8.5a and d, which have prominent peaks in the 1:3:5 pattern, that there
are also weak peaks at w = (0 and w = m(2x/7) where m is odd. These arise
from slight deviations from the perfectly correlated model. The weak peak at w
= 0 would contribute to the “OTSI” line. We will argue in the next section that
these spectral components could also arize from higher order (e.g., |v| = 2 Bragg
resonances from domains with larger lattice spacings, a, corresponding to regions
with weaker Eg which produce weaker piasma line signals.) We also argue there
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that the “OTSI line” would also have umportant contributions from domains which
are temporally correlated but not spatially resonant. These models again suggest
how caviton correlations might produce spectra which mimic the “decay-line” {(and
its anti-Stokes partner), the cascade and the “OTS] line." )

These preliminary results encourage us to believe that the SLT model with
correlations might explain all the observed features of the ISR spectra. We believe
there is overwhelming theoretical and experimental evidence that the conventional
parametric instability theory cannot do the same.

Much remains to be done to understand theoretically how (or even if ) such
correlations develop from Physically realistic initial conditions o SLT. Until this is
done or until experiments directly measure such caviton corzelations these correla-
tion models must be regarded as postulates which appear to be consistent with ISR
observations and with our limited theoretical understanding. The theoretical un-

derstanding, based mainly on simulation resuits fer_ths_gumgw,

can be summarized as follows:

i.} Temporal correlations at a given site devleop, on the time of a cycle period,
mto stable limit cycles.

ii.) Temporal correlations between sites evolve more quickly than spatial corre-
lations between sites.

iii.) Some spatial patterns appear to be stable equilibrium arrangements with
definite temporal correlations between sites. '

iv.} Those patterns which are not stable equilibria evolve to stable patterns on
a0 experimentally relevant time scale - say tens of ms. '

We have discussed (i) at some length above. An example of (ii) is the simulation
discussed in relation to Figure 11 in which cavitons at neighboring sites became anti-
correlated in time. Points (iii) and (iv) (as well as other examples of (i) and (ii)
are based on simulations which we will not present here. This work is part of our
contiguing research.

Other questions remaining to be addressed concern how the overdense regions
are formed and how the turbulence is excited in these regions. We note that the
existence of a modulational instability (or PDI) is inconsistent with overdense drive
if —wp > |Eg|2. Therefore, in a preexisting overdense region the only way the heater
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t;an excite the turbulence is through direct nucleation in preexisting density cavities
as discussed in Section 3. [The direct nucleation by the pump might be enhanced
by free modea driven up by direct conversion of the heater on preexisting density
fluctuations. These free modes can also provide a nucleation source for localized
states as discussed in Section 7.

Another scenario is that the turbulence is initially excited in underdense re-
gions which subsequently become overdense in intermediate scale (10-100 m) den-
sity modulations resulting perhape from thermal instabilities that develop on an
intermedinte time scale (say tens of ms). The adiabatic increase of the density
to an overdense condition would then “freeze in” local caviton cycles which might
then evolve into a spatially correlated state. Density increases of 1% or less can lead
Lo overdense regions in paramcter ranges comparable to the simulations discussed
above.

The space agd time scales (10-100 m, tens of ms) of the density modula-
tions or irregularities invoked above are smaller than usually calculated for ther-
mal self-focusing or related instabilities which usually consider ordinary Ohmic
heating.28.20.30 However, in the turbulent region the effective dissipation rate (into
hot electrons), v, sy, is much larger than the ordinary collision frequency. The space
and time scales of the thermal instabilities depend on collision frequency as v,;~?
e.g. (see Rubenchik and Turitayn3!) which would imply that they scale roughly
8S v,y !‘2 in the case of turbulent dissipation. Thus the space-time sceles of the
thermal instabilities in the regime of turbulent dissipation could be several orders of
magnitude smaller than in the case of Ohmic dissipation. A more detailed analysis
of these effects will be given elsewhere.

Our current research is focused on gaining a better perspective on the parameter
regimes of Eq, wp and »; for which corvelations persist. We have verified, for
example, that the behavior seen in Figures 13 snd 14 is qualitatively the same
when wy is changed to wg = —20. In this case the single caviton period increases
to v = 0.62, which is qualitatively what we expect from the nucleation model. For
wg = ~13, on the other hand, the two cavitons become synchronoyy with period +
= 0.69.
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6. CAVITON CORRELATIONS

Compelling evidence that cavitons are strongly correlated with one another is
contained in the dats obtained by Cheung et al.! in low duty cycle experiments,
described above, at Arecibo. Plasma line data was obtained from single radar
pulses of about 1 ms duration. Figure 15 shows the typical time evolution of
the total plasma line power over a radar pulse duration with & time resolution of
about 1 ya. It shows s strongly modulated signal with peaks about 0.025 s wide
separated by about 0.05 ms. The widths of these peaks are comparable to that of
the peaks in total electrostatic energy, [bo(t)]?, versus time in Figure 2, as estimated
from the scalar simulations in Section 3 for ionospheric heating conditions. Similar
looking single-radar-pulse time series are observed in 1 ms time intervals both early
and late in the heater pulse in the low duty cycle experiment gngd in CW heating
expeniments. These appear to show that the period of the modulations and the
depth of the modulations increase with the time elapsed after the onset of heating:
see Figures 15. Time series averaged over many (~100) radar pulses are relatively
smooth showing little of the modulation of single pulses.

This signal is not consistent with a system of uncorrelated cavitons. Suppose
the caviton “firing” times t; (see (3.7)) ace uniformly distributed over the radar
pulse interval T and that the mean teporal spacing between events, T/N, is
much less than the caviton period rc. Then at each inatant of time the signal can
be approximately representd as Elkt) = ;|a,-(t)| exp i(4i(t)) where the sum is
over the many overlapping events at time t which have slowly varying amplitudes
[3:(8)] = go(k,t-t;}lby(t-t;)| and rapidly vasying phases ¢;(t) = ¥, + & (t-t;). The
phase is composed of the spatial part ¥; = kg which for this argument we take
to be uniformly distrubuted in [0,2x] and the phase of the caviton $(t.¢;) which
we studied in Section 5. Coasidering the rapid vasistion of & with time found in
these studies it is reasonable to consider that the total phase ¢; is also uniformly
distributed in (0,2x). At each instant of t the complex vectors in the sum on i
represent & random walk in the complex piane over a large number of steps N. The
resulting probability distribution of P(|E[2)d|E|? that [E}? = JE}(K){? lies between
|ER and |E{? + dJE® found from a well-known application of the central limit
theorem to be P(E[?) = (|E?)~" exp(~|E{2(|B?)) where ([E[?) ~ N{aj?) = N(jb?
e2(k)). Thus there is a significant probability of configurations with small resultant
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values of |E? (say JE{? < {|EP). Next we ask how quickly these configurations

change. If the phases ¢; ase uniformly distributed and the phase velocities, §; = ¢
(t-t;), which are independent of the spatial phase ¥; and are therefore taken to be
uniformly distributed jndependently from the #i's, we can compute the following
averages;

(EP) = Niof, (% 1B} = 0 and (61)
4 P2 . .
QLD < ey - (62)

in terms of the mean and mean square phase velocities. From studies, such as
those in Section 3, of the temporal histories of the phase velocity & during the
caviton cycle we see that [($2) — (€)3) ~ (#%) >> 722, Thus the time variation
of |E(k)J? for a system of uncorrelated cavitons should exhibit strong modulations

B C2 n lifetime. The ob-
served power time signals, in Figure 15 on the other band, except perhaps for the
eacliest time delay of 6 ms, shows a much longer modulation time period which is
close to the predicted caviton lifetime Te ~ 0.05 ma.

This signal is consistent with the local caviton wmodel where there are significant
correlations between events. If out of a total of N there are N: correlated events
the ISR signal from the correlated eveats is proportional to N2 while that from
the uncorrelated events is proportional to N-Nc. I the ratio of the modulation
pnhinthepow-i;mlinFigummtothebukgm‘mdmestimuedtobe100
to 1 then we have roughly N.2/(N-N;) ~ 10 s with N ~ 10* we find Ne ~
10°, Thus if only 0.1% of the total events are correlated a dramatic effect on the
spectrum can be expected! This argument seems quite general and independent of
the details of the correlations. The observed real-time backscattered power signal
in a vingle radar pulse, from the perspective of the local caviton model, leads then
to the conclusion that many callapse events are coincident in time. This conelusion
teats on our estimates for N and for the caviton Lifetime Te. From this point of view
each peak in the time series is & resultant macrofluctustion of many coincident
collapee events.

Further evidence of correlations is obtained in these experiments from the power
specira of gingle radar pulses. The single pulse cbeerved spectra show a much finer
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frequency structure. We can associate this fine “line” structure with & discrete
set of temporal events; each “event” now includes the correlated collapse of many
cavitons with an average event spacing in time of about 0.04-0.05 ms. Our simple
estimate above implies that each event involves the order of 10 \/ N correlated
cavitons. A detailed analysis of the single radar pulse spectrum is given in ref. 1.
We can summarize the comparison between the local caviton model, the D =
2 simulations and the ghort time scale ISR experiments as follows:!
1.) The many pulse averaged cbeerved spectra agree in detail with the smoothed
simulation spectra. The main energy containing portion of these spectra ocour
for w <0 and there is a free mode peak for w >0.

Examples of experimental spectra from Cheung et al.!* are shown in Figure 16.
Examples of smoothed simulation spectra including geomagnetic field effecta
are shown in Figure 7 taken from DuBois et al.!

2.) The local caviton model accounts for the w <0 spectral features as ansing
from the nucleation-collapse-burnout caviton cycle as discussed in Section #

3.) Associated with each caviton cycle a nearly free Langmuir wave packet is

radiated away from each caviton site. This is discussed in detail in Section M. 4

The free mode peak occurs at a frequency &y = wpl + (3/2)(kAp)? + (1/2)
(Gcfwp)? sind] associated with a free Langmuir wave for which Wy >y yet
is a distinct signature of the collapse process.

4.) The single puise spectra and power time series are consistent with strong
temporal coherence or synchronism in which blocks of many cavitons fire nearly

simultaneously. The resulting line structured spectra is consistent with the

model of a structure factor derived from a discrete set of macroevents that
occur during a 1 ms radar pulse.

In several sets of cbservations3!:12.13.14 gharp spectral peaks are observed to
develop as the time delay of the radar puise is increased following the onset of the
heater pulse. In Figure 17, a 50-pulse average spectrum is shown in which the radar
pulses occur 29 ms following the onset of a 30 ms heating pulse with a 150 ms IPP.
This spectrum shows features observed in many previous long-time experiments?
consisting of a main “decay line” peak lying about 3.0 £ 0.5 kHz below the heater

frequency and two “cascade” peaks lying further below the heater frequency by 10.0
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% 0.5 kHz and 16.0 + 0.5 kHz, respectively. This approximste “1:3:5" pattern of
frequency displacements is sometimes aasocinted with a weak turbulence cascade.3?

The question to concern us next is whether such a spectral pattern can be
explained in terma of caviton correlations? We will first postulate a class of strongly-
correlated models which are motivated by the simulation results discussed in the
previous section for the case of overdense drive, We found that for overdense driving
where Oy > wp very stable cycles can be found with cavitons in ordered spatial
arrays. We also will assume for reasons discussed in Section 3 that the spacing
between cavitons decreases Like Eo ! where Eo is the local strength of the heater
electric field.

We will assume that the cavitons tead to order themseives in a regular three-
dimensional lattice. In the ionosphere application, because the heater field varies
within the radar observed region, due to the antenna pattern and the altitude de-
pendent Airy pattern, the spacing, a, of cavitons in the lattice varics on a scale Jarge
compared to a. In regions of most intense Ey, & will be smallest. The orientation of
the lattice may also vary within the observed region. Qur scalar model simulations
show that for Eg = 0.5 V/m the maximum isolated caviton size is about 40 Ap
8o we might expect an intercaviton spacing & > 80-100 Ap or abous 40-50 cm. Ac
Arecibo the radar wavenumber is about 2x (35 cmn)™! which means that low order
Bragg scattering from such a Iattice is possible with small adjuscments of the lattice
spacing which could arise through variations in Eg. We imagine that the observed
region of the heated ionosphere contains domains of ordered cavitons whose lattice
spacing and orientation varies from domain to domain. These spatially and tem-
porally ordered domains take some time to organize themselves after the onset of
heating. We have some preliminary simulation evidence for thia which we presented
in Section §,

In each domain the cavitons are located at sites in » spatially periodic lattice,
Each caviton undergoes a periodic cycle of nucleation-collapee-burnout, etc. with
period 7 but nearest neighbor cavitons have their cycles displaced by r/2 from each
other. (We have presented evidence that in Certain regimes neareat neighbors tend
to be out of phase in Section 5)

We can consider a domain to consist of two interpenetrating synchronous Jat-
tices whose cycle time differs by /2. Thus we can write
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M M
Abw) = 37 émZ(g) 4 Y cilmreptio ity (%)  (6.3q)

m=] m=1
where again
N‘ .
(k) = Y ik (8.3b)
m

but now we consider the locations Xn to lie on a perfect lattice, The points g in
thesecondhtticemrelaedtothepoinux.intheﬂm lattice by a displacement,
Ev = %o + 4.

We can generally represent a lattice site Xn in terms of three elementary Iattice
basis vectors g, g, 23 which uniquely specify the lattice.

&n = n1d) + nags + n3g4 (64)

whete n),07,03 are integers. For simplicity we chose the displacement of the second
lattice to have the symmetric form:

d= % (@1 +92 +4q) (6.5)

Wo assume the two lattices are the Sane except for the displacement ¢ which
must have s special relation to the aymmetry of these |attices. it js easy to carry
of the sum on m and to find

]
okl = 4 cor? g (ur ~opog) Big Mot Jp
4 ) sind 4w
This structure factor has temporal resonances at
w=2xm (m = 0orany integer) (6.7)
and spatial (Bragg) resonances at a set of wave vectors
k=K, (6.8)
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for which exp iKu® xa = 1 for all x5 in the lattice. These resonant wave vectors ko,
are known as “reciprocal lattices” vectors in solid state physics. (All of the lattice
concepts which we use here are treated in texts on elementary solid state physics,
e.g., Kittel.33 When both of these resonance conditions are satisfied it is easy to see
that [p{kw)[? reaches it maximum correlated value propartional to (M Ny)? where
M Ny = N is the total number of events in the observed space-time volume. In
the specific models we will discuss below we find

2K, od =2xv {6.9)
where v is an integer. Therefore when both the spatial and temporal resonance

conditions are satisfied the modulating factor cos® 1/4(wr— 2ked) has its maxima
8t {wr)lmaz— 2 Kue d = 4xf (£ any integer or zero) or using (6.7) we have

(wT)maz = 2x(20 +v) (6.10)

Likewise the zerces of the cos? function fall at

(WT)zeroes = 25(2U + v + 1) (6.11)
Thus we have two cases:

1.) ¥ = odd integer where |p(kw)|? has peaks at w = (27/r)m where m is any

odd integer

2.) v = even integer where |p(bw)[* has peaks at w = (2x/r)m where m is any

even integer or zero.
In case 1.) |p(kw|* bas spectral peaks at w equals (--- -5, -3, -1, 1, 3 ---)x
(2x/7). When multiplied by the single event spectrum, {|¢(kw)f?, which has most
of its energy for w < 0 the total spectrum will consist of a major line at w = —2x/7
and succeedingly weaker lines at w = ~3(2x/7), —5(2x/7) etc. which is similar to
the 1:3:5 structure in the obeerved spectra mentioned above. In addition, depending
on the strength of the single event spectrum for w >0, there may be a weak line at
w = 2x/r which would correapond to the often observed “anti-Stokes™ line.3?

Of course, when v is zero or an even integer the spectral pattern is different
with peaks at w equal to (-8, —4, -2, 0, 2, 4, 6 ---) 2r/r. The two classes of
spectra are illustrated in Figure 18.
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For the spatial Bragg resonance the radar k must equal one of the reciprocal
lattice vectors. The length of k = x /A .40, is fixed and we can always write the
length of a reciprocal lattice vector in the form

Kl = 2 4, (6.32)

where say a ia the smallest lattice dimension. The Bragg resonance condition then
provides a condition on a:

4= IEE Ay = Podarde (6.13)

The direction of K, which must also be in the direction of the radar k. We will
tllow the orientation of the lattice to vary somewhat in our further discussion.

The smallest iattice spacing, which corresponds to the smallest value of Ay
consiatent with the angular constraints, should correspond to the domains with
the largest Eqg. It is shown in refithat the averaged plasma line power, (P(k)) =
{IE(k){?), increases rapidly with Eg in parameter regimes of interest. Therefore,
we expect the strongest correlated signal to come from domains with the smallest
resonant values of a.

A reciprocal lattice vector (RLV) can also be represented in terms of three
elementary lattice vectors 51,53, and x4.

K = g +mpg+in; (6-13)
where £, = 2x (22 % g3) (e (aax 2))™", 53 = 2¢ (3% 91} (a0 (a0 x 83))"! and
53 = 27 (a1% 32) (me (32 83))~. From these results it is easy to show xe 8 =
2x &;; from which it followa using (6.10) that

2K, od=2x0 (6.14)

where

vy tmty (6.15)
49

The three shortest RLV'y, corresponding to the lowest vajues of 1A.|, are the
three basis vectors 5], K2, £3 which correspond to the values of the trind (v, 1m,19)
of (1,0,0), (0,1,0) and (0,0,1), respectively. Thus for the three shortest RLV's v =
1 and so for | = #£1.82 of 53 & 1:d:5 type of spectrum is found.

The domains whose lattice spacing is small enough to achieve the strongest
resonance must also have their “crystal” orientations such that the direction of
k measured by the radar is nearly along the direction of one of the basis vectors
51,52 or 53. There are at least two ways to achieve this: The crystal orientations as
well as the spacing may vary throughout the heated region allowing the resonance
conditions to be satisfied in some local region. Another possibility is that the
arientation of the caviton lattice does not vary much and the particular directions,
d ~ 45° for the Arecibo radar and 8 ~ 0° for the Tromas radar, both correspond to
directions of reciprocal lattice basis vectors. A more complete discussion is given
in reforence 1.

Domains of coherent cavitons whose lattice spacing is not Bragg resonant for
the given radar k would be expected to coexiat with the Bragg resonant domain(s).
Suchdomuimwillhuvewea.kerrmnmouuu=2wmrd" for pll m where the
life time of the caviton cycle 74 varies from domain to domain, The resonance
atunOiacommontoalldomn.immdisnotmedout by domain to domain
vaﬁntiomdfdumtheruonmcuformgﬁo. The w = 0 resonance can be
identified with what is conventionally called the “OTSI line” in ionospheric heating
parlance. This line can be extremely narrow if the caviton cycles are long lived; we
fad Awan(Mry)~! where M is the number of cycles in the observation interval,
The caviton picture provides the only nonlinear description which we know of which
is capable of understanding the very narrow widih of the “OTS] line” observed in
the experiments of Sulzer and Fejer. 4.3

7. RADIATION of “FREE" LANGMUIR WAVES BY COLLAPSING CAVITONS

Our studies have shown that the collapse process invariably excites “free” Lang-
muir waves. These manifest themselves in the “free mode” peak which occurs in
all the power spectra, |E(kw)[?, which we have computed. As discussed in Sec. 6
there is strong evidence that the free mode peak has been observed in the short
tirme scale experiments of Cheung et al.!*
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These free mode states are extended states whose energy is not localized at a
particular point in space. A single collapsing caviton will radiate a wave packet of
free modes which spread out and whose amplitudes decay geometrically (as r~!)
away from the excitation center of the caviton. [We use the term extended in
a physical sense; to be mathematically precise boundary conditions at “infinity™
must be specified. Because we are studying transient dissipative phenomena, these
Langmuir fluctuations cannot explore “infinity."|

Outside of the spatial region of an isolated collapsing caviton these radiated
Langmuir waves are asymptotically free Langmuir waves obeying the dispersion
relstion of (2.5). In a many-caviton environment, the large density fluctuations
generated by collapse distort their propagation. The free mode frequencies appear
to approach the dispersion relation (2.5) as k increases. For lower k values the
frequencies are shifted to somewhat higher values due to the perturbation of the
density fluctuations.

The generation of free modes can be understood in terms of the coupled mode
amplitude equations (4.7). For simplicity we ignore the dissipative coupling (4.9b)
which is not important for the k values measured by most radars. The coupling
between states is given in (4.7) involving the matrix (4.9a)

Myw = i(ﬁy ’.Ew) (7-1)

By taking the time derivative of (3.2) and using the orthonormality condition (3.8)
we can reexpresa this as

_ . lelnden)

Myyf =1 m— (72)
where
d
(&lblen) = | dzel(at)s eulat) 2 (2,8) (7.3)

The free modes have a continuum of eigenvalues ), (t) in an infinite space and so
we can parameterize them directly in terms of their eigenvalue Aie, ) (x,t). The
free modes receive from or give energy to localized states and are driven directly by
the heater Eg. In the following we will consider in detail the coupling to a unique

51

c‘ollapsins state denoted by the subscript zero. The equation of motion for the
amplitude h) of a given free mode then follows from (4.7) as

Ehy +(wp = Ny + [ dXMyyhy = =My, by + Egelerln)  (7.4)

Here

. n
My, =i —"*(f\_! ,!j;:; (7.5)

The third term on the left hand side of {7.4) involving M, ), involves the scattering
of one free mode from apother. By considering the equation for

(dfdt) 3~ i@
A

it is éasy to see that the scattering terms do not change the total free mode energy
while the terms on the right hand side of (7.4) do.

We have explored the details of the free mode radiation in the spherical scalar
model discussed in Section 4. The numerical solution of (7.4) can be broken into
two parts. First, for given A > 0, calculate the associated eigenfunction and matrix
elements M; second, choose an appropriate discretization of the integral over A. In
three dimensions it is convenient to work with ¥ = r e), which satisfies (for the
scalar model)

o ]
A= - F +n(r)¥ . (7.6)

There are two linearly independent solutions which may be taken as having either
unit value or slope at r=0. In order that e have finite [ |V e, [?, the solution for ¥
with unit value is inadmissable. Except for overall normalization, for given n (r,t)
{7.6) is integrated out from y = 0 with ¥ (0) = 0,d¥/dr{0) = 1. Note that for kr
large enough such that n{r) << A, ¥(r) ~ sin (kr + &} where k% = A and § is the so
called phase shift which depends on n. Therefore e), sin (kr + 8)/r for r large. This
is the form expected from scattering theory where & determines the “S matrix” and
everything that you know about scattering. For our purposes, however, the detailed
variation of e)(r) for r small enough such that o matters is required to calculate M.
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To determine the optimal choice of discrete A it is useful to think of the caviton
sitting in the center of a very large sphere of radius R, with the boundary condition
ey {r=R) = (. It can be shown that the density of states at eignevalue X, p()),
satisfiea

1 R dé

For large enough R the density of states is indistinguishable from the case of (1.6)
with n = 0. That is, the discrete set of positive eigenvalues is Ao 40y, 92g, ---
where Ay = (x/R)%. With thia choice of states, » consistent normalization is

4x AR raci dr = 1, (7.8)

For large R, this integral is dominated by regions of space where 0 ia igonocable, and
then

A ~ sin'(-:l;;-ﬁ) )
It can be shown that the discretization of (7.4), under the transformation g = Ap/d
{equivalently, R — 2R), transforms in such » way that the energy density of the
free modes (the amount of energy in the free modes Pet unit A) is invariant in the
limit where R is large, 30 that this choice of discretization should converge to the
exact solution of (7.4) in the limit of Ag =+ 0.

(7.9)

A complete specification of the numerical method must also include the largest
free mode eigenvalue considered, Amaz. On phynical grounds, the coupling between
& very energetic free mode and the collapse process should be weak. Numerical
convergence is indicated when, for fixed Ag, increasing Amaz has only a small effect
on the total evolution, and for fixed Amaz, & decrease in A has little effect. This is
the case for the daty presented in Figures 19,

We turn now to some results from these numerical studies. During the first part
of nucleation, there is relasively little energy, [ho)?, in the Jocal ground state, e.g.,
see Figure 10c and the coupling of the heater, (the last term on the right haod side
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of (7.4), is the dominant source of free mode energy. Thia coupling is & dynamic
generalization of direct conversion, and so we call it dynamic conversion. Deep into
collapse, coupling to the ground state is again unimportant because the coupling
coefficient is going to zero and the coupling is more and more nonresonant. At
intermediate times during collapse the ground state coupling is dominant.

To determine which source term is overall most important, the scalar local
nucleation model was used to calculate ail the terms in (7.4) for the case of an
overdense plasma with parameters M;/M, = 20,000, Eg = 5.0, 1; = 0.8, wy =
—40.0 In Figure 19a the evolution of the total energy in the free modes, fdA|hy |2,
is shown, while in Figures 19b and 19¢ the evolution of the ground state parameters
is shown. Since the energy in the free modes is & small fraction of the collapsed
energy, the coupling of the free modes in the equation of motion for by was ignored.
In Figure 19d for the same collapse as in Figures 18a-c, the evolution of the free
mode energy is'shown without the dynamic conversion source term, while in Figure
19¢ the free mode energy is shown with the ground state coupling term removed
from (7.4). We see that the coupling to the time dependent collapsing Langmuir
ground state mode is the dominant source of Langmuir wave radiation, at least in
the case of an overdense plasma,

In reference 1 we have also shown that the hot electrons emitted in the burnout
phase of collapse do not produce a significant rate of free Langmuir wave radiation
by Cerenkov radiation. Thus it is the wave-wave coupling of the collapsing feld to
the nearly free Langrmuir waves which is the domipant scurce of free mode emission.

In the experiments of Cheung et al. [1989], the ratio of the strength of the
“collapse continuum™ portion of the spectrum for w < wy to the strength of the free
mode line increases a3 the time delay following the onset of the beating increases.
It ia observed that the strength of the free mode line does not change by s much
as an order of magnitude while the strength of the collapse contipuum increases
by several orders of magnitude. This is consistent with the increase of the w < wy
spectrum due to the onset of corvelations, i.e., a signal proportional to N2 rather
than N;. The free mode line is not strengthened by correlations except in the
unlikely case that the free mode peak at w = wy in the single caviton spectrum
coincides with one of the correlation pesks at w = 2 nm/r,, which were discussed in
Section 8. In addition, we know that free mode emission is weaker from overdense
regions where wy <0 which are likely to be correiated. Note, for example, that
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the free mode peaks in the single caviton spectra from the correlated simulations

of Figure 14 where wgp = —25 are not very strong and do not produce prominent
peaks in the correlated spectra.

11. CONCLUSIONS

A goal of this research bas been to explore in detail the implications of strong
Langmuir turbulence theory for ionospheric heating experiments. The short time
scale data from these experiments provide the best test of the theory available today.
A major conclusion of our work is that weak turbulence theory (WTT) cannot
be valid for the conditions of ionospheric heating. Qur conclusion is based, frst
of all, on extensive numerical solutions of Zakharov's model encompassing many
generations of collapsing cavitons. WTT follows under very specisl conditions from
the Zakharov equations. The fact that the numerical solutions are dominated by
coherent, collapsing cavitons proves that the nonlinear state is far from the regime
of WTT. Recently Payne, Nicholson and Shen?® have explored in detail the limit
of WTT in pumerical solutions of Zakharov's equations in one dimension and have
established rough criteria for the validity of WT'T. These stringent criteria are not
satisfied for the conditions of ionospheric heating.

The strong Langmuir turbulence theory has developed on two levels. The first
level is based on solutions of Zakharov's model equations. From the properties of
these solutions we have proposed the local caviton model which is & more “phe-
nomenological” level. The local caviton model is built on single caviton properties.
Cavitons go through cycles of nucleation, collapse and burnout, Associated single
caviton properties include their lifetimes (or cycle times) 7., the single caviton field
fluctuation g(x,t) snd ite power spectrum [¢(ksw)[3. These single caviton proper-
ties are not necwssarily those of isclated cavitoms, although the isolated caviton
approximation le at least qualitatively useful in many cases. As the driving be-
comes increasingly overdense (wy <0) we have evidence that caviton interactions
decrense but the residual interactions can lead to coherent caviton states. It is a
great challenge to understand the mechaniam(s) for self-organization of this weakly
interacting caviton gas. For these highly correlated states, the name turbulence
hardly seems appropriate.

We believe that the qualitative properties of the local caviton model will be
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those deduced from the Zakharov model. More complete and accurate descriptions
of single caviton properties are needed to treat the end stages of collapse and
the burnout processes, whereas the fucleation and early collapse stages should be
accurately described by the model. We anticipate that these improvements will
make quantitative but not qualitative changes in the picture developed in this
paper.

We believe that the SLT model has at least three apparent successes in explain-
ing the ionospheric heating data:

1.) The altitude dependence of the plasma line 2ignal®.37 i3 easily explained

because the localized caviton states are 00f tied to the linear dispersion relation,

(2.5). Based on the sensitive dependence of the turbulence level on Eg we

concluded that the strongest plasma line signal should occur near the altitude

of strongest Eg, which is the first Airy maximum in an undisturbed profile,

2.) The angular dependence of the SLT spectrum is at about two orders of
magnitude more isotropic than WTT predictions, 3839 Therefore, there is no
problem in understanding the strong signals observed at Arecibo where k is at
45° to Bg and the fact that the observed long time spectra at Tromaswhere @ <
18° is not qualitatively different than at Arecibe. The sharp spectral fentures,
which we associste with correlations, ean occur in the SLT theory for § =45°
a8 well as for 8 =~ 0.

3.) The short time scale spectra observed by Wong et al.2 Djuth et ul.13 and
Cheung et al.!4 can be explained in detail by SLT. This includes a new predic-
tion of SLT, the free mode peak, which results from the radiation of Langmuir
waves from collapsing cavitons [Cheuag et al.!¥). The broad featureless spec-
trum for & < Gy is explained by the dynamics of the local caviton cycle. None
of these features is explained by WTT,

The success of SLT in explaining these short time scale resulta leads to the con-
clusion that if SLT is to explain the sharp spectral features observed on a long time
scale that cavitons must evolve to a state with strong spatio-temporal correlations.
Single radar pulse data obtained by Cheung et al.' are consistent with strong
temporal correlations even at relatively early times after the onset of heating. We
have postulated correlated caviton models which predict that when spatial Bragg
resonance conditions which depend on the radar ki are satisfied that sharp spectral
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features including the “decay line” the 3:5:7: --- “cascade lines,” the “anti-Stokes”
line and the “OTSI line” are present in the spectrum. The possibility of very nar-
row lines®38 gych ug the “OTS! line” emerges as a result of very long lived caviton
cycles.

At this stage we can only make Preliminary guesses as 1o how such correlated
caviton states could develop. We believe that overdense regions of relatively high
heater strength are necessary to obtain strong temporal correlations. The question
of how spatial correlations develop in such regions is completely open. We do know
that initially correlated states in such regions can be very stable and have been able
to set up such states which lead to spectra very similar to the postulated strongly
correlated models. In such regions thespuingofanorderodmyduvitomiu
expected to decrease as Eg~! which led us to conclude that the lowest order Bragg
resonance condition can only be satisfied for relatively strong Ey and that this
might explain why the sharp featured spectra are the strongest spectra.

In situ rocket or satellite diagnostics in the heated ionosphere appear to be the
most direct way to observe theprumoeofhn;mtﬁ:energ in the form of localized
cavitons. Perhaps even corzelation properties could be measured.

The problem of fast {oc hot) electron geueration in collapse and the airglow
excited by these electrons is a problem at the frontier of this subject. The recent
airglow experiments of Bernardt, Duncan and Tepley™ give increased incentive for
8 more complete understanding of the flux and energy distribution of hot electrons.
As discussed in Section ) in regard to Cerenkov emission from hot electrons, we
believe that the model discussed i this paper can give fairly accurate values for
the hot electron fux but allows no estimate of the energy distributions. Kinetic
(PIC) simulations and transit time damping calculations can provide information
here. This is a topic for future study.

As mentioned in Sectiog 5, density compressiop regions associated with ir-
regularities excited by thermal instabilities might be the source of the postulated
overdense domains in which cavitons are correlated. The coupling of the amall scale
Langmuir turbulence to the lacger scale thermal fluctuations is another important
area for new research.

Thesa questions are & challenge for future work. We believe that the new
strong Langmuir turbulence model presented here is considerably more successful
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in deacribing the early-time behavior of the heated ionoephere than the conventional
theory. We hope this paper will stimulate new experimental and theoretical tests
of these ideas.
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