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PHASE SPACE DIFFUSION IN TURBULENT PLASMAS

H.L. Pécseli
Association EURATOM-Rise National Laboratory,
Physics Dept., P.O. Box 49,
DK-4000 Roskilde, Denmark

Abstract

Turbulent diffusion of charged test particles in electrostatic plasma turbulence is
analyzed. Two different types of test particles can be distinguished. First passive
particles which are subject to the fluctuating electric fields without themselves
contributing to the local space charge. The second type are particles introduced at
a prescribed phase space position at a certain time and which then self-
consistently participate in the phase space dynamics of the turbulence. The latter
"active” type of particles can be subject to an effective frictional force due to
radiation of plasma waves. In terms of these test particle types, two basically
different problems can be formulated. One deals with the diffusion of a particle
with respect to its point of release in phase space. Alternatively the relative
diffusion between many, or just two, particles can be analyzed. Analytical
expressions for the mean square particle displacements in phase space are
discussed. More generally equations for the full probability densities are derived
and these are solved analytically in special limits.



1.INTRODUCTION

Plasma instabilities often saturate in an enhanced level of turbulent fluctuations
which can be described only in statistical terms, An important characteristic of
such a turbulence is its ability to interact with the charged particles which
constitutes the plasma. A description and understand of the resulting random
motion of particles in phase space is important for many practical applications in
connection with for instance fusion plasma studies or the ionosphere. A number of
basically different formulations of the particle dynamics can be proposed.

1) The simplest from a theoretical point of view is the analysis of a passive test
particle, released at a certain phase space position (Xo,vo) at t = 0. Being
passive, this particle is subject to the fluctuating electric fields but it does
not itself contribute to the local space charge of the plasma. All the relevant
statistical properties of the plasma fluctuations are assumed to be
prescribed in this case. ,

ii) A somewhat more complicated problem deals with an active test particle
which at t = 0 is introduced at (x0,vo) and its contribution to the charge
distribution is taken into account for t > 0.

iii) Finally fully selfconsistent particles can be considered, where also the
“prehistory” i.e. the spase space trajectory of the particle for t < 0 is
consistent with the electric field value E(x = X5, t = 0). The basic difference
between test particles of type i) and ii) as compared with the present type iii)
is that for the former variant their position (x,,vy) at t = O can be
prescribed with certainty. For fully selfconsistent test particles their phase
space position can be expressed only as a certain probability in a narrow
interval. Predictions of particle positions with certainty requires knowledge
of the entire particle trajectory, leading ultimately to formulations in terms
of conditional probabilities.

In terms of the test particle types described here two basically different problems
of turbulent particle diffusion can be formulated. The first one is concerned with
absolute diffusion of a particle with respect to its point of release in phase space.
Alternatively the relative diffusion between many, or just two, particles can be
considered. In many respects the latter problem is most interesting as it measures
for instance the rate of dispersion of a small cloud of contaminants entering a
turbulent plasma.



It is interesting to note that many problems within transport in the turbulent
atmosphere, as reviewed by for instance Csanady [1] can be recognised also in
turbulent plasmas. Relative plasma diffusion across magnetic fields were
discussed by Misguich et al. [2] using ideas originating from an investigation of a
related atmospheric diffusion problem considered by Mikkelsen et al. [3]. This
analogy can be maintained for instance for guiding center diffusion in a plane
perpendicular to a homogeneous constant magnetic field. More generally there is
a basic difference between particle diffusion in collisionless, or weakly collisional,
plasmas and turbulence in a neutral atmosphere. Thus if quite formally the
turbulent fluctuations in an atmosphere are frozen at a certain instant, then test
particles will remain virtually immobile from then on and any displacement will
be due to a very small molecular diffusivity. If in a turbulent collisionless plasma
the fluctuating electric field is frozen similarly then test particles will continue
its displacement by particle free streaming. In this work it will be argued that in
a certain sense the analogy between turbulent diffusion in plasma and neutral
flows can be maintained. Partial similarities between phase space diffusion in
plasmas and weakly turbulent linear shear flows can be demonstrated. In
particular it will be argued that evidence for clump formation in turbulent
plasmas can be obtained from the fact that although the turbulence as analyzed
by Eulerian sampling very well may be time stationary and spatially
homogeneous, it will not be so by Lagrangian sampling along the particle orbits.
This difference between the two types of sampling is one of the properties shear
flows and plasma phase space dynamics have in common,

In the following we discuss turbulent diffusion in plasma phase space where
passive test particles of type i) in the previous summary, are considered in
particular.

2. EVOLUTION OF AVERAGED QUANTITIES FOR PASSIVE
TEST PARTICLES

In this section the turbulent transport of passive test particles will be considered.
Electrostatic turbulence will be assumed. With the test particles being passive in
the sense discussed in the Introduction we assume that the electrostatic
fluctuations are entirely prescribed by their statistical properties. With this
information considered givén the transport properties of this turbulence is
analysed.



A. Single Particle Diffusion

Consider a single charged particle released at x,, Vo at t=0 in phase-space. The
simplest characteristics of the statistical properties of its subsequent trajectory
for t>0 are <Av(t)> , <Ax(t)> , <AvX(t)> and < Ax%(t)> where Av(t) =
v(t)-v, and Ax(t) = x(t)-x,-vot. For times so short that the electric field can be
considered essentially constant we find

<Avit)> =(£—)<E(t,x 1>t =0, (1)
M 0
<AX()> =~ <Av()>t =0 | (2)
2 e \?_ 22
<Av (t)>--(—) <E®>?, (3)
M
1 £ 2
<Axkt)> = —(3) <EZ>it, (4)
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<Ax({L)AVI)> = —(-e—) <E%Z>(3. (5)
2\ M

It is important that the average quantities entering these expressions are the
Eulerian averages, i.e. the electric fields are sampled at a fixed position x,. The
turbulence was assumed to be homogeneous and time stationary.

For times so large that the electric field can change appreciably we have more

generally
Av(t) = = JLE(X + Ax(1),tide (6)
M 0 0 H r
t e t 7
Ax(t) = [ Avivdy = —J (t—0E(x +Ax(.0dt (7)
0 Mg o

where the integration runs along the Lagrangian orbit of the particle as
indicated. From (6) we have

9 e w2 rtort . (8)
<aviy> =2 —) <E(x(v,1) E(x(s).8)>dsdt |,
M/ Jolo :
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<Ax(t)> = M (t — 1)t —s) <E(x(1,1) E(x(s),8) >dsd1 .
0’0

B. Clump Formation In Plasmas
The expressions (8)-(9) can be simplified by the assumption of time-stationary
Lagrangian electric field correlation functions i.e.

(10)
<E(x(,v) E(x(s),8)> = <E%> R (-3

where then Rp(0) =1. Although this assumption is often made it can not be
generally valid. This can be seen readily from the expression

s,<viv> = (2 )<rawo> (11)

with x(t) being the Lagrangian orbit. Consider for instance test particles released
at random positions all with velocities, say, v, = 0, in weakly turbulent plasmas,
where electrostatic fluctuations are excited by an ion beam injected into a
stationary plasma. It is well known from a series of investigations, that at least in
one dimension this instability saturates in an irregular train of ion phase space
vortices, which for symmetry reasons propagate with an average velocity equal to
half the ion beam velocity in the case where beam and background ion
distributions are identical. It is intuitively clear that a large fraction of the test
particles will be trapped in phase space vortices, and be accelerated. Ultimately
these particles will propagate at an average velocity close to the characteristic
velocity of the vortices. The net result is thus an increase in <v(t)> necessitating
<E(x(t),t)>= 0. (The test particles will of course be decelerated on average for
the case where v, is larger than the average vortex velocity). On the other hand
<E(x,,1)> = 0 by assumption for an Eulerian sampling of the turbulent electric
field fluctuations.

Consider now systems which are homogeneous and time stationary in a statistical
sense. For a class of such systems we may replace the ensemble averaging implied
in the foregoing equations by a suitable average over just one realisation. Rather
than releasing one particle in each realisation of the ensemble we thus release
many (in the limiting case infinitely many) particles uniformly distributed in one
realisation. By the assumption of homogeneity we have

E(x(0 0>—1§E( 0,00=0
< ’\( ):) _N xj ¥ - '
J

(12)



with xj(o) being the initial position of the j-th particle. The observation

N
1
<E&OU> = &Y Ex 1,020 fort >0, (13}

then necessarily imjplies that the particle positions Xj(t > 0) can no longer be
uniformly distributed. A consequence of this nonuniformity is the necessity for
particles to "clump” in certain spatial regions. This conclusion is interesting by
providing a proof for plasma clumping which does not involve two particle
distributions. Boutros-Ghali and Dupree [4] claimed in their critisism of the work
by Dubois and Espedahl [5] and similar works that plasma clumps could be
discussed only in terms of this function.

Later on we will argue for a strong resemblance between the phase-space
dynamics of turbulent collisionless plasmas and the properties of weakly
turbulent linear shear flows. Anticipating this analogy the foregoing conclusions
are rather self-evident i.e. the Langrangian velocity of a fluid particle in an
inhomogeneous turbulent incompressible flow is not a stationary, random
function of time.

C. Diffusion In Quasi Time Stationary Electric Field Fluctuations

It may, however, be expected that in some cases the error is not significant in
assuming time stationarity of the electric field sampled along a Lagrangian orbit.
As expected the velocity fluctuations are distinctly nonstationary in all cases.
The electric field correlations on the other hand demonstrate that for initial
velocities v, well outside the resonant region the approximation
<E(t)E(t+1)> =~ <E2>R(1) is not too bad for limited times. (Note, however, that
the normalizing quantity should again here be obtained along Lagrangian orbits.
There is no reason to expect that its value coincides with the value obtained by
Eulerian sampling. Again the situation differs from that for incompressible
flows). With this approximation we may reduce (8) and (9) to

t

2
<AvAL)> = 2(—:—5) <E‘?>Lf (1 ~vYRd |
0

(14a)

t

1 2
<AxAY> = —(—e-) <E2>L3'J @ -3+ SSRud .
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(14b)

In the limit of large times t » 1, we find



o2 (15a)
<AV > = 2(—) <El>t1
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<Ax¥)> = 3 ﬁ) <E2>t31.c . (15b)

with v = J Rtudi, where it was assumed that R(t —» «) - 0. Of interest is also

“2rt et
<Ax LAV > =(£!-) J J (t~ 1 <Ex(1), DE(x(s),8)>dds | (16)
6/0

which with the previous assumptions reduces to

2 t
<Ax{OAV()> = (i) <E2>L2[ (1 -vt)R(udt , (14¢)
0 .

orfort » 1.

2
<Ax(VAVL)> = (%) <E2>t2tc . (15¢)

The dimensionless ratio formed by use of ( 15a,b,c) takes a particularly simple
form

<Ax(L)Av{L) > V3
2

= — ~0.87 . (17)
[<Ax%X)> <aviy>P

It should be reemphasized that the assumption of time-stationarity has a limited
validity only.

The results in this section are expressed in terms of correlation coeeficients for
the electric field. This quantity is related to the potential correlation function by

<EGx+EL+VECY> = — <o +Et+ 0L >/ax? |

where we explicitly used the spatial homogeneity of the turbulence. Note that the
E-field correlation necessarily must take on negative values for some spatial
positions since the curvature of the potential correlations must change sign with-
varying x. |



D. Relative Particle Diffusion

In this section we consider the simplest case of Just two simultaneously released
particles [8], which will here be considered as representative for the properties of
the small clouds of test particles. Denoting the positions and velocities of the two
particles x1(t), x2(t) and vy(t), va(t) respectively, we have with the definition r(t)
= x1(t)-x0(t)

2_ 2 2 o (e[ Tt o
12 <> @ = v (00— v O + -) do| dsWs) + | di| dsWist)
M o Jo o Jo

e
v(O V(O)I ﬁ { <L(XI(L),L)—L(XQ(L],L)>dL

,x 0)+v @) —x,(0)~v (O)t’(M)-(h(x WO-Elx(t),1)> (18)

where W(1,5) = <[E(x,(1),1) - E(x,(1),1)] [E(x,(s),8) - E(x,(s),5)]> =
2[ <E(x(v),1)E(x(s),8)> - <E(x (T VE(x,(s),8)>]) , with W(t,s) = W(s,1) , as
expected for symmetry reasons. According to the arguments presented in Sec. 2.B
the two averages <E(x,(t),t> and <E(x,(t),t> will be identical only if they are
evaluated for identical initial velocities v,(0) and v,(0), for spatially homogeneous
turbulence. For short times

2
<ri)> = (1-(0)+[vl(0)—v2(0)]t)2 + g(%) (<E2{x0)> - <Elxl(0)]E[x2(0)]>)t4 ~ (19a)

To bring out the physical content it is preferable to express the last term in (19a)
in terms of the wave number spectrum of the electric field, S(k), which is simply
the Fourier transform of the Eulerian correlation function <E[x,(0)] E[2,(0)]>

2 ao
<rd)> :(r(0)+[v1(0)—vz(O)]t)z-F-;t‘(i;-) J S(k){]—coslkr(ﬂ)]]dk . (19b)
]

For small initial separations r(0) the term in the curly brackets act as a filter
surpressing small k-values, i.e. only wavelengths in the turbulence which are
comparable to or smaller than the separation of the two particles contribute to the
time-variation of <r2(t)>. LQE wavelengths will tend to convect both particles
together, along nearby trajectories without any effect on r(t). This quite
reasonable physical mechanism is of course effective in fluid type turbulence also,



in plasmas as well as atmospheric flows. The central difference is that in phase
space the two particles will separate due to the free streaming contribution [the
first term in (19)) even in the absence of any turbulence. For r(0)=0 and v;=vg
the two particles of course move together, i.e. <r2(t)> = 0. For very large initial
separations on the other hand we may assume <E[x(0)] E[x2(0)]> = 0 and the
two particles move independently of each other. These features are retained in a
more general model presented in the next section. A simple generalization of (19)
is readily obtained for the short time evolution. Referring to the previous physical
interpretation of (19) we here merely state the result

2
1d2<r?>iat? = Ivlw)-vz(m]

@ 2 2 2
2 -4k t<rT> —rlitn
+3t2(E)J S(k)[l—e 0 cosir (U} {dk (20
M/, 0

where ro(t) = r(0)+[v1(0)-vo(0)lt. We used the approximation Re <exp(iX)> =
cos <X >expl-4 <(X-<X>)2>], where we note that r(0) and ro(t) are statistically
sure quantities in the present analysis. The form (20) accounts for the fact that as
<r?> increases, a larger and larger fraction of the spectral energy becomes
available for the particle separation.

Similarly we find for the short time dispersion in velocity with u(t) = v, (t) - v,(t)

2 2 e \2(' [
<u“t)> =u (0}+(—) ’ J W(i,s)duds
M/ Jole

t
+ 2 ul(0) ( % ) L <E(Xl(t),‘L)—E(xz(E),t))dI, , (21)

with W defined in connection with Eq. (18). For short times we have <u?(t)> =
u(0) +(e/M)* <E2> - <E(x,) E(x,)>)t2 with a physical intepretation as outlined
in the discussion of Eq. (20), i.e. the particles disperse in relative velocity as if
subject to an effective rms-field amplitude which is obtained by filtering the
power spectrum by a filter depending on the actual particle separation.

For extended times the same problems arise here as in the case of absolute
diffusion concerning the Lagrangian statistics of the electric field. Assuming
again that the randomly varying electric field as detected by the particle is
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approximately time stationary in a statistical sense, a particularly simple
asymptotic result is, however, readily obtained. Thus, for large times we expect
the particle separation to become large also. In this limit the two particles will
expectedly diffuse independently of each other and of their initial velocities
giving the simple correspondence with (14) and (15),e.g.

2 _ 2 4( eVt a3
<TW> = (10)+1v (0)~ v, @) + sly) <E>ut (22)
and
<uXV)> = [v (0)—v_(0)] + 4(3 PN (23)
u - Vl —V2 M c'[, .

We find the similarities between these results and those obtained for diffusion in
weakly turbulent shear flows quite interesting. After ull, the underlying physical
properties are quite similar. In the absence of turbulent fluctuations two points
will separate linearly with time. With a superimposed random motion particles
occasionally wander into regions with a higher bulk velocity, with a resulting
increase in the rate of mean square separation. Although the analogy is not
complete, it can be enlightening also in other contexts as already mentioned.

Observed variations <Ax2> ~ t3 and <Av2> ~ t can be interpreted as a
verification of the hypothesis of approximately time-stationary statistics of the
Lagrangian electric field fluctuations. The method may have diagnostic
applications in numerical simulations, since the required analysis is much less
demanding than the analysis of the Lagrangian correlation functions. The results
(22) and (23) ultimately break down if a significant number of particles have
diffused into a vortex trapping region where the assumption of time stationarity
break down.

3. TIME EVOLUTION OF PROBABILITY DENSITIES

A discussion, which is more detailed than the one presented in Sec. 2 for passive
test particle diffusion in phase space, can be presented in terms of Boltzmann's
collisionless transport equation, or the Vlasov equation, valid for an individual
realization, here written in dimensionless units for simplicity
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af+vof+Bafr=0, (24)
t X v

where f = f(x,v,t) is the test particle phase space distribution, while E is the
fluctuating electric field. We again used the notation aif = af/at etc. for brevity. In
general we consider f to be a continous function corresponding to a smeared-out
charge distribution (the Vlasov limit). A §-function distribution is considered as
the limiting case of just one charged test particle, subject to the (dimensionless)
random force E(x,t).

A. Single Particle Or Absolute Diffusion

The probability density for finding a particle in a narrow interval around (x,v) at
a time t is denoted P(x,v,t). This quantity is related to the solution of (24) with the
initial condition f(x,v,0) = 8(x-x,)6(v-v,) by P(x,v,t) = <f(x,v,t)>, where again
the averaging is performed over all realizations of E(x,t). In order to obtain a
differential equation for P we decompose {f = P+f and assume <E> = 0, with
f(x,v,0) being statistically independent of E for all t. Obtaining |

3P+vaP+<Eyf>=0, (25)
from (24) we approximate

af+val+EaP=0,
L X v
giving

ar t ®
fix,vt)= = J dsJ J dyduGO(x,v,t;y,u,s)E(y,s)auP(y,u,s) , (26)
0 —m

since ﬁx,v,O) = 0. In this approximation, interaction at fluctuations with
fluctuations in the individual realizations are neglected completely. Fluctuations
are directly coupled only to average field (which is incidentially zero here by
assumption) and P. For later reference we intorduced the "free-streaming” Green
function Go(x,v,t;x',v',t") = 8(x-x'-v[t-t'])8(v-v"), which is a solution to
(3, +va)Golx,v,4;x',v',t") = 0 with the initial condition Golx,v,t'x'v't") =
8(x-x")8(v-v'), Following Orszag and Kraichnan [7] we insert (26) in (25) to obtain
the result corresponding to the first order smoothing approximation:

t @
BLP(x,v,t)-k vaxP(x,v,t)—aVJ dsJ J dyduGo(x,v,t;y,u,S)<E(x,t)E(y,s)>auP(y,u,s) =0,

0
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(27
or, using the explicit expression for G

L
BLP(x,v,t)+ vaxP(x,v,t)—av I ds<E(x,t)E(x,s)>avP(le,s)
0

1
+3 ] dstt~8) <E(x,0E(:,5)>9 P(v,1,8) = 0
¢
where y =x-v(t-s).

The free-streaming propagator relates the Eulerian correlation function to an
approximation for its Lagrangian counterpart needed in the exact solution for {.
As in Sec. 2 we now assume that <E(x,t)E(x-v(t-s),s)> is at least to an
approximation time stationary and in addition let the correlation time 1. be
small. With these approximations we reduce (27) to a Fokker-Planck equation of
the form

atP + v&xP = DaﬁP , L T (28)

where D is obtained from the integral in (27) in the limit t — « . We assume that D
can be considered constant. It is readily demonstrated that a Gaussian form for P
is a solution to (28) with

<x?> = §DL3 (292)
<vi> = 2Dt (29b)
(29¢)

<xy> = th

giving in particular <xy>/[<x?><y?>]} = } /3. The results of Sec. 2 are thus
recovered from the formulation (27) which is more general. In particular it
accounts for the nonstationary Lagrangian autocorrelation function expected for
the present type of problems. With the assumption that P is a slowly varying
function as compared to the integral kernel in (27), we may thus obtain the
approximation [8]

(30)
6tP + vaxP = avCO(x,v,t)avP + a‘.Cl(x,v,L}axP
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with
1

Co(x,v,t)E J <E(x,t}E(x —v(L—s),s) >ds
0
and

t
Cl(.\s,v,t) = J (L—s)<E(x 1)E(x—-v(t—s),s>ds .
0

Integration over x gives, with the assumption of short correlation times for the
fluctuations in electric field,

9P =4.C (v P, BL)
implying dy<v> = <d,Co(v)> and di<v®> = 2<d,[vCo(v)]> where <v>
indicates the average velocity of a particle released at t =0 and <v2> its velocity
spread. The latter expression reproduces (29b) when C, is independent of v. For
the more general case covered by (27), (30) and (31) we find <v> = 0 as discussed
in Sec. 2. Referring to the discussion of Sec. 2.B we may thus take the velocity
variation of C, as evidence for plasma clumping. The quasi time stationary limit

of Sec. 2.C is obtained for velocity regions where the v-dependence of C, is weak or
absent.

The probability density P can be considered as the transition probability
P(x,v,t;%0,v0,0) for a particle released at (x,,v,) i.e. when the particle is known
with certainty to be at x4,v, at t =0 then P(x,v,t) gives the probability of finding it
in a narrow interval around x,v at a time t. With this interpretation the result

(27) is readily generalized to include the random coupling approximation of
Orszag and Kraichnan [7] giving the renormalized nonlinear differential
equation

aPx,v,t;x v 00+ vd P(x,v,t:x ,v ,0)
1 [C ] 4 o 0

t ®
-8, [ ds[ J dyduP(x,v,t;y,u,s)<E(x,t)E(y,s)>auP(y,u,s;xo,vD,0) =0 . (32)
0 —m

Physically this expression amounts to replace the Green function corresponding
to the straight line phase-space orbit in (27) with the one describing the average
orbit giving an expected increase in accuracy at the resulting equation for the
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probability density. Whether this increase in accuracy is sufficient to compensate
the drastic increase in complexity of the equationsis still an open question.

By use of (26) an expression for the quantity <f(x,,v,t, )ﬂx2,v2,t )> can also be
given. Here we consider the simpler case

Lt
<|l'(x,v,t)]2> = J J dde<E(x—v(t—s),s)E(x—v(t—L),L)>
U

o

X138, Plx = vit—5), 913, Plx — vt~ )0}, (33)

where a more general expression was derived by Orszag and Kraichnan [7]. The
simple expression (33) sufficies for the approximation in the diffusion limit of
quasi time stationary turbulence. Here we have
<f?>
2 YT SEl= R

The normalized value of <f2> thus decreases as i/t for t — «. More generally we
have according to (33) that <f2> is large where 3,P is large which would be also
intuitively expected.

v X v X (34)

= 2D

B. Two Particle Relative Diffusion

Joint probability densities as P(x),vq,....... X\,Vy, t) can be analyzed in a very
similar way. As an illustration consider P(x,,v;.x,,v,,t) for two simultaneously
released particles, and obtain

atPix],v],xz,v?t)+v]ax1P(xl,v1,x2,v2,t)+ v26x2P(x],vl,x2,v2,t) =

t
d J ds<E(x ,V)Ex -—v (l—s),s)>a P(x -V (t—s),v XV, ,5)
vilo ] 1 1 v, 1’2

t
+avlJods<E(x1,t)E(x2—v2(t—s),s>av2P(xl,v1,x2_v (t— S)v )

t
+6V f ds<E(x2,t)E(xl—v](t—s),s)>av P(xl-vl(t s),v_ X v, ,5)

240 1 Pty
L (35)
+ av2 ]Ods<E(x2,t)E(x2—vz(t—s).s>6V2P(xl,vl,x2-v2(t—s),v2,s) i
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With the assumption of quasi-stationarity and short correlation times as before,
(35) is reduced to

_ 2
9P+via, Pty P= D{aflp+ d P+ 2Wox, —x,3, 9, P (36)

where

D= I ds<E(x,1)E(x,s)>
0

as before and

@

W(}\cl —x2) = J ds<E(x),t)E(x2,s)> ,
0
where we made use of the spatial homogeneity of the turbulence, Introducing R =

4(x1+x2) , r =x1-x2 , V = vy +ve)and u = v;-vg we obtain

37
3P + Va P +ua P = ;[D+W(r)1a€P + 2{D-W(r)1aﬁp . @37

Integration with respet to R and V yields [9]

38
8P + u3 P =2[D-WWORP , ©8)

where now P = P(u,r,t). For very large particle separations we expect W(r — «) -
0. In this limit the expression (28) is recovered with the double value for the
diffusion coefficient, thus reproducing the known result that two independent
particles diffuse with respect to each other with twice the diffusion coefficient for
single particle diffusion. For very close particles we have on the other hand W(r —
0) = D according to the definition of W, demonstrating a very slow relative
diffusion, i.e. the two particles follow almost identical trajectories in this limit. To
describe this limit in more detail we approximate W(r) = D-Br? for small r. For
nearby particles the relative diffusion is controlled by the micro-length scale
which is derived from the curvature of the correlation function at the origin. In
this limit we reduce (38) to

8P +ua P = 2B°P . . (39)



From this equation we find that <r?>, <u®> and <ru> all follow the same
differential equation e.g

25 =8B<r’>

af<r
with

[+

<r’> = J r2P(u,r,t)drdu .

-

Conseguently we have

<r2>
<u2> = CleBL + Cze_ﬂicus( %ﬁt) + Cae-‘mtsin( %&) (40)

<ur>

with §3=8B. Differences in the time evolutions of <r?>, <u2> and <ru> thus
originate from the inital conditions which determine C1, C2 and C3. For instance
with <r?>=r,2 at t=0 while <u?> = <ur> =0 one has[9]

V3
2 2] pt — 4t
<r'>= §ro{e +2e cos( —2 ﬁt)}

ol Lon) wra 229

1
<u?> = —Bsrz{eﬁt-e-*ﬁ"
g' o

o o) v )]

In all cases we find the contribution et to dominate t — «, This result for the

<ru> = Erf‘)[em—e—mt
6 1]

exponential trajectory separation provides a quantity § which may be interpreted
as a Lyapunov exponent characterizing the turbulence as discussed e.g. by
Misguich and Balescu [6]. The importance of this result should, however, not be
overemphasized. First of all (37) - (39) were obtained under rather idealized
conditions. In addition we expect the renormalization to be particularly
important for the problem of relative diffusion. For r, much smaller than the
Eulerian integral Iength scale we expect, however, (40) to be rather accurate in a
transient time period.

The results for multiple joint probability densities P(xy,vy, ..... XN,VN,t) can, as
already mentioned, be obtained by a straightforward generalization of these
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results. Also the case where a continuous cloud of test fluid (rather than particles)
is released initially in phase-space can be analyzed. The result for P(x1,v1,x2,v2,t)
can only be considered as representative for this problem in a qualitative way.
The problems are principally different. Thus the N-particle problem depends
essentially only on the correlations between N phase-space positions. For a
continuous cloud the result is in principle sensitive to correlations between any
set of phase-space positions. We shall not discuss this problem further here. The
present summary is restricted to one spatial dimension. The results are, however,
readily generalized to higher dimensions.

4. CONDITIONALLY RELEASED TEST PARTICLES

It can be argued that the standard analysis of test particle diffusion in the form
discussed here is too crude for many problems of interest for plasma physics. The
previous results are thus not particularly informative for discussions of particle
trapping in turbulent plasmas since for instance the expressions (27) or (32) do
not discriminate particles released in the vicinity of a local potential maximum or
minimum. Likewise it can be argued that the relative motion of two particles
released at each side of a local potential mazimum is not particularly interesting,
L.e. it is rather selfevident that they will move apart. It is much more interesting
to learn how long a potential well is able to guide two particles along nearby
orbits. As this short discussion may indicate there are good reasons to consider
the turbulent diffusion of conditionally released particles, i.e. to give a
statistical analysis of particle dynamics in a conditionally chosen subensemble
subject to certain conditions on the electric field at the initial particle position x,
att = 0 such as E(x,,0) = 0 and 9xE(x = x,, 0) < 0, which defines a local potential
well.

The analysis summarized in the foregoing sections referred solely to
unconditionally released particles. The interesting point is however that the
procedure can be directly applied to conditionally released particles also. When
considering this latter problem one thus selects a subensemble satisfying certain
conditions. Although the full ensemble is assumed to be homogeneous and time
stationary, then the subensemble will in general be inhomogeneous and
nonstationary. Thus for the unconditional problem we have <E(x,,t)> = 0 with
X, being a fixed but arbitrary position, while this is not necessarily so for
averages performed over the subensemble. The generalization will here be
illustrated by the problem of single particle diffusion. Repeating the procedure
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giving (27) we write the electric field E = <E >¢ + E, where in this case <E>.
= (1, and obtain

I6L+ v&x+ <E(x,L)>cav]Gu(x,v,L,x',v',t') =0 (41)

to be solved with the initial condition Golx,v,t'x' v't') = 8(x-x")8(v-v'). With the aid
of G, determined by (41) we obtain the equation for the transition probability P,
= <f>,,

18 +vd + <E(x,1)> 3 JP (x,v,t;x ,v 0) =
3 X [ C 0 0

t @
. , ) (42)
3, L ds] [ ) dyduGo(x,v,t,y,u,s) <E{x,t)E(y,s) >cauPc(y,u,s,x0,vo,0)

The conditionally averaged electric fields and their correlations entering (41) and
(42) are all readily measurable functions. In the present discussion we have not
specified the actual condition imposed on the signal, it is not even logically
necessary that the conditions are imposed in the position x,. Arguing as before we
may generalize (42) to included the features of the random coupling model by
replacing G, by P itself. The result is thus a nonlinear differential equation for
P. with coefficients expressed in terms of Eulerian averages <E(x,t)>.; and
<E(x,t)E(y,s)>.. Note that the latter quantity is explicitly a function of x,y,t and
s in contrast to its unconditional counterpart, which can be assumed to be a
function of |x-y| and |t-s| only. Analytical expressions in terms of unconditional
averages can be obtained also for the conditional correlation function. The
generalization of the present analysis to the evolution of joint probability
functions is straight forward and need not be summarized here.

5. CONCLUSIONS AND DISCUSSION

These notes review certain basic problems of phase space diffusion in turbulent
collisionless plasmas. The analysis was restricted to one dimension, but the
analysis is easily generalised. Diffusion in magnetised, i.e. anisotropic, but still
homogeneous plasmas, can be analysed by a generalisation of the expressions,
where the unperturbed straight line orbits, inherent in the unperturbed Green
function G, are replaced by the helical orbits of charged particles along straight
magnetic field lines. The resulting expressions become rather cumbersome. A
difficult but important problem is the analysis of inhomogeneous and
nenstationary plasma turbulence. In a way this problem is closely related to that
of conditionally released test particles discussed in Sec. 4 and at least formally
the results can be readily obtained.
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The actual solution of the equations is probably only possible by numerical
methods, and is even then rather difficult. A particularly interesting problem is
the evaluation of the results for the random coupling model. Intuitively a
significant improvement of the results is expected when applied to a strongly
turbulent plasma. This conjecture seems however yet unproven and a comparison
between theoretical results based on this analysis and particle diffusion in for
instance numerical simulations of plasma turbulence would be most valuable.

Finally, it is reemphasized that the present review deals with test particles
released in a turbulent field which is assumed to be known in a statistical sense
and the analysis relies on e.g. the correlation functions as a priori given.
Analytical theories predicting such funtions are outside the scope of this work. It
should be mentioned however that the average Green function, or transition
probability P in (32), is an essential ingredient of such theoretical studies of
plasma turbulence as the random coupling model of Orszag and Kraichman [7]
and related works.
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