INTERNATION AL ATorie  DNERGAH AGENCY
UINLEED NATIONS EUAUOATIONAL, SCIEN 11O ANDOCHT U AL ORGARTZ ATICN

INTERNATIONAL CENTRE FOR THEORETICAL PinySits | ==

LU, PO, BOX 586, 34100 TRIESTE, ITALY, asle. CENTRATOM TRIESTE

H4-SMR 393/44

SPRING COLLEGE ON PLASMA PHYSICS

15 May - 9 June 1989

REDUCED KINETIC DESCRIPTIONS:
GYROKINETICS AND QUIVER KINETICS (1)

P. J. Catto

Lodestar Research Corporation
2400 Centrat Avenue, P-5
Boulder, Colorado 80301

U.S.A

)

Lo

International Centre for Theoretical Physics
Spring College on Plasma Physics
15 May - 9 June 1989

Abstracts and Lecture Notes for Session on
Magnetically Confined Plasmas
(29 May - 2 June)

TOPIC: Reduced Kinetic Descriptions:
Gyrokinetics and Quiver Kinetics

Lecture #3: Quiver Kinetics

Peter J. Catto

Lodestar Research Corporation
2400 Central Avenue, P-5
Boulder, Colorado 80301

U.S.A.



Lecture #3 QUIVER KINETICS* ICTP
P. J. Catto 1989

Abstract

Intense, applied radio frequency (rf) fields can cause one or
more charged species to oscillate with a quiver (or jitter) speed
comparabie lo its thermal speed. The near fields in the edge plasma
region of rf heated tokamaks are an example of such fields, and may
be responsible for impurily generation, edge heating, and edge
profile modification. When collisional, non-resonant wave particle
processes dominate over collisionless, resonant interdactions (as in the
tokamak edge region) a reduced Kinetic description, quiver kinetics,
can be obtained by employing fast time and gyroaverages. The slow
time and gyrophase independent portion of the distribulion function
will be found to salisfy a quiver Kinetic equation, which once soived,

can be used to evaluale the radial particle fluxes.

*Excerpts from the paper "A Quiver Kinetic Formulation of Radio Frequency
Healing and Confinement in Collisional Edge Plasmas” by Petler J. Callo and

J. R. Myra, Lodestar Research Corporation, Boulder, Colorado, which is 1o be
published in Phys. Fluids.

I INTRODUCTION

The cool edge plasma of a radio frequency (rf) heated lokamak,
i.e. the region near the last closed flux surface, is subjected to
intense rf lields, particularly in the vicinity of the antennas, and is
strongly influenced by atomic processes. These facts suggest that
there are a wealth of physical phenomena occurring at the edge
which merit close scrutiny. Furthermore, this region is important
because it fuels the scrape off layer (SOL) on the exterior and acts as

a boundary condition for the hot core plasma contained inside.

Many ion cyclotron heating (ICRF) experiments ocbserve edge
heatingl.2 edge potential changes2, and/or edge density
modifications2,3. Often confinement is found to be degraded by ion
cyclotron heating, but the observation in two independent ion
Bernstein wave heating experiments4.5 of gnhanced particle
confinement provide a notable exception. From these experiments it

is clear that ICRF can dominate edge physics phenomena.,

Interaction of the edge plasma with the [CRF antenna Faraday
shield and launched waves is an important consideration for both
global wave coupling and impurily generation®. The latter has often
been enhanced during intense ICRF heating. The development of a
first principles theory which can describe the self—consistent
equilibrium and confinement of the edge plasma in the presence of
I€RF is thus of considerable interest. This is the goal of Lthe present
work. It should be noted in passing that while ICRF systems have

provided the immediale motivation for our study, and witl dominate



our discussions, the theoretical tools developed herein apply equally
well to the case of lower hybrid7 and electron cyclotron heating8
(ECH), though the practical importance of the same mechanisms

remains to be addressed for these cases.

Previous investigations of rf induced transport9-13 have
focused on resonant quasilinear processes (i.e. wave—particle heating
regimes) which are not usually relevant to the bulk edge plasma
since the rf is deliberately chosen to resonantly interact with the
core plasma, not with the main species al the edge. The approach
developed herein is nonlinear butl does not employ a resonant
quasilinear operator since collisional, nonresonant, wave particte
interactions dominale an edge plasma subject to intense rf fields.
Instead the formalism is developed by adopting an ordering that
permils the species quiver (or jilter) velocity uj in the intense rf
fields to be on the order of the species thermal speed vjand the
wave frequency w to be on the order of the cyclotron frequency Q;.
As aresult of the u;~v; ordering neoclassical effects!4.15 are
negligible as long as 1 > (ujfvj)2 » pi/ £, where pj = v;/Q; is the
species gyroradius and £ the scale length. The neglect of electron
neoclassical effects is reasonable in the edge plasma since (Ug/Ve)Z ~
I near the antenna!®, whereas pe/£ < 10-3. For the ions (uj/v;)?
again drops off rapidly from order unity as one moves away [rom
the antenna, so that sufficiently close to the antenna, the edge ions
will also be rlf dominated!®. The description developed in the

following sections focuses on rf modifications. If it becomes

necessary Lo include pi/ £ ~ (uj/vj)2 effects, they can be retained
straightforwardly.

In the edge plasma the mean free path for the electrons and
ions, A can be larger, smaller, or comparable to the antenna
dimensions along a field line, Z4;, so that Coulomb collisions can be
retained for all regimes of collisionality by adopting the most general
ordering A ~ £; ~ £ in most present day experiments2.3.5 edge
densities are on the order of N~1012 ¢m~—3 and edge temperatures
are approximately T~25 eV so that A~600/Zepr cm {where Zggr is Lhe
effective jonic charge). Thus, X is large compared to the length scales
associated with the antenna and these experiments are collisionless
to moderately collisional from the present point of view. For some
high density tokamaks!.4, and for future tokamaks which approach
the reactor regime, edge plasmas become collisional (A < £,;) since
the edge density N tends to rise with the core density while edge
temperatures tend to remain more or less the same because they are

greally affected by atomic physics processes.

In summary, therefore, the treatment herein is characterized
by intense rf fields driving large quiver motion at the edge near the
antenna, and by collisional effects which disrupt Lhe organized

motion.

Using the ordering | > (uy/v)2 > py/Land A ~ £ ~ £, a
reduced kinelic equation is derived in Sec. II by developing a small
quiver amplitude and gyroradius ordering and averaging over fast
lime as well as gyrophase. This "quiver kinetic" formalism permits a

rigorous treatment of the full Vlasov operator {with ponderomotive



effects!7-21 retained) and the retention of the relevant Coulomb and
atomic processes via Fokker—Planck ! 415 and Boltzmann?22
{excitation/line radiation, charge exchange, ionization and
ion—neutral energy equilibration) coilision operators. The quiver
kinetic procedure is developed for arbitrary geometries and so can
be used o investigate non—axisymmetric effects in a tokamak edge

plasma. Some of the details are relegated to Appendix A.

In Sec. Il a moment formalism14.15,23 js developed within the
same general ordering scheme so that once the quiver kinetic
equation (31) of Sec. Il is solved the particle fluxes and current can
be evaluated in terms of the self —consistently determined density,
temperature, and electrostatic potential gradients create by the
applied r[. Appendix C presents a proof of an important identity
employed to rewrite the ponderomotive force in its standard form.
The nenlinear formalism of Secs. I1 and I11 is valid for general
gecmetry, however, tokamak applications are of particular interest
so the flux surface operation is defined in Appendix B for a torus

(which need nol be axisymmetric).

The intense fields in the edge plasma region typically resull in
(ue/vel2 3 pe/t, particularly in the vicinity of an antenna, so that
neoclassical and classical effects which depend on the electron's

banana motion and its gyroradius p, will be neglected in Sec. II and

ITI. However, local collisional healing by the applied cf occurs because

of the collisional disruption of the quiver motion by unlike particle
collisions. The healing by this inverse bremsstrahiung!9.24.25 process

must normally be balanced by line radiation losses?6 (o prevent

secular healing. The quiver kinetic description permits the electrons
to be cooled by the inelastic scatterings whereby the energy removed
changes the internal state of partially stripped impurities and/or
neutrals which Lhen radiate the energy away. Electron—ion equili—
bralion is only effective at removing energy from the rf heated

electrons at exiremely small quiver speeds; (ue/ve)2 ~ Mo/M;.



II1. Quiver Kinetic Equation for RF Induced Transport

Quiver kinetic equations differ from their drift kinetic and
gyrokinetic counterparts by retaining both the quiver {or jitter)
motion of the charges in the applied rf field and the gyromotion in
the unperturbed magnetic field. Such a description is useful when
an rf plasma interaction is characterized both by rf quiver
amplitudes that can be comparable to the gyroradius and by the

absence of cyclotron and/or Landau resonances.

To develop a quiver kinetic equation for rf effects in
magnetized plasmas it is convenient to define the species quiver or

jitter velocity u via the linear equation

du e — 1 - —
6l_M(e+CUXB) {1)

where € is the apolied rf electric field, B the unperturbed magnetic
field, and species subscripls are suppressed on u, the charge number Z,

and the mass M.

In the derivation that follows alt terms in Eq. (1) are assumed

to be the same order so that the orderings

— le —
u Mme and w~Q (2)

are adopted, where fast time derivatives are taken to be of the order
of the wave frequency w and Q = 7ZeB/Mc is the species

gyrofrequency with B = |§| [n Lhis section and the next it is

convenient to treat Lhe species quiver velocity u = u(r,t) and the

species thermal speed vj = (2T/M)5 as the same order,
U~ Vi, (3)

so that € xB drifts are the same order as vj, where T is the species

temperature.

In order for Eq. (1) to contain only the dominant forces the
species gyroradius p = vi/Q and quiver or jitter amplitude £ = |G|/w,
must be assumed small compared to the smallest scale or wave

fength £,
p/L~E/ L€, (4)

Then the Lorentz forces due to the applied rf magnetic field b, as
given by Faraday's law, and the unperturbed electrostatic potential
¢, with ordering Zed ~ T, are small in p/£ ~ &/£. Any induced
electric [ield generated by the applied cf will be assumed to be at

least pj/£smaller than the electrostatic field so that

E=-Vé (5)

can always be emploved to lowest order.

As an aside, it should be noted that while the orderings given
by Egs. (2})—{4) permit large amplitude rf waves, they exclude
wave—particle trapping effects because of the ordering of the space
scales. This is evidentl from considering two specialized trapping
limits. For motion parallel to E, the well known trapping frequency
Wi = (Ze|€[/lM)% (where here £is the wavelength) is of order w/w

~ (E/8)% < | in the present scheme. Similarly, for cyclotron



trapping in perpendicularly polarized e fields27, the characteristic
trapping frequency Wi = (Zefe|v /Mw £2)% is of order wy/w ~
(pE)%/£ < 1. Implicit in Eq. (2) is the assumption that lw - Ql/w »
(pE)e/2.

To study the effects on transport of collisions and atomic
processes,in a2 quivering plasma, the temporal evolution of the
unperturbed fields is taken Lo be much slower than the species
collisional rate v. In addition, v is assumed small compared to the

gyrofrequency. Therefore the orderings
~ (8)? (6)
are employed.

In the remainder of this section the preceding orderings are
employed to derive a reduced kinetic equation from the full kinetic

equation
. {7)

where a dol is used to denote the unperturbed Viasov operator

., 0 —_ - —_
[="'t'+v- f+(A +a)Vf, (8)

-

the unperturbed and rf portions of the acceleration are defined as

- le — 1 —

A=M(E+CV><B) (9)
and

ﬁ_.Z_g__. L_._.

a—M(e+cv><b) (10)

respectively, and the operator C is used to denote atomic and

Coulomb collision processes, as well as any sources and sinks.

It is convenient to consider the distribution function [ as a function

of Lhe velocity w in the quivering frame, where

w=v-ulrt), (11)
such that
f=1(r,wt). (12)

Using the preceding two equations to transform to the quivering
frame and recalling the definition of u from Eq. (1) gives o lowest

order that

u — 1 _

f=Sw =50 Vwl+ 5@+ TVxB)- Tyl +

e}

ar e - — =
=a—t|w+-h;—cw><B-wa+... {13)

since Vy = Vy, 8/0t|y = 8/8t = 8/6t|y — (3U/8t)-V, and V-V is next
order in p/ L.

Equalion (13} suggests splitling w into gyromotion and
streaming along B and introducing the velocity variables E and p.

such that

w=w, +wn = w,(e|cosdp + ey sing) + wyn ,

1 led+ ¥ 1 2 Zed+W¥
==yl 4 —— - —_—
E Wt T pB+2w“+ M (14)
. 2
and p=|n><w|/2BEw_L/ZB.
10



with e, €2 = nxey, and n = B/B an orthogonal set of unil vectors
and ¥ a velocity independent potential to be defined shortly
containing only slow time dependence. Using the energy E, the
magnetic moment |, and the gyrophase ¢ as the velocity variables

for w, Eq. (13) becomes

. of
f‘a_l'|5-u-¢‘ga¢+"' : (15)

To satisfy the lowest order kinetic equation 6[/8t|; - Qot/8¢ = 0,

Eq. (15) suggests writing [ = [{r,w,t) = [(F,E,p,d),t) as
f=T(@EpL +TFEpsp.t) (16)
with T conlaining either the gyrophase or fast time dependence or

both,

oy L%
B~ T T (17)

toll Loy

- af
Vi~prt, 2o-=0,
and the ordering on the time dependence of { following from (6).
Then to nexi order in the p/£ ~ £/4 ~ v/Q expansion, Eq. {7} becomes
at/aL - Qat/ap +1 =C (18)

where in the operator C only Tenters. To the requisite order in the

quivering frame
f=(W+Uu)VI+(w+u) M IV(Zed + ¥) - Vu-wldT/oE
~(w + W)-[pV 4nB + (wy/B)Vn-w, +B-1Tu-w 131/3u

+ (Ze/M)[E + ¢~ 1w + u)xb }-[wd/3E + (w,/B)3T/8ul + ... (19)

11

+ M1V (Zed + ¥},

<
23]
il

i
<
c|
£

Tit = —(WBIB - (wyB)Fn-w - B-190-w, ,
o = 6.;2 'El - (w;,/wi)V"H-Hxi? .

where the gradients of E, |1, and ¢ are performed holding v lixed and
V iin (19) is carried out at fixed w.

To obtain the reduced kinetic equation from Eq. {18) for

applied rf of period T, it must be gyroaveraged

D = (M- ddl-) (20)
and fast time averaged
1
Codp=Tol fdt () (21)
=%

Both averages are carried out in the quivering frame so that ?,E,u,CD
or ?,\7 are held fixed during fast time averaging and the
gyroaverages are performed hoiding ?,E,p.,t or F,wl,wn,t fixed.
Notice in particular that <w >4 = 0 = {ud>y = <e>y = <b>y while <>
and <f>; need not vanish but <f>¢.1 = 0. Carrying oul the gyro and

fast time average of Eq. (19} as shown in Appendix A yields
= wyn-V T+ wyn M-IV - -V udy

+ (Ze/Mc)<u xb » J3 [/3E , (22)

where V T is performed at fixed E, p, and t and <l >¢( = 0.



To simplify Eq. (22) further, define the displacement E = E(F,l)
as the periodic solution of
BE/Bt = u (23)

having <>y = 0, and integrate Faraday's law

Vxe = — 1db (24)
cat
and Eq. (1) over fast time to obtain
!
b= -cVx(Jdte) (25)
and
1
U - (Ze/M)fate = QExa, (26)

t
where jdt e is made periodic by the choice of the lower limit and
t
<Idt €>y = 0. Then expanding the triple cross products that follow

both ways and taking half the sum gives
n-<ux[(Ze/Mc)b + 7 xu'ln

n-<u X[V x(QE xn) >y

i

50-<[TQExn)u - u-VQExm)] + ux[Qn-VE - V-(EnQ) >y
= %0 -V<QEXn-u>y, 27

since <UE> + Fudy =0 = (VWEx + AVE),. Using (27),

defining ¥ as the ponderomolive potentiall7.18.20.21

o= 5MAU- (U - QExn)d>y = —%ze<E ey (28)
and using U x(Vxu) = %Vu2 - u-Vu gives
13

n-V¥ = Mn-{<u+V ud ~ Ze/Mc)uxb ] . (29)
Thus Eq. (22) reduces to the simple result that
Ador=wyn-VI, (30)
since <E g1 = 0.

The reduced kinetic equation obtained by gyro and time
averaging Eq. (18) and employing Eq. (30) is the slow time, quiver

kinetic equation:
W||H'€f_= E, (31

where the overbar on the operator C denotes that it is a gyro and fast

time average of the operator C acting on T.

Only rf modifications large compared to classical and

neoclassical effects are retained in Eq. {31) because of the ordering

u2/vl.2 > p/d. (32)

The classical and neoclassical corrections that enter via f and the

order p/£ correction in f, respectively, may be neglected as small

even when | » ur"/vi2 as long as inequalily (32) pertains.

By employing the appropriate moments of the full kinetic
equation (7), a moment approach is developed in the next section in
such a way that only the quiver kinetic equation (31) need be solved
to evajuate the time average particle flux across the magnetic field.

This fealure is similar to that of conventional neoclassical transport

14



formulations14.15 except that the particle [lux is induced by the rf

and can be convective in nature.

Before developing the moment appreoach some mention must
be made of the properties of 'C since it should not be thought of as
just the Fokker—-Planck collision cperator. Consider a loroidal
magnetic field (which may be non-axisymmetric) and label the
magnetic surfaces by the poloidal [fux 2T as indicated in Appendix
B. Then, using <--->¢ to denote the flux surface averaging operaticn
defined by (BS), Eq. (31) is multiplied by B/wj and flux surface

averaged, using property (B6), to obtain the solubility constraint

<£'€>¢, =0. (33)
Wi

Multiplying (33) by | and ME, and integrating the results over all E,
K, and ¢ gives

JBwTry=0 (34)
and

M [ d3wEC >y =0. (35)

Equation (34} simply requires that the particle sources and sinks
balance in C such that it conserves number on a flux surface to

lowest order.

Equation (35) is more interesting because a flux surface
averaged energy conservation property is not satisfied by a Fokker-

Planck collision operator in the presence of sufficiently intense rf. In

particular, collisional heating of electrons occurs in their quiver frame

because their quiver motion is randomized by piltch angle scattering

15

collisions with the ions (inverse bremsstrahlung).19.24.25 As a result,
an electron energy loss mechanism is required to prevent a secular
heating which would violate (6). Since equilibration with the ions is
too slow for sulficiently intense rf, the most likely energy loss
mechanism at the edge is eleciron excitation of neutrals and charged
impurities, which then radiate the energy away almost instanta-

neously.26

16



[II. Moments and Ponderomotive Force

The orderings outlined at the start{ of Sec. [l permitted the
quiver kinetic equation (31} to be derived by an expansion of the full
kinetic equation (7). However, both the time averaged particle flux

across the magnetic field,
Fo=<f ddvinx(vxn) = | d3w Enx((U+w)xn D, (36)

and the net radial, time averaged particle flux out of a flux surface

(labeled by the poloidal flux 2my),
F=<f a3viv-Tydy = <f ddw F@+wH-Vidy, (37

require some knowledge of [, the portion of the distribution function
that is rapidly varying in time and/or gyrophase. The (lux surface
average <-->y is defined in Appendix B for a general,
non—axisymmetric toroidal magnetic field. The condition for well
defined edge flux surfaces in the presence of strong rf is discussed

by Myra.28

The equation for  can be obtained by subtracting Eq. (31)
from(18). However, solving for T is a formidable task for a general
magnetic field when C - C ~ (u/vj)v must be retained. Fortunately il
is also unnecessary since a moment approach allows ]_“'_L and I' Lo be
evalualed by finding alternate expressions for the desired moments

of T in terms of moments of [, the solution of Eq. (31).

In carrying cul the moment approach in the presence of an

applied rf lield, ponderomotive effects will be encountered once

17

again. It is this feature that complicates the procedure and thereby
distinguishes the moment description that follows from the vsual

strong B moment approaches.23

Moments of the full kinetic equation are most convenienltly
formed by multiplying (7) by any quantity X = X{r,w 1), integrating
over all w, and time averaging over the fast time (recall d3v = d3w)

to obtain

3 . - .
E(I d3w <Xy + V([ d3w <vXy) = [ d3w <XC + (X >y . (38)

In the preceding expressions X is the Vlasov operator defined by Eq.
(8) acling on X and the fast lime averages in Eq. (38) are to be

performed holding w fixed as in Eq. (21).

Using X equal to | and ME in Eq. {38) gives to lowest significant
order the corresponding moments of the quiver Kinetic equation
{31), namety,

Ven f dBwwT) =fd3w T, (39)

Ven [ d3w MEwy ) = [ d3w MEC , (40)

where C again denoles the gyro and fast time average of C operating

on the solution to (31).

The leading odd w momenl is obtained for X equal to Mw, for

which {38) yields

V-I(T - nn)p, + nnpyl = J d3w Mw<Cy + N[(Ze/c)<uxb >, ~
MUV Uy - ZeVe] + MQ [ d3w <E> wxn, (41)



with 1 the unil dyadic, <C>y the time average of C operating on T,

N

il
Ht

[d3wT, p.= [ ddw %wa?, and py = J d3w Mw"2 T. (42

To obtain Eq. (41), w = QWxn - (Ze/M)V$ + (Ze/Me)w + u)xb -
(w + u)-Yu and ils gyro and fast time average M<{w>g, =

(Ze/c)<uxb >y — M<U -V u>y — 2eV ¢ are employed.

Next, note that the ponderomotive force!7.18.20.21 density F

can be written in the following two forms:

F = N{(Ze/c)<u xb >y — M<G-F udy] + MQ<UXn V- (NE)>y
= -NV ¥ + Bx{V xM) (43)

wilth the ponderomotive potential ¥ defined by Eq. (28) and M the

species magnetization defined as
M = (Ze/2c)N<Exu>y . (44)

The proof that the two forms of F are equivalent requires the

identily proven in Appendix C.
To obtain the desired form of Eq. (41), (43) is inserted to find
MQ<EXnY - (Nu)>, =Z7eNVé - F - M [ d3w w<C,
+ V-UT-nn)p,+ nnpyl - MQ [ d3w Eywn . (45)

Next, the fast time continuily equation is formed by sublracling the

time averaged form from the unaveraged version to obtain
5 - . —
a—t(fd3wf)+v-(Nu):fd3w -0, (46)

19

where the right side vanishes unless C operating on T contains fast
time variation. Using (46) to eliminate 7 -(Nu) from (45) yields the

desired result
(Ze/c) [ d3w <F(U+ W)>1xB = ZeNVé - F ~ [ d3w Mw<C>y
+ V-UT-nn)p.+ nnp)
+ (Ze/c)ﬁx(EJ'd?Sw . (47)

Equation {47) can be used to form FJ_ by crossing it with n and

dividing by ZeB/c to obtlain

Ty= 5.gn*<VZed + ¥) + (T —nn) TxM - a_l'd3w nxw<C,
—(T-am)-<E [ 3w+ —nxTp, + oy py) ax(n-vn)
nn)-<g WA ZeBn Py ZeB
= z—;—ﬁx[Nﬁ'(Zw + %) +p,VinB+pn-Vn)

T FE TR - B - L [ gw Axw
+Ze(l nn) -V x(M 3 n) Qfd w nxw<C>
-(T-0n)-<E [d3BwOy (48)

where the second form shows that the normal diamagnetism of the
plasma is modified by the rf induced species magnetization M.
Equation (48), unlike Eq. (36), allows T, to be evaluated without

knowing T .

The first form of Eq. (48) is also convenient for forming T.
Dotting it by \7lh, using H-V—?w =0, flux surface averaging, and using

properly (B6) to find <V7w-€xﬁ>w = 0 gives

20



[ = Goax(NT(Zed + ¥) + Tp, + (py - p.)a-Val- Ty
- <J d3w (nglz—ﬁkcn + CEC)» Ty . (49)

Equation (49) shows that the flux through a flux surface is driven by
the usuai magnetic and electric flows plus a ponderomotive flow
which is the only remnant of the B xF velocity.

Often C is at least locaily number conserving to lowest order in
p/Lsothat [ d3w (C- C) = 0 in (46) and the right side of (39)
vanishes (giving B-1 fd3w qulo be a lowest order flux function).
The results of this section do not employ these simplifications. Only
the general properties of local total, charge, mass, momentum, and
energy conservation, Z fd3v {Ze, M, MV, ¥Mv2)C = 0, are used,

where Z denotes a sum over all species.

If desired, the local slow time evolution of N could be found by

first determining I} = J d3w (wy T + n-<uf>y) from the solution of

(31) and by using (46) to find
<n-u Jd3w >y =< E[V-(NU) ~ [d3wCD>y .

Therefore, to determine rll to the same order as T""J_ requires

<n-EV-(NU)>, be known as well as ¥ and M for each species,

Letting T = T, + [n and using (38) to form the lime averaged

continuity equation to one order higher gives the equation for 8N/at

to be

el V-Ii=fd3w<it =5 | (50)

21

Subtracting (3%9) from {50) shows that the right side of (50) must be
retained Lo one order higher since f d3w (KC>y - C) ~ vp/L.

Flux surface averaging (50) and using (B6) vields

B<N>y 13
—EMT;EIL—WT) = (Sy , (51)

where V' = {1>y as defined in Appendix B. Equation (51) is of the
standard form for a transport description and does not require Iy
The radial flux can contain both convective and diffusive

contributions.

When Egs. (50) and (51) are multiplied by Ze and summed over

all species, the conservation of charge equations are obtained,

2 -
5‘{(22eN)+V-J=0 (52)
and
2<Zz Noy + Li(V’Zz =0 (53)
ETR e =0

since ZZeS = 0. In principle, Eq. (52) can be solved for the charge
density build~up 3(>_ZeN)/dt because J =T, + J||H can be formed
from Jy = > Zeljand T, = > ZeT',. Quasi-neutrality, > ZeN = 0,
simplifies Eqs. (52) and (53) to the ambipolarity equations V+J = 0 =
2_Zel and removes the ExB drifts from J .

Parallel momentum conservation for each species can be

oblained from the parallel component of (47)

0-Vp, + B VELEY « NI T et + ¥) = M [ dBw w T L(54)

22



since [ d3w wy<C>; = [ d3w wy C to the requisite order. Equation
(54) can also be oblained by multiplying Eq. (31) by w) and
integrating over all velocity space. Summing (54) over all species
and using collisional momentum conservation gives the parailel

momentum conservation equation.

The preceding set of moment equations can be employed when
only perpendicular particle fluxes need be evaluated. However,
higher order moment equations advancing p, and py in time need Lo
be derived Lo determine if a closed system of equaltions exists.
Unfortunately, using X equal to pt and w“2 or E) in Eq. (38) resulls in
higher moments involving T which must then be eliminated by
employing the fast time moment equalions. Such complicalions are
beyond the scope of the present seminal treaiment and are likely to
result in non—standard (and perhaps not useful) forms of the

transport equations?% for u ~ Vi

The quiver kinetic description of this section and Lhe last is
most easily derived using the u ~ vjordering rather than assuming
(u/vj)2 < 1 and iterating. However, the results obtained remain
valid and are more lractable when 1 » (u/vj))2 > p/£so that the rf
induced llows are larger than their classical and neoclassical
counterparts, Since ¥/Zed ~ (u/v))2 ~ BM/p,, ponderomotive effects
will then enter as small perturbations in the moment equations.
Consequently, it is best to use the moment equations and moments of
Eq. (31) to obtain as much information as possible. Typically other
expansions {i.e. collisionality) are required Lo obtained tractabie

resvlts in complicated magnetic fields. Simple models can be solved
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to illustrate a collision dominated and weak collisionality applications

of the results of Secs. Il and I1I in a tokamak.
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IV. Discussion

In the preceding sections a compieleiy new description of the
interaction of applied rf fields with the edge plasma is developed by
assuming the quiver motion dominates over drift and gyro motion.
The nonlinear formulation of Secs. 1l and II1 retains Coulomb
collisions and the relevant atomic processes and is valid for general
magnetic field geometries, although tokamak applications are of

particular interest.

The principal results of Sec. 11 are the quiver kinelic equation
(31) and the continuity and energy balance equations (34) and (35)
which lfollow from il. The most important results in Sec. 111 are the
expressions for the perpendicular particle flux (48}, the net radial
particle flux through a flux surface (49), and the perpendicular
current density Tl‘i = ZZeFL, all of which follow from perpendicular
momentum conservation and the general proof in Appendix C for the
form of the ponderomotive force (43). The quiver—Kinetic
description of Sec. I1 and 111 is capable of retaining induced electro—
static potentials, convective and/or diffusive fluxes, collisional
heating, and alomic processes in an cf heated edge plasma. The
formalism differs from other approaches in several ways, but the
Llwo mosl notable differences are the following: (i) an ordering is
adopted which makes rf effects dominate over, rather than compete
with, neoclassical (and classical) effects; and (ii) the model is
collisional and by necessity retains alomic processes as well as

Coulomb scaltering in a magnetized plasma. Because of (i) the
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transport need not be intrinsically ambipolar as can be seen [rom

{49).

A moment description is adopted in Sec. [I] to obtain the
expressions for the particle fluxes and currents. The formalism is
developed in such a way that only the lowest order quiver kinetic
equation (31) need be solved to evaluate the particle fluxes and
current. This feature is similar to that of conventional neoclassical
transport formulations except that the fluxes are driven by the rf

inducing densily, temperature, and electrostatic potential gradients.

The applied rf generales gradienls by collisionally heating the
elecirons. The heating occurs because Lhe organized quiver motion
of the electrons is randomized by electron—ion coilisions. To prevent
secular electron temperature increases with time due to this inverse
bremsstrahlung19.24.25 process, a large energy loss mechanism must
be retlained for the electrons. Equilibration with the ions is too slow
for the intense rf fields of interest. Consequently, the likely loss
mechanisms are ionization and line radiation caused by electron
excilation of neutrals and impurity ions, which then radiate almost
instantaneously.22.26 [onization is 2 mechanism that can remove
excess energy, but since it is not number conserving it does not
salisfy the flux surface average constraint (34). Therefore, line

radiation appears to be a necessary feature of the electron model.

The solution of the quiver kinelic equation for several species,
arbilrary collisionality, and with various atomic processes retained is

a formidable undertaking. To gain insight into the relevant physical
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processes simple, analytically tractable models must be investigated.
Once such models are understood more complicated ones can be used

lo make quantitative predictions.

At present the edge plasma is assumed to contain only
electrons, a single cold ion species, and neutrals. The neutrals are
needed lo remove energy from the plasma via line radiation.
However, Coulomb collisions are assumed to be the dominant
collisional effect and electron impacl excitation is the only other
collisional process retained. The applied rf field is assumed to be of
moderate strength so that | » (ug/Ve)Z > pe/4y and Lhe ions enter

only to maintain quasi—neutrality.

Within the preceding framework two limits of collisionality are
amenable o an analytic treatment: (i) very short mean free paths,
A <€ 4, and (ii) very long mean [ree paths, A » qR > /,, where R is
the major radius and g the safety factor. In both limils the lowest
order electron distribution is Maxwellian to lowest order. However,
for A € £, it is a local Maxwellian, while for A ® gR the spatial
dependence of the Maxwellian is that of a [lux function. As a result,
in the collisional limil inverse bremsstrahlung heats Lhe electrons
locally (that is, in the vicinity of the antenna), while in the
collisionless limit the collisional heating is spread over Lhe entire flux
surface. [n both cases the energy balance is maintained by the
electrons giving up energy to the neutrals by eleclron impact
excitation, and the neutrals then removing the energy from the

system instantaneously by line radiation.
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The luxes generated in the two limits of collisionality have
quite different features even though they are copvective in both
cases. [n the collisional limit the perpendicular electron flux has a
diamagnetic component in addition to the ExB contribution it has in
common with the cold ions. The electrostatic potential adjusts to
keep the parallel current force free, thereby causing the
perpendicular potential and temperature variations Lo be the same
order. As a result, the radial particle flux is locally the same order
as that of Bohm diffusion. Moreover, a net radial (lux is possible if

up—down symmelry is broken (for example, by a divertor).

In the long mean free limit, the {lux function character of the
Maxwellian causes the radial flux to depend on the [gcal rf induced
magnetization {rather than the ]_E.xﬁ', diamagnetic, and
ponderomotive fluxes) and a nopjogal collisionally constrained, rf
induced contribution, Because of its nonlocal character, this second
piece is small by roughly the ratio of the antenna area over the
surface area of the lokamak. Furthermore, the rf magnetization flux
is somewhat smaller than the collisional fluxes angd neither
collisionless flux leads to a get radial particle flux. As a result long
mean [ree path operation appears to be preferable, in which case the

edge heating is spread over the entire flux surface.
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Appendix A: Gyro and Fast Time Averaging Procedure

Acknowledgments
To evaluate the gyro and fast time average of T as given by Eq.

This calculation was motivated in part by ICRF/edge physics _
! P 4 ge phy (19), recall that f passesses only slow time variations. Then making

di ions with Dan D'Ippolito, which are gratefully acknowledged. _ _ - — _—
iscussions Wi ppOt ' g t 8 use of <Wdg = wym, <Ud1 =0 = by, <>y =&, C¥>y = ¥, CWWdg =
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pp Y p gy bw,2T-nn)+ w2nn, V-B=0=0-VB+BV-n,and E = -V¢,

grant DE-FG02-838ER53263. . . .
the terms in Eq. {19) may be evaluated to find the following resulis:

Aw + H)‘V_’T&p_t = W||H’6"f_ .

Aw + ) [M-1T(Zed + ¥) - VU -wBT/0E>¢,
= wn-[M-1¥(Zed + ¥) — (U-VuJOT/E ,

AW + u)[(pV B + (W /B)Vn-w, + B-ITu-Ww,181/8e, = 0,

(Ze/M)E-[WAT/BE + (W ./B)3T/Bp g = —(Ze/M)(wy -V )3 T/E ,

and
(Ze/Mc)(W + U)Xt -[WOT/E + (w /B)a1/0p Do 1

= (Ze/Mc)wy n+<uxb >0 [/3E ,

where V [ is performed holding E, {1, and t fixed.



Appendix B: Flux Coordinates
The general representiation of the magnetic field in a torus39
B = TyxV(e - qli)x] (BI)

is employed, with 2Ty the poloidal flux, @ a toroidal angle variable,
X a poloidal angle variable, and q() = B-V0/B-Vx. Because B-Vy

=0, is a [ux surface label.

The incremental length dr in the \s,x,0 coordinates may be

written as
dr = (B-Vx)-1dyToxTyx + dxVyxT0 + dOV x xV i }(B2)

so that dr-Vy = d\, dr-V X = d¥, dr-¥V © = d©, and d3r =
dwdde/ﬁ'-ﬁ?x. Incremental areas on surfaces of constant |, ¥, or ©
may then be formed by cross products. For example, the

incremental area on a constant | surface is
d2rly = (B-Vx)~1 dxdOvVYy . (B3)

The incremental volume between two neighboring flux surfaces

is dV = V'dy where

Ay .CLR
\ 3GB.VX (B4)

with both angle inlegrals over a complete circuit., A flux surface

average of any quantity Q may then be defined via

_ 1 ¢dxdoQ
@y = f 5Ty (B5)
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When the flux surface average as defined by (B5) operates on Lhe

divergence of any quantity, \7-6, it gives
== 13 o
V-Qoy = e (V<Q-Vyoy) (B6)

as can be verified by considering the integral of v .Q over the

incremental volume between two neighboring flux surfaces,
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Appendix C:  Proof of Ponderomotive Force [dentity

The proof that the two forms of (43) are identically equal is

only slightly more complicated than that given in Sec. I1 which led

to the choice of ¥ as the ponderomotive potential given by Eq. (28).

It appears to be a minor extension of previous proofs17,18,20,21
because it permits u ~ vj and only requires fast quantities (e, b, u,
and E) to be periodic with vanishing time averages on the fast time

scale. The proof begins as before by using (23)-(26) to write

(Ze/Mc)<Uxb >, — <U-V >y = UX[VXQExn)> - 5V<u2y, . (C1)

Expanding cross products both ways and taking half the sum, and
using V-B = 0 and <G°Tg">, + (E[f)t = 0 to remove V-(Qn) and

V(Qn) terms, leaves
UX[V xX(QExn)]>y = 5VQEXn U»y — QT u-Exn + n-VExU
+U-VEXT + UxaV-E> . (€2)

To simplify {C2) further, utilize an identity obtained by expanding
the cross products in %<n x[V x(u'xZ)1>; both ways:

_..

S<T{UXE)n - 0T (UxE = %<V (WE — Eu)xnd,

UHExn) + U VEXUD = (V- IxnD, | (C3)

where <UE ~Eu>, = 2UE> and (VW)E - (TEWUD, = 2 (T W)ED, =

~2<(VE)u>y are employed. Using (C3) along with <u*¥ Exny( =
—CE-Vuxnr = <V -(Eu)xn> + <uxnV-E>yin Eq. (C2) gives

33

UX[V={QExn) >, = BVQExn-ud>y — $Q<V-(UE - Eu))xn

+2uxnV-E>

QEXn-udy - %m X[V x(nu x&) Dy

ALY
Q
;< a V- (ME)>, (C4)

where 7 is an arbilrary function of space and slow time. Combining
(C1) and {C4) with 1) equal Lo N establishes the equivalence of the
two forms of Eq. (43),

34



References

t.

H. L. Manning, J. L. Terry, B. Lipschullz, B. LaBombard, B. D. Blackwell, C. L.
Fiore, M. E. Foord, E. S. Marmar, J. D. Moody, R. R. Parker, M. Porkolab, and J. |
Rice, Nucl. Fusion, 26, 1665 (1986).

M. Bures, H. Brinkschulte, J. Jacquinot, K. D. Lawson, A. Kaye, and J. A. Tagle,
Plasma Phys. 30, 149 (1988).

1.5. Lehrman, P. L. Colestock, G. J. Greene, D. H. McNeill, M. Ono, J. R. Wilson,

D. M. Manos, S. Bernabei, and J. L. Shohet, in Proceedings of the Seventh APS
Topical Conference on Applicatjons of Radio—Frequency Power to Plasmas.

Kissimmee, Florida (AIP, New York, 1987) p. 274.

. J.D. Moody, M. Porkolab, C. Fiore, F. $. McDermott, Y. Takase, J. Terry, and

S. M. Wolfe, Phys. Rev. Lett, 60, 298 (1988).

M. Ono, P. Beiersdorfer, R. Bell, S. Bernabei, A. Cavallo, A. Chmyga, S. Cohen,
P. Colestock, G. Gammel, G. J. Greene, J. Hosea, R. Kaita, [. Lehrman, G. Mazzi-
telli, E. Mazzucato, D. McNeill, K. Sato, J. Stevens, J. Timberlake, J. R. Wilson,
and A. Wouters, Phys. Rev. Lett. 60, 294 (1984).

[. 5. Lehrman, Ph.D. thesis, University of Wisconsin—Madison, 1988,

P. J. Bonoli in Proceedings of the Seventh APS Topical Conference on Applica-

Lions of Radjo-Frequency Power lo Plasmas, loc. cit. p. 85; and references

therein.

A. C. Riviere, ibid, p. 1; and references therein.

C. S. Chang, Phys. Fluids 28, 3598 (1985).

35

10.

12.

13.

14.

16.

17.

18.

19.

20.

21.

22.

23,

24.

T. M. Antonsen, Jr. and K. Yoshioka, Phys. Fluids 29, 2235 (1986).

S. C. Chiu, Phys. Fluids 28, 1371 (1985).

S. Rivopoulos, T. Tajima, T. Hatori, D. Pfirsch, Nucl. Fusion 26, 627 (1986).
L. Chen, J. Vaclavik, and G. W. Hammett, Nucl. Fusion 28, 389 (1988).

F. L. Hinton and R. D. Hazeltine, Rev. Mod. Phys. 48, 239 (1976).

S.P. Hirshman and D. J. Sigmar, Nucl. Fusion_21[, 1079 (1981).

D. A. D'Ippolito and E. F. Jaeger, privale communication; D. A. D'l ppolito,
J. R. Myra, and G. L. Francis, Phys. Rev. Lett. 58, 2216 (1987).

H. Motz and C. Watson, Adv. Electron. Electron Phys. 23, 153 (1967).
N. C. Lee and G. K. Parks, Phys. Fluids 26, 724 (1983).

P. Mora and R. Pellat, Phys. Fluids 22, 2408 (1979).

J.R. Cary and A. N. Kaufman, Phys. Fluids 24, 1238 (1981).

M. M. Skoric and M. Kono, Phys. Fluids 3], 418 (1988).

I. B. Bernstein, in Advances in Plasma Physics, edited by A. Simon and
W. B. Thompson (Interscience Publishers, New York, 1969), Vol. 3, p. 127.

G. F. Chew, M. L. Goldberger, and F. E. Low, Proc. Roy. Soc. (London), 236A
112 {1956),

V. P. Silin, Zh. Eksp. Teor. Fiz. 47, 2254 (1964) [Sov. Phys.~JETP 20, 1510
(1965)].

36



25.

26.

27.

28.

29.

30.

P. J. Catto and T. Speziale, Phys. Fluids 20, 167 (1977).

R. C. Isler, Nucl. Fusion 24, 1599 (1984).

M. C. Vella and R. E. Aamodt, Phys. Fluids |9, 1626 (1976).
J.R. Myra, Phys. Fluids 31, 1190 (1988).

D. W. Ross, submitted to Comments on Plasma Phys. and Controlled Fusion

(Univ. of Texas Report FRCR #314, August 1988).

For example, see Sec. 2.2 of R. D. Hazeltine and J. D. Meiss, Phys. Reporls
121, 1 {1985) and references therein.

37



