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Abstract:  An introduction to magaetohydrodynamics (MHD) is given, aimed at describing
the stability of tokamaks in the cylindrical approximation. The lowest-order reduced-MHD
equations are derived and analyzed for the stability of external kink and resistive tearing modes.
The resistive layer problem for the tearing mode is solved by means of Fourier transformation.
Finally, a bricf overview is given of nonlinear results, including computational results for major

disrupiions in tokamaks.

1. INTRODUCTION: THE MAGNETOHYDRODYNAMIC EQUATIONS

Magnetohydrodynamics, where the plasma is treated as a single conducting and
compressible fluid, is the most basic description of the macroscopic behavior of a plasma.
MIID finds many applications in astrophysical and geophysical consexls, but over the past 30 -
35 years, much of the impetus for development of the theory has come from nuclear fusion
research and the need to undersiand and control various devices for magnetic confinement of
plasma. For such schemes, principally tokamaks, stellarators, and reversed field pinches
(RFP), MHD theory and computation is used to describe the most prominent motions of the
plasma, occurring on fast time-scales and large spatial scales. A relatively detailed agreement
exists between MHD predictions and the experimentally observed behavior of these devices.
Maost importantly, MHD (sometimes in combination with other theories) predicts operational
limits to plasma current, pressure, and density, all of which limit performance of the respective
configurations, and is therefore essential for the optimal design and construction of future
experiments.

MHD treats the plasma as an ideal gas with electrical resistivity n, acted upon by the

volume Lorentz force J x B. These equations can be written down directly,

dv :
PO+ vV == B - Vp (1.1)
od = V xB (1.2)
E+vxBanl : (1.3)

2
B
Sre - VxE=V x> Bl (1)
dp .
o Volpvi=0 (L5
; | |
TovvprmVv=0 (1.6)

Lquation (1.2} is the pre-Maxwell form of Ampére's law, where the displicenent cutrent is
ignored. This is ¢ good approximation as long as the characteristic wave speed, the Alfvén
speed vp = B/(u()p)l”z, sutisties VAZ <<¢2. Inthe MHD cquations (1.1-6), 1wo assamptions
are made, that are not rivially satistied in many plasmas of interest. The first is the axswuption
of a scalar pressure evolving in time according to the adiabatic law (1.6), where one
conventionally sets ¥ = 5/3. A rigorous derivation of (1.6) for a plasma can be given only if we
consider processes slower than the ion-ion collision time. This time-scale is of the order of
several milliseconds in present-day tokamaks, that is, much longer than the charucterisiic Alfvén
time T4 = Rivy, where R denotes the major radius. Despite this, in many cases of interest, the
hydrodynamic equation {1.6) is valid. This is 10 some extent because many important MHD
phenomena are incompressible and the pressure is simply convected with the Tud. Under
these circumstinces, the value of yis unimportant. [n other cases, such as for example the

Y or plasmis with mass

description of jon-acoustic waves!) or the t:quilibriumz) and stability
flows, Fq. (1.6) has 10 be replaced by a more accurate (and more complicated) description that
tukes into account the free-streaming of particles along the magnetic field lines,

The other weak point of MED is the assumption of an Ohm's law in the fom E + v x B
= 1J. This form is easily justified for conducling liquids, e.g., mercury or melted iron,
However, if we attempt to derive (1.3) for a plasma by subtracting the equations of motion for
electrons and ions, we find two additional terms, E+ v xB=1J +(J < B - vl’c e, where
J x B/ne is referred w as the Hall ierm and Vp/ne as the electron dismagnedc drift erm.
These terms can be shown to be negligible if we limit consideration to not oo last phenomena
{frequencies much less than the ion gyro-frequency £ = eB/mg) und scale lengths Lrger than
the ion Larmor radius p; = vi,/8. MHD can be looked at as the limit where the ks density
ancd velocity, magnetic field and electrical current are finite, but where the elecirical charge
density of either species nge is "large”. This immediately tells us thit the term (J x B - Ve
cun be dropped. 1t abso shows that MU effectively scts the electron and ion velocities equal,
nl;hough J = nely; - ¥} is nonzero.

description of all possible types of plasma behavior, but rather that 1t is a simple set of

cquations, that allows suluiion even in rather complicated geometries and for various plusma



profiles. 1tis usually a good approximation en time scale from a fraction to several thousands
of an Alfvén time, and space scales larger than the ion Larmor radius. A more detailed
discussion of the validity of the MID equations is given in the excellent review article by I.
I'reidberg . An important property of the MID cquations is that they have certain nice
mathematical properties, that have made possible a detailed analysis of the stability of various
configurations.

Before entering a discussion of MHD, one remark has to be made. Over 30 years of
research in this subject has created an enormous body of results. Itis obviously impossible 10
survey this subject in a few lectures, and such a task would be far beyond my uability. Rather, [
have tried to discuss certain aspects that are simple, but basic and important, in particalar for the

stability of wokamaks.
2. SOME GENERAL PROPERTIES OF IDEAL MHD
A. Lagrangian form of ideal MHD

For sufficiently short time-scales, the resistive electric field J can be neglected in

Ohm's law and we are left with the ideal MEHD system,

dv )

pa =JIxB-Vp 2.1
JdB _

G = BVv-BVy (2.2)
dp .

a‘+pV'v =0 (2.3}
d .

Fip v =0 (2.4)

Here. the total time derivative d/dt = d/dt + v- ¥V has been used consistently to simplify a
Lagrangian description. In the Lagrangian description, one identifies fluid efements, that arc
displaced from some reference position x at time t =0to y(x ) =x + E(x 0 at some later timeg
t. The dependent variables p, p and B are then considered functions of the original position x
and time, rather than of the present position y and time as in the Bulerian description; thus, for

example, pp (L) = pE(y(x.i).l).

Figure 1. Original and displaced volume ¢lement

An important quantity is the Jacobian, or the ratio of volume elements in the displaced and

original position,

3 diy_ 3 dy @
J=.\\,L0:(‘:__,i =Det(3x—})=z,%-(g%x3%) (2.5)

x
Conservation of mass can be written as

p(x,t) = pu(x) / I(x,0) (2.6)
or, shorter

p=pgll (2.67)
Furthermore, the expansion rate of a volume element is

1 d
Ta=vVY

) and thus (2.4) gives

p=po/ ¥ @mn

Finally, it is easy to show by direct substitution that the ideal MHD evolution equation (2.2) for

the magnetic field is satisficd by

I 1 ,
B =j' Il()vxy , or Bi = ]— B(‘JJFG (._8)

i.e., except for a factor 1/, the magnetic ficld transforms the same way as a line element

. i
dy = dx-V vy , o dyy = dy a—;; 2.9



]

This means that two luid clements, initdally on the same field line will always remain on the
same fickd line. Consequently, field lines are "frozen” into the plasina in ideal MUD, and
cannot be broken by any continous deformation of the fluid. Another way 1o siy this is that the
magnetic field fines muy be thought of as deformable, but unbreakable “wires”. The topology
of the configuration of wires cunnot be changed in lime, and this teads 1o ke the ideal MHID
plasni rigid. On sutficiently long time-scales, one has to consider the effect of resistivily,
which allows lield lines 10 break and reconnect.

Equations (2.6-8) show that the state of the displaced plasma 13 a function only of the
instantancous position, not of the time history of the system, 1.e., the stute does not depend on
the route the plasma followed from x toy. An inwresting consequence of these exphicit
expressions is that it is alse possible to formulate a potential energy, which is 4 function of the

instantaneous coordinates and 1o formulate MHD as a Hamiltonian system. To see this, we first

write down the Lagrangian as the difference between kinetic and potential energy

L= [ L &% =Wip-Wpo

!
Wiin=J zpv? dly , = (—B2 :Yp-)dq’ (2.10)

2y

The Lagrange density, in terms of the original coordinates, becomes
L= o2 - [y Ve Ly iv] @i
2 2yl Ty

with y =x +E. Using B.IIE)E_,LJ- =) aleayi and a/axj(auagi,j) = (), it is easy to verify that the
Lagrangian equation of motion

(auaa ) = OLJdE; - 5= auag, 7 (2.12}

reproduces the equation of motion {2.1) for the fluid clements. To construct the Hamiltonian,
we define the momentum density

n; = dL/dE; = pok; (2.13)
The Hamilionian is obtained in the standard way,

[ 3 & =[n-&dx
(2.14)

~f—d X +J’ [—-(llu\/xy) +—--J I“Y]d1
200 !
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andl the equanion of motion can be writien as

i

du smy Om

(2.15)
dm _ B o
TS zr“(a’“a@u)

It may be noted that the potential energy in (2.10) does not contain the electrie field energy.

That is due to the neglect of the displacement current in Ampere’s law.
B. Global conservation laws

We now consider an ideal-MHD plasma in a volume V, surrounded by a mmnmvuq,,
rlbld perfect conduunr in whu,h B = 0. The boundary conditions on the wall are AxE=0,

“B=0,and 7 v=0, where T is the outward normal of the surrounding surface S, Itis then

cusy o show the following global conservation laws

aq[- [pddx =0 mass (2.16)
v

d 3 B2 A

a J pvd'x = - (;3 (p+— I)ndS momentun (2.17)
v s 2ng

2 2

&'[- i (P% c R By -0 energy (2.18)
v ’Y-l 2}10

d 1 3 ) .

o J’ 5 A-Bd’x =0 magnetic helicity (2.19)
v

where the integrals are now written in terms of Eulerian variables, and where A denotes the
vector potential, B = Y x A. The conservation of energy,

W=W .+ me = gonstanl,
(2.2()

7
pv~ B2
. ka:f -2—d3x ) me =j (_R._ +—-)d3x

v v ¥' o2

allows us 10 use an Energy Principle 10 detenmine the stability of the plasma. A given magnetic

configuration (in which the plasma is at rest) is stable if its potential energy is at a minimum



with respect to all perturbations of the plasma, with p and B given by Egs. (2.7-8) This
follows from the energy conservation selation (2.209, simply because no potential energy can be
refeased to produce kinetic encrgy. Therefore, the kinetic encrgy cannot grow, and exponential
instahility is excluded. This argument is the basis for stability analysis by the energy itegral or
W metod, that is commonly used in ideal MHD.

The locit conservation laws (2.6-8) may be considered as constraints for the evolution
of the plasma. These local conservation laws can be integrated in space 1o produce global
congervation laws, the most important of which are given in (2,16-19). An interesting way to
generate very stable equilibria has been suggested and exploited, in astrophysical contexts by
Woltjer 3) and in the context of fusion devices by 1. B. Tuylur(’). The idea is that the deal-
MHD plasma will be stable i the potential energy is at a minimum with respect not only to the
moticons in which the pressure and magnetic field evolve according to (2.7) and (2.8), but to a
broader class of notions, constrained only by some of global conservation laws. Of particular
interest 1o fusion devices is the case when the total magnetic helicity (2.19) is fixed.
Minimization of the potential cnergy with the magnetic helicity constrained leads to the Buler-

Lagranpge equation

J=Ai8 (2.21a)
Vp=10 {(2.21b}
A = constant (2.21c)

Several devices for magnetic confinement are rather close to such "Taylor-states”, e.g.,
reversed field pinches7) and spheromukss). However, the above minimization is, in a sense,
100 pessimistic. This is clear, not only from the derivation, where all the constraints implied by
(2.7) and (2.8) are replaced by one single constraint (2.19), but also because it predicts relaxed
states in which no pressure is magnetically confined. Computation of the maxitoum pressure
that can be stubly confined is an important application of MHD theory and computation, and one
in which good correlation has been obtained between theory and experiment, at least for
Iukzlm;rks()).

3. LARGE ASPECT RATIO QORDERING

Despile the simple appearence of the ideal MHD system (2.1-4) the behaviour of its
solwions is enormously complex, in fact, even the linear spectrum is rather complicated.
Therefore, in these introductory lectures, we will be concerned with a simplified system, the
socalled reduced MEID equations. Because of its simplicity this system has been a very popular

1 In tokamak research over the past 15 years. 1t is useful because it gives a good description

of the two types of modes that set the most basic limitions on tokamik operation, namely, the
external kink modes and resistive tearing modes,  There are, of course, many aspects of
tokmmnak stability that are not described by thesc equations. In particular, all pressure driven
instabilitics, which determine the maximum stable §§ = 2<p>/p()<32>, are neglected in the
system we will discuss here. However, ohmically heated tokamaks have B-values well below
the stability limit, and it is only by the application of significant auxiliary heating that the [3-Titnit
cin be reached.

A derivation of the "lowest order reduced MHD equations”, given by H. Strauss! D will
be reproduced here. As a first step, we approximate the tokamak by a long thin cylinder with
periodic boundary conditions, and assume that the aspect ratio R/a (where R is the major radius,

and a the minor radius}) is large, ie., £ =a/R << L.

J ~ ®
> ] ) >
Taa “B
S
L=2wR

2a

Figure 2. Cylindrical model of a large aspect ratio tokarnak.

€ will be used as an expansion parameter and we first consider the order of magnitude of
different guantities, Tokamaks are characterized by having the safety factor q, defined as the
namber of toroidal turns a field line makes in completing one poloidal tum (:B¢r/BgR in the
cylindrical approximation) of order unity, i.e., B¢/R ~ Bg/a. Furthermore, the modes of
importance in MID show little variation along a field line B-V = B, 8/0z + B -V | =0
Here, 1 stands for components in the poloidal (r,0) plane. Thus, if we take the minor radius a
and the toroidal field B, to be of oeder unity, it follows that

Vo~ Ha=O01) R dfoz ~ 1/R = O(e)
(3.1a)
B, =0(e) . 1, =Ofe)

In addition 1o this, the lowest order reduced eguations assume that the pressure is f)(r.?-). which

also means that



3y = 0wd) , B, =constant + O(e?) (3.1b)
As a consequence of this, B can be represented as
B = Vq;x?+ Bz,? (3.2)

[Note that the leading order terms in V- B vanish and that V-B = 0. Yy is the z-
component of the vector potential and is usually referred (o as the poloidal flux function.
Forces in the z-direcuion arise from | x B, , which is one order smaller in € than forces in the
poloidal plane, Jz?x B, . Thus, w lowest order, v=v, andv, = 0. For the time evolution

of the vector potential, it is usetul w add a gauge potential,

%?—:-E+\7V: vxB+ VY (3.3)

To assure that the perturbed vector potential only has a z-component (as implicitly assumed in

(3.2)), we now demand that

JA A ) A
0= x—a-zzx(va)+szV :lezvVsz (3.4)

This gauge condition shows that ¢ = V/B,, is the streum function for the plasma motion in the

perpendicular plane
§ A
v, =V x z (3.5)

and that to lowest order the motion is incompressible. The z-component of (3.3) becomes

TR A A
i kBB, T Ve =B,V p + B,z Vo
(3.6)
=BV
The curtent deasity is
. A ~ 2N oy A
J=V x (Vy x2) +VB, xz=-V yz+V, == +VB, xz 3.7

10

From here on, we sct g = 1, a8 is common practice in MUD, This sinply wmounts 1 a
redelinition of the magnetic fickd strength. Substituting (3.5) and (3.7) inlo the cquation of

motion {2.1) gives
A A -
d 2 - Jllf 2
pa\/cp xz=-V yV |y -B,z x VLDT -V (p+ B2
As usual, Tor incompressible motion, it is sufficient w consider the curl of the equation of
motion. The z-companent of the curl gives an evolution equation for the vorticity

J e 2 J.,2
p(57+vl-V)Vi¢ =BV Viy+B, 5V ¥
(3.8)
2
=BVV )y

where we assumed that the mass deasity is constant in space. 1t is useful to introduce the z-

component of the vorticity and electrical current density as auxiliary variables

3 _ 2
w=- Vo j=-Viv (3.9)

The reduced MHD equations can now be written in a compact form,

p(§[+vl-\7)m = B-Vj (3.10a)
oy "
5 =BV (3.10b)

The simplification from the full MHD system is evident; instead of the six vector components ¥
and B and two scalars p and p, we now only have two scalars ¢ and y 1o evolve in time. ¢ 15
evolved in time by evolving w according 10 (3.10a) and invening Laplace’s equation qu: =-m
with the appropriate boundary conditions.

Of course, the nonlinear system (3.10) has an energy integral

W= Wi Wigp = constant, Wiy = | (V00203 = | £ a3,
(A
B P S B
Wm;lg _I 5 RE le—J Fh dx
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which means that the Encrgy I’rim:iplv.:I 1} can be used 10 study the stability. 16 a given
configuration has the magnetic potential energy at a minimum, then it is stable, it not, it is

unstible.
The system (3,100 is the lowest order approximation in € = a/R of MHD in a tokamak.

Approximations in increasing orders in € have been given by Strauss! 2), Drake and
Antonsen!?) and lzzo et at!4). Maschke and Morros Tosas!3) show how these
approximations cun be derived from an exact formulation of MHD in 1erms of stream functions

and potentials.
4. IDEAL LINEAR THIFORY IN A CYLINDER

To proceed we assume that the equilibrivm has cylindrical symmetry jo = jplr). 08 =
Afdz = 0. The equilibrium relation is then simply

. 1 ddwy
J():-?-(Fr—a;— (4.1)
We assume an exp(iot + im@ - inz/R) dependence for the perturbed quantities, where m is the
poloidal mode number and n the toroidil mode number {z/R being the cylindrical equivalent of
the toroidal angle). Linearization of the reduced MHD equations (3.10) gives

oy =F
(4.2)
1d dd m? . . 1d dy m m dip
pol s g ) =P E T Y T v
where
. Bz, m
F=k B= mBelr '"BZ/R = -ﬁ-(q— n) 4.3

For the purpose of an ideal MED stability analysis, it is useful to introduce U = $/@ whichisa
stream function for the displacement, so that y = FU. Multiplying (4.2) by U and integrating

by parts, we obtain the square of the eigenfrequency as a Rayleigh quotient

wl=-y=sW/K (4.4q)

Here ¥ denotes the growth-rate,

[4 3

o1 du.2  m?

K=5] pl G +%‘Tu2|mr (4.4b)
0
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represents incrtia and

o0 .
1 dy2 m? 5 m Yo » .
EW = fg [ + 5 ¢ g @ Y 1 rar (4.4c)

represents the magnetic potential energy of the perturbation. Instability results if, and only if,
there is a perturbation thal makes dW <.

§W in (4.4¢) contains 1wo positive definite terms, and there is only one, proportional to
the cutrent gradient, that can cause instability. We note that the Taylor state J = AB, in the large
aspect ratio Himit, has j = constant and therefore has removed this source of energy. However,
in order to have j = constant everywhere, it is necessary to have a conducting watl right on the
plasma. In the next subsection, we shall consider the stability of external modes, when such a

watll is cither absent or separated from the plasma.

A. External modes

We now consider external modes that do not have a resonant surface inside the plasnu,
in other words F# 0 and g # m/n everywhere in the plasma. In this caxe we can use arbitrary
trial functions for yr in W, (If the resonant surface g = m/n is located inside the plasma, ideal
MIID requires that the perturbed magnetic flux y vanish on the resonant surface, since U =
w/E. A 1/x singularity of U would make K = e and therefore w? = 0.)

For simplicity, we consider the "top-hat” current distribution of Shnfranov]ﬁ), where
the current is flat inside the plasma and falls discontinuously to zero at the plasma-vacuum

houndary
jn= 2ByRgy for r<a, and  jo= 0 for r>a. {4.5)
A simple way to find an appropriate test function for y in W is to solve the corresponding

Euler-Lagrange equations for & W stationary separately in the two regions r < a and 1 > a, and

join the two solutions at r =a. The Euler-Lagrange equation is

1 d_dy m? m dig  _
T&E A 2 Y B T vl (4.6)

o the tap-hat profile where dj/dr = 0) everywhere except at r=a, the appropriate solutions of
(4.6) are ¥ = ()™ for r < and y = (/)™ for r >a. Here, we have assumed that m is
positive and that there is no conducting wall in the external region. Substituting these solutions

it W (most easily done after an imegration by parts) we obtain
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m 2 i 2

. a ! ' ——
bw:'z"l‘a(“‘f"h)'m“’u:’"“'m-nqo)wﬂ 4.7)

Fquation (4.7) shows that instability occurs if and only if

O <m-nyy < 1 (4.82)

or, (assuming n > ) for g in the range

(m-1)/n <qp< m/n (4.8b)

We see from (4.8a) that for every toreidal mode number n there is at least one poloidal mode
number m for which this profile is marginal or unstable, This is not very surprising, since the
sharp current gradient of the wp-hat profile is somewhat unrealistic, and is very effective in
creating instability for high m. A rounded off profile is more stable for large m, and for realistic
current profiles it is only stabitity o m = 1, 2 and 3 that s critical. However, an interesting
aspect of the top-hat profile is thal for qq integer, there is no mode that is unstable, only
marginal modes with m = nyggy and m = ngg + 1.

A powerful way to increase the stbility to these external modes is 1o introduce a
perfectly conducting wall, We let the wall be positioned atr =b > a, In this case, the external
solution of (4.6) must satisty y(b) = 0, thus

_ (b/l’)m _ (r/b)m

= , é 49
/) - (a/b)y™ e @
The region for instability becomes
(/n) [m- 1+ @b)y>™ | <y <min (4.10)

and the unstable range of g, has been reduced by a factor 1 - (@/b)2™. I the wall is right on the
plasma boundary, b = a, there is no instability at all. Typically, tokamaks have conducting
walls with b/a 2 1.15. As the effect of the wail is proportional to (a/b)2™, wall stabilization is
powerful only for low m. Funthermaore, in reality, walls only have finite conductivity, and can
only stabilize the external modes over i certain Gme-scale.

We now consider the case where the region of nonzero current only occupies part of the
cross-section r < re, with r, < a. Outside this region ¢ increases with the radius as y(r) =
qO(r/rc)z, and at the plasma boundary, y, = qla) = Q(}(zlfl'c)z. If g, <my/n, there is no resonant
surface in the plasma and the condition for instability is unchanged (4.8) or (4.10). However,
if the resonant 4-value m/n lies between qg and g, then the resonant surface where F =0 iy

located within the plasma, and the test function for y has (o be zero at the resonunt surface.

14

This has the important consequence that the ideal mode with made numbers 1 and nis stable,
as can be seen by rewriting 8W in eoms of §="U/r, propartional w the radial displacenkeit

A

. 1 I 2 13,2 3 29 .2 2

sW =5/ | 21262 4 - DE2E2 L rdr - 3 [F2 A+ (m 2g2) Byl e 1D
2]

in (4.11) it is assumed that the equilibrium current vanishes at r=a. The conltribution to 5W

{rom the vacuum region a < r < b is contained in the wrm proportional to

o _om 1+ (a/b)2m
A‘“‘/wk;u_- 'I b - (u/b)z“l (4.12)

If “’.Eqa?, > |112, @il werms in (4.11) are positive definite Tor m > 1, and semidefinite for m = |
Thus, all m > 1 modes arc stuble when nzqu2 >me, independent of the current profile.

It is now casy 1 work out the ideal stability for the Shatranov equilibrium in terms of
gpiand gy, It is unstable to the (m,n) mode if, and only it,

g, < nyn (4.134)
and the powential energy (4.7) is negative,
(m-1)yn < g < m/n (4.13b)
In order 1o construct a stability diagram, one must consider the condition (4.13) for all positive

mand n. B turns out that the most stringent conditions are set by n = 1 and the stability diagram

takes the following shape

Ya A

‘ m=3 Figure 3. kleal-MHD
2 >/4| g
stability diagram for the
1 m =2 Shafranov current protfile.
. = (la £ Do The dashed region is stable,

—
P
w.—
-0

o
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The dashed region is stable and the boxes are unstable to an n=1 mode with poloidal
modenumber as marked in each box. In the region marked by a question mark, there is a
marginally stable m=1/n=1 mode, whose displacement is nonzero and constant inside the =1
surface and zeto outside. This displacement makes SW =0in (4.11). In the large aspect ratio
tokamak, the region with qg < 1 is unstable 1o a resistive kink mode!7). At low aspect ratio,
this mode can be stable or unstable depending on the profiles.

Despite its simplicity, the ophat current profile enables us to draw pretty much the
correct operational diagram for tokamaks. There are of course several comments to be made
about this diagram. One such comment is that although it was commonly agreed for a long time
that tokumaks usually operate with a central g very close to unity, there are experimental
measurements of (g significantly below 1, e.g., qg = 0.7 has been reported from the TEXTOR
tokanyk ' ®). This is in the region marked by a question mark in our large aspect ratio stability
diagram. The M11D community is presently under the challange to explain how (and i) qp =
0.7 can be consistent with the occurrence of sawtooth oscillations in the central wemperature.
These oscillations are induced by an m=1/n=1 displacement of the center, and it was previously
thought that such an instability would occur as soon as g becomes even slightly tess than
uni:yw). Although it is now understood that this is not necessarily the case at small aspect
ratio, the sawtooth presemtly pose many questions for which we do not have answers. Here is
an important problem that is as yet unresolved!

For the purpose of these lectures, the most important comment is that we found stability
for modes with a resonant surface in the plasma, simply by imposing the requirement that W,
= ) at the resonant surface ¢ = m/n. 1f we had treated the region at qg=m/n as a vacuum, we
could have found instability. Thus, if there is conducting plasma at the resonant surface, the
plasta is stable, if there is vacuum, it may be unstable!’ The stabilization occurs because the
magnetic field is frozen into the plasma, which forces y to vanish at the resonant surface. This
stabilization is lost if the resonant surface is in a vacuum or if the plasma is not perfectly
conducting. The case of imperfectly conducting plasma leads to the resistive tearing modes, so
called because they tear the magnetic field lines because of finite resistivity. This is the subject

of the next section.
5. RESISTIVE TEARING MODES

The relevance of resistive MHD modes to the stability of magnetic confinement devices
was recognized around 1960 and the first systematic study of the subject was given by Furth,
Kitleen and Rosenbluth in a famous paper usually referred 1o as FKRZD. The tearing mode is

a global mode like the external kink made, but the dynamics are concentrated to g thin layer

16

around the resonant surface where the field lines are torn by finite resistivity, allowing a
nonzero y even though F = 0. The tearing mode has a growthrite that is a fractional power of
the Alfvén T and the resistive diffusion time 1 = :12“0!11. The ratio § = Tpfty is called the

[undguist number and is very large in present-day wkamaks, § > 10% in JET, for example.

25,

in comparison with ideal instabilities, whose growthrates are of the order tA'l. The growthrate
of the resistive kink madel7? is of the order TA_ZBTR-]B- i.e., intermediate between the

The growth-rate of the resistive tearing mide is of the order 14" "5_ which is very slow

resistive tearing and ideal modes.
First of all, we introduce a resistive electric field in the flux equation (3.3}

Y I PR 5.1)

In the large aspect ratio ordering, we have J; >>J; so this term goes easily through the

derivation of Sec. 3 and we have in place of (3.10)

i (%+ v, V) w=BVj (5.2a)
%‘i—’- =RB-YVé¢ -1y (5.2b)

Linearization of this system is straightforward; (4.2) is replaced by

Ty =Fo + nvf\v
(5.3)

2. 2 mdp
-pYV 0 =FVIY -y

In (5.3) we consider time-dependence e and a factor i has becn absorbed in ¢. FKR found
that outside the thin layer near F=0, the solutions of (5.3) are close to force balance and can be

obtained by setting the inential ierm in (5.3) to zero

1 d dy m2 m dipy B
TaT U _rf‘l’ " By(meng) T ¥ 0 (5.4)

We note that this is the Euler-Lagrange equation for y in the ideal case. This equation holds
a good approximation sufficiently far away from the resonant surface and its sohntion will be
referred to as the external solution Yo, - 10 the vicinity of the resonant surface, in the resistive
Layer, both the resistive and inertial werms in (5.3) become important. However, because the

liyer is thin, it is only necessary to keep trick of the highest derivatives with respect to 1.
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Furthermore, since 1= (Fat the resonant surface r = ry, we ¢an set = Fxowithx =1 -1

Thus, the equations ta be solved in the layer ure

2
Yy =Fx Hl‘—-r:1 5 (3.54)
)

(5.5b)

where T stands for (n/r) djg/dr, which is really equal o F" - 3F Y/r in cylindrical geometry.
(This somewhitt confusing notation is used W make the connection to the standard procedure of
considering the tearing mode in planar geometry, and also suves some space.} What is needed
is 10 solve Ihe external and resistive layer equations separately and finally match the solutions.
The matching conditivn will determine the growthrate of the mode.

Before carrying out this program in detail, we consider for a moment how muy even be
possible to match a fourth order equation (5.5) to a second order equation (5.4). The fourth
order system needs two extra constants of integration; where do they come from ? To see that
we can simply consider the local properties of (5.5), setting d/dx = ik, and obtain the local

"dispersion relation”

pmki +(F2x2 4 pyd) ki +xFF'=0

- L - 4.
In the limit of small resistivity, the coefticient for kx is very small, and thus the two roots can

be approximated as
K = - xEF/E 22 + pyd) (5.6)
2 o
ks = - (F' 224 pylypm (5.6b)

The solution {5.6a) behaves in the same way as the solution of the external equation for large
Ixl, but the other solution (5.6b) grows/decays for large Ixl as exp(F 'xzﬂ(pm)]ﬂ), i.e., very
rapidly in the limit of small resistivity. We get the two extra constants of integration by
requiring that the exponentiatly lurge components corresponding to (5.6b) vanish for large Ixl.
That is necessary in order for the solution of the inner layer problem (5.5) 10 maich to the
external solution. It means that we discard any solution where ¥ is much larger outside the
layer than within i, Thus, we admit that the solution of the layer equations (5.5) 1s rapidly
varying inside the Layer, but the rapid variation must decay rather than grow away from the

layer.
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A. Formulation of the boundary layer problem

It is useful to consider the nature of the ¢xiernal solution 10 see what conditions arc
reqquired in order for the internal solution 10 match to it. There is a singularity of the external
equation if djpidr = 0, but this only gives an x loglxl singularity of the solution

Ve =All +ilf— {x loglxl - x} } + Bx +0(x2) 5.7)

Thus, if the thickness 8 of he layer is small, we anticipate that the inner solution will be nearly
constant in the layer ¥;pner = Yext(fs) + O(Blogd) = Yay (ry). This is referred to as the
“constant-y approximation”, Itis justificd when y,, is almost constant in the layer, which is
the case in the limit of small resistivity for the resistive tearing mode (but not for the resistive

kink mode).
Thus, the matching must be done 10 an external solution for y that is continuous at the

resonant surface. However, if Wey, is continuous, there will in general be a jump in dy  /dr,
and this jump is connected 1o the total current in the layer. Equating the jump in derivative for
the internal and external y, we have the maiching condition

Aoxt = B (5.8a)
where
Bext = N [ Yoy (5#8) - W (5B / Wy 1y) (5.8p)
& ot
X iy oo
. _ 1 . { .
A= lim ¥ (0) f _5;'2!.‘1 dx ZW P J’ (7 - F'xdj ) dx (5.8¢)
. - o0
X5~ 400

and where P denotes principal value. Two comments need 10 be made about Eqgs. (5.8). First
because (he layer has a very small width 8, and y' is determined essentially by the external
selution, ¥ and its derivatives scale the following way with 8, y = const + O(8), ' = O(1) and
' = O(1/8). Therelore, y can be approximuted as a constant but its derivatives cannot.

Second, the principal values in (5.8b,c) are needed because, as can be seen from (5.7)

wc.x!/‘pm[(fs) = (17 log [xl



1)

s that dyr, Alr(rd8) both diverge logarithmically for small 8, just as dy;, Jx(£X) diverge
logarithmically for karge X/6.
Thus, the procedure for soiving the resistive MHD problem (5.2) in the limit of small

Tesistivity is

I Solve the external equation (5.4) separately on both sides of the resonant surface and
compute A

I1. Solve the inner layer problem (5.5) for an assumed value of y and compute Iy

HI1. Linally, set /\im(y) = Acxl' which determines Y

Introducing the constant-y approximation in (3.5) and eliminating dlwldxz, we obtain a second

order equittion for ¢

2 .

pm l—‘% ERTg-mF -y 59
L4

X

The solution of (5.9} is 1o be substituted into the maiching condition
w0

P (yy-E'x¢)dx (5.10)
MY _eo

' 1
Aext =

From (5.9) and (5.10), we can estimate the time and space-scales involved without a detailed
calculation. (5.9) shows that the characteristic length (the width of the tearing layer) is & =
(pm/F '2) U4 The integrand in (5.10) is peaked over a distance & and has a maximum value of
order yw. Thus, A' = &ym, which, together with the estimate for & gives

y = A5 S o115 25

B ~ A'”S “2/5 P”S I -2/5

B. Solution by Fourier transformation

There are several different ways 1o solve Eq. (5.9). FKR used an expansion in Hermite
functions. The method of Fourier iransfonmation reduces the amount of algebra involved and is

. . - 2 -
applicable to 4 varety of similar problems< D We define the Fourier transform (k) as

X)

oo o
ot =f owekrax , gn=f dnoekx & (5.11)
o oo 2n

and write (k) = FT[¢(x)]. The Fouricr ransformed Eq. (5.9} becomes

) 2
d«p 2 F I
- e ming 500801y 612

where 8(k) denotes the Dirac delta func;ionzz). Note that the homogeneous part of the equation
did not change in form under the Fourier transformation. The advantage of working in Fourier
space is that in the Fourier transformed equation (5.12), the sovrces are entirely localized at
k=0, The desired solution of (5.12) is easily constructed from the two unique solutions ¢ and
@_ of the homogeneous equation that decay as k = £ o= on the real axis. We set® = A, for
k>0and @ = A @_for k < 0 and adjust the coefficients so as to produce the carrect source

term at k = O in (5.12). This source tenm leads to the following jump conditions for @

BOF) - DEO™) =~ 2%‘1 " (5.13a)
b B 2mnE"
FTON - O =y (5.13b)

It is convenient to transform also the A' condition (5.10) to Fourier space, which gives
,_ iF 4@ dd
A= 2y (e OH+ g ©)] (5.14)

This expression follows from (5.9) because the integral can be interpreted as the value atk =0
of

Fr[w-F'x¢]=2mw5(k).iF"jl—‘kb- (5.15)

The 8(k) originating from the dy/dt-term in (5.15) is exactly cancelled by the dd/dk term with
the jump in (5.13a). However, even with the 3-function removed, d®/dk is not well defined at
k = 0 because of the junip (5.13b). It can be shown riporously in this case, that the procedure
of taking the principal value in (5.10) corresponds to taking the average of d¢/dk(0+) and
d®/dk (07) in Fourier space. Combining (5.13b) and (5.14) we gel

dd ik

TOH= Ty (a3 (5.16)
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which gives the nonwalization condition for @{k). To calculate Dk}, we use the two solutions

of the homogencous (5.12)

o pym 5
5T R ke (5.17)

such that (k) > Qask = +eeand k 2 -oo, respectively, and then adjust the normalization

according to (5.16). Substitting (5.16) in (5.13a) finally gives the eigenvalue condition

(a+ B2 Eﬂ:)»———_d’(m) - (5.18)
F™ 7 s F'l ikt M

Note that the solution of the homogeneous inner layer equation enters the eigenvalue relation
exclusively via the logarithmic derivative at k = ot
The sclution of (5.17) that is well behaved as k = +e= is

() = (k)72 K14 K272k
(5.19)

4
ko = F'2mpy

where K is the modified Bessel function of the second kind. The logarithmic derivative atk =
0% is easily found from an expansion of @ for small k. It is sufficient to use

v(z) = { ]uv(z) lv(z) i
2 sin

ll+0( 22|

(712)
L@ = el

which gives
2k

1 2,2
@ (k) = 1 [ —— - ——— 4+ Ok}
=Tl T4k o)

Thus,

@, (01 y D (07)
+ ) B (5.20)

dd fak(0h) o 21(3/4) dd fdk(0)

P

where the last equalbity followed from the symimetry of (5.17), @ik} = - D (k). Using {5.20)

in (5.18), we linally obtain

y= AHS 135 5 15 205 ( 1{1/4) )4/'3
2r I'(3/4)
(5.21)

= 0.55 AMS 35 )15 o215

Ihis is the asymplotic expression for the growthraie of the resistive waring mode in the Timit of
smiall resistivity.

In addition 1o the growth-rate, we can also give an expression for the inner-layer
solution. Substituting ®(k) into the Fourier integral gives

(x )_nmm) [(A' fin kx - S F. cos kx) (k k! Ky (& ,rku) dk (5.22)

Thus, ¢ has one piece that is odd in x and proportional to A' and one piece that is even in x and

proportional to F'/F ', i.e., 1o the local current gradient.

\ -
< A J-Aqxl HMHp assjmpfbk-
4;0‘{4 i ~ 4‘ TN ff’ x
>
X
\ ™~ CPC.\(Q,{,

H L“Mjilr width §

Figure 4. Qualiwative plot of ¢(x).
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Figure 5. Field lines (heavy) and streamlines for the resistive tearing maode.
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In x-y space the ficld Fines (e, the level curves of the total flux function y = Wy + ¢}
and the stream lines (level curves of §) for a case with no local current gradient look as shown )
in Fig. 5. Here the heavy lines are magnetic field lines. Note that an island is formed around
1he resonant surface and that the flow is pulling the field lines away from the O-points at x-0,
kyy =0, 21, Hn, . and in toward the X-points at kyy =*tx, 31, ..

0. Energy balance

The tearing mode is interesting from the point of view of encrgy balance. This is more
complicated than in ideal MHD because of the dissipation. We start by considering the sum of
the contributions of the mede to ohmic dissipation and the power being convected into kinetic

energy
oo

W _
T = § ou? + pro) dx
- og

In the thin layer approximation, the Fourier transforms of the perturbed vorticity and current

density are
ET [} = k2 Ok)
FT [j] = [iF " dd/dk - 2myy 3(k)1/m

i.e., FT{j] is the regular part of dd/dk. By means of Parseval's theorem and the symmetry
®(-k) = D*(k), the released power can be written as

F2

oo
dw 1 do
O oh (5.23)
an

- F2ddp o e
T (Tlik‘l + K2pydi2 ) dk =-

)

where we used a partial integration and Eq. (5.12). The energy released by the tearing mode is
nuw obtained by dividing (5.23) by 2y (the growth rate for a quadratic quantity)

_1 2 ! YT YATC
W_j yy [ A+ (FYE )5IA (5.24)

We note that the released encrpy has one picce proportional to A' and one related to the locat

cuerent gradient. It can be shown that 1/4 of the energy goes into fluid motion and 3/4 inwo

joule hcalingz b,

.. Other types of resistive modes

in addition to the tearing mode, FKR also discuss other types of resistive modes. The
rippling mode is similar 10 the tearing mode but it is driven unstable by gradients in the
resistivity and is almost independent of A" It is generally agreed that the rippling mode is
stable in high-temperature plasmas (= 50 eV) because of high thermal conductivily along the
fieldlines. The resistive g-mode is driven by pressure gradients in combination with
unfavourable curvature, and its growth-rate scales like TA'Z”?’TR' 173 This mode is stable in
tokamaks with g > 1, where the curvare is favourable, however, it should be unstable in
RIPs.

Coppi, Greene, and Tohnson23) solve the compressible resistive MHD problem in a
cylinder with finite pressure. This work was extended to toroidal peometry by Glasser,
Greene, and JohnsonZ4). Coppi, Galvao, Pellat, Rosenbluth, and Rutherford!7) treated the
resistive kink mode. This mode is at the mansition between the resistive earing mode and an

ideal instability and cannot be treated by the constant-yf approximation. Its growth rate scales as
1 A'2/31R'U3.

6. IMPLICATIONS OF TEARING MODES FOR TOKAMAKS
A. Linear stability
Equation (5.21) shows that the stability of the resistive (earing mode only depends on

A'. The mode is stable if A' < 0 and unstable if A' > 0. Of the two external solutions shown

here, {a) is unstable and (b) is stabie.

v ,

¥ ">
(o) A& 70 (b) A <0
Unshuble Stuble
> —

Figure 6. External solutions for y. (a) tearing unstable A' > (¢ and (b) tearing stable A" <0.

The A' criterion is casy to understand intitively. At the resonant surface, the ideal MIID

dynamics cannot change y, so Y evolves in time only by resistive diffusion. 1t is clear that in
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may well be companble with trunsport effects, which appear w deternune the current profiles.
However, it is known experimentally that the current — or g -limit of tokamaks is g, = 2, not
2.6. Cheng, Furth, and Boozert® showed that there are tearing-stable profiles for g, between
2 and 2.6, but the stable profiles become increasingly distorted as g, approaches 2. Such

‘ profiles would almost certainly not be compatible with ransport effects. The resolution of this
problem appears 1o be that for g, = 2.6, tearing modes are guite strongly stabilized by the
presence of a conducting wall. Contrary 10 the case of external kink modes, tearing modes cuan
be stabilized by finitely conducting wills because, in practice, they have real frequencies, that
are usually larger than the inverse of the wall time constam27+28) This rotation frequency is
determined by the dynamics in the resistive layer, As this dynamics is slow, the learing mode is
almost frozen into the plasima at the resonant surface. Thus, if the plasma is rotating {even very
slowly) the mode will be forced to rotate with the plasma. If this rotation is fast compared with
the resistive decay time (L/R) of the wall, the mode will not be able to penetrate the wali and can
therefore be wall stabilized.

When wall stabilization is accounted for, it is relatively easy to construct profiles that are
stable 1o all 1earing modes for g, between 2 and 2.6 and qg = 1. When g, drops below 2, the
m=2/n=]1 mode turns into a resistive kink, that cannot be stabilized by resistive walls. This
appears Lo explain why the current limit is more or less exactly at q, = 2.28) 1 is the
impression of the author that an important reason for the success of tokamaks is that the profiles
which occur naturally as a result of transport tend to be MHD stable. The only obvious
exception 1o this statement is the peaking of the curent in the centre, which gives rise to the
sawteelh. These, however, do not have a srongly detrimental effect on confinement at least not
during high-q, operation.

B. Nonlinear evolution of a single unstable tearing mode

In this section, we briefly discuss some theoretical and computational results concerning
the nonlinear evolution of tearing modes. When the tearing mode grows, it leads 1o the
formation of a magnetic island at the resonant surface.

2 -
VM Figure 7. Magnetic island

Xs0 caused by a nonlinear tearing

mode.

T_W

Rutherford>?) showed that the growth of the tearing mode slows down once the mode beconcs
nonlinear, which occurs when the width w of the iskand is comparable w the width & of the
lincar resistive layer.

In somewhat simplified terms, Rutherford’s argument is as follows. In the egion
inside the island 1x] < w, the perturbed y cannot grow by the ideal MUD mechanism but only by

the resistive electric field. Thus the perturbed magnetic flux evolves according to
ot =- 1 6.2)

When the island has reached a width w > 8, the matching to the external solution must be done
an island width away from the resonant surface, rather thit the linear tearing with 8. Thus, the

perturbed current density, which is about uniform across the island is given by
J= - YWy - yew)liw = -yl (6.3)

where A' is now defined for the external solution with respect to rg £ w. Combining (6.2) and
(6.3) we have

I/t = ymA'iw (6.4)

where it can be seen that w replaces 8 in linear theory. It is casy to show that the island wiwh is
proportional 1o the square root of the perturbation in y. This, together with (6.4), gives

dw _ o 9w
r Y wdt T

~

dy
W dt

na' (6.5)

LN
bt —

Equation (6.5) shows that the island grows linearly in time at a rate proportinal 10 7 =< 'tkl , e,
on the slow resistive time scale. White et al3%) showed that m > 1 modes saturale when the
island grows sufficiently large 10 affect the equilibnium current profile so that A’ decreases to
zero. For specially chosen profikcs3l) with q) far above 1 (but less than 2} and a sharp current
gradient inside the =2 surface, the magnetic island resulting from the m=2/n=1 resistive tearing
mode can become very large.



{.. Major disruption

It seems appropriale to say a few words in the final section of these lecture notes about
experimental consequences of earing modes. Itis well known from experiments, see e.g.-u),
that an m=2/n=1 mode plays a dominant role in major disruptions which lead to the complete
and violent termiination of a discharge. There are several types of disruption, notably, cutrent-
density- and B-limit disruption and current ramp disruption. Each type is caused by a different
way of violating MHD stability. The disruptions that give the most important limitations for
the operation of a tokamak are the current and density limit disruptions. The current limit in
near-cireular machines is g, = 2, and for g, < 2, an m=2/n=1 external kink mode becomes
unstable and leads to disruption with & very short precursor, The density limit is empirically
known 0 be n < CB/Ry,,, where C is a weakly machine-dependent number between 1 x 1020
and 2 x 1020 wo! for ohmically heated tokamaks. The two requirements q, > 2 and n <
CB/Rq, restrict the operating regime to a triangle in the Hugill diagram, where the normalized
density nR/B- is plotted versus the normalized current 1/g,.

V/a, o OISRUPTION
0.5 o
0.4
Figure 8. Schematic Hugill
0.3 diagram showing bounduries
0.? DENSTTY DISRUPTION stable okamak operation.
o The white region is stable.

A
8 nRIBr(l(]wa )

2 q 6

In the initial phase of a density limit disruption, the outer parts of the plasma are cooled
by radiation losses exceeding the total heating power. As a consequence, the current channel
contracts and when the current density becomes sufficiently low at the =2 surface, the
m=2/n=1 tearing mode goes unstable. If this were the only mode to become unstable, the
contraction might not be so serious, the plasma would just develop a magnetic island at the g=2
surface. However, experimental observations show that the ensuing MHD activity can be
extremely violent, and finally leads 10 the complete loss of plasma pressure and current.

Waddell et 133 showed by numerical simulation that very dramatic, nonlinear
interactions and destructive MHD activity results if the m=2/n=1 and m=3/n=2 tearing modes
are both unstable, and that the growth of the 3/2 mode can be enhanced in the presence of the

2/1 mode. The simultancous presence of large ampliude tearing modes with different helicity
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nyn not only leads to violent MEED activity, but also breaks up the magnetic surfaces, and
causes the magnetic Tield lines 1o become stochastic over some part of the cross-section. This
means that the electrons can follow a magnetic field line over a large radial distance, and
therefore encrgy confinement is severely deteriorated. It seems clear that such nonlinear
interactions of tearing modes are responsible for the early phase of a density disruption, when
repeated minor distuptions occur. These minor disruptions involve violent MHD activity and
lead 1o partial, but not complete loss of the plasma energy, but do not guench the current,

A more recent simulation study34), in which it was attempted 10 simulate density
disruptions in a self-consistent way, by slowly changing the external conditions of the plasma
(rather than starting the simulation with a highly unstable equilibrium), showed a sequence of
minor disruptions, similar to observations in, e.g., JET. Once the 2/1 mode grows to sufficient
amplitude in these simulations, it modifies the current gradient in such a way that the current
gradient inside q = 3/2 is increased. As a consequence, the 3/2 mode is driven unstable and
creates an island which, in its tuem, modifies the current gradient to make the 4/3 mode unstable,
etc. This successive destabilization of resistive modes takes the form of a front moving inward
from the q=2 surface. Behind the front, the magnetic field has become turbulent and stochastic
{i.e., the magnetic surfaces have been destroyed by the simultaneous presence of modes with
different helicities m/n). Figure 9 shows the current and temperature distribution in a poloidal
cross-section during the inward propagation of such a front. Note the clear separation between

the laminar region ahead of the front and the wrbulent region behind it.

Figure 9. Level curves of (a) plasma temperature and (b} current density

during a minor disruption {from Ref. 34)
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When the ront reaches the = | region, the current distnibution 1s similar to a top-hat with g
| in the center. At this point, the front stops, simply because there is no longer any driving
coergy for a linear instability. The simulation described in Ref. 34 showed several such events
of fronts propagating from the 4=2 surface toward the central region, similar to the "minor
disruptions” that occur in the carly phase of density limit disruptions, These destray the
confinement in the region | < g $ 2, but do not quench the plasma currenl. In a major
disruption, the minor disruptions arc followed by a very fast drop in the plasma temperature,
the socalled energy quench. After this, the plasma current starts o decay, and the plasma is
lost. Different explanations for the energy quench have been proposcd32-35), but sofar, the
final phase of a major disruption remains poorly understood theoretically. A more extensive

review of theories and simulations of major disruptions is given in Ref. 35,
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